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Abstract—We study the impact of untrusted relays on the
degrees of freedom of multi-antenna multi-hop networks. In par-
ticular, we consider the two user two-hop interference network,
where two source nodes want to send independent messages
securely to their designated receivers through the help of two
untrusted relays. The relays are considered untrusted in terms
of eavesdropping the messages sent by the sources. Moreover,
we also assume that the messages are confidential, i.e., each
receiver must not be able to decode the information meant
for the other receiver. We assume that all the terminals (i.e.,
sources, relays, and the receivers) are equipped with multiple
number of antennas. The goal of this work is to understand the
secure degrees of freedom (SDoF) region of this multi-hop MIMO
network under the two constraints of a) untrusted relays; and b)
confidential messages. To cope with the untrusted nature of relays,
we present achievable schemes in which both sources mix their
information symbols with artificial noises so that the signals at
each relay are completely immersed in the artificial noises space.
However, this mixing must be done carefully, so as to ensure the
feasibility of interference neutralization in the second hop to allow
successful decoding at the respective destination. To this end, we
devise transmission schemes based on interference alignment and
interference neutralization techniques. The main contributions of
this work are as follows: a) we present an upper bound on the
SDoF region as a function of the number of antennas at the
terminals, b) we present two achievable schemes, the first scheme
is based on secure interference alignment and neutralization
and is shown to be information theoretically optimal when all
terminals have the same number of antennas; and a second
scheme, based on secure sub-space alignment and neutralization,
which is shown to be optimal for another specific antenna
configuration. To the best of our knowledge, these are the first
results on multi-hop MIMO relay networks with untrusted relays
and confidential messages.

Index Terms: Degrees of freedom (DoF), secrecy, secure
degrees of freedom, multi-hop networks.

I. INTRODUCTION

Interference is considered as a fundamental barrier in wire-
less communications. Seminal works [1]–[3] were conducted
to advance our understanding of the capacity of single-hop
wireless networks and multi-hop networks. One of the seminal
works in multi-hop networks is [4] where the authors studied
the 2 × 2 × 2 interference network in which there are two
source nodes, two relays and two destinations, each equipped
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with a single antenna. It was shown in [4] that the cut-set
bound of 2 DoF can be achieved using aligned interference
neutralization. The authors in [5] extended the work of 2×2×2
interference network to the case of MIMO setting, and showed
the achievability of the cut-set bound using a combination
of beamforming and aligned interference neutralization tech-
niques. In [6], the authors generalized the work of the 2×2×2
interference network in [4] into 𝐾 × 𝐾 × 𝐾 interference
network, and it was shown that 𝐾 DoF are achieved via aligned
network diagonalization scheme.

Due to the nature of the wireless communications envi-
ronment, secrecy is a challenging problem, especially due to
the presence of eavesdroppers and/or unauthenticated nodes
in the network. Information theoretic secrecy for wireless
networks has been investigated for various channel models [7]–
[9]. Seminal works studied the secrecy degrees of freedom in
multi-hop networks (see, [10], [11]). The authors in [10] have
studied the sum secure degrees of freedom for the two-unicast
layered network with different number of hops and connection
configurations. They assumed that each source node sends
a message that is intended to its desired destination node
and kept secure from the unintended receivers. In [11], a
scenario was considered in which a source-destination pair are
communicating only through an untrusted intermediate relay
node. In their work, they imposed a cooperative jammer by
deliberately making the jammer send artificial noises along
with the information symbols from the source nodes to confuse
the relay and hence protecting the legitimate receiver. In [12],
the authors have studied this setup when there is an untrusted
relay in the presence of external eavesdropper. Also, each
source wants to send to the other a message and one of these
messages is enforced to be secured at the untrusted relay.
An achievable scheme based on rate splitting and stochastic
encoding was devised for this network. To the best of our
knowledge, the problem of multi-hop networks with untrusted
relay(s) and confidential messages has not been settled yet.

The contributions of this paper are summarized as follows:
∙ First, we consider the (𝑁𝑆 , 𝑁𝑅, 𝑁𝐷) MIMO multi-hop
network with 𝑁𝑆 antennas at sources, 𝑁𝑅 antennas at relays,
𝑁𝐷 antennas at destinations. We present an upper bound on
the SDoF region of the MIMO multi-hop network and show a
matching scheme for certain antenna configurations.
∙ We then present an achievable scheme based on asymptotic
secure interference alignment and interference neutralization to
achieve the upper bound on the SDoF for the MIMO setting
with antenna parameters: (𝑁𝑆 , 𝑁𝐷, 𝑁𝑅) = (𝑁𝑆 , 𝑁,𝑁) and
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𝑁 ≤ 𝑁𝑆 .
∙ Finally, we present another achievable scheme based on
secure sub-space alignment along with interference neutral-
ization for the MIMO setting (𝑁𝑆 , 𝑁𝐷, 𝑁𝑅) = (𝑁,𝑁,𝑁𝑅)
and 𝑁 ≤ 𝑁𝑅. We show the optimality of this scheme when
𝑁𝑅 = 4𝑁

3 . The key distinction of the second scheme is that
it is not asymptotic in nature (i.e., does not require channel
extensions) and is still information-theoretically optimal for
the above antenna configurations.

Notations: Boldface uppercase letters denote matrices and
boldface lowercase letters are used for vectors. C, R denote
the complex and real domain, respectively. For a matrix A
or a vector a their transpose are denoted by A𝑇 and a𝑇 ,
respectively.

II. SYSTEM MODEL

We consider a layered 2 × 2 × 2 multi-hop network as
shown in Fig. 1, where each source node 𝑆𝑖 has a message
𝑊𝑖 to its corresponding destination node 𝐷𝑖, ∀𝑖 ∈ {1, 2}. Each
source node 𝑆𝑖 has 𝑁𝑆 antennas, each relay node 𝑅𝑖 has 𝑁𝑅

antennas and each destination has 𝑁𝐷 antennas. We assume
there are no direct links between the sources and destinations
hence the messages from the sources are relayed over the
relays {𝑅𝑘}2𝑘=1. In the first hop, the received signals at relays
{𝑅𝑘}2𝑘=1 are as follows:

y𝑅𝑘
(𝑡) = F𝑘1(𝑡)x1(𝑡) + F𝑘2(𝑡)x2(𝑡) + n𝑅𝑘

(𝑡), (1)

where F𝑖𝑗(𝑡) ∈ C𝑁𝑅×𝑁𝑆 represents the complex Gaussian
channel coefficients of the first hop at time 𝑡 between source
node 𝑆𝑗 and relay node 𝑅𝑖, x𝑖(𝑡) ∈ C𝑁𝑆×1 is the transmitted
signal from 𝑆𝑖 and n𝑅𝑘

(𝑡) ∈ C𝑁𝑅×1 is the additive noise,
which is assumed to be distributed i.i.d. over time, as circularly
symmetric Gaussian with zero mean and unit variance. In
the second hop, {𝑅𝑘}2𝑘=1 transmit symbols {x𝑅𝑘

}2𝑘=1 to
{𝐷𝑘}2𝑘=1. The received signal at 𝐷𝑘 is given by:

y𝐷𝑘
(𝑡) = G𝑘1(𝑡)x𝑅1

(𝑡) +G𝑘2(𝑡)x𝑅2
(𝑡) + n𝐷𝑘

(𝑡), (2)

where G𝑘𝑖(𝑡) ∈ C𝑁𝐷×𝑁𝑅 is the complex Gaussian channel
coefficient for the second hop between relay node 𝑅𝑖 and
destination node 𝐷𝑘, and n𝐷𝑘

(𝑡) ∈ C𝑁𝐷×1 is the receiver
circularly symmetric Gaussian noise with zero mean-unit vari-
ance at time slot 𝑡. In addition, the transmitted signals from
the nodes have an average power constraint 𝑃 . The relays are
assumed to be full-duplex (i.e., the relays can transmit and
receive signals at the same time but in different channels).
We assume perfect channel state information about the time-
varying channel coefficients at the transmitters, i.e. channel
coefficients for receiver 𝑖 are known instantaneously and
without error. Specifically, the source nodes know the channels
for the first hop only, relays know the channels for both hops,
and destination nodes know the channels for the second hop
only. We consider secrecy constraints in the network, such that
the relays are enforced not to know the transmitted symbols
from the source nodes {𝑆𝑖}2𝑖=1, and each destination 𝐷𝑖 is
considered as an eavesdropper for the symbols of the other
destination 𝐷𝑗 , 𝑖 ∕= 𝑗. The relays are untrusted in terms of
eavesdropping the messages sent by the sources, but they are
trusted in terms of honestly forwarding the information and
correctly executing the communication protocol. Also, each
destination is considered an eavesdropper for the messages

Fig. 1. System model for the 2× 2× 2 multi-hop network with 𝑁𝑆

antennas at sources (𝑆1, 𝑆2), 𝑁𝑅 antennas at relays (𝑅1, 𝑅2) and
𝑁𝐷 antennas at destinations (𝐷1, 𝐷2). The relays are assumed to be
untrustworthy and the message 𝑊𝑖 must be securely delivered to the
destination 𝐷𝑖 (𝑖 = {1, 2}).

intended for the other destination. A secure rate pair (𝑅1, 𝑅2)
is achievable if there exists a sequence of codes that satisfy
the reliability constraints at the destinations such that:

Pr
[
𝑊̂𝑖 ∕= 𝑊𝑖

]
≤ 𝜖𝑛 (3)

and the secrecy constraints such that:

𝐼
(
𝑊1,𝑊2;𝑌

𝑛
𝑅𝑖

) ≤ 𝜖𝑛, 𝑖 = 1, 2, (4)

𝐼
(
𝑊𝑖;𝑌

𝑛
𝐷𝑗

)
≤ 𝜖𝑛, 𝑖, 𝑗 = 1, 2, 𝑖 ∕= 𝑗, (5)

where 𝑛 is the number of channel uses and 𝜖𝑛 → 0 as 𝑛 → ∞.

Let 𝑅𝑖(𝑃 ) denote the achievable secure rate of message
𝑊𝑖 for a given transmission power 𝑃 defined as 𝑅𝑖(𝑃 ) ≜
log2(∣𝒲𝑖∣)

𝑛 where ∣𝒲𝑖∣ is the cardinality of the message set.
The secure degrees of freedom (SDoF) region 𝒟 for the 2-
user multi-hop network is defined as the set of all achievable
pairs (𝑑1, 𝑑2) ∈ R2

+ where,

𝑑𝑖 ≜ lim
𝑃→∞

𝑅𝑖(𝑃 )

log2(𝑃 )
, 𝑖 = 1, 2 (6)

is the degrees of freedom (DoF) for message 𝑊𝑖. The sum
secure DoF of the network is defined as:

SDoFsum ≜ max
(𝑑1,𝑑2)∈𝒟

𝑑1 + 𝑑2. (7)

III. MAIN RESULTS

In this section, we first present our result on the outer bound
on the SDoF region 𝒟 for the MIMO multi-hop network.
We then present two special cases of antenna configurations
and show their optimality of matching the outer bounds on
the SDoF region 𝒟. The first case is when (𝑁𝑆 , 𝑁𝐷, 𝑁𝑅) =
(𝑁𝑆 , 𝑁,𝑁) and 𝑁 ≤ 𝑁𝑆 . For this case, we devise our trans-
mission scheme where we use asymptotic secure interference
alignment and neutralization technique to keep the information
symbols secured at the untrusted relays and the unintended re-
ceiver. The second case is when (𝑁𝑆 , 𝑁𝐷, 𝑁𝑅) = (𝑁,𝑁,𝑁𝑅)
and 𝑁 ≤ 𝑁𝑅. For this case, we devise sub-space alignment
and neutralization technique, and show the optimality of this
scheme when 𝑁𝑅 = 4𝑁

3 .

Theorem 1: The SDoF region 𝒟 for the 2 × 2 × 2 multi-
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Fig. 2. The upper bound on SDoFsum normalized by 𝑁𝑆 vs 𝑁𝑅
𝑁𝑆

and
𝑁𝐷
𝑁𝑆

for the 2× 2× 2 MIMO interference network. Maximum value
of the SDoFsum is attained when 𝑁𝑆 = 𝑁𝑅 = 𝑁𝐷 = 𝑁 .

hop interference network with 𝑁𝑆 antennas at each source
node 𝑆𝑖, 𝑁𝑅 at each relay node 𝑅𝑖 and 𝑁𝐷 antennas at each
destination node 𝐷𝑖 is contained within the following region:

𝒟𝑜𝑢𝑡 ≜
{
(𝑑1, 𝑑2) ∈ R2

+ :

𝑑1 ≤ min(𝑁𝑆 , 𝑁𝐷, (2𝑁𝑅 −𝑁𝐷)+) (8)

𝑑2 ≤ min(𝑁𝑆 , 𝑁𝐷, (2𝑁𝑅 −𝑁𝐷)+) (9)
𝑑1 + 𝑑2 ≤ 𝑁𝑅 (10)

𝑑1 + 𝑑2 ≤ 𝑁𝐷 + (𝑁𝑅 −𝑁𝐷)+ (11)

𝑑1 + 𝑑2 ≤ (2𝑁𝑆 −𝑁𝑅)
+

}
, (12)

where (𝑎)+ ≜ max(0, 𝑎).

From the above outer bound, we can observe that the
SDoF region is empty (i.e., positive secure degrees of freedom
are infeasible) when either of the following conditions holds:
2𝑁𝑅 < 𝑁𝐷 or 2𝑁𝑆 < 𝑁𝑅. Fig. 2 depicts the upper bound on
the SDoFsum. The converse proof of this Theorem is provided
in Section IV.

Remark 1: We take a special case when 𝑁𝐷 = 𝑁𝑅 =
𝑁 , i.e., we consider the case when the destinations and the
relays have the same number of antennas. For this special case,
the outer bound on SDoF region of Theorem 1 simplifies to
the following region(s) depending on the relative value of 𝑁𝑆

compared to 𝑁 :
∙ Case (a): 𝑁 ≤ 𝑁𝑆

𝑑1 + 𝑑2 ≤ 𝑁. (13)

∙ Case (b): 𝑁 > 𝑁𝑆

𝑑1 ≤ 𝑁𝑆 , (14)
𝑑2 ≤ 𝑁𝑆 , (15)

𝑑1 + 𝑑2 ≤ 2𝑁𝑆 −𝑁. (16)

Next, we show that the outer bound is optimal for Case (a).

Theorem 2: The SDoF region 𝒟 for the 2 × 2 × 2
MIMO multi-hop interference network with (𝑁𝑆 , 𝑁𝐷, 𝑁𝑅) =
(𝑁𝑆 , 𝑁,𝑁) and 𝑁 ≤ 𝑁𝑆 is the set of non-negative pairs

Fig. 3. Upper bounds for SDoF regions from Theorem 1 for the
special case (𝑁𝑆 , 𝑁𝐷, 𝑁𝑅) = (𝑁𝑆 , 𝑁,𝑁) and two sub-cases: (a)
𝑁 ≤ 𝑁𝑆 , (b) 𝑁 > 𝑁𝑆 . For case (a), Theorem 2 shows the optimality
for this bound. Characterizing the optimal SDoF region for case (b)
remains open.

(𝑑1, 𝑑2) such that:

𝑑1 + 𝑑2 ≤ 𝑁. (17)

To prove the above result, we show the achievability of the
SDoF pair (𝑑1, 𝑑2) = (0, 𝑁) through the aligned interference
neutralization scheme in Section V. The converse follows from
Theorem 1. The resulting outer bounds for both the cases are
shown in Fig. 3. We show in Section V that the outer bound for
Case (a) is indeed optimal and can be achieved by a matching
scheme.

Theorem 3: The achievable SDoF region 𝒟in for the 2 ×
2 × 2 multi-hop interference network with (𝑁𝑆 , 𝑁𝐷, 𝑁𝑅) =
(𝑁,𝑁,𝑁𝑅) and 𝑁 ≤ 𝑁𝑅 is

𝑑1 + 𝑑2 = 2min

{
𝑁

3
, 3𝑁 − 2𝑁𝑅

}
. (18)

The proof of this Theorem is presented in Section VI.

Remark 2: It is worth noting that the achievable SDoF
region 𝒟 coincides with the outer bound on SDoF region 𝒟𝑜𝑢𝑡

when either 2𝑁
3 or 2(3𝑁−2𝑁𝑅) equal 2𝑁−𝑁𝑅 which holds

for both cases when 𝑁𝑅 = 4𝑁
3 .

Fig. 4 shows a comparison between DoF regions with
different antennas configurations with the case of no secrecy
[5] and with secrecy constraints. We see that the SDoF region
is diminished because of the secrecy constraints in the network.
In Fig. 4 (a), the optimal SDoF region is achieved by secure
sub-space alignment and neutralization. In Fig. 4 (b), the
inner bound on the SDoF region achieved by secure sub-
space alignment and neutralization does not match with the
outer bound for this setting. In Fig. 4 (c), the optimal SDoF
region is achieved by asymptotic interference alignment and
neutralization (Theorem 3).

IV. PROOF OF THEOREM 1

The outer bounding mechanism works as follows: we
take information cuts (i.e., a partition of nodes that separates
source(s) and respective destination(s)) across the multi-hop
network, and bound the information theoretic quantities, while
accounting for a) the secrecy and confidentiality constraints;



Fig. 4. Comparison between non-secure and secure DoF regions for different antenna configurations (𝑁𝑆 , 𝑁𝐷, 𝑁𝑅).

b) the number of antennas at all terminals; and c) the decod-
ing constraints at the destinations. Now we will prove each
constraint in the outer bound SDoF region 𝒟out.

∙ Constraint (8): We first note that the bound 𝑑1 ≤
min(𝑁𝑆 , 𝑁𝐷) follows trivially from cut-set arguments. Hence,
we provide the proof of 𝑑1 ≤ (2𝑁𝑅−𝑁𝐷)+. We upper bound
the rate of user 1 by using Fano’s inequality as follows:

𝑛𝑅1 ≤ 𝐼(𝑊1;𝑋
𝑛
𝑅1

, 𝑋𝑛
𝑅2

) + 𝑛𝜖𝑛,

≤ 𝐼(𝑊1;𝑋
𝑛
𝑅1

, 𝑋𝑛
𝑅2

, 𝑌 𝑛
𝐷2

) + 𝑛𝜖𝑛,
(𝑎)

≤ 𝐼(𝑊1;𝑋
𝑛
𝑅1

, 𝑋𝑛
𝑅2

∣𝑌 𝑛
𝐷2

) + 𝑛𝜖𝑛,

≤ ℎ(𝑋𝑛
𝑅1

, 𝑋𝑛
𝑅2

∣𝑌 𝑛
𝐷2

) + 𝑛𝜖𝑛,
(𝑏)

≤ 𝑛(2𝑁𝑅 −𝑁𝐷)+ log(𝑃 ) + 𝑛𝜖𝑛,

where (a) follows from the confidentiality constraint for mes-
sage 𝑊1, and (b) follows from the fact that the Gaussian
distribution maximizes the entropy and the pre-log 𝑛(2𝑁𝑅 −
𝑁𝐷)+ comes from the following argument: Given 𝑌 𝑛

𝐷2
in the

conditioning (or 𝑁𝐷 equations in 2𝑁𝑅 variables per time slot),
the remaining degrees of freedom of the term (𝑋𝑛

𝑅1
, 𝑋𝑛

𝑅2
)

can be readily upper bounded by (2𝑁𝑅 − 𝑁𝐷)+. Hence,
we have the proof of 𝑑1 ≤ min(𝑁𝑆 , 𝑁𝐷, (2𝑁𝑅 − 𝑁𝐷)+).
Similarly, for constraint (9), it can be shown that 𝑑2 ≤
min(𝑁𝑆 , 𝑁𝐷, (2𝑁𝑅 −𝑁𝐷)+).

∙ Constraint (10): To prove this bound, we start by upper
bounding the sum rate by using Fano’s inequality as follows:

𝑛(𝑅1 +𝑅2) ≤ 𝐼(𝑊1,𝑊2;𝑌
𝑛
𝑅1

, 𝑌 𝑛
𝑅2

) + 𝑛𝜖𝑛,

= 𝐼(𝑊1,𝑊2;𝑌
𝑛
𝑅1

) + 𝐼(𝑊1,𝑊2;𝑌
𝑛
𝑅2

∣𝑌 𝑛
𝑅1

) + 𝑛𝜖𝑛,
(𝑎)

≤ 𝜖𝑛 + ℎ(𝑌 𝑛
𝑅2

∣𝑌 𝑛
𝑅1

)− ℎ(𝑌 𝑛
𝑅2

∣𝑊1,𝑊2, 𝑌
𝑛
𝑅1

) + 𝑛𝜖𝑛,

≤ (𝑛+ 1)𝜖𝑛 + ℎ(𝑌 𝑛
𝑅2

),

≤ (𝑛+ 1)𝜖𝑛 + 𝑛𝑁𝑅 log(𝑃 ), (19)

where (a) follows from the secrecy constraint at the untrusted
relay 1. Dividing (19) by 𝑛 and letting 𝑛 → ∞, we have

𝑅1 +𝑅2 ≤ 𝑁𝑅 log(𝑃 ). (20)

Subsequently, dividing (20) by log(𝑃 ) and letting 𝑃 → ∞,
we have 𝑑1 + 𝑑2 ≤ 𝑁𝑅.

∙ Constraint (11): To prove this bound, we start by bounding

the sum rate as follows:

𝑛(𝑅1 +𝑅2) ≤ 𝐼(𝑊1,𝑊2;𝑌
𝑛
𝐷1

, 𝑌 𝑛
𝑅2

, 𝑋𝑛
𝑅1

) + 𝑛𝜖𝑛,
(𝑎)

≤ 𝐼(𝑊1,𝑊2;𝑌
𝑛
𝐷1

, 𝑌 𝑛
𝑅2

∣𝑋𝑛
𝑅1

) + 𝑛𝜖𝑛,

= ℎ(𝑌 𝑛
𝐷1

, 𝑌 𝑛
𝐷2

∣𝑋𝑛
𝑅1

)

− ℎ(𝑌 𝑛
𝐷1

, 𝑌 𝑛
𝐷2

∣𝑋𝑛
𝑅1

,𝑊1,𝑊2) + 𝑛𝜖𝑛,

≤ ℎ(𝑌 𝑛
𝐷1

, 𝑌 𝑛
𝐷2

∣𝑋𝑛
𝑅1

) + 𝑛𝜖𝑛,

= ℎ(𝑌 𝑛
𝐷1

∣𝑋𝑛
𝑅1

) + ℎ(𝑌 𝑛
𝐷2

∣𝑋𝑛
𝑅1

, 𝑌 𝑛
𝐷1

) + 𝑛𝜖𝑛,
(𝑏)

≤ 𝑛𝑁𝐷 log(𝑃 )+𝑛(𝑁𝑅 −𝑁𝐷)+ log(𝑃 )+𝑛𝜖𝑛,

where (a) follows from the secrecy constraint at untrusted relay
1, and (b) follows from the fact that the Gaussian distribution
maximizes the entropy and the pre-log 𝑁𝐷 comes from the
fact that given 𝑋𝑛

𝑅1
, the number of equations in 𝑋𝑛

𝑅1
at 𝐷1

is 𝑁𝐷. For the second term, given (𝑋𝑛
𝑅1

, 𝑌 𝑛
𝐷1

), the remaining
degrees of freedom in 𝑌 𝑛

𝐷2
are upper bounded by (𝑁𝑅−𝑁𝐷)+.

Taking the limits 𝑛 → ∞, and 𝑃 → ∞, we arrive at (11).

∙ Constraint (12): To prove this bound, we start by bounding
the sum rate as follows:

𝑛(𝑅1 +𝑅2) ≤ 𝐼(𝑊1,𝑊2;𝑋
𝑛
𝑆1
, 𝑋𝑛

𝑆2
, 𝑌 𝑛

𝑅1
) + 𝑛𝜖𝑛,

(𝑎)

≤ 𝐼(𝑊1,𝑊2;𝑋
𝑛
𝑆1
, 𝑋𝑛

𝑆2
∣𝑌 𝑛

𝑅1
) + 𝑛𝜖𝑛,

≤ ℎ(𝑋𝑛
𝑆1
, 𝑋𝑛

𝑆2
∣𝑌 𝑛

𝑅1
) + 𝑛𝜖𝑛,

(𝑏)

≤ 𝑛(2𝑁𝑆 −𝑁𝑅)
+ log(𝑃 ) + 𝑛𝜖𝑛,

where (a) follows from secrecy constraint at the untrusted relay
1, and (b) follows from the fact that given 𝑌 𝑛

𝑅1
, the remaining

degrees of freedom in (𝑋𝑛
𝑆1
, 𝑋𝑛

𝑆2
) are upper bounded by

(2𝑁𝑆−𝑁𝑅)
+. Hence, taking the limits 𝑛 → ∞, and 𝑃 → ∞,

we have the proof of (12).

V. PROOF OF THEOREM 2

In this section, we give an achievable scheme to achieve
the points P1 = (𝑁, 0) and P2 = (0, 𝑁) in Fig. 3(a).
Motivated by the work of [4], we introduce our transmission
scheme. In particular, it is sufficient to show the achievability
of point P2, i.e. (𝑑1, 𝑑2) = (0, 𝑁) is achievable. The other
point P1 is achievable by the reversing the roles of the
transmitters. Any point between P1 and P2 is then achievable
via time sharing. We show that for the point P2, the pair
(𝑑1, 𝑑2) = (0, 𝑁𝐿−1

𝐿 ) is achievable where 𝐿 is the number of
symbol extensions of the channel. Hence by taking 𝐿 → ∞,
we achieve (𝑑1, 𝑑2) = (0, 𝑁). Our scheme is divided into



two parts: Over the first hop, we devise a secure interference
alignment scheme, in which we align the transmitted signals
along with artificial noises at the relays such that the relays can
not infer any of these information signals. Over the second hop
of the network, we perform secure interference neutralization,
in which the relays carefully transmit the signals such that
the unintended signals are cancelled out at that unintended
destination.

I. Achieving (𝑑1, 𝑑2) = (0, 𝑁) : 1

When considering 𝐿 symbol extension of the network, the
effective channel coefficients for the two hops can be written
as:

F̃𝑘𝑗 = blkdiag(F𝑘𝑗(1),F𝑘𝑗(2), . . . ,F𝑘𝑗(𝐿)), (21)

G̃𝑘𝑗 = blkdiag(G𝑘𝑗(1),G𝑘𝑗(2), . . . ,G𝑘𝑗(𝐿)), (22)

where F̃𝑘𝑗 and G̃𝑘𝑗 , 𝑘, 𝑗 ∈ {1, 2} are block diagonal matrices
of dimensions 𝑁𝐿×𝑁𝐿.

Let the transmitted symbols of sources 𝑆𝑖, 𝑖 ∈ {1, 2} be as
follows:

s1 = [𝑛1 𝑛2 . . . 𝑛𝑁𝐿−1 𝑛𝑁𝐿]
𝑇

𝑁𝐿×1, (23)

s2 = [𝑏1 𝑏2 . . . 𝑏𝑁𝐿−2 𝑏𝑁𝐿−1]
𝑇

𝑁𝐿−1×1
, (24)

where {𝑏𝑖}𝑁𝐿−1
𝑖=1 are the information symbols sent from 𝑆2,

and {𝑛𝑖}𝑁𝐿
𝑖=1 are the artificial noises2 sent from 𝑆1. Source node

𝑆1 sends 𝑠1(𝑖) along with precoding vector v1,𝑖 ∈ C𝑁𝐿×1, 𝑖 ∈
{1, . . . , 𝑁𝐿}, also 𝑆1. Source node 𝑆2 sends 𝑠2(𝑖) along with
precoding vector v2,𝑖 ∈ C𝑁𝐿×1, 𝑖 ∈ {1, . . . , 𝑁𝐿 − 1}. Then,
the transmitted signal from source 𝑆1 is as follows:

x1 = [v1,1 v1,2 . . . v1,𝑁𝐿] s1. (25)

Similarly, source node 𝑆2 sends 𝑠2(𝑖) along with precoding
vector v2,𝑖 ∈ C𝑁𝐿×1, 𝑖 ∈ {1, . . . , 𝑁𝐿 − 1}. Then, the
transmitted signal from source 𝑆2 is:

x2 = [v2,1 v2,2 . . . v2,𝑁𝐿−1] s2. (26)

Now we design the precoding vectors at the source nodes
{𝑆}2𝑖=1 in the following subsection.

1) Secure Interference Alignment conditions:

F̃11v1,𝑖+1 = F̃12v2,𝑖, (27)

F̃21v1,𝑖 = F̃22v2,𝑖. (28)

We align the (𝑖 + 1)th element of x1 with the 𝑖th element of
x2. As a result, the artificial noises from sources 𝑆1 will be
aligned with the information symbols sent from 𝑆2 at relay
𝑅1 except for the first element of x1 then this element must
be an artificial noise. Similarly, for relay 𝑅2, the 𝑖th element
of x1 is aligned with the 𝑖th element of x2 except for the last
element of x1. From conditions (27) and (28), we can write

1Each source node uses min(𝑁,𝑁𝑠) = 𝑁 antennas to transmit its data
symbols. Hence, F𝑘𝑗(𝑛) ∈ C𝑁×𝑁 ,∀𝑛 = 1, . . . , 𝑁 .

2The artificial noises {𝑛𝑖}𝑁𝐿
𝑖=1 are chosen as i.i.d. Gaussian distribution

with power 𝑃 .

the precoding vectors v1,𝑖 and v2,𝑖, ∀𝑖 ∈ {1, . . . , 𝑁𝐿− 1} as:

v𝑖+1,1 =
(
F̃−1

11 F̃12F̃
−1
22 F̃21

)𝑖

v1,1, (29)

v2,𝑖 =
(
F̃−1

22 F̃21F̃
−1
11 F̃12

)𝑖−1

F̃−1
22 F̃21v1,1, (30)

where v1,1 ∈ R𝑛 is chosen to be all one vector.
Note that as proved in [4], it can be easily verified that
{v1,𝑖}𝑁𝐿

𝑖=1

(
and{v2,𝑖}𝑁𝐿−1

𝑖=1 as well
)

are linearly independent
(see Section III. A in [4]). Now the received signal at relay
𝑅1 will be:

y𝑅1
= F̃11x1 + F̃12x2,

= F̃11v1,1𝑥1,1 +

𝑁𝐿−1∑
𝑖=1

F̃11v1,𝑖+1(𝑥1,𝑖+1 + 𝑥2,𝑖). (31)

Similarly, for 𝑅2, we have

y𝑅2
= F̃21x1 + F̃22x2,

=

𝑁𝐿−1∑
𝑖=1

F̃21v1,𝑖(𝑥1,𝑖 + 𝑥2,𝑖) + F̃21v1,𝑁𝐿𝑥1,𝑁𝐿. (32)

Then each relay 𝑅𝑖 will multiply the received signal with the
inverse of the effective channel 𝐹𝑅𝑖

to transmit in the second
hop as follows:

x𝑅1
= F̃−1

𝑅1
y𝑅1

= [𝑛1 𝑏1 + 𝑛2 . . . 𝑏𝑁𝐿−1 + 𝑛𝑁𝐿]
𝑇
,

where F̃𝑅1
=

[
F̃11v1,1 F̃11v1,2 . . . F̃11v1,𝑁𝐿

]
and

x𝑅2
= F̃−1

𝑅2
y𝑅2

,

= [𝑏1 + 𝑛1 𝑏2 + 𝑛2 . . . 𝑏𝑁𝐿−1 + 𝑛𝑁𝐿−1 𝑛𝑁𝐿]
𝑇
,

where F̃𝑅2
=

[
F̃21v1,1 F̃21v1,2 . . . F̃21v1,𝑁𝐿

]
.

Fig. 5 shows an example for 𝐿 = 6 symbol extensions and
𝑁 = 1 antenna. Source node 𝑆1 sends artificial noises {𝑛𝑖}6𝑖=1
while source node 𝑆2 sends information symbols {𝑏𝑖}5𝑖=1. The
resulting alignment of artificial noises at both the relays are
illustrated in the figure. Now we design the precoding vectors
at the relay nodes {𝑅}2𝑖=1 in the following subsection.

2) Secure Interference Neutralization Conditions:

G̃11v𝑅1,𝑖+1 = −G̃12v𝑅2,𝑖, (33)

G̃21v𝑅1,𝑖 = −G̃22v𝑅2,𝑖, (34)

Now we neutralize {𝑏𝑖}𝑁𝐿−1
𝑖=1 at destination 𝐷1, similarly

for 𝐷2, we neutralize the contributions of {𝑛𝑖}𝑁𝐿
𝑖=1. From

conditions (33) and (34), we can write the precoding vectors
v𝑅1,𝑖 and v𝑅2,𝑖, ∀𝑖 ∈ {1, . . . , 𝑁𝐿− 1} as:

v𝑅1,𝑖+1 = −
(
G̃−1

11 G̃12G̃
−1
22 G̃21

)𝑖

v𝑅1,1, (35)

v𝑅2,𝑖 = −
(
G̃−1

22 G̃21G
−1
11 G̃12

)𝑖−1

G̃−1
22 G̃21v𝑅1,1, (36)

where v𝑅1,1 ∈ R𝑁𝐿×1 is chosen to be all one vec-
tor. Note that as proved in [4], it can be shown that
{v𝑅1,𝑖}𝑁𝐿

𝑖=1

({v𝑅2,𝑖}𝑁𝐿−1
𝑖=1 as well

)
are linearly independent



Fig. 5. A proposed scheme achieves SDoFsum = 𝐿−1
𝐿

= 5
6

with
𝐿 = 6 symbol extensions and 𝑁𝑆 = 𝑁 = 1 antenna. 𝐷1 receives
only artificial noises and 𝐷2 is able to decode (𝑏1, . . . , 𝑏5).

(see Section III. A in [4]). The received signal at 𝐷1 is

y𝐷1
= G̃11x𝑅1

+ G̃12x𝑅2
,

= G̃11v𝑅1,1𝑥1,1

+

𝑁𝐿−1∑
𝑖=1

G̃11v𝑅1,𝑖+1 (𝑥1,𝑖+1 − 𝑥1,𝑖) . (37)

Thus, due to secure neutralization, destination 𝐷1 only sees the
contribution due to artificial noises, and has no contribution
from the information symbols intended for destination 𝐷2.
Also, the received signal at 𝐷2 is as follows:

y𝐷2
= G̃21x𝑅1

+ G̃22x𝑅2
,

= G̃21v𝑅1,𝑁𝐿 (𝑥1,𝑁𝐿 + 𝑥2,𝑁𝐿−1)

+

𝑁𝐿−1∑
𝑖=1

G̃22v𝑅2,𝑖 (𝑥2,𝑖 − 𝑥2,𝑖−1) . (38)

Similarly, 𝐷2 can decode 𝑥2,1 and subtract it from the second
element to decode 𝑥2,2 and so on to decode all the messages
successively. It is worth mentioning that aligned interference
neutralization scheme satisfies the decodability and preserves
the secrecy for both destinations {𝐷𝑖}2𝑖=1 [4]. Fig. 5 shows the
required neutralization conditions in order to make sure that
destination 𝐷2 decodes its information symbols while destina-
tion 𝐷1 receives only noises. The achievable SDoFsum for this
example is 5/6. To sum up, by applying the previous scheme
we can achieve almost surely 𝑑1 + 𝑑2 = 𝑁𝐿−1

𝐿 −→
𝐿→∞

𝑁.

II. Secrecy constraints validation at relays:

In this subsection, we prove that the proposed scheme

preserves the secrecy constraints at relays. Let
→
𝐵 =

(𝑏1, 𝑏2, . . . , 𝑏𝑁𝐿−1). Then,

𝐼(
→
𝐵;𝑌𝑅1

) = ℎ(𝑌𝑅1
)− ℎ(𝑌𝑅1

∣
→
𝐵), (39)

≤
𝐿∑

𝑖=1

ℎ
(
𝑌𝑅1(𝑖)

)−𝑁𝐿 log(𝑃 ), (40)

≤ 𝑁𝐿 log(𝑃 ) + 𝑜(log(𝑃 ))−𝑁𝐿 log(𝑃 ), (41)
= 𝑜(log(𝑃 )). (42)

In the next section, we present our achievable scheme for
MIMO setting (𝑁𝑆 , 𝑁𝐷, 𝑁𝑅) = (𝑁,𝑁,𝑁𝑅) and 𝑁 ≤ 𝑁𝑅.

VI. PROOF OF THEOREM 3

Each transmitter transmits signals of dimension 3𝑁𝑆 −
2𝑁𝑅, where a and b are the information symbols sent from
transmitter 1 and 2, respectively. {u𝑖}2𝑖=1 and {w𝑖}2𝑖=1 are the
cooeprative jammer signals transmitted from transmitter 1 and
2, respectively. The transmitted signals are:

x1 = V1a+V2u1 +V3u2, (43)
x2 = V4b+V5w1 +V6w2. (44)

For the first hop, we precode these signals such that the infor-
mation symbols of one transmitter lies in the same subspace
as the cooperative jamming of the other transmitter at both
relays. Hence, we can write the received signals at relays as:

y𝑅1
= (F11V1a+ F12V5w1) + (F11V2u1 + F12V4b)

+ F11V3u2 + F12V6w2, (45)
y𝑅2

= (F21V1a+ F22V6w2) + (F21V3u2 + F22V4b)

+ F21V2u1 + F22V5w1. (46)

The precoding matrices are chosen such that

span{F11V1} ⊆ span{F12V5}, (47)
span{F11V2} ⊆ span{F12V4}, (48)
span{F21V1} ⊆ span{F22V6}, (49)
span{F21V3} ⊆ span{F22V4}. (50)

The solution to the previous conditions (47) and (49) can be
obtained by solving the following equations,[

F11 −F12 0𝑁𝑅×𝑁𝑆

F21 0𝑁𝑅×𝑁𝑆
−F22

][V1

V5

V6

]
= 02𝑁𝑅×(3𝑁𝑆−2𝑁𝑅).

(51)

Similarly for conditions (48) and (50), the solution can be
obtained as:[

F11 0𝑁𝑅×𝑁𝑆
−F12

0𝑁𝑅×𝑁𝑆
F21 −F22

][V2

V3

V4

]
= 02𝑁𝑅×(3𝑁𝑆−2𝑁𝑅).

(52)

In order to decode the received signals at the relays, the
total dimensions at each relay 4× (3𝑁𝑆 − 2𝑁𝑅) should be at
most 𝑁𝑅 and hence after decoding these signals, each user’s
signal is protected at each relay. For the second hop, each relay
𝑅𝑖 will multiply the received signal with the inverse of the
effective channel F𝑅𝑖

, then each relay will have the following



signals:

x𝑅1
= F−1

𝑅1
y𝑅1

, (53)

= [a+w1 u1 + b u2 w2]
𝑇
, (54)

where F𝑅1
= [F11V1 F11V4 F11V3 F12V6] and for

𝑅2 as:

x𝑅2
= F−1

𝑅2
y𝑅2

, (55)

= [a+w2 u2 + b u1 w1]
𝑇
, (56)

where F𝑅2
= [F21V1 F21V3 F21V2 F22V5]. For the

second hop, each relay will transmit the following:

x𝑅1
= Ṽ1(a+w1) + Ṽ4u2 + Ṽ5w3, (57)

x𝑅2
= Ṽ2w1 + Ṽ3(u2 + b). (58)

where w3 is an artificial noise generated at 𝑅1. For the second
hop, we precode these signals such that one receiver gets its
information symbols cleanly after neutralizing its associated
artificial noise while keeping the unintended signals for that
receiver secured by making them lie in the subspace of the
artificial noise. Hence, the received signals at destinations are
written as:

y𝐷1
= (G11Ṽ1(a+w1) +G12Ṽ2w1)

+ (G11Ṽ5w3 +G12Ṽ3(u2 + b)) +G11Ṽ4u2, (59)

y𝐷2
= (G22Ṽ3(u2 + b) +G21Ṽ4u2)

+ (G21Ṽ5w3 +G22Ṽ2w1) +G21Ṽ1(a+w1).
(60)

The precoding matrices are chosen such that

span{G11Ṽ1} ⊆ span{−G12Ṽ2}, (61)

span{G22Ṽ3} ⊆ span{−G21Ṽ4}, (62)

span{G21Ṽ5} ⊆ span{G22Ṽ2}, (63)

span{G11Ṽ5} ⊆ span{G12Ṽ3}. (64)

The design of the precoders can be determined as follows:

Ṽ5 → Ṽ2 → Ṽ1, Ṽ5 → Ṽ3 → Ṽ4, (65)

where Ṽ5 is chosen randomly and Ṽ2 (Ṽ3 as well) can be
obained afterwards. After obtaining Ṽ2 and Ṽ3, Ṽ1 can be
determined as function of Ṽ2, similary Ṽ4 is determined as
a function of Ṽ3. It is worth noting that these condtions have
a solution when 𝑁𝐷 ≤ 𝑁𝑅. The achievable SDoFsum for this
scheme is

𝑑1 + 𝑑2 = 2min

{
𝑁𝐷

3
, 3𝑁𝑆 − 2𝑁𝑅

}
. (66)

Then after presenting the achievable scheme for a general
setting, we take the special MIMO case (𝑁𝑆 , 𝑁𝐷, 𝑁𝑅) =
(𝑁,𝑁,𝑁𝑅) and 𝑁 ≤ 𝑁𝑅. For this case, we obtain the
following achievable SDoFsum

𝑑1 + 𝑑2 = 2min

{
𝑁

3
, 3𝑁 − 2𝑁𝑅

}
. (67)

This completes the proof of Theorem 3.

VII. CONCLUSION

In this paper, we studied the 2× 2× 2 multi-hop network
with untrusted relays and confidential messages. We first
presented an outer bound on the SDoF region for the MIMO
multi-hop network with arbitrary number of antennas. We
devised achievable schemes under certain antenna configura-
tions based on the ideas of a) secure interference alignment
and b) secure subspace alignment along with interference
neutralization techniques. We are currently investigating the
problem in full generality with arbitrary number of antennas.
An interesting open problem is to characterize the secure DoF
region for all remaining antenna configurations.
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