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Abstract—In networked systems, monitoring devices such as sensors are typically deployed to monitor various target locations.

Targets are the points in the physical space at which events of some interest, such as random faults or attacks, can occur. Most often,

monitoring devices have limited energy supplies, and they can operate for a limited duration. As a result, energy-efficient monitoring of

target locations through a set of monitoring devices with limited energy supplies is a crucial problem in networked systems. In this

paper, we study optimal scheduling of monitoring devices to maximize network coverage for detecting and isolating events on targets

for a given network lifetime. The monitoring devices considered could remain active only for a fraction of the overall network lifetime. We

formulate the problem of scheduling of monitoring devices as a graph labeling problem, which unlike other existing solutions, allows us

to directly utilize the underlying network structure to explore the trade-off between coverage and network lifetime. In this direction, first

we present a greedy heuristic, and then a game-theoretic solution to the graph labeling problem. The proposed setup can be used to

simultaneously solve the scheduling and placement of monitoring devices, which, as our simulations illustrate, gives improved

performance as compared to separately solving the placement and scheduling problems. Finally, we illustrate our results on various

networks, including real-world water distribution networks and random geometric networks.

Index Terms—Scheduling, network coverage, graph labeling, potential games, dominating sets

Ç

1 INTRODUCTION

DETECTION and isolation of unwanted events such as
faults, failures, and malicious intrusions is a fundamen-

tal concern in a variety of practical networks. For example,
leakage detection in water distribution networks can reduce
physical damage as well as financial losses [1]. For this pur-
pose, monitoring devices, such as sensors, are typically
deployed strategically throughout the network. Spatially dis-
tributed systems over large areas may often be monitored
only by battery-powered devices, as wired deployment can
be prohibitively expensive or impossible. If the power supply
provided by batteries is insufficient for continuous monitor-
ing during the intended lifetime of a system, batteries must be
replaced regularly. Since the cost of battery replacement for a
large number of devices can be very expensive, one of the pri-
mary design concerns for such systems is increasing the time
until the batteries of sensors are depleted. At the same time, it
is desired tomaintain a certain level of monitoring in terms of
the number of targets covered throughout the network life-
time. Here, targets are the points in the physical space at

which events of interest can occur. For instance, in water dis-
tribution networks, events can be the pipe bursts, and so tar-
gets can be the water pipes, which need to be monitored
through sensors such as battery operated pressure sensors.

One of the primary approaches for conserving battery
power is “sleep scheduling.” The idea is to have only a subset
of the sensors activated at any given time, and to turn off (i.e.,
“sleep”) the remaining ones, thereby conserving power. By
activating different sets of devices one after another, the over-
all lifetime of a system can be substantially increased. Previ-
ous research efforts, which we discuss briefly in Section 9,
have mostly focused on finding schedules that ensure com-
plete coverage, that is, guaranteeing that every target is moni-
tored by some device at any given moment in time (e.g., [2],
[3]). However, complete coverage is a very strict requirement,
which severely limits the sets of devices that may be asleep at
the same time. In fact, coverage (i.e., ratio ofmonitored targets
to the total number of targets) is a submodular function of the
set of active devices in most models (e.g., [4], [5]), which
roughlymeans that attaining complete coverage is dispropor-
tionately expensive compared to achieving reasonably good
coverage. Managing energy resources of monitoring devices
via their scheduling to achieve an appropriate coverage of tar-
gets is a significant issue in networks where an extended net-
work lifetime is a critical requirement.

In this paper, we design efficient scheduling schemes
for a set of monitoring devices with limited battery supplies
to achieve maximum target coverage for a given network
lifetime. Scheduling of such devices to achieve complete
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network coverage is a special case of this general formula-
tion. We model the network as a graph, in which monitor-
ing devices could be deployed at a subset of nodes, and
targets could be a subset of nodes and edges. Each monitor-
ing device has a limited active time, and covers a subset of
targets within its range during its active time. For a given
network lifetime, the objective is to determine the maximum
possible coverage, both in terms of the detection and isola-
tion of (events at) targets, and a schedule of monitoring
devices to obtain an optimal coverage.

In this direction the main contributions of the paper are:

1) We show that the optimal scheduling of monitoring
devices is an APX-hard problem, that is, there is no
polynomial-time approximation scheme (PTAS) for
the problem unless P = NP.

2) We provide a graph-theoretic formulation of the
scheduling problem by showing that it is equivalent
to a unique graph labeling problem, which allows us
to directly exploit the network structure to obtain
optimal schedules.

3) To solve the graph labeling, and hence the schedul-
ing problem, we propose two solutions; first, a
greedy heuristic that runs in polynomial time, and
gives near optimal solutions for many networks as
we illustrate. However, in general, performance
guarantees of the heuristic in terms of the optimality
of the solution remain unknown. Second, we present
a game-theoretic solution, in which we pose the
labeling problem as a potential game. Using a well
known binary log-linear learning (BLLL) algorithm
to solve the potential game then ensures that in the
long run, we achieve a globally optimal solution
with an arbitrarily high probability.

4) Moreover, we illustrate that the game-theoretic solu-
tion allows simultaneously optimizing the place-
ment and scheduling of monitoring devices that
gives better results—as shown by the numerical
results—compared to separately solving the place-
ment and scheduling. Note that the placement prob-
lem involves selecting optimal locations to deploy a
given set of monitoring devices to maximize the tar-
get coverage within networks.

5) We analyze the performance of the approach through
simulations on various networks including real-world
water distribution networks and random networks.
For random networks, we also provide analytical
results to determine the performance of random sche-
duling, which does not require any information about
the network structure.

The rest of the paper is organized as follows: Section 2
explains our systemmodel and defines the scheduling prob-
lem. Section 3 addresses the issue of complexity of the prob-
lem. Section 4 presents a graph labeling based formulation
of the scheduling, and Section 5 proposes solutions to the
graph labeling problem. Section 6 extends our approach to
solve the simultaneous placement and scheduling of moni-
toring devices. Section 7 presents a particular case of inter-
est of the scheduling problem, and Section 8 illustrates
simulation results. Section 9 provides an overview of related
work, and Section 10 concludes the paper.

2 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, first, we present the system model, and then
we formulate the problem of optimal scheduling of resource
bounded monitoring devices in networks.

(a) Network Graph - We model the network as an undi-

rected graph,1 GðV; EÞ, in which V is the set of nodes,
and E is the set of edges given by the unordered
pairs of nodes. Two nodes are adjacent if there
exists an edge between them. The neighborhood of a
node v, denoted by NðvÞ, is the set of all nodes that
are adjacent to v, i.e., NðvÞ ¼ fu : ðu; vÞ 2 Eg, and
the neighborhood of a subset of nodes S, denoted by

NðSÞ, is
S

v2SNðvÞ. The degree of a node v, repre-

sented by dðvÞ, is simply dðvÞ ¼ jNðvÞj. A path is a
sequence of nodes such that any two consecutive
nodes in the path are adjacent, and the number of
edges included in the path is the length of the path.
Any two nodes are said to be connected if there
exists a path between them. The distance between
connected nodes u and v, denoted by dðu; vÞ, is the
length of the shortest path between them. Similarly,
the distance between node u and edge e ¼ ði; jÞ is
dðu; eÞ ¼ maxðdðu; iÞ; dðu; jÞÞ. The network graph
abstracts interactions among various nodes within
the network.

(b) Targets - They are a subset of nodes and/or edges,
denoted by Y � ðV [EÞ, that could be subjected to
an abnormal activity (or event), such as pipe failure,
and therefore, need to be monitored by the monitor-
ing devices.

(c) Monitoring Devices - These devices are deployed at a
subset of nodes S � V in the network, and they can
monitor the other nodes and/or links of the network
for some unusual activity, for instance, detecting
link failures such as pipe burst in water networks.
We consider a general model of monitoring, which is
independent of the specific implementation and
nature of the detection devices. We refer to any
abnormal activity on a target as an event. A monitor-
ing device can monitor all nodes and edges for
events that lie within some pre-specified distance,
referred to as the range, of the device. If u is the node
at which a monitoring device with the range � is
deployed, then the device covers (monitors) all the
nodes and edges in the set

fv 2 V : dðu; vÞ � �g [ fe 2 E : dðu; eÞ � �g:

In other words, a target is covered if and only if it lies
within the range of some monitoring device. Each device is
resource-bounded in terms of the available battery supply,
denoted by B, which means that a device can be active (or
can be operational) for only B time duration. Furthermore,
a monitoring device has only two output states—event
detected at some target without knowing the exact location
of the target, and no event detected.

1. Our results can also be applied to directed graphs in a straightfor-
ward way. For the ease of presentation, we consider only undirected
graphs in this paper.
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2.1 Network Performance Measures

We are interested in measuring the quality of monitoring
of targets through a set of monitoring devices, both from
the detection and isolation perspectives. In detection, the
objective is just to detect any abnormal activity on some
target irrespective of determining the exact location of it,
whereas in isolation, the goal is to uniquely detect the target
at which the abnormal activity occurs. Moreover, we refer
to the overall lifetime of the network, i.e., duration for
which monitoring of targets for detection (isolation) is
considered, as the network lifetime T . To simplify, we
divide the time into time slots of equal length. The battery
supply B of a monitoring device could be represented by
the number of time slots, say s, in which the device could
remain active. Moreover, the network lifetime T could be
represented by the total number of time slots, say k, for
which the detection (isolation) of targets is considered.
Note that T and B represent the actual duration of overall
network lifetime and battery lifetime of individual moni-
toring device respectively, whereas, k and s, which are
chosen to be positive integers, represent respectively the
total number of time slots and the time slots for which each
device could remain active.

(a) Detection Measure - Let there be a total of m targets,
and mi be the number of targets that are covered by the
monitoring devices that are active in the ith time slot. We
define the average detection performance, denoted by D, as

D ¼
1

k

X

k

i¼1

mi

m

� �

: (1)

(b) Isolation Measure - Consider two targets x and y, and
let SðxÞ; SðyÞ � S be the subsets of sensing devices that
detect events at targets x and y respectively. If SðxÞ is identi-
cal to SðyÞ, then we can never distinguish or isolate the
event at target x from the event at target y. Thus, to isolate
events at x and y, SðxÞ must be different from SðyÞ,
which simply means that there should exist at least one
sensing device that gives different outputs in the case of
events at x and y. In other words, a sensing device
should exist that detects event at either x or y, but not
both at the same time. If such a sensing device exists for
x and y, we say that the target-pair x; y is covered. Now to
isolate (distinguish) event at x from events at all other
targets, it is necessary that all target-pairs x; y, 8y 6¼ x are
covered. If the total number of targets is m, then for
each target x, there are ðm�1

2
Þ target-pairs that need to be

covered to isolate event at x from events at all other tar-
gets. Considering all m targets, we have a total of ðm

2
Þ

target-pairs in the whole network. If all such target-pairs
are covered, event at any target can be isolated. Thus,
the goal is to maximize the number of target-pairs that
are covered. We denote by ‘j the number of target-pairs
that are covered in the jth time slot by the sensing devi-
ces active in the jth time slot. Then we define the average
isolation performance, denoted by I , as

I ¼
1

k

X

k

j¼1

‘j
‘

� �

; (2)

where k is the total number of time slots.

2.2 Problem Formulation

Consider a network GðV;EÞ in which S � V is the subset of
nodes at which monitoring devices with ranges � are
deployed, and Y � ðV [EÞ are the set of targets. Each mon-
itoring device could remain active in at most s of the total of
k time slots due to battery supply constraints. In each time
slot i, let Si � S be the subset of nodes with active monitor-
ing devices. Thus, we get a schedule of (active) monitoring
devices as S1; S2; . . . ; Sk.

The objective is to determine the maximum average detection per-
formanceD (or average isolation performance I ) for a given network
life time, represented by k time slots, under the battery constraints of
monitoring devices, represented by s time slots, and also a schedule
of monitoring devices that achieves the maximumD (or I).

It is obvious that increasing k could decrease the maxi-
mum value of D (or I ). So, in a way, our goal is to under-
stand a relationship between k and D (or I ), and design a
systematic scheme to obtain a schedule for activating moni-
toring devices with limited battery supplies to obtain the
desired network performance. Note that the scheduling
problem for a complete coverage of targets, in which the objec-
tive is to determine a schedule that ensures D ¼ 1 through-
out the network life is a special case.

3 PROBLEM COMPLEXITY

In this section, we show that the problem of finding a sched-
ule that maximizes the average detection performance for a
given network lifetime and battery supplies, as discussed in
Section 2.2, is APX-hard. APX-hardness implies that (unless
P = NP), there does not exist a polynomial-time algorithm
that can solve the problem to within arbitrary multiplicative
factor of the optimum.

In our case, for a target t, if Qt represents the fraction of
the total number of time slots in which an event on t can be
detected (i.e., t is covered), then the expected value of
detecting an event on an arbitrary target, denoted byQ is

Q ¼
1

jY j

X

t2Y

Qt: (3)

Note that Q and D have exactly same values for a given
schedule ðS1; S2; . . . ; SkÞ, and therefore, they both measure
the average detection performance of the schedule. We for-
mulate finding a schedule that maximizes detection perfor-
mance as the following optimization problem:

Definition (Maximum Average Detection). Given a graph
G ¼ ðV;EÞ, a set of monitoring devices S � V , a set of targets
Y � ðV [ EÞ, range of the monitoring device �, a network life-
time represented by k time slots, a battery supply represented
by s time slots, find a schedule ðS1; S2; . . . ; SkÞ that maximizes
the average detection performance Q.

Theorem 3.1. The Maximum Average Detection Problem is
APX-hard.

We show APX-hardness by reducing a well-known APX-
hard problem, the MaximumCut Problem [6] to the detection
problem. TheMaximumCut Problem is defined as follows:

Definition (Maximum Cut Problem). Given a graph
G ¼ ðV;EÞ, find a disjoint partition V1; V2 of V that maximizes
the number of edges jEðV1; V2Þj between V1 and V2.
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Proof (Theorem 3.1). We prove APX-hardness by showing
that there exists a PTAS-reduction from the Maximum
Cut Problem to the Maximum Average Detection Prob-
lem. First, we define a polynomial-time mapping from an
instance of the cutting problem to an instance of the
detection problem:

� let the network of the Maximum Average Detec-
tion Problem be the graph of the Maximum Cut
Problem;

� let the set of monitoring devices be S ¼ V ;
� let the set of targets be Y ¼ E;
� let the range of the monitoring device be � ¼ 1;
� let the network lifetime be k ¼ 2 time slots;
� and let the battery supply be s ¼ 1 time slot.
Second, we define a polynomial-time mapping from a

solution ðS1; S2Þ of an instance of the detection problem
(i.e., a schedule) to a solution ðV1; V2Þ of the correspond-
ing instance of the cutting problem (i.e., a cut)

V1 :¼ S1 and V2 :¼ S2: (4)

Next, observe that if an edge is cut by ðV1; V2Þ, then the
corresponding target is covered by both S1 and S2, which
implies Qt ¼ 1. On the other hand, if an edge is not cut
by ðV1; V2Þ, then the corresponding target is covered in

only one time slot, which implies Qt ¼
1
2
. Consequently,

for any pair of solutions ðS1; S2Þ and ðV1; V2Þ, we have

QðS1; S2Þ ¼
1

jEj

X

t2EðV1;V2Þ

1þ
X

t 62EðV1;V2Þ

1

2

0

@

1

A (5)

¼
1

jEj
jEðV1; V2Þj þ

1

2
jEj � jEðV1; V2Þjð Þ

� �

¼
1

2
þ
1

2

jEðV1; V2Þj

jEj
:

(6)

Using the same argument, we can also show that if a
schedule ðS1; S2Þ is an optimal solution to the detection
problem, then the cut ðV1 ¼ S1; V2 ¼ S2Þ is also an opti-
mal solution to the cutting problem, and vice versa.
Therefore, if a schedule ðS1; S2Þ is at most ð1� �Þ times
worse than the optimal schedule, then the corresponding
cut ðV1; V2Þ is at most ð1� 2�Þ times worse than the opti-
mal cut. Consequently, there is a PTAS-reduction from
the Maximum Cut Problem to the Maximum Average
Detection Problem. tu

As a consequence, we cannot optimally solve the maxi-
mum average detection problem in a polynomial time.
Hence, we need efficient heuristics that can provide reason-
ably good solutions with acceptable time complexities. In
this regard, it becomes crucial to maximally exploit the
structure of the problem in a systematic way. To achieve
this objective, we first provide a graph-theoretic formulation
of the scheduling problem in the next section.

4 A GRAPH-THEORETIC FORMULATION OF THE

SCHEDULING PROBLEM

In this section, using various graph-theoretic notions, we
formulate the scheduling problem as a graph labeling

problem. Our approach is to first obtain a bi-partite graph,
denoted by GðV; EÞ, from a given graph. This bi-partite
graph illustrates targets and the monitoring devices with
given ranges covering those targets. We then formulate the
scheduling problem on the original network GðV;EÞ as a
graph labeling problem on the bi-partite graph GðV; EÞ.

4.1 Bi-Partite Graphs for Detection and Isolation

When scheduling of monitoring devices is required with an
objective to maximize the average detection score D, as
described in Section 2.1, the bi-partite graph GðV; EÞ is sim-
ply obtained as follows: the vertex set V is the union X [ Y,
where X ¼ S � V is the set of nodes corresponding to the
set of monitoring devices, and Y ¼ Y is the set of targets in
the original network G. Moreover, each x 2 X is adjacent to
vertices in Y that are at most � distance away from x in G.
An example is shown in Fig. 1.

If maximizing the average isolation measure I , as in
Section 2.1, is the objective of scheduling, then GðV; EÞ is
obtained as follows: As in the case of detection, the vertex
set of the bi-partite graph is V ¼ X [ Y, where X ¼ S � V
corresponds to the set of monitoring devices. To obtain Y,
we define a node for every pair of targets in Y . There will be
ðjY j
2
Þ such nodes in Y. As for the edge set E of the bi-partite

graph, let y 2 Y corresponds to the (unordered) target-pair
ðt1; t2Þ 2 Y . Then, each x 2 X is adjacent to y 2 Y in G if and
only if exactly one of the targets t1 or t2 is within � distance
from (the monitoring device corresponding to) x in the orig-
inal network G. In other words, in the bi-partite graph G,
there will be no edge between x and y corresponding to the
target-pair ðt1; t2Þ, if and only if the monitoring device x
covers both targets t1 and t2 in G, or does not cover any of
the targets t1 and t2. An example is illustrated in Fig. 1.

Example. Consider a graph GðV;EÞ in Fig. 1. Let S ¼ f1;
2; 4g � V be the set of monitoring devices and edges in
the set Y ¼ fe1; e2; e3; e5g be the targets. Moreover, each
monitoring device has the range � ¼ 2. The bi-partite
graphs GðV; EÞ for the scheduling of monitoring devices
to maximize the detection and isolation measures are
shown in Figs. 1b and 1c respectively. The vertex set of
bi-partite graphs in both cases is V ¼ X [ Y, where
X ¼ S. For the detection case, Y ¼ Y , and for the isolation
case, Y ¼ fe12; e13; e15; e23; e25; e35g, where eij corresponds
to the pair of edges ðei; ejÞ in Y . Note that an edge
between x 2 X and eij 2 Y indicates that the monitoring
device at x covers the target-pair ðei; ejÞ, or in other
words, can distinguish between events at ei and ej.

Fig. 1. (a) An example network graph GðV;EÞ. Bi-partite graph represen-
tations for (b) detection and (c) isolation.
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4.2 A Graph Labeling Problem and Its Equivalence
to the Scheduling Problem

After obtaining the bi-partite graph GðV ¼ X [ Y; EÞ from a
given network GðV;EÞ, we can re-write the detection and
isolation scores as in (1) and (2) respectively in terms of G.
Note that if Si � X is the subset of active monitoring devices
in the ith time slot, then for the detection (isolation), the set
of targets (target-pairs) covered by Si is simply the neigh-
borhood of set Si, i.e., NðSiÞ ¼

S

x2Si
NðxÞ. Here, NðxÞ is

the neighborhood of node x as defined in Section 2. Hence,
for a given schedule ðS1; S2; . . . ; SkÞ where k is the total
number of time slots, the average detection (isolation) mea-
sure is simply ð1=kÞ

Pk
i¼1 jNðSiÞj. Thus, given a bi-partite

graph GðX [ Y; EÞ, network life in terms of k time slots,
and battery supply constraint in terms of s time slots, the
problem of finding an optimal schedule that maximizes
the average detection (isolation) measure as described in
Section 2.2 becomes equivalent to finding a set of k subsets
fS1; S2; . . . ; Skg, where Si � X , such that

max
fS1;...;Skg

X

k

j¼1

jNðSjÞj; (7)

and each node x 2 X is included in at most s such subsets.
The above problem can be cast as a graph labeling prob-

lem as described below.
Graph Labeling Problem. Let K ¼ f1; 2; . . . ; kg be the set of

labels, and L be the set of all s-subsets2 of K. Note that
jLj ¼ ðk

s
Þ. We define

f : X �! L; (8)

i.e., f is a set function that assigns a subset of s labels from
K to each x 2 X . Also, for y 2 Y, we define F ðyÞ as follows:

F ðyÞ ,
[

x2NðyÞ

fðxÞ: (9)

Note that jF ðyÞj is simply the number of distinct labels
available in the neighborhood of y. The objective is to obtain
an assignment of labels to the nodes in X (i.e., (8)) such that

Objective: max
f

X

y2Y

jF ðyÞj: (10)

Here, the objective is to assign s labels to each node in X
such that the sum of the number of distinct labels available
in the neighborhood of y, 8y 2 Y, is maximized. The sched-
uling problem in (7) and Section 2.2, is equivalent to the
graph labeling problem described above.

Proposition 4.1. The problem of obtaining an optimal schedule
that maximizes the average detection (isolation) through a set
of monitoring devices with limited battery supplies that cover a
set of targets (target-pairs) for a given network lifetime, which
is divided into k time slots, is equivalent to the graph labeling
problem as defined in Equations (8), (9), and (10).

Proof. In the graph labeling problem, let the subset of labels
assigned to the vertex x, i.e., fðxÞ 2 L, corresponds to the
indices of time slots in which the monitoring device

corresponding to x is active. Since x has at most s distinct
labels by the definition of f , the monitoring device corre-
sponding to node x can be active in at most s time slots.
Hence, the battery supply condition that requires a moni-
toring device to be active in at most s time slots, is always
satisfied. Moreover, F ðyÞ indicates time slots in which the
target (target-pair) y 2 Y remains covered by some x 2 X .
Then, ð1=kÞ

P

y2Y jF ðyÞj is simply the average detection
(isolation)measure. The set of vertices that have label i cor-
respond to the monitoring devices active in the ith time
slot, i.e., Si. Thus, finding a labeling (8) that maximizes
(10) is basically finding a schedule ðS1; S2; . . . ; SkÞ that
maximizes the average detection (isolation)measure. tu

An illustration of the graph labeling for the scheduling
problem is given below.

Example. In Fig. 2, instances of optimal labeling of graphs
in Figs. 1b and 1c are shown for K ¼ f1; 2; . . . ; 5g and
s ¼ 2. Here jKj ¼ 5 means that the given network lifetime
spans five time slots. Each node x has at most two labels,
which represents that a node can be active in at most two
time slots. The node labels indicate time slots in which
they remain active, thus, giving us optimal schedules.
Here, the optimal detection score is 0.75, which could be
obtained with the schedule S1 ¼ S4 ¼ f2g; S2 ¼ f4g; S3 ¼
f1; 4g; S5 ¼ f1g. Similarly, the optimal isolation score is
0.633, which could be obtained with the schedule S1 ¼
f2; 4g; S2 ¼ f1g; S3 ¼ f4g; S4 ¼ f1g; S5 ¼ f2g.

5 SOLUTIONS TO THE GRAPH LABELING

In this section, first, we discuss the random assignment of
labels to nodes, and then provide two improved solutions
to the graph labeling problem. The first one is a simple
greedy heuristic, whereas, the second solution utilizes
game-theoretic concepts. The greedy heuristic runs in poly-
nomial time, and gives a near optimal solution for many
practical networks as illustrated in the next section. How-
ever, in general, the approximation ratio of the algorithm is
not known. On the other hand, the game-theoretic solution
guarantees probabilistic convergence to a globally optimal
solution if the algorithm is run for a sufficiently large num-
ber of iterations.

The simplest way to label a graph is to randomly assign s

labels to each node from a set of k label. The scheduling
thus, obtained is the random scheduling. As expected, the
detection (localization) performance of random scheduling
is far from being optimal. However, it can be useful in

Fig. 2. Graph labelings for K ¼ f1; 2; . . . ; 5g and s ¼ 2. Node labels, i.e.,
fðxÞ are shown in red.

2. The cardinality of each subset is s, where s is some positive
integer.
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applications where information regarding the network
structure is not available. In fact, we can compute the detec-
tion performance D due to random scheduling for random
geometric and Erdo��s-R�enyi random networks as follows:

Proposition 5.1. Let GðV;EÞ be a random geometric graph in
which each node contains a monitoring device that remains
active in s time slots that are randomly chosen from a total of k
time slots, which correspond to the overall lifetime of the net-
work. If each node in a graph is also a target, then the average
detection performance of this random scheduling is

DðGÞ ¼ 1�
ðk� sÞ

k
exp

�s�pr2

k

� �

; (11)

where r is the radius of the sensing footprint of node, and
� is the number of nodes per unit area.

Proof. The average detection performance is equivalent to
finding the probability that an arbitrary node u is covered
in an arbitrary time slot i. We observe that

Pr u is not covered in the ith slotð Þ

¼ Pr
u is not active

in the ith slot

� �

Y

v2NðuÞ

Pr
v is not active

in the ith slot

� �

: (12)

Here, probability that u is not active in the ith time slot
is simply ðk� sÞ=s. The second term in (12) is the proba-
bility that none of the nodes in the neighborhood of node
u is active in the ith time slot. The probability of having j
neighbors in NðuÞ in a random geometric graph is given

by Poisson distribution, i.e.,
�pr2ð Þ

j
e��pr

2

j! . Thus,

Y

v2NðuÞ

Pr v is not active in the ith slotð Þ

¼
X

1

j¼0

�pr2ð Þ
j
e��pr

2

j!

k� s

k

� �j

:

(13)

Inserting in (12), we get

Pr u is not covered in the ith slotð Þ

¼ e��pr
2 ðk� sÞ

k

X

1

j¼0

1

j!

�pr2ðk� sÞ

k

� �j

¼ e��pr
2 ðk� sÞ

k
e
�pr2ðk�sÞ

k ¼
k� s

k

� �

e
�s�pr2

k :

(14)

The desired result follows directly from above. tu

As above, it can be shown that in the case of Erdo��s-R�enyi
random graphs with n nodes, denoted by Gn;p, in which any

two nodes are adjacent with some probability p, this ran-
dom scheduling scheme results in an average detection per-
formance given by

DðGn;pÞ ¼ 1�
ðk� sÞ

k
exp

�s

k
np

� �

: (15)

Note that in (15), it is assumed that all the nodes have
monitoring devices and all the nodes need to be covered.

5.1 Greedy Heuristic

The graph labeling problem closely resembles the set cover-
ing problem, since we have to ‘cover’ the set of targets using

a set of monitoring nodes, each of which could cover a given
subset of the targets. Since the straightforward greedy algo-
rithm is known to be an efficient approximation algorithm
for the set covering problem, we can expect it to perform
well for the graph labeling problem also. Hence, we formu-
late a simple greedy heuristic for the graph labeling prob-
lem as follows (Algorithm 1): For a given labeling set K and
s, iteratively select a combination of a label in K and a
source node in X that maximizes the sum of number of dis-
tinct labels available in the neighborhoods of all target
nodes in Y. Note that in each iteration, only a source node
with less than s labels could be selected.

Algorithm 1. Greedy Heuristic

1: Given: s, K ¼ f1; 2; . . . ; kg
2: Initialization: X 0  X , fðxÞ  ;; 8x 2 X
3: While jX 0j 6¼ ; do
4: ðx; ‘Þ  argmaxx2X 0;‘2K

P

y2Y

S

x2NðyÞfðxÞ
�

�

�

�

�

�

5: fðxÞ  fðxÞ [ f‘g
6: If jfðxÞj ¼ s do
7: X 0  X 0 n fxg
8: End If
9: End While

If n is the total number of source nodes, m be the number
of target nodes, and k be the total number of labels in the
labeling set, then greedy heuristic could be executed in at
most Oðskn2mÞ time as there are OðsnÞ iterations and each
iteration could take OðknmÞ time. Greedy heuristic gives a
simple strategy to solve the labeling problem, however, its
approximation ratio remains unknown. Therefore, we pres-
ent a game-theoretic solution by posing the labeling prob-
lem as a potential game.

5.2 Game Theoretic Solution to the Graph Labeling

Game theory concepts have been extensively employed to
solve locational optimization problems, such as maximizing
coverage on graphs (e.g., [7], [8]) and distributed control of
multiagent systems (e.g., [9], [10]). In a particular approach,
the idea is to determine a potential function that captures the
overall global objective. The players’ individual utility func-
tions are then appropriately aligned with the global objec-
tive, such that the change in the utility of the player as a
result of unilateral change in strategy equals the change in
the global utility represented by the potential function. The
players’ strategies are then designed to ensure that local
actions lead to the global objective. It turns out that this
problem formulation and design can be realized using a
class of non-cooperative games known as potential games,
which are now extensively used for various distributed con-
trol optimization problems.

A finite strategic game GðP;A;UÞ consists of a set of play-
ers P ¼ f1; 2; . . . ; ng, action space A ¼ A1 �A2 � � � � � An

where Ax is a finite action set of the player x 2 P, and a set
of utility functions U ¼ fU1;U2; . . . ;Ung where Ux : A ! R

is a utility function of the player x. If a ¼ ða1; . . . ; ax; . . . ;
anÞ 2 A denotes the joint action profile, we let a�x denote
the action of players other than the player x. Using this
notation, we can also represent a as ðax; a�xÞ.

A game is a potential game if there exists a potential func-
tion, f : A ! R such that the change in the utility of the
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player x as a result of a unilateral deviation from an action
profile ðax; a�xÞ to ða

0
x; a�xÞ is equal to the corresponding

change in the potential function. More precisely, for every
player x, ax; a

0
x 2 Ax, and a�x 2 A�x, we get

Uxðax; a�xÞ � Uxða
0
x; a�xÞ ¼ fðax; a�xÞ � fða0x; a�xÞ: (16)

In the case of potential games, there exist algorithms, such
as log-linear learning (LLL) [11], [12] and binary log-linear
learning (BLLL) [13] that could be utilized to drive the play-
ers to action profiles that maximize the potential function.
These algorithms embody the notion of convergence of such
games to the most efficient Nash equilibrium, particularly in
scenarios where utility functions are designed to ensure that
the action profiles that maximize the global objective of the
system coincide with the potential function maximizers [11],
[13]. More precisely, in potential games, LLL and BLLL algo-
rithms guarantee that only the joint action profiles that maxi-
mize the potential function are stochastically stable [13]. It
roughly means that in the long run, we are almost certain to
get a solution that is in the small neighborhood of an optimal
solution as the noise parameter in the algorithm goes to zero
[14]. The LLL and BLLL are in fact, nosiy best-response algo-
rithms that induce a Markov chain over the action space
with a unique limiting distribution that depends on the noise
parameter. As the noise parameter reduces to zero, the limit-
ing distribution has a large part of its mass over the set of
potential maximizers (see e.g., [11], [13], [15] for details).

The basic idea behind these algorithms is that the noise
parameter allows selecting suboptimal actions occasionally
by the players. The probability of selecting a suboptimal
action is dependent of the pay-off difference between the
optimal and suboptimal cases. Thus, formulating the graph
labeling problem as a potential game would allow us to
use the above mentioned learning algorithms to find the
most efficient solutions to the graph labeling problem.
Thus, our objective now is to design a potential game cor-
responding to the labeling problem on graphs, and incor-
porate learning algorithms for the potential games to
achieve the desired labeling.

5.2.1 A Potential Game for the Graph Labeling

We design a potential game GðP;A;UÞ to obtain a labeling
of a graph that achieves the objective in (10), thus solving
the scheduling problem. In our game, the set of players is
the vertex set X in the vertex partition (V ¼ X [ YÞ of the
bipartite graph G, i.e., P ¼ X . For each player x 2 X , the
action set Ax is the set of all s-subsets of the labeling set
K ¼ f1; . . . ; kg. We also need to have a potential function
that captures the global objective. For this, we define Sj as
the set of vertices with the label j, i.e.,

Sj ¼ fx 2 X : j 2 fðxÞg: (17)

A potential function is then defined as

fðaÞ ,
X

k

j¼1

[

x2Sj

NðxÞ

�

�

�

�

�

�

�

�

�

�

�

�

: (18)

Note that fðaÞ is simply the total number of nodes in Y
having a label j 2 K in their neighborhoods, summed over
all the labels, which is equivalent to the

P

y2Y jF ðyÞj in (10).

Thus, fðaÞ indeed captures the global objective. Moreover,
we define the utility function of the player x as follows:

Uxðax; a�xÞ ,
X

k

j¼1

axj NðxÞ n
[

z2Sjnfxg

NðzÞ

�

�

�

�

�

�

�

�

�

�

�

�

; (19)

where,

axj ¼
1 if j 2 axð¼ fðxÞÞ
0 otherwise.

�

Note that if y 2 NðxÞ, then the value of ax to node y can
be computed by counting the number of labels in ax that are
not assigned to any node in NðyÞ n fxg. The utility of ax is
simply the sum of these values for all y 2 NðxÞ. For instance,
in Fig. 2a, node 1 has labels f3; 5g, which represents the
action a1. Moreover, node 1 has two neighbors, e1 and e2.
Since node 1 is the only node in Nðe1Þ with labels 3 and 5,
the value of a1 to node e1 is 2. Similarly, for e2, node 1 is the
only node in Nðe2Þ with label 5, hence, the value of a1 to e2
is 1. The utility of a1 is simply the sum of these values, that
is U1ða1; a�1Þ ¼ 2þ 1 ¼ 3.

Next, we show that with the potential function as defined
in (18), and the utility function as in (19), the game designed
above is indeed a potential game.

Theorem 5.2. GðP;A;UÞ is a potential game if utilities are
defined as in (19).

Proof. The potential function, as defined in (18) can be writ-
ten as,

fðax; a�xÞ ¼
X

k

j¼1

[

x2Sj

NðxÞ

�

�

�

�

�

�

�

�

�

�

�

�

¼
X

k

j¼1

axj NðxÞ n
[

z2Sjnfxg

NðzÞ

�

�

�

�

�

�

�

�

�

�

�

�

þ
[

z2Sjnfxg

NðzÞ

�

�

�

�

�

�

�

�

�

�

�

�

0

@

1

A

¼
X

k

j¼1

axj NðxÞ n
[

z2Sjnfxg

NðzÞ

�

�

�

�

�

�

�

�

�

�

�

�

þ
X

k

j¼1

[

z2Sjnfxg

NðzÞ

�

�

�

�

�

�

�

�

�

�

�

�

¼ Uðax; a�xÞ þ
X

k

j¼1

[

z2Sjnfxg

NðzÞ

�

�

�

�

�

�

�

�

�

�

�

�

:

(20)

Similarly, for a ¼ ða0x; a�xÞ, we get

fða0x; a�xÞ ¼ Uða
0
x; a�xÞ þ

X

k

j¼1

[

z2Sjnfxg

NðzÞ

�

�

�

�

�

�

�

�

�

�

�

�

: (21)

Subtracting (21) from (20) gives us the desired result, i.e.,

fðai; a�iÞ � fða0i; a�iÞ ¼ Uðai; a�iÞ � Uðai; a�iÞ:
tu

Using the results in [13], we deduce that in our setup if
players adhere to the binary log-linear learning (stated
below), then the action profiles that are stochastically stable
are the ones that maximize the potential function (18). In
other words, in the long run, we achieve a graph labeling
that maximizes the objective in (10) with arbitrarily high
probability.
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Algorithm 2. Binary Log-Linear Learning [13]

1: Initialization: Pick a small � 2 Rþ, an a 2 A, and total num-
ber of iterations.

2: While i � number of iterations do
3: Pick a random node x 2 X , and a random a0x 2 Ax.

4: Compute P� ¼
��Uxða

0
x ;a�xÞ

��Uxða0x ;a�xÞ þ ��Uxðax ;a�xÞ
.

5: Set ax  a0x with probability P�.
6: i iþ 1

7: EndWhile

Note that initially each node is assigned a set of s labels
randomly. Afterwards, in each iteration, a node is selected
at random, and a set of s labels that improve the overall
labeling to attain the objective in (10), is assigned to the
node with a certain probability (as in line 4 above).

6 SIMULTANEOUS PLACEMENT AND SCHEDULING

OF MONITORING DEVICES

So far, we have considered optimal scheduling of resource
bounded monitoring devices, assuming that their place-
ment is fixed, i.e., locations at which monitoring devices are
deployed are given. If S is the set of all such nodes at which
monitoring devices could be deployed, then the placement
problem is to select a subset X � S with the given cardinality
such that the number of covered targets (target-pairs in the
case of isolation) is maximized. Typically, to maximize the
coverage of targets for a given network lifetime, the place-
ment problem is first solved, followed by the computation
of efficient schedules.

However, for a given network lifetime, and a fixed number
of resource bounded monitoring devices, simultaneously
optimizing their placement and scheduling could further
improve the average detection (isolation) measure. For
instance, consider the network in Fig. 3, in which three moni-
toring devices with � ¼ 1 and s ¼ 2 are deployed to cover the
maximumnumber of nodes for k ¼ 4. Fixing the placement of
devices at nodes f3; 4; 5g, optimal schedule (for instance,
S1 ¼ S2 ¼ f4g; S3 ¼ S4 ¼ f3; 5g) gives D ¼ 0:642, whereas
the maximum possibleD under the conditions is 0.714, which
could be obtained by placing the devices at nodes f3; 4; 6g
andwith a schedule S1 ¼ S3 ¼ f3; 6g; S2 ¼ S4 ¼ f4g.

The BLLL based algorithm to schedule a set of monitoring
devices with fixed locations, presented in Section 5.2, can be
modified to simultaneously optimize placement as well as
scheduling of such devices to maximize the average detec-
tion (isolation). This modification is presented as Algorithm
3. Fixing the number of monitoring devices jXj, the objective
is to select X � S, and assign at most s labels to each node from a
labeling set K ¼ f1; 2; . . . ; kg so that the average detection mea-
sureD (or the isolation measure I ) is maximized. The labeling of

nodes selected in X will then give the schedule. As previous,
we can formulate this problem as a potential game, and can
thus, solve the problem using the BLLL algorithm.

6.1 A Potential Game Formulation

In this case, players P are the monitoring devices, for which
we need to find the locations - the nodes at which they are
deployed; as well as schedules - time slots in which they
become active. The action of each player p, denoted by ap is
the selection of ðxp; fðxpÞÞ, where xp 2 S and fðxpÞ 2 L.
Note that L is the set of all subsets of the labeling set K con-
taining s labels (as defined in (8)). Moreover, as in (17), let
Sj to be the subset of nodes (containing monitoring devices)
with label j, that is

Sj ¼ fxp 2 S : j 2 fðxpÞg: (22)

Next, similar to (19), we define the utility function of the
player p as

Upðap; a�pÞ ¼
X

k

j¼1

apj NðxpÞ n
[

z2Sjnfxpg

NðzÞ

�

�

�

�

�

�

�

�

�

�

�

�

; (23)

where,

apj ¼
1 if j 2 fðxpÞ
0 otherwise.

�

If f or each target node y 2 Y, we define F ðyÞ (similar to (9))
as F ðyÞ ¼

P

xp2NðyÞ
fðxpÞ, then our global objective is to

select a subset X � S and assign s labels to each xp 2 X
such that

Objective: max
X ;f

X

y2Y

jF ðyÞj: (24)

A potential function that captures the above objective is

fðaÞ ¼
X

k

j¼1

[

xp2Sj

NðxpÞ

�

�

�

�

�

�

�

�

�

�

�

�

: (25)

Here a represents the actions of all players, that is a ¼
ða1; a2; . . . ; ajXjÞ.

Using exactly the same argument as in the proof of
Theorem 5.2, we can state the following.

Proposition 6.1. The game described in Section 6.1 is a potential
game with the utility and potential functions defined as in (23)
and (25) respectively.

Algorithm 3. Simultaneous Placement and Scheduling

1: Initialization: Pick a small � 2 Rþ and the number of itera-
tions. Select randomly a subset of nodes X � S, and assign
labels to nodes in X , i.e., select a 2 A.

2: While i � number of iterations do
3: Randomly select a node x 2 X .
4: Randomly select a node s 2 ðS n XÞ [ fxg, and as 2 As.

5: Compute P� ¼
��Usðas ;a�xÞ

��Usðas ;a�xÞ þ ��Uxðax ;a�xÞ
.

6: With probability P�, set X  X n fxgð Þ [ fsg, and select as
for node s.

7: i iþ 1

8: End While

Fig. 3. (a) Optimal schedule for a given placement. (b) Optimal placement
and schedule of threemonitoring deviceswith � ¼ 1, s ¼ 2 for k ¼ 4.
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Hence, using a binary log-linear learning, we get a solu-
tion that, as the number of iteration goes to infinity, selects
nodes at which monitoring devices can be placed, as well as
their schedules that achieve the maximum average detec-
tion performance. We note that the placement and schedul-
ing of monitoring devices obtained by first optimally
solving the placement problem and then optimally solving
the scheduling to maximize the detection performance D, is
also a solution of the problem of simultaneously placing
and scheduling monitoring devices to maximize D. As a
result an optimal solution of the simultaneous placement
and scheduling problem gives a detection performance that
is at least as good as the detection performance obtained by
separately solving the optimal placement and the optimal
scheduling problems. Simulation results for the above algo-
rithm are illustrated in Section 8.3. Using various networks,
it is shown that simultaneously selecting locations and
schedules of monitoring devices using Algorithm 3, gives
improved average detection compared to the one obtained
by solving the placement and scheduling separately.

7 SCHEDULING TO MAXIMIZE NETWORK LIFETIME

WHILE ENSURING COMPLETE COVERAGE

So far we have studied the problem of finding schedules
maximizing the detection performance D given the battery
and overall network lifetime s and k respectively. A rele-
vant problem of interest is to compute schedules of monitor-
ing devices that maximize the network lifetime k for a fixed
s and D ¼ 1, that is schedules ensuring complete coverage.
Considering targets to be the set of nodes (i.e., Y ¼ V) and
ranges of monitoring devices to be � ¼ 1, the optimal sched-
uling problem is very much related to finding distinct domi-
nating sets in a graph, where dominating sets are defined as
following.

Definition. A dominating set is a subset of vertices in a graph
Si � V , such that for every u 2 V , either u 2 Si, or there exists
some v 2 Si such that v 2 NðuÞ.

Note that the network is guaranteed to be completely
covered whenever the set of nodes with active monitoring
devices form a dominating set. Thus, the objective here is to
compute distinct dominating sets in a given graph. More-
over, since a monitoring device can be active in at most s
time slots, it can be included in at most s dominating sets.
As a result, the scheduling problem to maximize network
lifetime given s and complete coverage constraint is equiva-
lent to computing the maximum number of distinct domi-
nating sets in a network graph under the condition that a
node can be included in at most s such dominating sets.
Owing to a wide variety of applications, finding distinct
dominating sets under various constraints has been a prob-
lem of great interest (e.g., [16], [17], [18]). There are two
approaches to obtaining distinct dominating sets: disjoint,
and non-disjoint dominating sets based approaches.

In the disjoint dominating sets based approach, the objec-
tive is to partition the vertex set V into a maximum number
of (disjoint) subsets such that each subset in the partition is
a dominating set. Such a partition is called the maximum
domatic partition (MDP), and the size of the partition, that is
the number of disjoint dominating sets obtained, is referred

to as the domatic number, g. For a given s, nodes in each
dominating set can remain active for s time slots, thus,
achieving a network lifetime of k time slots given by,

k ¼ sg: (26)

The MDP problem is known to be NP-hard [19]. Various
sensor scheduling schemes based on MDP have been pro-
posed in literature (e.g., [18], [20], [21]).

Is it possible to achieve a network lifetime better than sg?
The answer is yes, that is by using a non-disjoint dominating
sets based approach [2], [22]. In this approach, the goal is to
obtain the maximum number of subsets Si � V such that
each Si is a dominating set and each v 2 V is included in at
most s dominating sets. Unlike MDP based approach, dom-
inating sets obtained here do not have to be disjoint. The
problem of finding the maximum number of dominating
sets with a restriction on the number of times a node can be
included in a dominating set is related to the notion of
ðk; sÞ-configurations [23], [24] defined below.

Definition (ðk; sÞ-Configurations in Graphs). Let s, k be
two positive integers, and K ¼ f1; . . . ; kg be the set of labels,
then ðk; sÞ-configuration of a graph is the assignment of s dis-
tinct labels from the set K to each node in the graph such that
for every i 2 K and every node v, the label i is assigned to v or
one of its neighbors.

Note that in a ðk; sÞ-configuration, the set of nodes corre-
sponding to a particular label in K constitutes a dominating
set. For a given s, we denote the maximum value of k for
which ðk; sÞ-configuration exists by k	. Consequently, the
scheduling problem to maximize the network lifetime while
ensuring complete coverage is equivalent to computing
ðk	; sÞ-configuration of the network graph. From a MDP of
a graph, it is trivial to obtain a ðsg; sÞ-configuration, that is
by assigning s unique labels to each dominating set in
MDP, we deduce that k	 
 sg. In other words, non-disjoint
dominating sets based approach is always at least as good
as the disjoint dominating sets based approach. In fact, for
many graphs k	 > sg, for instance, many cubic graphs3 have
g ¼ 2, however, all cubic graph have k	 
 5

2
s for a given s

[23]. Recently, in [24] we have extended this result to a big-
ger class of graphs as stated in Theorem 7.1. Here, K1;6 is a
star graph with one central node of degree six, and six end

nodes each with a degree one (K1;6 ¼ ).

Theorem 7.1 ([24]). Let G be a graph such that

– G has a minimum degree at least two,
– no subgraph of G is isomorphic toK1;6, and
– G 6¼
then G has an ðk; sÞ-configuration with k ¼ b5s

2
c.

The above result is particularly useful as proximity graphs
(e.g., random geometric graphs), which are often used to
model the limited range communication in networks such as
wireless sensor networks, are always K1;6-free. As a result, if
we consider proximity networks modeled by the graphs in
Theorem 7.1, and consider B as the time duration for which
each monitoring device (placed at each node) can remain
active, then it is always possible to compute schedules

3. Graphs in which each vertex has a degree three.
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through which complete coverage of targets (nodes) is

ensured for at least b5B
2
c time duration.

8 NUMERICAL RESULTS

In this section, we present numerical results for the greedy
and BLLL based algorithms on urban water distribution
networks and random geometric networks.

8.1 Scheduling Monitoring Devices in Water
Distribution Networks

Water distribution networks can be modeled as undirected
graphs in which edges represent the pipes and nodes repre-
sent the junctions (e.g., [25]). To detect pipe bursts and lea-
kages, pressure sensors are deployed at junctions, which
could sense the pressure transient generated as a result of
pipe burst within a certain distance (range) from the sensor.
The distance threshold based model has been used in water
networks in the context of sensor placement problems, e.g.,
[26], [27]. The pressure sensors are battery operated devices
with limited battery lifetime. Thus, to operate these sensors
for an extended period of time, they need to be scheduled.
Here, we simulate scheduling algorithms, including simple
greedy and BLLL based algorithm for the efficient schedul-
ing of monitoring devices, which are pressure sensors in
this case, to obtain high values of D in three water distribu-
tion networks of various sizes. The details of these net-
works, referred to as the Water Network 1, Water Network 2,
andWater Network 3, are as follows:

Water Network 1 [28], [29], often used as a benchmark
network in the context of sensor placement problems for
water quality, has 126 nodes, 168 pipes, one reservoir, one
pump, and two storage tanks. Water network 2 [30] is a grid
system in Kentucky with 366 pipes, 270 nodes, three tanks,
and five pumps.Water network 3 [30] is primarily a loop sys-
tem in Kentucky with four tanks, two pumps, 1,156 pipes,
and 962 nodes. The layouts of all three networks are

illustrated in Fig. 4. For all the networks, we consider that the
sensors are deployed at the junctions as source nodes X
(monitoring devices), and the set of pipes, which are edges
in the corresponding network graph, as targets Y. Moreover,
for each sensing device, we assume s ¼ 2, and compute D
for a network lifetime, given by k time slots, using greedy
and BLLL algorithms. For each BLLL instance, we perform
25,000 iterations by selecting � to be 0.015. The plots ofD as a
function of k for various ranges of sensing devices (as
defined in Section 2) are given in Fig. 5.

We can see that both greedy and BLLL gives approxi-
mately same results. However, BLLL has an advantage over
the greedy algorithm as it allows to simulatneously solve the
placement as well as scheduling problem (as discussed in
Section 6), which gives improved D compared to individu-
ally solving the placement problem and the scheduling prob-
lem.Moreover, if BLLL is run for sufficiently large number of
iterations, the algorithm achieves an optimal solution with a
very high probability. Similar plots can be obtained for the
scheduling of monitoring devices to maximize the average
isolation measure I by first obtaining the appropriate net-
work representation as outlined in Section 4.1. In Figs. 6 and
7, we illustrate the performance of BLLL algorithm for all
threewater networks by plottingD as a function of iterations.
In Fig. 6, we consider various values of k and observe that
after a sufficient number of iterations, the algorithm main-
tains optimal values with high probability. In Fig. 7, we see a
similar behavior for various values of s.

8.2 Scheduling Monitoring Devices in Random
Geometric Networks

Random geometric networks are a form of spatial networks
in which nodes are deployed uniformly at random in a cer-
tain area. An edge exists between two nodes if the euclidean
distance between them is at most r, which is often referred
to as the radius of the sensing footprint. Owing to a wide vari-
ety of applications in various domains, these networks have

Fig. 4. Layouts of three water networks considered.

Fig. 5. Plots of D as a function of network lifetime k for scheduling on water networks and random geometric networks, assuming that each monitor-
ing device has a battery lifetime of s ¼ 2 time slots.
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been extensively studied, such as in the modeling of wire-
less sensor networks. For our simulations, we consider a
network with 100 nodes, deployed uniformly at random
over an area of 10� 10 unit2, and r ¼ 2. The set of targets
here is the set of all nodes. Moreover, a certain fraction of
nodes (either 20 or 50 percent) are selected at random as
source nodes. A monitoring device has a battery lifetime of
at most s ¼ 2 time slots, and can monitor targets that are at
a euclidean distance of at most 2 units from it,4 that is the
radius of sensing footprint is 2 units. In Fig. 5,D as functions
of k are illustrated using greedy and BLLL algorithms. Each
point on the plots is an average of fifty randomly generated
graph instances. In Fig. 6, the convergence of BLLL algo-
rithm is shown for some instances of random geometric
graphs with 100 nodes, out of which 20 randomly selected
nodes contain monitoring devices.

8.3 Simultaneous Placement and Scheduling of
Monitoring Devices

We illustrate the Algorithm 3 for the simultaneous place-
ment and scheduling of monitoring devices for all three
water networks and the random geometric graphs here. For

the water networks, we consider that monitoring devices
can be placed at twenty percent of the nodes, which need to
be selected. Each monitoring device has a range �, and we
separately consider two cases of � ¼ 2 and � ¼ 3. The set of
pipes (or edges in the corresponding network graph) are
the targets that need to be covered by these devices. We sim-
ulate two scenarios; in the first case we use Algorithm 3 to
simultaneously select the nodes and schedules for the moni-
toring devices; in the second scenario, we first solve the
placement problem by selecting nodes X � V that maximize
the number of edges that are at most distance � from some
node in X , and then solving the scheduling problem using
Algorithm 2. We note here that the placement problems, in
this context, are typically solved using some variant of the
minimum set cover problem, or the maximum coverage
problem in case the number of monitoring devices is fixed
(e.g., [4], [5], [31]). Since the number of devices is fixed here,
and the targets to be covered are edges, we use the maxi-
mum coverage problem to place (a given number of) moni-
toring devices at nodes that maximize the number of edges
that are at most � distance from at least one of the selected
nodes. Since maximum coverage problem is NP-hard, we
solve it using a greedy heuristic, which gives the best
approximation ratio, ð1� 1=eÞ[32].

The results are illustrated in Fig. 8. It can be seen
that Algorithm 3 (simultaneously solving placement and

Fig. 6. Plots of D as a function of (BLLL) iterations with s ¼ 2 and various k.

Fig. 7. Plots of D as a function of (BLLL) iterations with k ¼ 20 and various s.

Fig. 8. Plots of D as a function of k to compare the performance of simultaneously optimizing placement and schedules using Algorithm 3 with the
case of individually optimizing the placement problem and the scheduling problem.

4. In terms of the (graph) distances as defined in Section 2, the range
of each monitoring device is � ¼ 1, as the euclidean distance of at most
2 between two nodes u and v implies dðu; vÞ ¼ 1.

ABBAS ETAL.: SCHEDULING RESOURCE-BOUNDED MONITORING DEVICES FOR EVENT DETECTION AND ISOLATION IN NETWORKS 75



scheduling) always gives higher average detection D. For
the random geometric graphs, we simulate instances of 500
nodes deployed at random in an area of 500� 500 unit2, out
of which 100 could contain monitoring devices capable of
covering nodes within a euclidean distance of 30 units in
one case, and 40 units in the other. The targets here are
nodes, and the objective is to maximize the average detec-
tion for a given network lifetime. As with the water net-
works, average detection is improved if placement and
scheduling problems are solved simultaneously using Algo-
rithm 3 as compared to optimizing placement and schedul-
ing separately. In all cases, the battery lifetime of each
monitoring device is assumed to be s ¼ 2 time slots.

9 RELATED WORK

Mechanisms for detecting link and node failures based on
system dynamics have been studied extensively in the lit-
erature. For example, Dhal et al. consider the detection of
link failures in a network synchronization process from
noisy measurements at a single network component [33].
As another example, Rahimian and Preciado propose a
methodology to detect and isolate link failures in a
weighted and directed network of identical multi-input
multi-output LTI systems, based on the output responses
of a subset of nodes [34]. However, since we are inter-
ested in the placement and scheduling of these devices
instead of the specific detection mechanisms, our model
abstracts away the specific mechanisms. In other words,
our model assumes that monitoring devices are available
to us, which can detect link and node failures based on
some detection mechanism, such as the ones presented in
the above papers.

One of the earliest efforts to conserve battery power
through scheduling sensor devices is the work of Slijepcevic
and Potkonjak [35]. In [35], the authors consider the prob-
lem of maximizing lifetime while preserving complete cov-
erage of an area, which they formulate as the Set K-Cover
Problem. To solve this problem, they introduce a heuristic
for finding mutually exclusive sets of sensors such that each
set completely covers the monitored area. In a follow-up
work, Abrams et al. introduce three approximation algo-
rithms for a variation of the Set K-Cover Problem [36]. Later,
Deshpande et al. study several generalizations of the Set K-
Cover Problem, and develop an approximation algorithm
based on a reduction to Max K-Cut [37].

Besides the Set K-Cover Problem, researchers have stud-
ied various other formulations of the scheduling problem.
Moscibroda and Wattenhofer consider disjoint dominating-
set based clustering in sensor networks [20]. The authors
study the problem of maximizing the lifetime of a sensor
network, and provide approximation algorithms for multi-
ple variations of the problem. Cardei et al. study schedules
that consist of non-disjoint sets of sensors and continuously
monitor all targets [2]. They model the solution as the maxi-
mum set covers problem, and propose two heuristics based
on linear programming and a greedy approach. Koushanfar
et al. consider the problem of scheduling sensor devices
such that the values of sleeping devices can always be
recovered from the measurements of active devices within a
given error bound [38]. The authors first introduce a

polynomial-time isotonic regression for recovering the val-
ues of sleeping devices, and building on this regression,
they then formulate the scheduling problem as domatic par-
titioning problem, which they solve using an ILP solver.

Our approach is most related to the work of Wang et al.,
who study the trade-off between maximizing lifetime and
minimizing “coverage breach,” that is, minimizing the total
amount of time that each target is not covered by any of the
sensors [22], [39]. The authors propose organizing the sen-
sors into non-disjoint sets, and introduce an algorithm
based on linear programming as well as a greedy heuristic.
In a follow-up work, Rossi et al. propose an exact approach
based on a column-generation algorithm for solving the
scheduling problem, and they also derive a heuristic from
their approach [40]. However, graph-theoretic formulation
proposed in this paper allows us to directly exploit the net-
work structure to obtain optimal schedule for a given net-
work lifetime maximizing the detection or identification of
targets. Moreover, game theory based solution could be
used to simultaneously solve the placement problem and
the scheduling problem, which gives improved overall per-
formance compared to the case in which the placement and
scheduling problems are solved separately.

A few research efforts have considered simultaneous
placement and scheduling. Krause et al. study simultaneous
placement and scheduling of sensor devices for monitoring
spatial phenomena, such as road traffic [41]. The authors
assume that for any set of active sensors, the resulting
“sensing quality” is given by a submodular function, and
they aim to maximize the worst-case sensing quality. In the
case of network monitoring, compared to this approach,
our approach has the advantage of considering and taking
advantage of the network topology. T€urko�gulları et al.
consider the problem of maximizing lifetime through sink
placement, scheduling, and determining sensor-to-sink flow
paths under energy, coverage, and budget constraints [42].
To solve this problem, they propose a mixed-integer linear
programming model as well as a heuristic, which is more
scalable but lacks performance guarantees. However, these
approaches are constrained in the sense that a solution must
monitor every target with a given quality in every single
time step. Our approach, on the other hand, hasmore flexible
constraints, which can result inmuch longer lifetime.

A number of studies have focused on the placement of
sensor nodes, without considering sleep scheduling. Younis
and Akkaya have surveyed earlier literature on node place-
ment, including the placement of sensor nodes [43]. Krause
et al. consider the problem of deploying sensors for detecting
malicious contaminations in large-scale water-distribution
networks [5]. Based on the submodularity of realistic objec-
tive functions, the authors design scalable placement algo-
rithms with provable performance guarantees. Furthermore,
they show that their method can be extended to multicriteria
optimization and adversarial objectives. Hart and Murray
provide a survey of sensor placement strategies for water-
distribution networks [44]. Finally, besides scheduling,
researchers have also studied other similar approaches for
conserving battery power. For example, Zhao et al. consider
selective collaboration of sensors in order to minimize com-
munication, which increases the longevity of networks of
battery-powered sensors [45].
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10 CONCLUSION

We studied the problem of scheduling resource bounded
monitoring devices in networks to maximize the detection
and isolation of failure events for a given network lifetime.
We showed that the scheduling problem is equivalent to a
graph labeling problem, which allowed direct exploitation of
the network structure to obtain optimal schedules. To solve
the graph labeling problem, we presented a game-theoretic
solution. We also showed that the detection (isolation)
performance of monitoring devices deployed within the
networkwas betterwhen the placement and scheduling prob-
lems for these devices were solved simultaneously compared
to the case in which the optimal placement of these devices
was solved first followed by the computation of optimal
schedules. Our graph labeling formulation and game-
theoretic solution allowed us to simultaneously solve place-
ment and scheduling problems. We demonstrated results for
various networks including water distribution and random
networks. The graph labeling problem presented here could
be useful in solving resource allocation problems in other
domains such as multi-agent and multi-robot systems.
Moreover, the proposed approach could be effective in char-
acterizing and comparing network topologies in terms of the
coverage performance, especially when resource-constraint
monitoring devices are utilized.

ACKNOWLEDGMENTS

This work was supported in part by the US National
Science Foundation (CNS-1238959, CNS-1640624), Air Force
Research Laboratory (FA 8750-14-2-0180), Army Research
Office (W911NF-16-1-0069), and by the Office of Naval
Research (N00014-15-1-2621).

REFERENCES

[1] M. Farley and S. Trow, Losses in Water Distribution Networks: A
Practitioner’s Guide to Assessment, Monitoring and Control. London,
U.K.: The International Water Association (IWA) Publishing, 2003.

[2] M. Cardei, M. T. Thai, Y. Li, and W. Wu, “Energy-efficient target
coverage in wireless sensor networks,” in Proc. 24th Annu. Joint
Conf. IEEE Comput. Commun. Soc., 2005, pp. 1976–1984.

[3] B. Wang, “Coverage problems in sensor networks: A survey,”
ACM Comput. Surveys, vol. 43, no. 4, pp. 32:1–32:53, 2011.

[4] L. S. Perelman, W. Abbas, X. Koutsoukos, and S. Amin, “Sensor
placement for fault location identification in water networks: A
minimum test cover approach,” Automatica, vol. 72, pp. 166–176,
2016.

[5] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos,
“Efficient sensor placement optimization for securing large water
distribution networks,” J. Water Resources PlanningManage., vol. 134,
no. 6, pp. 516–526, 2008.

[6] C. Papadimitriou and M. Yannakakis, “Optimization, approxima-
tion, and complexity classes,” J. Comput. and Syst. Sci., vol. 43,
no. 3, pp. 425–440, 1991.

[7] A. Y. Yazicioglu, M. Egerstedt, and J. S. Shamma, “A game theo-
retic approach to distributed coverage of graphs by heterogeneous
mobile agents,” in Proc. FAC Workshop Distrib. Estimation Control
Netw. Syst., 2013, vol. 4, pp. 309–315.

[8] M. Zhu and S. Mart�ınez, “Distributed coverage games for energy-
aware mobile sensor networks,” SIAM J. Control Optimization,
vol. 51, no. 1, pp. 1–27, 2013.

[9] G. Arslan, J. R. Marden, and J. S. Shamma, “Autonomous vehicle-
target assignment: A game-theoretical formulation,” J. Dyn. Syst.
Meas. Control, vol. 129, no. 5, pp. 584–596, 2007.

[10] I. Menache and A. Ozdaglar, “Network games: Theory, models,
and dynamics,” Synthesis Lectures Commun. Netw., vol. 4, no. 1,
pp. 1–159, 2011.

[11] L. E. Blume, “The statistical mechanics of strategic interaction,”
Games Econ. Behavior, vol. 5, no. 3, pp. 387–424, 1993.

[12] W. A. Brock and S. N. Durlauf, “Discrete choice with social inter-
actions,” Rev. Econ. Studies, vol. 68, no. 2, pp. 235–260, 2001.

[13] J. Marden and J. Shamma, “Revisiting log-linear learning: Asyn-
chrony, completeness, and pay-off based implementation,” Games
Econ. Behavior, vol. 75, no. 2, pp. 788–808, 2012.

[14] H. P. Young, “The evolution of conventions,” Econometrica: J.
Econometric Soc., vol. 61, pp. 57–84, 1993.

[15] A. Y. Yazicioglu, M. Egerstedt, and J. S. Shamma, “Communication-
free distributed coverage for networked systems,” IEEE Trans.
Control Netw. Syst., 2016, doi: 10.1109/TCNS.2016.2518083.

[16] N. Ahn and S. Park, “A new mathematical formulation and a heu-
ristic for the maximum disjoint set covers problem to improve the
lifetime of the wireless sensor network,” Ad Hoc Sensor Wireless
Netw., vol. 13, no. 3/4, pp. 209–225, 2011.

[17] S. Henna and T. Erlebach, “Approximating maximum disjoint
coverage in wireless sensor networks,” in Ad-Hoc, Mobile, and
Wireless Network. Berlin, Germany: Springer, 2013, pp. 148–159.

[18] S. V. Pemmaraju and I. A. Pirwani, “Energy conservation via
domatic partitions,” in Proc. 7th ACM Int. Symp. Mobile Ad Hoc
Netw. Comput., 2006, pp. 143–154.

[19] U. Feige, M. M. Halld�orsson, G. Kortsarz, and A. Srinivasan,,
“Approximating thedomatic number,” SIAM J. Comput., vol. 32,
no. 1, pp. 172–195, 2002.

[20] T. Moscibroda and R. Wattenhofer, “Maximizing the lifetime of
dominating sets,” in Proc. 19th IEEE Int. Symp. Parallel Distrib. Pro-
cess., 2005, Art. no. 8.

[21] J. Yu, Q. Zhang, D. Yu, C. Chen, and G. Wang, “Domatic partition
in homogeneous wireless sensor networks,” J. Netw. Comput.
Appl., vol. 37, pp. 186–193, 2014.

[22] C. Wang, M. T. Thai, Y. Li, F. Wang, and W. Wu, “Optimization
scheme for sensor coverage scheduling with bandwidth con-
straints,”Optimization Lett., vol. 3, no. 1, pp. 63–75, 2009.

[23] S. Fujita, M. Yamashita, and T. Kameda, “A study on r-configura-
tions—a resource assignment problem on graphs,” SIAM J. Dis-
crete Mathematics, vol. 13, no. 2, pp. 227–254, 2000.

[24] W. Abbas, M. Egerstedt, C.-H. Liu, R. Thomas, and P. Whalen,
“Deploying robots with two sensors in k1;6–free graphs,” J. Graph
Theory, vol. 82, pp. 236–252, 2016.

[25] A. Whittle, M. Allen, A. Preis, and M. Iqbal, “Sensor networks for
monitoring and control of water distribution systems,” in Proc. 6th
Int. Conf. Structural Health Monitoring Intell. Infrastructure, 2013,
https://dspace.mit.edu/openaccess-disseminate/1721.1/92764

[26] A. Deshpande, S. Sarma, K. Youcef-Toumi, and S. Mekid,
“Optimal coverage of an infrastructure network using sensors
with distance-decaying sensing quality,” Automatica, vol. 49,
no. 11, pp. 3351–3358, 2013.

[27] W. Abbas, L. S. Perelman, S. Amin, and X. Koutsoukos, “An effi-
cient approach to fault identification in urban water networks
using multi-level sensing,” in Proc. 2nd ACM Int. Conf. Embedded
Syst. Energy-Efficient Built Environments, 2015, pp. 147–156.

[28] A. Ostfeld, et al., “The battle of the water sensor networks: A
design challenge for engineers and algorithms,” J. Water Resources
Planning Manage., vol. 134, no. 6, pp. 556–568, 2008.

[29] Centre of Water Systems, University of Exeter. [Online].
Available: http://emps.exeter.ac.uk/engineering/research/cws/
downloads/benchmarks/, Accessed on: Apr. 18, 2016.

[30] M. D. Jolly, A. D. Lothes, L. Sebastian Bryson, and L. Ormsbee,
“Research database of water distribution system models,” J. Water
Resources Planning Manage., vol. 140, no. 4, pp. 410–416, 2013.

[31] M. Krysander and E. Frisk, “Sensor placement for fault diag-
nosis,” IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans, vol. 38,
no. 6, pp. 1398–1410, Nov. 2008.

[32] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum cov-
erage problem,” Inf. Process. Lett., vol. 70, no. 1, pp. 39–45, 1999.

[33] R. Dhal, J. A. Torres, and S. Roy, “Detecting link failures in com-
plex network processes using remote monitoring,” Physica A: Stat-
ist. Mech. Appl., vol. 437, pp. 36–54, 2015.

[34] M. A. Rahimian and V. M. Preciado, “Detection and isolation of
failures in directed networks of LTI systems,” IEEE Trans. Control
Netw. Syst., vol. 2, no. 2, pp. 183–192, Jun. 2015.

[35] S. Slijepcevic and M. Potkonjak, “Power efficient organization of
wireless sensor networks,” in Proc. IEEE Int. Conf. Commun., 2001,
pp. 472–476.

[36] Z. Abrams, A. Goel, and S. Plotkin, “Set k-cover algorithms for
energy efficient monitoring in wireless sensor networks,” in Proc.
3rd Int. Symp. Inf. Process. Sensor Netw., 2004, pp. 424–432.

ABBAS ETAL.: SCHEDULING RESOURCE-BOUNDED MONITORING DEVICES FOR EVENT DETECTION AND ISOLATION IN NETWORKS 77



[37] A. Deshpande, S. Khuller, A. Malekian, and M. Toossi, “Energy
efficient monitoring in sensor networks,” Algorithmica, vol. 59,
no. 1, pp. 94–114, 2011.

[38] F. Koushanfar, N. Taft, and M. Potkonjak, “Sleeping coordination
for comprehensive sensing using isotonic regression and domatic
partitions,” in Proc. 25th IEEE Int. Conf. Comput. Commun., 2006,
pp. 1–13.

[39] C. Wang, M. T. Thai, Y. Li, F. Wang, and W. Wu, “Minimum cov-
erage breach and maximum network lifetime in wireless sensor
networks,” in Proc. IEEE Global Telecommun. Conf., 2007, pp. 1118–
1123.

[40] A. Rossi, A. Singh, and M. Sevaux, “Column generation algorithm
for sensor coverage scheduling under bandwidth constraints,”
Netw., vol. 60, no. 3, pp. 141–154, 2012.

[41] A. Krause, R. Rajagopal, A. Gupta, and C. Guestrin, “Simultaneous
optimization of sensor placements and balanced schedules,” IEEE
Trans. Autom. Control, vol. 56, no. 10, pp. 2390–2405, Oct. 2011.

[42] Y. B. T€urko�gulları, N. Aras, _I. K. Alt{nel, and C. Ersoy, “An effi-
cient heuristic for placement, scheduling and routing in wireless
sensor networks,” Ad Hoc Netw., vol. 8, no. 6, pp. 654–667, 2010.

[43] M. Younis and K. Akkaya, “Strategies and techniques for node
placement in wireless sensor networks: A survey,” Ad Hoc Netw.,
vol. 6, no. 4, pp. 621–655, 2008.

[44] W. E. Hart and R. Murray, “Review of sensor placement strategies
for contamination warning systems in drinking water distribution
systems,” J. Water Resources Planning Manage., vol. 136, no. 6,
pp. 611–619, 2010.

[45] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor
collaboration,” IEEE Signal Process. Mag., vol. 19, no. 2, pp. 61–72,
Mar. 2002.

Waseem Abbas received the MSc and PhD
degrees both in electrical and computer engineer-
ing from the Georgia Institute of Technology,
Atlanta, Georgia, in 2010 and 2013, respectively.
He is a postdoctoral research scholar in the
Department of Electrical Engineering and Com-
puter Science, Vanderbilt University, Nashville,
Tennessee. He was a Fulbright scholar from
2009 till 2013. His research interests include the
area of network control systems, graph-theoretic
methods for large networked systems, and resil-
ience of cyber-physical systems.

Aron Laszka received the MSc and PhD degrees
in computer science and engineering from the
Budapest University of Technology and Econom-
ics, in 2011 and 2014, respectively. He is a res-
earch assistant professor in the Department of
Electrical Engineering and Computer Science,
Vanderbilt University. Previously, he was a post-
doctoral scholar with the University of California,
Berkeley. Between 2014 and 2015, he was a post-
doctoral research scholar with Vanderbilt Univer-
sity. In 2013, he was a visiting research scholar

with the Pennsylvania State University. His research work focuses on
the security and resilience of cyber-physical systems, the economics of
security, and game-theoretic modeling of security problems.

Yevgeniy Vorobeychik is an assistant professor
of computer science and biomedical informatics
with Vanderbilt University. Previously, hewasa prin-
cipal member of technical staff at Sandia National
Laboratories. Between 2008 and 2010, he was a
post-doctoral research associate with the Univer-
sity of PennsylvaniaComputer and InformationSci-
ence Department. His work focuses on game
theoretic modeling of security and privacy, algorith-
mic and behavioral game theory and incentive
design, optimization, complex systems, epidemic

control, network economics, and machine learning. His research has been
supported by the US National Science Foundation, the National Institutes
of Health, the Department of Energy, and the Department of Defense. He
was nominated for the 2008 ACM Doctoral Dissertation Award and
received honorablemention for the 2008 IFAAMASDistinguishedDisserta-
tion Award. He is amember of the IEEE.

Xenofon Koutsoukos received the PhD degree
in electrical engineering from the University of
Notre Dame, Notre Dame, Indiana, in 2000. He is
a professor in the Department of Electrical Engi-
neering and Computer Science and a senior
research scientist in the Institute for Software
Integrated Systems (ISIS), Vanderbilt University,
Nashville, Tennessee. He was a member of
research staff at the Xerox Palo Alto Research
Center (PARC) (2000-2002), working in the
embedded collaborative computing area. His

research work is in the area of cyber-physical systems with emphasis on
formal methods, data-driven methods, distributed algorithms, security
and resilience, diagnosis and fault tolerance, and adaptive resource
management. He was the recipient of the NSF Career Award in 2004,
the Excellence in Teaching Award in 2009 from the Vanderbilt University
School of Engineering, and the 2011 NASA Aeronautics Research Mis-
sion Directorate (ARMD) Associate Administrator (AA) Award in Tech-
nology and Innovation. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

78 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 5, NO. 1, JANUARY-MARCH 2018


