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ABSTRACT: Although tremendous applications for metal nanoparticles
have been found in modern technologies, the understanding of their stability
as related to morphology (size and shape) and chemical ordering (e.g., in
bimetallics) remains limited. First-principles methods such as density
functional theory (DFT) are capable of capturing accurate nanoalloy
energetics; however, they are limited to very small nanoparticle sizes (<2 nm
in diameter) due to their computational cost. Herein, we propose a bond-
centric (BC) model able to capture cohesive energy trends over a range of
monometallic and bimetallic nanoparticles and mixing behavior (excess
energy) of nanoalloys, in great agreement with DFT calculations. We apply
the BC model to screen the energetics of a recently reported 23 196-atom
FePt nanoalloys (Yang et al. Nature 2017, 542, 75−79), offering insights into both segregation and bulk-chemical ordering
behavior. Because the BC model utilizes tabulated data (diatomic bond energies and bulk cohesive energies) and structural
information on nanoparticles (coordination numbers), it can be applied to calculate the energetics of any nanoparticle
morphology and chemical composition, thus significantly accelerating nanoalloy design.
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M etal nanoparticles (MNPs) are a burgeoning technology,
finding applications in a wide range of fields from

electronics to optical devices,2 biological detectors and drug
delivery,3 and chemical catalysis.4,5 MNPs are promising in
large part due to their properties that differ from both the
atomic and bulk size extremes, such as optical,6 electronic,7,8

magnetic,9 and adsoption10−12 behavior. These properties are
dictated by the MNP morphology (i.e., size and shape)13−16

and composition (in nanoalloys).10,17 Beyond composition,
chemical ordering at the atomic level determines important
nanoalloy properties in magnetic1 and catalytic18 applications.
Deep understanding of MNP and nanoalloy stability as related
to morphology, composition, and chemical ordering is
therefore needed to engineer MNPs with tailored properties
for specific applications.
Understanding the relationship between crystalline MNP

stability and morphology began with classic Wulff theory.19−21

Recent advances in Wulff theory extend to include bimetallic
alloy mixing and surface segregation effects in crystalline
bimetallic particles.22 Although powerful, Wulff construction
methods (and other thermodynamic methods)23 for MNP
prediction are limited to perfect crystal shapes, whereas most
MNPs contain crystal defects,1,24 and largely cannot account for
chemical ordering. Noncrystalline structures and chemical
ordering in nanoalloys and MNPs can be accurately modeled
using ab initio methods (i.e., density functional theory (DFT)
on metal clusters).25,26 DFT, however, becomes computation-
ally intractable at even moderate MNP sizes (∼1−3 nm
diameter MNPs)27 and is largely prohibitively expensive in

studying nanoalloys due to their near infinite homotops.28,29

For example, a single 25 atom nanoalloy structure with no
identical positions (i.e., amorphous) composed of 15 Au and 10
Ag atoms has more than 3 268 760 distinct homotops. To
accelerate nanoalloy analysis, several less-expensive empirical
and semiempirical methods such as tight-binding models,30−33

embedded atom models,34,35 effective medium theory,36 and
pair-wise potentials (e.g., Finnis−Sinclair37 and Sutton−Chen
potentials38) have been developed. However, such methods
require parameter tuning against large ab initio (DFT) data for
accurate nanoalloy energetics,39−41 limiting their broad
applicability (i.e., diverse compositions) and time acceleration
in analyzing nanoalloy systems. Because such empirical and
semiempirical methods represent the current standard methods
for rapidly screening large nanoalloy energetics,42 new methods
are needed to accurately and rapidly capture the energetics of
diverse nanoalloy architectures and accelerate their on-demand,
application-driven design.
Toward accelerated MNP energetics prediction, simple

methods exist in literature relating the surface and cohesive
energies (CE) of atoms in metals to their degree of
coordination.43 Coordination numbers (CN) are determined
without any computational cost, relative to semiempirical or
empirical methods, for any MNP structure. Surprisingly, a
simple square-root bond cutting (SRB) model44−46 (or square-
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root CN model) can sufficiently model metal surface energetics
for most transition metals compared to periodic DFT
calculations, avoiding the cost of the latter.43 Therefore, the
SRB approach should also be an attractive accelerated theory
for examining MNP energetics if one can accurately assign CNs
for every atom on the MNP. However, until now, there were no
models in literature that can accurately describe MNP
energetics at practically no computational cost. Such an
implementation would significantly accelerate the in silico
design of MNPs (and other classes of nanomaterials)47 and
elucidate their genome. Herein, we introduce a novel, bond-
centric (BC) model that accurately and rapidly determines the
energetics of alloy MNPs with arbitrary morphology,
composition, and chemical ordering. We first evaluated the
performance of the SRB model on calculating CEs of
monometallic and bimetallic MNPs using DFT calculations.
It should be noticed that such a task on MNPs is missing from
literature. Then, based on the performance of the SRB model,
we introduce scaling factors correcting the bimetallics
energetics by utilizing highly accurate bimetallic bond strength
data from literature. Finally, we demonstrate the successful
application of our model on effectively screening the
thermodynamic stability of alloy MNPs by comparing against
DFT calculations and experiments.
In applying the SRB model to MNPs, we used the CE

formulated as:44
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where i represents atom i in the MNP, CNi is the coordination
number of atom i, CBi is the bulk CN of the atom i (for
example, CB = 12 for face-centered cubic or fcc metals), CEbulk,i

is the bulk cohesive energy of atom i, and n is the total number
of atoms in the MNP. Note that in eq 1, the CE summation is
done over all atoms and is therefore an atom-centric model and
that all terms in eq 1 are readily determined for a MNP from
either literature (CEbulk and CB)48,49 or from crystal structural
coordinates (CN). To increase the ease and speed of
determining CN of the atoms in a MNP, we have created a
Python script utilizing Atomic Simulation Environment50

libraries to automatically assign CNs to atoms in any transition
MNP structure. Details surrounding the automatic determi-
nation of CNs are presented in the Supporting Information file.

To test the SRB for monometallic MNPs, we created a set of
MNP structures diverse in size (19−172 atoms), shape
(octahedral, Oh; decahedral, Dh; icosahedral, Ih; and cubic,
Cb), and metals (Au, Ag, Cu, and Zr), as highlighted in Figure
1. We selected these MNP shapes as they represent highly
symmetric and low-energy structures;26,51 we targeted Au/Ag
metals because of their ubiquity in MNP literature2 and Cu/Zr
metals due to their promise in catalysis.52 Additionally, all of
these metals have either fcc (Au/Ag/Cu) or hexagonal close-
packed (hcp; Zr) bulk structures and favor close-packed (bulk
CN = 12) structures, indicating that they could be theoretically
stable under same MNP structures.49

In Figure 2, we compare the SRB CE predictions to accurate
DFT calculations on the structures shown in Figure 1. The

DFT calculation details are presented in the Methods section.
To directly compare DFT and the SRB method, the CEbulk

used in the SRB model (eq 1) is estimated from our DFT
calculations using a simple n−1/3 versus CE relation (see Figure
S1a).25 In a comparison of the SRB to DFT utilizing a DFT-
calculated value of CEbulk, the SRB inherits some of the
limitations of the DFT. Figure S1b shows, for example, that
DFT underestimates the experimental CEbulk of Ag and Au in
particular. We notice in Figure 2 that the SRB model predicts

Figure 1. Metal nanoparticles (MNPs) representing different sizes and shapes (morphologies: Oh, octahedron; Dc, decahedron; Ih, icosahedron;
and Cb, cubic). Atoms with different CNs are represented with different colors (color ranges from light blue for CN = 3 atoms to orange for CN =
12 atoms), as shown on the expanded 172 Cb MNP.

Figure 2. Parity between the cohesive energy (CE) of the SRB model
vs DFT on Cu (brown triangles), Ag (gray circles), Au (gold squares),
and Zr (blue triangles) MNPs shown in Figure 1.
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the CE of all MNPs with less than 5% error in comparison to
DFT, gives high R2 values, and trends identically to DFT for all
metals. The SRB also captures the MNP CE dependence on
the size and type of metal, in which larger MNPs generally
show higher CEs (in absolute numbers) on the same metal and
the CE follows the metal trend Zr > Cu > Au > Ag MNP
(identical to DFT CE trends in Figure S1b; CE values are
negative, demonstrating favorable interaction).26 The equations
of fit for the metals in Figure 2 were forced to intercept at the
origin to correctly capture the limit of a single atom having a
CE = 0.25 Although in Au, Ag, and Cu MNPs, we note that the
CEs are slightly over-predicted, this over-prediction is likely due
to nanoscale metal- and size-dependent strain that is not
accounted for in the SRB model as formulated in eq 1.53 The
incorporation of a nanoscale strain effect in the SRB would
systematically shift the SRB energies of all MNPs slightly lower
in energy (dependent on the metal and DFT functional).
Contrary to the rest of the metals, we note that the CEs of Zr
MNPs are under-predicted, likely because Zr is an hcp metal. In
hcp metals, the (0001) plane intralayer bond lengths are not
equivalent with interplane bond lengths, meaning that a bulk
hcp atom more accurately has six nearest neighbors and
another six near−nearest neighbors.54 Note that the values of
CB as used in the SRB model only depend on the bulk behavior
of the given metal, although the Zr MNPs in this work are built
from fcc-like initial structures. Thus, a CB value is likely
appropriately assigned as less than 12, shifting all the SRB CE
values (eq 1) higher for an hcp metal such as Zr. To preserve
the simplicity and broad applicability of the SRB model, we
have not included either strain or hcp stacking CB because
neither metal-dependent strain53 nor hcp interlayer stacking
effects54 can be readily approximated for all metals or ab initio
methods. Therefore, we show that with no modifications or
fitting, the SRB captures MNP energetic trends with respect to
a broad range of MNP sizes.
Beyond these combined size, shape, and metal comparison

tests, we assessed the power of the SRB model to capture shape
differences. In Figure 3, we compare the SRB to DFT on 4

MNP structures at a fixed size (55 atoms) with different shapes:
icosahedron (Ih), decahedron (Dc), pyramid (Py), and
truncated octahedron (Oh). We immediately observe a CE
trend (Ih < Dc < Oh < Py) for all four metals that agrees
perfectly with previous experimental and computational
findings related to the structure of MNPs (and specifically at
the 55 atom size).26,51 Because shape differences are captured
by differences in the CNs of atoms on the MNP, the smaller
the MNPs the greater impact of shape on CE (Figure S2)
because a higher percentage of atoms are under-coordinated at
smaller MNP sizes. At 55 atoms, we are testing at a size at
which shape differences can play a significant role. The SRB
model thus captures shape differences between MNP
structures. With the SRB effectively modeling both MNP
shape and size effects, we see the SRB as an effective theory in
rationalizing MNP morphology and of interest in a variety of
MNP applications.13,55

Moving past monometallic MNPs, we note that the
morphology, composition, and chemical ordering of nanoalloys
represent key variables for many applications1,18 and have been
the focus of heavy recent experimental study,1,56−59 while
theory has lagged experiments in its ability to rationalize
nanoalloy behavior.42 To move beyond the atom-centric
formulation of the SRB and introduce alloy effects, we
introduce here a bond-centric model. This switch can be easily
represented in monometallic MNPs, in which the binding
energy (BE), or energy stored in the bond between atoms i and
j in a MNP, can be estimated by summing the contributions of i
and j to the MNP CE divided by their respective CNs (number
of bonds):

= + = +BE
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where BEij represents the bond energy stored between atoms i
and j, and HBEx represents the half-bond energy contribution
of atom x. The CE of an MNP is thus expressed as:

=
∑

n
CE

BE
m

MNP
1 ij

(3)

where m is the number of bonds in the MNP, and n is the total
number of atoms in the MNP. We note that this formulation of
the BC model (a combination of eqs 2 and 3), is
mathematically identical to the SRB model (eq 1). In this
simple BC formulation, we see that the SRB model assumes
atoms i and j contribute equally to BEij, which appears to hold
well in monometallic MNPs given the effectiveness of the SRB
in capturing monometallic energetics (Figure 3). However, for
nanoalloys, the assumption of equal bond energy contributions
likely does not hold, as most heterolytic bonds tend to show
character that favors one element over another.60,61 To
incorporate an element-dependent bond weighting, we
introduce two weight factors, γi and γj, to eq 2, resulting in a
new expression for BEij:

γ γ= × + ×BE HBE HBE
i i j jij (4)

where γi and γj are the weight factors for atoms i and j,
respectively. Values of γ in eq 3 are calculated based on
literature values of molecular dimer bond dissociation energies
(BDEs).60,61 For a nanoalloy containing A and B atoms, the
weighting factors of A (γA) and B (γB) for heterolytic bonds are
calculated through the following system of eqs 5 and 6:

Figure 3. Parity plot between CE of the SRB model and DFT
calculations of CE of MNPs of different shapes. All MNPs consist of
55 atoms, and the different shapes are illustrated as insets in the plot
(Ih, icosahedron; Dc, decahedron; Py, pyramid; Oh, octahedron).
Atoms with different CNs are represented with different colors (color
ranges from light blue for CN = 3 atoms to orange for CN = 12
atoms), as shown in Figure 1.
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γ γ× + × = ×X Y Z2
A B (5)

where X is the experimental60 (or theoretical)61 BDE of the A2

bond, Y the B2 BDE, and Z the AB BDE. Also:

γ γ+ = 2
A B (6)

where eq 6 is set equal to 2 for mathematical and chemical
consistency with eqs 2 and 5 (as though we are breaking A2 and
B2 to form (AB)2). Experimental hetero- and homolytic dimer
bond energy data60 are primarily used when available, whereas
high-level ab initio theoretical data was used for all other
cases.61 In a CuAg nanoalloy, for example, the BDE of a CuCu
bond is 2.01 eV, a AgAg bond is 1.65 eV, and a CuAg bond is
1.76 eV, which results in (by solving eqs 5 and 6
simultaneously) γAg = 1.4 and γCu = 0.6 for the heterolytic
bonds and γAg = γCu = 1.0 for the homolytic bonds.61 A total
BC model is thus presented as a combination of eqs 3 and 4:
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To understand the efficacy of the BC model, we test how it
performs compared to the SRB model, against DFT
calculations, on CuAg (Figure 4a) and CuZr (Figure 4b)
alloy MNPs of different size, shape, and composition. The
composition and chemical ordering of the structures in Figure 4
were randomly assigned resulting a wide test range of ordering
and compositions. From Figure 4, we note the CuZr structures
became more distorted (amorphous) over DFT relaxation than
did the equivalent CuAg structures. To capture this
restructuring accurately with CNs, we created a generalized
code (made available free of charge on Github: https://github.
com/mpourmpakis/bc_model) that is capable of assigning CN
to arbitrary bimetallic MNP structures (either amorphous or
structured). Figure 5 shows the SRB and BC energetic results
of both the CuAg (Figure 5a) and CuZr (Figure 5b)
nanoalloys. From Figure 5, we note the BC model captures
the DFT energetics more accurately than the SRB for both
bimetallic systems. We calculated the average difference
between the models as:

Figure 4. (a) CuAg and (b) CuZr nanoalloys of different size, shape, and composition. Structures depicted have been relaxed with DFT calculations.
Red represents Cu, blue represents Ag, and green represents Zr. The label indicates MNP size (total number of atoms) and percentage of Ag/Zr in
the nanoalloys (Oh, octahedron; Dc, decahedron; Ih, icosahedron; Cb, cubic).

Figure 5. Parity plot between both the BC and SRB models with DFT CEs on (a) CuAg and (b) CuZr alloy MNPs. Labels indicate MNP size (total
number of atoms), percent Ag in the CuAg nanoalloys, and percent Zr in the CuZr nanoalloys.
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The average difference between the two models is 0.07 eV/
atom in the CuAg case and 0.098 eV/atom in the CuZr case.
For the smallest nanoalloy (19 atom), this represents around a
1.3−1.9 eV improvement in total alloy MNP energetics, while
for the largest system (172 atom), the improvement is a
substantial 12−17 eV. The difference between the models is
directly related to the percentage of heterolytic bonds in the
alloy MNP as the BC model is identical to the SRB for
homolytic bonds, meaning that chemical ordering is factored
more in the BC model than the SRB. We highlight an extreme
demonstration of the effect of chemical ordering on the
accuracy of the BC versus SRB models in Figure S3, in which
we compare two nanoalloys with identical size (172), similar
shape (cubic), and similar composition (∼50% Cu/Zr). The
nanoalloy that has with relatively few heterolytic bonds (Janus-
type) shows little difference (∼0.02 eV) between the SRB and
BC models, while the nanoalloy with many heterolytic bonds
(interlayer-mixed MNP) shows a substantially larger difference
(∼0.1 eV). Weighting heterolytic bonds in the BC model
therefore increases its ability (relative to SRB) to accurately
describe chemical ordering effects.
Our introduced BC model is a promising model for CE

prediction in a wide range of nanoalloys, but we also
acknowledge that it has a few inherent limitations and
assumptions. One assumption in the BC is that dimer BDE
trends match the CEBulk trends for metals. This means that
when the dimer BDEs of elements in a heterolytic bond trend
opposite their CEBulk values, the bond weighting factors (γs) in
the BC model will give incorrect CE trends for homolytic
versus heterolytic bond energies. To identify cases in which this
is true, we plot homolytic dimer BEs versus bulk CEs for all of
the transition metals (Figure S4). Pairs of metals in Figure S4
resulting to a line with a positive slope are good candidates for
the BC model, while pairs of elements with a negative slope are
not. After applying this criterion to pairs of metals found in
Figure S4, we found just 55 bimetallic alloys with a negative
slope versus a remarkable 298 that are well-suited for the BC
model. This means that around 85% of transition metal alloys
can be hypothetically captured by the BC model. For example,
this analysis reveals that a nanoalloy containing only Cu and Pd
would not be accurately captured by the BC model, while
nanoalloys that exclusively contain a subset of the elements Au,
Ag, Cu, and Zr should all be accurately captured.
Beyond the broad applicability of the BC model on

nanoalloys, its strong physical basis allows for important
comparisons and extraction of physical learnings. For example,
in Figures S5b and S6, the BC model (although it captures the
CE trends between different MNPs) appears to deviate from
the DFT CE for CuAu alloys. In this case, in terms of
experimental BDE, we have AuCu > AuAu > CuCu and the
calculated weighting factors (eqs 5 and 6) are γAu = 2.36 and
γCu = −0.36. However, the CEbulk trend between Au and Cu
according to DFT is opposite to the experimental CEbulk trend,
largely due to the DFT underestimation of the Au bulk CE
(Figure S1b). Thus, the BC model appears to behave weaker
than the simple SRB in comparison to DFT, although we would
like to highlight that this deviation reflects error in the DFT
functional performance rather than the BC model. For this
reason, to further validate the BC model against experimental

behavior for the AuCu MNPs, we tested the surface segregation
behavior in CuAu MNPs (Figure S7a). In the Cu54Au MNP
(Figure S7b), the Au is shown to have a favorable surface
segregation in experiments62 by both the DFT and the BC
model (using experimental values of CEbulk) and unfavorable
surface segregation by the SRB model (using experimental
values of CEbulk). Because the SRB model only accounts for
coordination number and not chemical environment, it favors
Au in the bulk state because the experimental CEbulk of Au is
larger than the CEbulk of Cu (Figure S1). With DFT, we note
that there are multiple factors contributing to a favorable Au
surface segregation, given that the DFT-calculated CEBulk for
Au is incorrectly less than for Cu (Figure S1), indicating that in
an alloy, Au would naturally surface segregate (according to the
SRB model). Therefore, the BC model alone accurately
captures experimental segregation in AuCu alloy MNPs, clearly
for physical reasons. Beyond AuCu, another case in which the
underestimation of the CEbulk of Au by DFT shifts the BC
model away from parity with DFT is for AuAg nanoalloys (see
Figures S5a and S8). In the AuAg nanoalloy, we highlight that
both the BC and SRB models do remarkably well in capturing
DFT energetics, although the SRB appears to be a slightly
better match with DFT than the BC (Figure S8). Under the
same assumption of the CEbulk values trending with the dimer
BEs used in the BC model, an underestimated CEbulk for Au
relative to Ag would result in a slight overestimation of the CEs
of AuAg alloys MNPs (as in Figure S8). While we believe that
our selection of DFT functional for this work is appropriate, the
use of other, potentially more accurate functionals (depending
on the metals of interest) could increase the accuracy of the
SRB and BC models for capturing nanoparticle energetics
versus DFT. Additionally, such an adaptation of the SRB and
BC models would require only the CEBulk values for the metals
of interest calculated at the new level of theory. Ultimately, we
highlight that these limitations of DFT do not influence the BC
model predictions when the latter is applied using only
experimental CEBulk values. In addition, energy stability trends
between different MNPs are most often more important than
exact precision in energetic stability, and the BC model
accurately captures trends in alloy MNPs.
To further test the validity of the introduced BC model, we

applied it to describe the mixing energetics of metals via excess
energy (EE) analysis. EE describes the preference of forming
nanoalloys from structurally identical monometallic MNPs. It
can be challenging to capture,63 often requiring DFT
calculations. Using the SRB and BC models, the EE4,64 of an
AxBy nanoalloy is calculated as:

= −
+

−
++ +

x

x y

y

x y
EE CE CE CEalloyMNP A Bx y x y (9)

where CEalloyMNP is the cohesive energy of the nanoalloy, and
CEAx+y

and CEBx+y
are the cohesive energies of pure A and B

MNPs with x and y atoms. The derivation of this general form
of eq 9 can be found in the Supporting Information. In Figure
6, we see that our BC model can capture the EE compared to
accurate DFT of the nanoalloys reported in Figures 4 and 5
with an R2 value close to 0.7 (typical threshold for statistical
significance). The two points far above the parity line in the
second quadrant of Figure 6 are both Cu147−xZrx nanoalloys,
and these points are predicted higher in EE by the BC model,
largely due to the relative overestimation of the Zr147 MNP CE
by the SRB model (most-upper-right point on Figure 2).
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Therefore, the deviation observed in CuxZry excess energies is
likely more related to individual MNP structure than to model
parameters. If these two points are removed, the R2 of the
equation of fit becomes greater than 0.8 (see Figure S9),
highlighting the remarkable accuracy of the BC model for
capturing mixing in even amorphous structures. Therefore, the
BC simply, rapidly, and (relatively) accurately captures
nanoalloy EE.
Utilizing the speed and ease of applying the BC model to

capture EE, we tested our model on an experimental FePt
nanoalloy structure containing 6569 Fe atoms and 16 627 Pt
atoms recently published by Yang el.al.1 This nanoalloy is
computationally inaccessible by current DFT methods with
23 196 atoms in total, many regional variations in chemical
ordering, and many localized crystal defects and strains. Using
the BC model, though, we can rapidly screen and analyze the
energetics of several thousands of FePt nanoalloy architectures
at this MNP size. We note that the BC model can accurately
capture the FePt nanoalloy energetics as the Fe/Pt BDEs trend
correctly with their CEbulk values (see Figure S4). After running
the CN calculation code on the experimental nanoalloy
structure to create a binding topology for the nanoalloy, we
developed a Python script (freely available for download on
Github) to randomly distribute atoms inside the nanoalloy and
calculate the resulting MNP CE and EE. Figure 7a shows the
EEs of both the experimental and the generated FePt
nanoalloys versus the percent of Fe using our BC model. We
plot three sets of generated nanoalloys. The black squares
represent the lowest-energy structures of all tested alloy MNPs
for a given percent Fe, which happen to all have the Fe atoms
distributed to the lowest coordination sites. The red dots show
the minimum energy structure of the fully randomized
structures and the blue triangles the energy of the structures
with the experimental percentage of the total Fe atoms (2685/
6569 ≈ 40.8%) distributed on the nanoalloy surface and
randomized bulk atomic positions. Except for the experimental
nanoalloy, every point presented in Figure 7a represents the
minimum energy of 1000 structures generated using the same
criteria. In all generated nanoalloys cases, the EE is roughly
parabolic with the Fe concentration, giving minima around 50%
for the fully random case and around 55% for the other two
cases. A minimum EE at around 50% Fe exactly matches a

recent DFT study of EE in smaller 55 atom FePt nanoalloys.63

Additionally, because the EE is negative over the full
compositional range, it is favorable to form intermixed
nanoalloys instead of having separate monometallic NPs,
which matches perfectly the experimental observations.1 If we
look at vertical slices of the Figure 7a plot (i.e., a fixed
percentage of Fe), the EE becomes more negative as the
percent of Fe distributed on the surface increases (black
points), indicating that Fe is generally favored toward surface
segregation. The surface segregation and chemical ordering
effects are further highlighted in Figure 7b, which shows a
systematic analysis of surface segregation and CE. The variation
within bands in Figure 7b can be considered the impact of
chemical ordering at each defined MNP surface percent Fe,
while the difference between bands represents the energetic
impact of Fe surface segregation. Following this logic, we note
that, especially at higher surface percentages of Fe, surface
segregation and chemical ordering play roughly equivalent roles
in determining the energetics of this alloy MNP architecture.
Beyond this argument, we note that the experimental structure
(green triangle in Figure 7b), which is 28.3% Fe with only
43.4% of the Fe in the surface, is very close to the minimum-
energy Fe surface-segregated structure (100% of the Fe in the
surface) with the same MNP composition. The experimental
nanoalloy is likely preferentially formed over the surface
segregated nanoalloy due to kinetic factors during growth and
indicates how chemical ordering is also an important energetic
factor in this FePt nanoalloy. To further explore the effect of
chemical ordering in the experimental FePt nanoalloy, in Figure
S10, we show the CE of a thousand generated homotops with
an identical surface conformation to the experimental structure
and all remaining Fe atoms randomly distributed in the bulk of
the nanoalloy. We can see the distinctiveness of the
experimental conformation in Figure 7b because it is several
standard deviations from the norm for these randomized
nanoalloys, indicating that bulk chemical ordering plays a
significant role in the formation of the experimental FePt
nanoalloy. To close the chemical ordering and energetic space
between the experimental homotop and the random homotops
(as in Figures 7b and S10), in future work, optimization
techniques such as genetic algorithms with the BC model could
be employed to shed more light on bulk chemical ordering
trends in alloy MNPs at a fixed surface concentration.42 Such a
combination will be very powerful for the computational
identification of energetically minimum MNP structures at any
MNP morphology and metal composition, aiding in elucidating
the MNP genome.
In summary, we have introduced a BC model able to

accurately capture the energetics of MNPs as well as their
mixing behavior. The BC model is orders of magnitude faster
than DFT in evaluating arbitrary alloy MNPs of practically any
morphology (size and shape) and metal composition.
Importantly, the BC model can identify energetically preferred
chemical ordering on alloy MNPs. Additionally, because the BC
model does not require training to calculated or experimental
parameters, it is uniquely suited to address the energetics in
massive nanoalloy structures. While other thermodynamic
factors such as entropy and synthesis temperature can influence
nanoalloy composition and chemical ordering, we have
primarily focused in this work on the enthalpic contributions
(largely captured by DFT electronic energies). In our future
work, we plan to include configurational entropy and
temperature effects in the BC framework. Our work therefore

Figure 6. Parity between excess energy (EE) calculated by the BC
model vs DFT of CuAg (black squares) and CuZr (blue triangles)
alloy MNPs (shown in Figure 4).
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introduces a simple yet very powerful tool for nanoalloy design
that can potentially help elucidate the energetics of alloy MNP
genomes.
Methods. The DFT calculations were performed using the

PBE65 exchange−correlation functional combined with the
DZVP basis set,66 as implemented in the CP2K package.67 PBE
is ubiquitous in evaluating energetics of transition metals.68,69

During geometry relaxation, the energy cutoff of the basis set
was 500 Ry, and there was a force cutoff of 0.0004 Ha/Bohr. A
40 × 40 × 40 Å unit cell was used with all structures positioned
in the center of the box. The total electronic energies of MNPs
were determined from geometry relaxations performed via
quasi-Newton−Raphson minimization.70 Eq 10 was used to
calculate the CE of nanoalloy AxBy:

=
− × − ×

+

E x E y E

x y
CEDFT

A B A Bx y

(10)

=where EX is the total electronic energy of species X.
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Figure 7. (a) Excess energy (eV/atom) vs percent Fe composition in the FePt alloy MNP. The black points represent the lowest-energy structures
tested at each composition, which were all structures with Fe atoms placed in the lowest coordinated sites. The red points represent the minimum
energy structure of 1000 fully random homotop structures. The blue points represent the minimum energy structure of 1,000 randomly generated
structures with same percent surface Fe as the experimental structure (randomly distributed in the surface) with the rest of Fe atoms equally and
randomly distributed into the subsurface and bulk of the MNPs. The images shown as insets are examples at the experimental composition of the
random, lowest-energy, and experimental structures in which Fe is shown in dark blue and Pt is shown in purple. (b) CEs of randomly created
homotops of the experimental FePt nanoalloy.1 The purple triangle represents a Fe-shell structure (i.e., black point in panel a), while the light blue
triangle represents a Fe core structure in which all Fe atoms are in the bulk of the MNP. Each band represents 1000 randomly created structures with
specific percentages of surface, subsurface, and bulk atoms occupied by Fe atoms. All structures contain same Pt-to-Fe ratio. The green data points
represent the experimental structure in panels a and b.
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Quiroś, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail,
A. Crystallography Open Database − an open-access collection of
crystal structures. J. Appl. Crystallogr. 2009, 42 (4), 726−729.
(50) Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.;
Christensen, R.; Dulak, M.; Friis, J.; Groves, M. N.; Hammer, B.;
Hargus, C.; et al. The atomic simulation environmenta Python
library for working with atoms. J. Phys.: Condens. Matter 2017, 29 (27),
273002.
(51) Wang, H.; Zhou, S.; Gilroy, K. D.; Cai, Z.; Xia, Y. Icosahedral
nanocrystals of noble metals: Synthesis and applications. Nano Today
2017, 15, 121−144.
(52) Austin, N.; Ye, J.; Mpourmpakis, G. CO2 activation on Cu-based
Zr-decorated nanoparticles. Catal. Sci. Technol. 2017, 7 (11), 2245−
2251.
(53) Sneed, B. T.; Young, A. P.; Tsung, C.-K. Building up strain in
colloidal metal nanoparticle catalysts. Nanoscale 2015, 7 (29), 12248−
12265.
(54) Eberhart, J. G.; Horner, S. Bond-Energy and Surface-Energy
Calculations in Metals. J. Chem. Educ. 2010, 87 (6), 608−612.
(55) Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal
nanostructures for efficient conversion of solar to chemical energy.
Nat. Mater. 2011, 10, 911−921.
(56) Van Aert, S.; Batenburg, K. J.; Rossell, M. D.; Erni, R.; Van
Tendeloo, G. Three-dimensional atomic imaging of crystalline
nanoparticles. Nature 2011, 470 (7334), 374−377.
(57) Chen, C.-C.; Zhu, C.; White, E. R.; Chiu, C.-Y.; Scott, M. C.;
Regan, B. C.; Marks, L. D.; Huang, Y.; Miao, J. Three-dimensional
imaging of dislocations in a nanoparticle at atomic resolution. Nature
2013, 496 (7443), 74−77.
(58) Bals, S.; Casavola, M.; Van Huis, M. A.; Van Aert, S.; Batenburg,
K. J.; Van Tendeloo, G.; Vanmaekelbergh, D. Three-dimensional
atomic imaging of colloidal core-shell nanocrystals. Nano Lett. 2011,
11 (8), 3420−3424.

(59) Goris, B.; De Backer, A.; Van Aert, S.; Goḿez-Graña, S.; Liz-
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