
This journal is© the Owner Societies 2018 Phys. Chem. Chem. Phys., 2018, 20, 17557--17562 | 17557

Cite this:Phys.Chem.Chem.Phys.,

2018, 20, 17557

Binary mixtures of charged colloids: a potential
route to synthesize disordered hyperuniform
materials

Duyu Chen,a Enrique Lomba ab and Salvatore Torquato *acde

Disordered hyperuniform materials are a new, exotic class of

amorphous matter that exhibits crystal-like behavior, in the sense

that volume-fraction fluctuations are suppressed at large length

scales, and yet they are isotropic and do not display diffraction

Bragg peaks. These materials are endowed with novel photonic,

phononic, transport and mechanical properties, which are useful

for a wide range of applications. Motivated by the need to fabricate

large samples of disordered hyperuniform systems at the nanoscale,

we study the small-wavenumber behavior of the spectral density of

binary mixtures of charged colloids in suspension. The interaction

between the colloids is approximated by a repulsive hard-core

Yukawa potential. We find that at dimensionless temperatures

below 0.05 and dimensionless inverse screening lengths below

1.0, which are experimentally accessible, the disordered systems

become effectively hyperuniform. Moreover, as the temperature

and inverse screening length decrease, the level of hyperuniformity

increases, as quantified by the ‘‘hyperuniformity index’’. Our results

suggest an alternative approach to synthesize large samples of

effectively disordered hyperuniform materials at the nanoscale

under standard laboratory conditions. In contrast with the usual

route to synthesize disordered hyperuniform materials by jamming

particles, this approach is free from the burden of applying high

pressure to compress the systems.

The concept of disordered hyperuniformity was first introduced
in the context of many-particle systems over a decade ago,1 and
was subsequently generalized to two-phase heterogeneous
materials.2 Disordered hyperuniform systems and materials
belong to a new, exotic class of amorphous matter that lies

between crystal and fluid states: they behave like crystals in the
way that they suppress density or volume-fraction fluctuations
at large length scales, and yet they are statistically isotropic with
no Bragg diffraction peaks, as in the case of liquids or glasses.3

Specifically, for disordered hyperuniform materials, the local
volume-fraction variance sV

2(R) within a d-dimensional spherical
observation window of radius R approaches zero for large R
asymptoticallymore rapidly than the inverse of the window volume,
i.e., faster than R�d.2 This is different from typical disordered
two-phase materials, which possess sV

2(R) that vanishes like R�d

for large R. Equivalently, the spectral density ~wV(k), which is
proportional to the scattering intensity, approaches zero as the
wavenumber k vanishes,2,4 i.e.,

lim
k!0

ewVðkÞ ¼ 0: (1)

Note that the widely used structure factor S(k) can be thought
of as the counterpart of ~wV(k) for point patterns.5 Methods
to design realizations of two-phase disordered hyperuniform
systems have been devised.6–8

Disordered hyperuniform systems have been shown to be
endowed with novel physical properties; see the recent overview
by Torquato.3 In particular, disordered hyperuniform dielectric
networks were found to possess large complete photonic band
gaps comparable in size to photonic crystals, but superior to
photonic crystals because of their perfect isotropy and robustness
to defects.9,10 As a result, these networks are suitable for a wide
range of applications such as lasers, sensors, waveguides, and
optical microcircuits. Similarly, disordered hyperuniform materials
possess desirable phononic, electronic, transport, and mechanical
properties, and wave-propagation characteristics,6,7,11–19 and their
full potential in technological applications has yet to be explored.

Despite the desirable physical properties and technological
potential of disordered hyperuniform materials, their synthesis
and fabrication remain challenging, especially for large samples at
the nanoscale. While 3D printing and lithographic technologies
can now be applied to the rational design of materials with tunable
disorder at the micro-scale,6,8,20 in this particular instance, the

a Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.

E-mail: torquato@electron.princeton.edu
b Instituto de Quı́mica Fı́sica Rocasolano, CSIC, Calle Serrano 119,

E-28006 Madrid, Spain
c Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
d Princeton Institute for the Science and Technology of Materials,

Princeton University, Princeton, New Jersey 08544, USA
e Program in Applied and Computational Mathematics, Princeton University,

Princeton, New Jersey 08544, USA

Received 24th April 2018,
Accepted 7th June 2018

DOI: 10.1039/c8cp02616e

rsc.li/pccp

PCCP

COMMUNICATION

Pu
bl

is
he

d 
on

 0
7 

Ju
ne

 2
01

8.
 D

ow
nl

oa
de

d 
by

 P
rin

ce
to

n 
U

ni
ve

rs
ity

 o
n 

7/
4/

20
18

 5
:4

1:
14

 P
M

. 

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-4768-2040
http://orcid.org/0000-0003-4614-335X
http://rsc.li/pccp
http://dx.doi.org/10.1039/C8CP02616E
http://pubs.rsc.org/en/journals/journal/CP
http://pubs.rsc.org/en/journals/journal/CP?issueid=CP020026


17558 | Phys. Chem. Chem. Phys., 2018, 20, 17557--17562 This journal is© the Owner Societies 2018

spatial resolution of these techniques limits their application at
the nanoscale. Novel avenues need to be explored to optimize
fabrication in the nanometer range.

The self-assembly and self-structuring of nanoparticles with
designed interactions into target structures represents a promising
route,21,22 and its application to the synthesis of disordered
hyperuniform materials is still in its infancy. While disordered
hyperuniformity was shown to arise in hard-particle systems as
they approach jammed (mechanically stable) states,23–25 the
experimental realization of such systems requires applying high
pressure to compress the systems, which is challenging. It is also
known that systems with pure Coulombic interactions in a
neutralizing background can be disordered and hyperuniform
at positive temperatures.26–28 However, these systems by themselves
cannot be experimentally realized. Any real charged colloidal
systems will have a finite non-zero inverse screening length for a
finite non-zero counterion concentration, by which ~wV(k = 0) will
also be non-zero.

In this work, as an alternative, we computationally explore
the use of the self-structuring (self-assembly) process of binary
mixtures of charged colloids in suspension in order to guide
experimentalists to fabricate large samples of effectively dis-
ordered hyperuniform materials in two dimensions. Specifically, it
is desirable that these designed materials be realized in the
laboratory at the nanoscale without resorting to compression
techniques. Following the coarse-graining approach of Derjaguin,
Landau, Verwey and Overbeek29,30 (DLVO), we model the colloidal
particles using repulsive hard-core Yukawa interactions.31,32 The
system is studied by means of canonical Monte Carlo simulations,
using a sample size, N, of 10000 particles and periodic boundary
conditions. We note that this system size is already large enough to
determine the small-k behavior of the systems given the range of
our potential, and it is reasonable to assume that the effective
disordered hyperuniformity will also hold for large sample sizes
and thus could be realized in experiments. We have considered
different systems with varying inverse screening lengths (i.e.,
effective counterion concentrations in the DLVO model) and
temperatures, up to a total of 50 different systems and conditions.
Particle size disparity is introduced to frustrate crystallization.25

Our two-dimensional study is applied to particles at interfaces and
thin films (monolayers). Additionally, for a periodic finite sample,
in two dimensions we can access smaller wavenumbers with a

scaling of 2p=
ffiffiffiffi
N

p
, compared to the scaling of 2p/N1/3 in three

dimensions. We study the small-k behavior of the volume-fraction
fluctuations of the resulting structures, as measured by the spectral
density. To that aim we employ the ‘‘hyperuniformity index’’, H,
defined as:

H = ~wV(0)/~wV(k = kmax), (2)

where ~wV(0) is the extrapolated value of the spectral density as k
approaches zero and ~wV(k = kmax) is the value of the largest peak
(often the first peak) of the spectral density. Clearly, the lower is
the value of H, the larger the degree of hyperuniformity
displayed by the system. In this work, we deem the systems
to be effectively hyperuniform whenever H r 10�2, consistent

with previous experiences concerning hyperuniformity in binary
maximally-randomly-jammed packings of hard disks.25 However,
as detailed below, we note that H here is different from its
counterpart HS based on the structure factor that is used in
previous works.25,33,34

We find that at experimentally accessible temperatures and
inverse screening lengths, the disordered structures indeed become
effectively hyperuniform. Moreover, the degree of hyperuniformity,
as measured by H, increases as the temperature and inverse
screening lengths decrease. On the other hand, the spatial
distribution associated with each individual component is not
hyperuniform, i.e., the system is not ‘‘multihyperuniform’’ (the
patterns of both the total population and the individual types are
simultaneously hyperuniform),35 which is in contradistinction to
some systems with bare Coulomb interactions.28

The hard-repulsive Yukawa potential between particles i and
j is given by31,32

vðrijÞ¼

1; rij �Dij

eij
exp½�kðrij�DijÞ�

rij=Dij
�exp½�kðrC�DijÞ�

rC=Dij

� �
; Dij � rij � rC

0; rij4rC

8>>>>><
>>>>>:

(3)

where rij is the distance between particles i and j, Dij = Ri + Rj

(Ri and Rj are the hard-core radii of particles i and j), k is the
inverse screening length, and rC is the cutoff of the soft
repulsions [chosen to be sufficiently large compared to the
screening length, which increases as the screening length
increases such that the cutoff does not affect ~wV(0)]. The energy
of the system E is the sumof these effective pairwise repulsions, i.e.,

E¼
X
io j

vðrijÞ: (4)

Here we consider an equimolar binary mixture of small
and large colloids with a small to large colloid diameter ratio
a � DS/DL = 2/3 and a small-colloid mole fraction x � NS/
(NS + NL) = 0.5. The packing fraction (the fraction of space
covered by the colloids) is set to f = 0.21. Here DS and DL are the
hard-core diameters of the small and large colloids, and NS

and NL are the number of small and large colloids in the
system, respectively. We set the ratios of the energy scales to
eSS : eSL : eLL = 1 : 2 : 4, where eSS, eSL, and eLL are energy scales of
the interactions between two small colloids, between a small
colloid and a large colloid, and between two large colloids,
respectively. In addition, we note that the behavior of our
systems at small wavenumbers is not sensitive to the specific
choice of the values of DS/DL, NS/NL, and eSS : eSL : eLL.

We then systematically study the effect of temperature T and
the inverse screening length k on the small-k behavior of the
spectral density of our system. For each T and k, we employ a
standard canonical Monte Carlo simulation technique.36,37

After a thermalization run consisting of 5000 translation trials
per particle, we collect 50 uncorrelated sample configurations
from each system and temperature under consideration. The pair
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structure is first analyzed in terms of the total pair correlation
function, g2(r), and the corresponding spectral density, ~wV(k). Specific
contributions for each mixture component are also studied.
Thus, for a binary mixture of small and large colloidal particles,
g2(r) can be decomposed into three components:

g2(r) = x2g2,S(r) + (1 � x)2g2,L(r) + 2x(1 � x)g2,C(r), (5)

where x is the small colloid relative concentration, g2,S(r) and
g2,L(r) are the pair distribution functions of the small and large
colloids, respectively, and g2,C(r) is a cross-correlation term. In
parallel, the spectral density ~wV(k) can be decomposed into
three contributions:

~wV(k) = ~wV,S(k) + ~wV,L(k) + ~wV,C(k), (6)

where ~wV,S(k), ~wV,L(k), and ~wV,C(k) are given by

~wV;SðkÞ ¼
~mðk;RSÞ

PNS

j¼1

exp �ik � rðSÞj

� ������
�����
2

V
; (7)

~wV;LðkÞ ¼
~mðk;RLÞ

PNL

j¼1

expð�ik � rðLÞj Þ
�����

�����
2

V
; (8)

and

~wV;CðkÞ¼2Re

~mðk;RSÞ ~mðk;RLÞ
PNS

j¼1

expð�ik �rðSÞj Þ
PNL

n¼1

expðik �rðLÞn Þ

V

2
6664

3
7775:

(9)

Here ~wV,S(k) and ~wV,L(k) are the spectral densities of the
small and large colloids, respectively, ~wV,C(k) is the cross-term
(which already includes a factor two stemming from identical
small–large and large–small contributions), {r(S)j } and {r(L)n }
denote the positions of the small and large colloids, respectively,
and m̃(k;R) is the Fourier transform of the indicator function of a
disk with radius R given by

~mðk;RÞ ¼ 2pR
k

J1ðkRÞ: (10)

where J1(x) is a Bessel function of the first kind. This quantity,
which reflects the finite size of the particles, would correspond
in a real scattering experiment to the form factor function, which
accounts for the interaction of the probe particles (photons,
electrons,. . .) with the individual sample particles.38

As an example, Fig. 1 shows a representative configuration
of the equilibrated system with kDS = 0.2 at kBT/eSS = 0.1, where
kB is the Boltzmann’s constant. The lower graph corresponds to
a 10-fold enlargement illustrating the size difference of our
colloidal particles. Both figures correspond, at first sight, to a
simple disordered fluid.

A more quantitative description at the pair-statistics level
can be obtained from the computed total pair correlation
function g2(r), and its three partial contributions, g2,S(r),
g2,L(r), and g2,C(r). These are shown in Fig. 2, and are consistent

with the apparent lack of long-range correlations, as can be
appreciated by their decay to unity at pair distances r E 5DL

and beyond in all instances.
The computed total spectral density ~wV(k) and its three

components ~wV,S(k), ~wV,L(k), and ~wV,C(k) are shown in Fig. 3. We fit

~wV(k) with a third-order polynomial f ðk; a0; a1; a2; a3Þ ¼
Pn
j¼0

ajk
j for

all wavenumbers within 0.0130 r kDS/(2p) r 0.157. Interestingly,
the resulting intercept a0 has a value of 2.26� 10�3, indicating that
~wV(k) effectively tends to zero as k approaches zero.

We have determined H to be 1.0 � 10�2 from the spectral
density shown in Fig. 3, showing that the corresponding system

Fig. 1 (a) A representative configuration of the disordered effectively
hyperuniform equilibrated equimolar mixture of large and small charged
colloidal particles, with a small to large colloid diameter ratio a = 2/3,
dimensionless inverse screening length kDS = 0.2, a packing fraction f of
0.21, and at dimensionless temperature kBT/eSS = 0.1. (b) Zoomed-in
region of a representative portion of the configuration depicted in (a).
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is effectively hyperuniform. However, ~wV,S(k) and ~wV,L(k) do
not tend to zero as k approaches zero, an indication that the
spatial distribution of the small or large colloids alone is not
‘‘multihyperuniform’’.35

The value of H based on the spectral density ~wV(k) here is in
general significantly higher than that of HS based on the
structure factor S(k) of the corresponding point configurations
[i.e., HS = S(0)/S(k = kmax), where S(0) is the extrapolated value of
S(k) as k approaches zero and S(k = kmax) is its largest peak
value]. For identical-particle packings, this is based on the fact
that ~wV(k) = rm̃2(k)S(k),4,37 where m̃(k) is the Fourier transform
of the particle indicator function and r is the particle number
density. Assuming that the location of the largest peak of ~wV(k)
is roughly the same as that of S(k), H/HS E m̃2(0)/m̃2(kmax); since
m̃(k) achieves its maximum at k = 0 and m̃2(0) 4 m̃2(kmax), H
should be higher than the corresponding HS. For polydisperse
packings, ~wV(k) possesses a prefactor similar to m̃2(k) that
decreases HS from H. We have, for example, computed here H
and HS for equilibrium monodisperse packing of hard disks at
f = 0.40, and find H to be 0.61 and HS to be only 0.093. Also, as
f increases, the difference between H and HS increases
dramatically.

Next, we carry out a similar analysis for 50 different combi-
nations of T and k in the range of kBT/eSS A [0.01,0.2] and kDS A
[0.2,2.0]. We then can construct a structural ‘‘phase diagram’’
of H in terms of T and k, as shown in Fig. 4. Interestingly, H is
on the order of 10�2–10�3 when kBT/eSS r 0.05 and kDS r 1.0,
implying that the corresponding systems are effectively hyper-
uniform. Moreover, as T and k decrease, H decreases, implying
the increasing level of hyperuniformity for the corresponding
system. For example, when we decrease kBT/eSS to 0.01, the
value of H falls below 10�3. This is consistent with the fact that
as k decreases, the ‘‘screening’’ effect becomes weaker and the
potential becomes longer-ranged. As a result, the suspension of
charged colloids behaves more like the pure-Coulombic system
in a neutralizing background, which is known to be perfectly

Fig. 2 Total pair correlation g2(r) and its partial counterparts for the small
and large charged colloids and the cross-term g2,S(r), g2,L(r), and g2,C(r) of
the equilibrated equimolar mixture of large and small charged colloidal
particles, with a small to large colloid diameter ratio a = 2/3, dimensionless
inverse screening length kDS = 0.2, a packing fraction f of 0.21, and at
dimensionless temperature kBT/eSS = 0.1. Note that all of these four pair
correlation functions decay rapidly to unity as r increases, implying the lack
of long-range order at the two-particle level for the overall system as well
as the individual components.

Fig. 3 Total spectral density ~wV(k) and its partial counterparts for the small
and large colloids and the cross-term ~wV,S(k), ~wV,L(k), and ~wV,C(k) of the
equilibrated equimolar mixture of large and small charged colloidal particles,
with a small to large colloid diameter ratio a = 2/3, dimensionless inverse
screening length kDS = 0.2, a packing fraction f of 0.21, and at dimension-
less temperature kBT/eSS = 0.1. Note that the spectral densities are all scaled
by Ds

2 so that they are dimensionless, where Ds is the diameter of the small
colloid. The total ~wV(k) practically vanishes as k approaches zero, implying
the effective hyperuniformity of the overall system. However, this is not the
case for the partial counterparts ~wV,S(k) and ~wV,L(k). This means that the spatial
distributions of the small or large colloids alone are not hyperuniform, i.e.,
the system is not ‘‘multihyperuniform’’.

Fig. 4 Structural phase diagram of the ‘‘hyperuniformity index’’ in terms
of the temperature T and inverse screening length k constructed from 50
equilibrated systems of 5000 small and 5000 large charged colloids in a
suspension with a small to large colloid diameter ratio a = 2/3 and a
packing fraction f of 0.21. H is on the order of 10�2–10�3 when kBT/eSS r
0.05 and kDS r 1.0, indicating that the corresponding systems are
effectively hyperuniform. Moreover, as T and k decrease, H decreases,
implying the increasing level of hyperuniformity for the corresponding
system.
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hyperuniform.26–28 Also, as T decreases, the system increasingly
accesses lower energy states, in parallel with hard-core systems
evolving towards lower enthalpy jammed states. As mentioned
above, as hard-particle systems are driven towards jammed
states, they tend to become hyperuniform.23–25

Last, we note that the configurations generated in our
computer simulations could potentially be realized in experi-
ments by depositing colloids onto solid substrates or at fluid
interfaces39–41 and allowing them to self-organize. Promising
candidate colloids include polystyrene particles, proteins, and
other macromolecules.42–45 Note also that the hard-core com-
ponent of our interactions can be experimentally modeled by
grafting polymer chains to the surface of colloidal particles,
minimizing the effect of attractive interactions.46 In this con-
nection, the set of parameters k and eij defining our interaction
model can be approximately transformed into experimentally
accessible/measurable quantities using the DLVO theory.43,47

For instance, a binary mixture of colloids with ZS = 150, ZL =
367, DS = 300 nm, and DL = 450 nm (ZS, ZL, DS, and DL are
charges and diameters of the small and large colloids, respec-
tively) in an aqueous solution at 300 K, with its corresponding
counter-ions and no other electrolytes present, roughly leads to
kBT/eSS E 0.04 and kDS E 0.96, and this system is predicted to
be effectively hyperuniform. Once an experimental realization
of the colloidal system on solid substrates or at fluid interfaces
is obtained, snapshots of the configurations can then be taken
by means of video optical microscopy, which can be further
analyzed to check for hyperuniformity. Interested readers are
referred to the work by Dreyfus and coworkers48 for more
detailed information on these issues. In addition, although in
this work we focused on generating disordered hyperuniform
materials in two dimensions through the self-structuring of
binary mixtures of colloids in suspension, we expect that similar
procedures can be applied to their three-dimensional counter-
parts, which might even have greater practical relevance.

Conclusions and discussion

In this work we proposed an approach to synthesize in silico
two-dimensional disordered hyperuniform materials through
the self-structuring (self-assembly) process of binary mixtures
of charged colloids. Specifically, we systematically studied the
small-wavenumber volume-fraction fluctuation behavior of a
relatively large number of samples, probing the k–T parameter
space in search for effective hyperuniformity. In this way we have
constructed a structural ‘‘phase diagram’’ of the ‘‘hyperuniformity
index’’, H, in terms of T and k. We have found that H reaches the
order of 10�2–10�3 when kBT/eSS r 0.05 and kDS r 1.0, implying
that the corresponding systems are effectively hyperuniform. More-
over, as the temperature and inverse screening length decrease
(i.e. the concentration of counterions is lowered or the solvent’s
dielectric constant increases), H decreases, implying that the
degree of hyperuniformity is augmented.

Our models could be translated into large laboratory samples at
room temperature without resorting to the use of high pressures.

As a comparison, a reduced pressure P/(rkBT) as high as 1011 is
required to synthesize hyperuniform jammed systems, where P, r,
and T are the pressure, number density, and temperature of the
system, respectively.25 Our findings provide a promising alternative
to fabricate large samples of disordered hyperuniform two-phase
systems for photonic and other applications.

In addition, we note that in the limit k- 0 and rC -N, the
interaction in (3) becomes a bare Coulomb. From the findings
of Lomba, Weis, and Torquato,28 we know that in the limit our
system will not reach strict multihyperuniformity, since it does not
fulfill the required conditions, eija

ffiffiffiffiffiffiffiffi
eiiejj

p
; 8iaj. In this work, we

have shown that the system is also not multihyperuniform for non-
zero k. Finally, we note that while the present work focused on
binary mixtures of charged colloids, it is straightforward to extend
the analysis to charged mixtures with arbitrary size distributions
and compositions.
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