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Abstract—We study the impact of untrusted relays on the
degrees of freedom of multi-antenna multi-hop networks. In par-
ticular, we consider the two user two-hop interference network,
where two source nodes want to send independent messages
securely to their designated receivers through the help of two
untrusted relays. The relays are considered untrusted in terms
of eavesdropping the messages sent by the sources. Moreover,
we also assume that the messages are confidential, i.e., each
receiver must not be able to decode the information meant
for the other receiver. We assume that all the terminals (i.e.,
sources, relays, and the receivers) are equipped with multiple
number of antennas. The goal of this work is to understand the
secure degrees of freedom (SDoF) region of this multi-hop MIMO
network under the two constraints of a) untrusted relays; and b)
confidential messages. To cope with the untrusted nature of relays,
we present achievable schemes in which both sources mix their
information symbols with artificial noises so that the signals at
each relay are completely immersed in the artificial noises space.
However, this mixing must be done carefully, so as to ensure the
feasibility of interference neutralization in the second hop to allow
successful decoding at the respective destination. To this end, we
devise transmission schemes based on interference alignment and
interference neutralization techniques. The main contributions of
this work are as follows: a) we present an upper bound on the
SDoF region as a function of the number of antennas at the
terminals, b) we present two achievable schemes, the first scheme
is based on secure interference alignment and neutralization
and is shown to be information theoretically optimal when all
terminals have the same number of antennas; and a second
scheme, based on secure sub-space alignment and neutralization,
which is shown to be optimal for another specific antenna
configuration. To the best of our knowledge, these are the first
results on multi-hop MIMO relay networks with untrusted relays
and confidential messages.

Index Terms: Degrees of freedom (DoF), secrecy, secure
degrees of freedom, multi-hop networks.

I. INTRODUCTION

Interference is considered as a fundamental barrier in wire-
less communications. Seminal works [1]-[3] were conducted
to advance our understanding of the capacity of single-hop
wireless networks and multi-hop networks. One of the seminal
works in multi-hop networks is [4] where the authors studied
the 2 x 2 x 2 interference network in which there are two
source nodes, two relays and two destinations, each equipped
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with a single antenna. It was shown in [4] that the cut-set
bound of 2 DoF can be achieved using aligned interference
neutralization. The authors in [5] extended the work of 2x2x 2
interference network to the case of MIMO setting, and showed
the achievability of the cut-set bound using a combination
of beamforming and aligned interference neutralization tech-
niques. In [6], the authors generalized the work of the 2 x 2 x 2
interference network in [4] into K x K x K interference
network, and it was shown that K DoF are achieved via aligned
network diagonalization scheme.

Due to the nature of the wireless communications envi-
ronment, secrecy is a challenging problem, especially due to
the presence of eavesdroppers and/or unauthenticated nodes
in the network. Information theoretic secrecy for wireless
networks has been investigated for various channel models [7]—
[9]. Seminal works studied the secrecy degrees of freedom in
multi-hop networks (see, [10], [11]). The authors in [10] have
studied the sum secure degrees of freedom for the two-unicast
layered network with different number of hops and connection
configurations. They assumed that each source node sends
a message that is intended to its desired destination node
and kept secure from the unintended receivers. In [11], a
scenario was considered in which a source-destination pair are
communicating only through an untrusted intermediate relay
node. In their work, they imposed a cooperative jammer by
deliberately making the jammer send artificial noises along
with the information symbols from the source nodes to confuse
the relay and hence protecting the legitimate receiver. In [12],
the authors have studied this setup when there is an untrusted
relay in the presence of external eavesdropper. Also, each
source wants to send to the other a message and one of these
messages is enforced to be secured at the untrusted relay.
An achievable scheme based on rate splitting and stochastic
encoding was devised for this network. To the best of our
knowledge, the problem of multi-hop networks with untrusted
relay(s) and confidential messages has not been settled yet.

The contributions of this paper are summarized as follows:

e First, we consider the (Ng, Np, Np) MIMO multi-hop
network with Ng antennas at sources, /Np antennas at relays,
Np antennas at destinations. We present an upper bound on
the SDoF region of the MIMO multi-hop network and show a
matching scheme for certain antenna configurations.

e We then present an achievable scheme based on asymptotic
secure interference alignment and interference neutralization to
achieve the upper bound on the SDoF for the MIMO setting
with antenna parameters: (Ng, Np, Ng) = (Ng, N, N) and
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N < Ng.

e Finally, we present another achievable scheme based on
secure sub-space alignment along with interference neutral-
ization for the MIMO setting (Ng, Np, Ngr) = (N, N, Ng)
and N < Ngi. We show the optimality of this scheme when
Np = %. The key distinction of the second scheme is that
it is not asymptotic in nature (i.e., does not require channel
extensions) and is still information-theoretically optimal for
the above antenna configurations.

Notations: Boldface uppercase letters denote matrices and
boldface lowercase letters are used for vectors. C, R denote
the complex and real domain, respectively. For a matrix A
or a vector a their transpose are denoted by A’ and a”,
respectively.

II. SYSTEM MODEL

We consider a layered 2 x 2 x 2 multi-hop network as
shown in Fig. 1, where each source node S; has a message
W, to its corresponding destination node D;, Vi € {1,2}. Each
source node S; has Ng antennas, each relay node R; has Ny
antennas and each destination has Np antennas. We assume
there are no direct links between the sources and destinations
hence the messages from the sources are relayed over the
relays { Ry }7_,. In the first hop, the received signals at relays
{Ry}2_, are as follows:

YR, (t) = Fra(t)x1(t) + Fra(t)x2(t) + ng, (t), (1)

where F;;(t) € CNr*Ns represents the complex Gaussian
channel coefficients of the first hop at time ¢ between source
node S; and relay node R;, x;(t) € CNVs*1 is the transmitted
signal from S; and npg, (t) € CVe*! is the additive noise,
which is assumed to be distributed i.i.d. over time, as circularly
symmetric Gaussian with zero mean and unit variance. In
the second hop, {Ry}7_, transmit symbols {xp, }7_, to
{Dy}3_,. The received signal at Dy, is given by:

¥y, (t) = Gri(t)xr, (t) + Gra2(t)xr,(t) + np, (1), ()

where Gy;(t) € CNP*Nr is the complex Gaussian channel
coefficient for the second hop between relay node R; and
destination node Dy, and np, (t) € CN¥P*! is the receiver
circularly symmetric Gaussian noise with zero mean-unit vari-
ance at time slot ¢. In addition, the transmitted signals from
the nodes have an average power constraint P. The relays are
assumed to be full-duplex (i.e., the relays can transmit and
receive signals at the same time but in different channels).
We assume perfect channel state information about the time-
varying channel coefficients at the transmitters, i.e. channel
coefficients for receiver 7 are known instantaneously and
without error. Specifically, the source nodes know the channels
for the first hop only, relays know the channels for both hops,
and destination nodes know the channels for the second hop
only. We consider secrecy constraints in the network, such that
the relays are enforced not to know the transmitted symbols
from the source nodes {S;}7_,, and each destination D; is
considered as an eavesdropper for the symbols of the other
destination Dj, i # j. The relays are untrusted in terms of
eavesdropping the messages sent by the sources, but they are
trusted in terms of honestly forwarding the information and
correctly executing the communication protocol. Also, each
destination is considered an eavesdropper for the messages
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Fig. 1. System model for the 2 X 2 x 2 multi-hop network with Ng
antennas at sources (S1,S2), Ngr antennas at relays (Ri, R2) and
Np antennas at destinations (D1, D2). The relays are assumed to be
untrustworthy and the message WW; must be securely delivered to the
destination D; (i = {1,2}).

intended for the other destination. A secure rate pair (R, R2)
is achievable if there exists a sequence of codes that satisfy
the reliability constraints at the destinations such that:

pr Wi 2 W] <, 3)

and the secrecy constraints such that:
T (Wi, Wo; Vi) <€, i =1,2, 4)
L(WiVB,) S en i=1,20# ), )

where n is the number of channel uses and ¢,, — 0 as n — oo.

Let R;(P) denote the achievable secure rate of message
A

W, for a given transmission power P defined as R;(P) =
log2IWil) here |[W;| is the cardinality of the message set.
The secure degrees of freedom (SDoF) region D for the 2-
user multi-hop network is defined as the set of all achievable
pairs (di,d2) € R where,

=12 (6)

is the degrees of freedom (DoF) for message W;. The sum
secure DoF of the network is defined as:

SDoFym £ max dy + ds. (7)

(d1,d2)€D

III. MAIN RESULTS

In this section, we first present our result on the outer bound
on the SDoF region D for the MIMO multi-hop network.
We then present two special cases of antenna configurations
and show their optimality of matching the outer bounds on
the SDoF region D. The first case is when (Ng, Np, Ng) =
(Ng,N,N) and N < Ng. For this case, we devise our trans-
mission scheme where we use asymptotic secure interference
alignment and neutralization technique to keep the information
symbols secured at the untrusted relays and the unintended re-
ceiver. The second case is when (Ng, Np, Ng) = (N, N, Ng)
and N < Ng. For this case, we devise sub-space alignment
and neutralization technique, and show the optimality of this
scheme when Np = 2.

Theorem 1: The SDoF region D for the 2 X 2 x 2 multi-



Fig. 2. The upper bound on SDoF, normalized by Ns vs ]I\\% and

% for the 2 x 2 x 2 MIMO interference network. Maximum value

of the SDoFym is attained when Ns = Nz = Np = N.

hop interference network with Ng antennas at each source
node S;, N at each relay node R; and Np antennas at each
destination node D; is contained within the following region:

Dout £ {(dl,dg) S Ra_ :

d1 Smin(NS,ND,(QNR—ND)+) (8)
d> <min(Ng, Np, (2Ng — Np)™) 9
dy +dy < Ng (10)
di +dy < Np+ (Ngr — Np)* (11)
di +ds < (QNSNR)+}7 (12)

where (a)t £ max(0, a).

From the above outer bound, we can observe that the
SDoF region is empty (i.e., positive secure degrees of freedom
are infeasible) when either of the following conditions holds:
2NRr < Np or 2Ng < Ng. Fig. 2 depicts the upper bound on
the SDoFy,,. The converse proof of this Theorem is provided
in Section IV.

Remark 1: We take a special case when Np = Np =
N, i.e., we consider the case when the destinations and the
relays have the same number of antennas. For this special case,
the outer bound on SDoF region of Theorem 1 simplifies to
the following region(s) depending on the relative value of Ng
compared to N:

e Case (a): N < Ng

dy +dy < N. (13)
e Case (b): N > Ng
dy < Ng, (14)
dy < Ng, (15)
dy +dy <2Ng — N. (16)

Next, we show that the outer bound is optimal for Case (a).

Theorem 2: The SDoF region D for the 2 x 2 x 2
MIMO multi-hop interference network with (Ng, Np, Ng) =
(Ns,N,N) and N < Ng is the set of non-negative pairs

do do

N 2Ns — N
N dy 2Ns - N d
(a) N < Ng (b) N > Ng
Fig. 3.  Upper bounds for SDoF regions from Theorem 1 for the

special case (Ng, Np, Ngr) = (Ns, N,N) and two sub-cases: (a)
N < Ng, (b) N > Ns. For case (a), Theorem 2 shows the optimality
for this bound. Characterizing the optimal SDoF region for case (b)
remains open.

(di1,ds) such that:
dy +dy < N. a7

To prove the above result, we show the achievability of the
SDoF pair (dy,ds) = (0, N) through the aligned interference
neutralization scheme in Section V. The converse follows from
Theorem 1. The resulting outer bounds for both the cases are
shown in Fig. 3. We show in Section V that the outer bound for
Case (a) is indeed optimal and can be achieved by a matching
scheme.

Theorem 3: The achievable SDoF region D;, for the 2 X
2 X 2 multi-hop interference network with (Ng, Np, Ng) =
(N,N,Ng) and N < Ng is

N
d1+d2:2min{3,3N—2NR}. (18)

The proof of this Theorem is presented in Section VI.

Remark 2: It is worth noting that the achievable SDoF
region D coincides with the outer bound on SDoF region D,,,;
when either 2X or 2(3N —2Np) equal 2N — N which holds

4N

for both cases when Np = =5+

Fig. 4 shows a comparison between DoF regions with
different antennas configurations with the case of no secrecy
[5] and with secrecy constraints. We see that the SDoF region
is diminished because of the secrecy constraints in the network.
In Fig. 4 (a), the optimal SDoF region is achieved by secure
sub-space alignment and neutralization. In Fig. 4 (b), the
inner bound on the SDoF region achieved by secure sub-
space alignment and neutralization does not match with the
outer bound for this setting. In Fig. 4 (c), the optimal SDoF
region is achieved by asymptotic interference alignment and
neutralization (Theorem 3).

IV. PROOF OF THEOREM 1

The outer bounding mechanism works as follows: we
take information cuts (i.e., a partition of nodes that separates
source(s) and respective destination(s)) across the multi-hop
network, and bound the information theoretic quantities, while
accounting for a) the secrecy and confidentiality constraints;
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Fig. 4. Comparison between non-secure and secure DoF regions for different antenna configurations (Ng, Np, Ng).

b) the number of antennas at all terminals; and c¢) the decod-
ing constraints at the destinations. Now we will prove each
constraint in the outer bound SDoF region Dy.

e Constraint (8): We first note that the bound d; <
min(Ng, Np) follows trivially from cut-set arguments. Hence,
we provide the proof of d; < (2Ng— Np)™*. We upper bound
the rate of user 1 by using Fano’s inequality as follows:

nRy <I(Wy; Xz, Xg,) +nen,
S I(Wl;X}%17X]%2;YB2) +n€’l’b?

(a)
< I(Wy Xi,, Xg, YD, ) + nep,

< h(Xp,, X3, [YD,) + nen,

(b)
< n(2Ngr — Np) " log(P) + ne,,

where (a) follows from the confidentiality constraint for mes-
sage Wi, and (b) follows from the fact that the Gaussian
distribution maximizes the entropy and the pre-log n(2Ngp —
Np)™T comes from the following argument: Given Y], in the
conditioning (or Np equations in 2N g variables per time slot),
the remaining degrees of freedom of the term (Xﬁl,ng)
can be readily upper bounded by (2Np — Np)*. Hence,
we have the proof of d; < min(Ng, Np,(2Ng — Np)™).
Similarly, for constraint (9), it can be shown that dy <
min(NS, ND, (QNR — ND)+).

e Constraint (10): To prove this bound, we start by upper
bounding the sum rate by using Fano’s inequality as follows:
n(R1 + RQ) < I(Wl, W, Y}gl R Y;%Q) + ney,

= I(W, Wa; Y5, ) + I(Wy, Wa; Yp [YR)) + nen,

(a)

< en +h(Yg,|YR,) — h(Yg, |[W1, Wy, YR ) + nep,

< (n+1)en + h(Yg,),

< (n+1)e, + nNglog(P), (19)

where (a) follows from the secrecy constraint at the untrusted
relay 1. Dividing (19) by n and letting n — oo, we have

R; + Ry < Nprlog(P). (20)

Subsequently, dividing (20) by log(P) and letting P — oo,
we have di + dy < Np.

e Constraint (11): To prove this bound, we start by bounding

the sum rate as follows:

n(Rl + RQ) < I(le WQ; Y£17Y£27X}%1) + nep,

(%) I(Wy, Wo; Ygl , Yﬁz |X§1) + ney,
=h(Yp,, YE,|XR,)

- h(Y517 YBQ ‘Xﬁla Wy, WQ) + nen,
<hYp,, YD, IXR, )+ nen,
= h(Yp,|XR,) + h(YE,|XR,, YD) + nen,

(®)
< nNplog(P)+n(Ngr — Np)" log(P) +nep,

where (a) follows from the secrecy constraint at untrusted relay
1, and (b) follows from the fact that the Gaussian distribution
maximizes the entropy and the pre-log Np comes from the
fact that given X7 , the number of equations in X3 at Dy
is Np. For the second term, given (X}%1 , Ygl), the remaining
degrees of freedom in Y5, are upper bounded by (Nr—Np)™T.
Taking the limits n — oo, and P — oo, we arrive at (11).

e Constraint (12): To prove this bound, we start by bounding
the sum rate as follows:

n(Rl + RQ) < I(WlaWQ;Xg17ngaY£1) =+ nep,

(a)
< I(Wh, Wa; X5, X5, [V, ) + nea,
< h(X§,, X5, [YR,) + nen,

b
< n(2Ns — Ng) " log(P) + ne,,

—~
=

where (a) follows from secrecy constraint at the untrusted relay
1, and (b) follows from the fact that given Y7 , the remaining
degrees of freedom in (X $ X gz) are upper bounded by
(2Ng — Ng)*. Hence, taking the limits n — oo, and P — oo,
we have the proof of (12).

V. PROOF OF THEOREM 2

In this section, we give an achievable scheme to achieve
the points P; = (N,0) and P, = (0,N) in Fig. 3(a).
Motivated by the work of [4], we introduce our transmission
scheme. In particular, it is sufficient to show the achievability
of point Py, ie. (dy,d2) = (0,N) is achievable. The other
point P; is achievable by the reversing the roles of the
transmitters. Any point between P; and P is then achievable
via time sharing. We show that for the point Py, the pair
(d1,d2) = (0, ™=1) is achievable where L is the number of
symbol extensions of the channel. Hence by taking L — oo,
we achieve (di,d2) = (0, N). Our scheme is divided into




two parts: Over the first hop, we devise a secure interference
alignment scheme, in which we align the transmitted signals
along with artificial noises at the relays such that the relays can
not infer any of these information signals. Over the second hop
of the network, we perform secure interference neutralization,
in which the relays carefully transmit the signals such that
the unintended signals are cancelled out at that unintended
destination.

L. Achieving (dy,d2) = (0, N) : !

When considering L symbol extension of the network, the
effective channel coefficients for the two hops can be written
as:

Fy; = blkdiag(Fy; (1), Fi;(2), ..., Fii(L)), 1)
Gy; = blkdiag(Gy;(1), Gi;(2), - .., G (L)), (22)

where f‘kj and ij, k,j € {1,2} are block diagonal matrices
of dimensions NL x NL.

Let the transmitted symbols of sources S;,i € {1,2} be as

follows:
s1=[m no ANL] N s (23)

so=1[b1 b2

NNL—1
bvi—z bni-ilng_ieps 24

where {b;}L~! are the information symbols sent from Sy,
and {n; } V% are the artificial noises® sent from ;. Source node
Sy sends s (i) along with precoding vector vy ; € CNEX1 j ¢
{1,...,NL}, also S;. Source node S3 sends s3(i) along with
precoding vector vo; € CNVE*1 i € {1,... NL — 1}. Then,
the transmitted signal from source S is as follows:

x1=[Vi1 Vi Vi,NL]S1. (25

Similarly, source node S sends so(i) along with precoding
vector vo,; € CNLX1i € {1,...,NL — 1}. Then, the
transmitted signal from source S5 is:

Xo = [Va1 Va2 Vo, NIL—1]So. (26)

Now we design the precoding vectors at the source nodes
{S}2_, in the following subsection.

1) Secure Interference Alignment conditions:
Fi1viiy1 = Fiava, (27
Fo1vi; = Faava,. (28)

We align the (i + 1)™ element of x; with the i element of
Xo. As a result, the artificial noises from sources S; will be
aligned with the information symbols sent from S, at relay
Ry except for the first element of x; then this element must
be an artificial noise. Similarly, for relay R, the i element
of x; is aligned with the i" element of x5 except for the last
element of x;. From conditions (27) and (28), we can write

'Each source node uses min(N, Ns) = N antennas to transmit its data
symbols. Hence, F;j(n) € CVNXN wn=1,... N.

2The artificial noises {nl}ﬁi L1 are chosen as i.i.d. Gaussian distribution
with power P.

the precoding vectors vy ; and vo;, Vi € {1,...,NL —1} as:
Vitl1l = (Ff11F12F§21F21> Vi1, (29)

~ -~ - i—1 _ ~
vai = (FRFuF'Fi)  FFavia,  (G0)

where vi; € IR"™ is chosen to be all one vector.
Note that as proved in [4], it can be easily verified that
{v1,, ¥4 (and{v2,;}*5"as well) are linearly independent
(see Section III. A in [4]). Now the received signal at relay
Ry will be:

YR, = Fiix; + 1~“12X2,
NL-1
=Fuviizi1 + Z Fi1v1i41(21,i41 +224). (31)
i=1

Similarly, for R, we have

YR, = F21X1 + F22X2,
NL—-1
= Z Foivii(z;+225) + Favinroynn. (32)
i=1
Then each relay R; will multiply the received signal with the
inverse of the effective channel F'r, to transmit in the second
hop as follows:

= T
xp, =Fglyr, =[m b1+ no byr—1+nnL]

where FR1 = [F11V1’1 F11V1’2 Fllvl,NL] and
—F!
XRy = RZyR27

T
=[bi+n1 ba+ne byr—1+nNL—1 nNL],

where Fr, = [Fo;vi1 Faivie Forving-

Fig. 5 shows an example for L = 6 symbol extensions and
N = 1 antenna. Source node S; sends artificial noises {n; }%_;
while source node S sends information symbols {b;}?_,. The
resulting alignment of artificial noises at both the relays are
illustrated in the figure. Now we design the precoding vectors
at the relay nodes {R}?_, in the following subsection.

2) Secure Interference Neutralization Conditions:

Gllle,i—H = 7G12vR2,i7 (33)
G21VR, i = —Ga22VR, i, (34)

Now we neutralize {b;}Y5~" at destination D;, similarly

for Dy, we neutralize the contributions of {n;}N%. From
conditions (33) and (34), we can write the precoding vectors
Vg, iand vg,;,Vie {l,...,NL — 1} as:

VR itl = — (Gﬁléméz_glém) VR 1, (35)
~ ~ ~ i—1 _ ~
Vigi == (63 GnGGr) Gy Gavi, G6)

where vg, 1 € RNEXL is chosen to be all one vec-

tor. Note that as Broved in [4], it can be shown that
(VR YE ({VR,,i}iii "as well) are linearly independent
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Fig. 5. A proposed scheme achieves SDoFgm = = = % with

L = 6 symbol extensions and Ns = N = 1 antenna. D receives
only artificial noises and D is able to decode (b1, ...,bs).

(see Section III. A in [4]). The received signal at D1 is

yp, = Guxg, + Gi2XR,,
= G11VR1,1331,1
NL-1
+ Z G11VR, it (T1i401 — T14) - (37)
i=1

Thus, due to secure neutralization, destination D; only sees the
contribution due to artificial noises, and has no contribution
from the information symbols intended for destination Ds.
Also, the received signal at D5 is as follows:

yp, = Go1Xpg, + G22Xpg,,

= Go1VR, NL (T1,NL + T2, NL—1)
NL-1
+ Z G2aVR,,i (T2 — ®2,i-1) - (38)
i=1

Similarly, Dy can decode 3 ; and subtract it from the second
element to decode 2 » and so on to decode all the messages
successively. It is worth mentioning that aligned interference
neutralization scheme satisfies the decodability and preserves
the secrecy for both destinations {D;}2_, [4]. Fig. 5 shows the
required neutralization conditions in order to make sure that
destination Dy decodes its information symbols while destina-
tion D; receives only noises. The achievable SDoFy,,, for this
example is 5/6. To sum up, by applying the previous scheme
we can achieve almost surely d; + da = % — N.

II. Secrecy constraints validation at relays:

In this subsection, we prove that the proposed scheme
—
preserves the secrecy constraints at relays. Let B =

(b1,ba,...,byp_1). Then,
I(B:Yr,) = h(Y,) — h(Y,|B), (39)
< zLj h (Y, ) — NLlog(P), (40)
< NI log(P) + o(log(P)) — NLlog(P), (41)
= o(log(P)). 42)

In the next section, we present our achievable scheme for
MIMO setting (Ng, Np, Ng) = (N,N,Ni) and N < Np.

VI. PROOF OF THEOREM 3

Each transmitter transmits signals of dimension 3Ng —
2Npg, where a and b are the information symbols sent from
transmitter 1 and 2, respectively. {u;}2_, and {w;}?_, are the
cooeprative jammer signals transmitted from transmitter 1 and
2, respectively. The transmitted signals are:

X1 = V1a -+ Vglll + VgllQ, (43)
X9 = V4b + V5W1 + V6W2. (44)
For the first hop, we precode these signals such that the infor-
mation symbols of one transmitter lies in the same subspace

as the cooperative jamming of the other transmitter at both
relays. Hence, we can write the received signals at relays as:

vr, = (FuuVia+F3Vswy) + (F11Vauy + F12Vyb)

+F11Vzuy + F1oVewa, (45)
Yr, = (FaiVia+ FoVews) + (Fo1 Viuy + F2oVyb)
+ F21Vou; + FyoVswy. (46)
The precoding matrices are chosen such that
span{F1;V1} C span{F12V5}, 47
span{F1,Vy} C span{F12V,}, (48)
span{F2;V1} C span{F22Vg}, (49)
span{F31V3} C span{F22V,}. (50)

The solution to the previous conditions (47) and (49) can be
obtained by solving the following equations,

Fiu. —Fio
F21 ONRXNS

0 v
NR:FXNs:| [V5] :OQNRx(SNs*QNR)'
2 ||v,
(51

Similarly for conditions (48) and (50), the solution can be
obtained as:

F 0 Va
[ . NaxNs _F V3| = 02n,x(3Ns—2NR)-
2] v,

—Fi2
ONRXNS F21

(52)

In order to decode the received signals at the relays, the
total dimensions at each relay 4 x (3Ng — 2Np) should be at
most Ny and hence after decoding these signals, each user’s
signal is protected at each relay. For the second hop, each relay
R; will multiply the received signal with the inverse of the
effective channel F,, then each relay will have the following



signals:

xr, = Fp, VR, (53)

=a+w w+b w WQ]T, (54)

where Fp, = [FuVi FuuVy Fi;1'Vs Fi12Vg] and for
Rs as:

Xr, = FRl YR, (55)

=a+wy u+b w wl]T, (56)

where FR2 = [F21V1 F21V3 F21V2 F22V5]. For the
second hop, each relay will transmit the following:
XR, = Vl (a + Wl) + V4112 + V5W3, (57)
XR, = VQW] + \~73(u2 + b) (58)
where w3 is an artificial noise generated at ;. For the second
hop, we precode these signals such that one receiver gets its
information symbols cleanly after neutralizing its associated
artificial noise while keeping the unintended signals for that
receiver secured by making them lie in the subspace of the
artificial noise. Hence, the received signals at destinations are
written as:
Yp, = (G11V1 (a + Wl) + G12V2W1)
+(G11Vsw3 + G12V3(uz + b)) + G111 Vaug, (59)
YD, = (G22V3(u2 + b) + G21V4u2)
+ (G21V5W3 + G22V2W1) + G911V (a + Wl).

(60)

The precoding matrices are chosen such that
span{G1;V,} C span{—G15Vy}, (61)
span{ G2V} C span{—Gg; V4}, (62)
span{ G, V5} C span{ G2V}, (63)
span{G11\~75} C span{Glg\?g}. (64)

The design of the precoders can be determined as follows:
V5—>V2—>V1,V5—>V3—>V4, (65)

where V5 is chosen randomly and Vy (V3 as well) can be
obained afterwards. After obtaining V, and V3, V1 can be
determined as function of Vy, similary Vy is determined as
a function of V3. It is worth noting that these condtions have
a solution when Np < Npg. The achievable SDoF,,, for this
scheme is

N
d1+d2:2min{3D,3Ns—2NR}. (66)
Then after presenting the achievable scheme for a general
setting, we take the special MIMO case (Ng, Np, Ng) =

(N,N,Ng) and N < Ng. For this case, we obtain the
following achievable SDoFg;,

N
d1 +d2:2mm{3,3N—2NR} (67)

This completes the proof of Theorem 3.

VII. CONCLUSION

In this paper, we studied the 2 x 2 x 2 multi-hop network
with untrusted relays and confidential messages. We first
presented an outer bound on the SDoF region for the MIMO
multi-hop network with arbitrary number of antennas. We
devised achievable schemes under certain antenna configura-
tions based on the ideas of a) secure interference alignment
and b) secure subspace alignment along with interference
neutralization techniques. We are currently investigating the
problem in full generality with arbitrary number of antennas.
An interesting open problem is to characterize the secure DoF
region for all remaining antenna configurations.
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