Locally Differentially Private
Frequent Itemset Mining

Tianhao Wang
Department of Computer Science
Purdue University
West Lafayette, IN
tianhaowang @purdue.edu

Abstract—The notion of Local Differential Privacy (LDP)
enables users to respond to sensitive questions while preserving
their privacy. The basic LDP frequent oracle (FO) protocol
enables an aggregator to estimate the frequency of any value.
But when each user has a set of values, one needs an additional
padding and sampling step to find the frequent values and
estimate their frequencies. In this paper, we formally define such
padding and sample based frequency oracles (PSFO). We further
identify the privacy amplification property in PSFO. As a result,
we propose SVIM, a protocol for finding frequent items in the
set-valued LDP setting. Experiments show that under the same
privacy guarantee and computational cost, SVIM significantly
improves over existing methods. With SVIM to find frequent
items, we propose SVSM to effectively find frequent itemsets,
which to our knowledge has not been done before in the LDP
setting.

I. INTRODUCTION

In recent years, differential privacy [14], [16] has been
increasingly accepted as the de facto standard for data privacy
in the research community [2], [15], [17], [24]. In the standard
(or centralized) setting, a data curator collects personal data
from each individual, and produces outputs based on the
dataset in a way that satisfies differential privacy. In this
setting, the data curator sees the raw input from all users and
is trusted to handle these private data correctly.

Recently, techniques for avoiding a central trusted authority
have been introduced. They use the concept of Differential
Privacy in the Local setting, which we call LDP. Such
techniques enable collection of statistics of users’ data while
preserving privacy of participants, without relying on trust in
a single data curator. For example, researchers from Google
developed RAPPOR [18], [20] and Prochlo [8], which are
included as part of Chrome. They enable Google to collect
users’ answers to questions such as the default homepage
of their browser, the default search engine, and so on, in
order to understand the unwanted or malicious hijacking of
user settings. Apple [33], [34] also uses similar methods to
help with predictions of spelling and other tasks. Samsung
proposed a similar system [28] which enables collection of
not only categorical answers but also numerical answers
(e.g., time of usage, battery volume), although it is not clear
whether this has been deployed by Samsung. Firefox [1] is

Ninghui Li
Department of Computer Science
Purdue University
West Lafayette, IN
ninghui @cs.purdue.edu

Somesh Jha
Department of Computer Science
University of Wisconsin-Madison

Madison, WI

jha@cs.wisc.edu

also planning to build a “RAPPOR-like” system that collects
frequent homepages.

We assume that each user possesses an input value v € D,
where D is the value domain. A party wants to learn the
distribution of the input values of all users. We call this party
the aggregator instead of the data curator, because it does
not see the raw data. Existing research [5], [18], [36] has
developed multiple frequency oracle (FO) protocols, using
which an aggregator can estimate the frequency of any chosen
value x € D. In [30], Qin et al. considered the setting where
each user’s value is a set of items v C I, where [is the
item domain. Such a set-valued setting occurs frequently in
the situation where LDP is applied. For example, when Apple
wants to estimate the frequencies of the emoji’s typed everday
by the users, each user has a set of emoji’s that they typed [34].
The LDPMiner protocol in [30] aims at finding the &£ most
frequent items and their frequencies.

This problem is challenging because the number of items
each user has is different. To deal with this, a core technique
in [30] is “padding and sampling”. That is, each user first
pads her set of values with dummy items to a fixed size ¢, then
randomly samples one item from the padded set, and finally
uses an FO protocol to report the item. When estimating the
frequency of an item, one multiples the estimation from the FO
protocol by ¢. Without padding, the probability that an item
is sampled is difficult to assess, making accurate frequency
estimation difficult.

In [30], the FO protocol is used in a black-box fashion.
That is, in order to satisfy e-LDP, the FO protocol is invoked
with the same privacy parameter €. We observe that, since the
sampling step randomly selects an item, it has an amplification
effect in terms of privacy. This effect has been observed and
studied in the standard DP setting [25]. If one applies an
algorithm to a dataset randomly sampled from the input with a
sampling rate of 5 < 1, to satisfy e-DP, the algorithm can use
a privacy budget of € > €; more specifically, the relationship

between €', ¢, and 3 is &= = %
Intuitively, one can apply the same observation here. Since
each item is selected with probability g = %, to satisfy

e—LDP, one can invoke the FO protocol with €, such that
¢ =L — ¢ (or, equivalently ¢ = In({- (e —1)+1) >).

ec—1

Surprisingly, in our study of padding-and-sampling-based
frequency oracle (PSFO), we found that one cannot always
get this privacy amplification effect. Whether this benefit is
applicable or not depends on the internal structure of the FO
protocol. In [36], the three best performing FO protocols are
Generalized Random Response, Optimized Unary Encoding,
and Optimized Local Hash. The latter two offer the same
accuracy, and Optimized Local Hash has lower communication
cost. It was found that Generalized Random Response offers
the best accuracy when |D| < 3e® 4 2, and Optimized
Local Hash offers the best accuracy when |D| > 3e + 2.
We found that, the privacy amplification effect exists for
Generalized Random Response, but not for Optimized Lo-
cal Hash. Optimized Local Hash is able to provide better
accuracy when |D| is large because each perturbed output
can be used to support multiple input values. However, the
same feature makes Optimized Local Hash unable to benefit
from sampling. The difference in the ability to benefit from
sampling changes the criterion to decide which of Generalized
Random Response and Optimized Local Hash to use. We thus
propose to adaptively select the best FO protocol in PSFO,
based on |I|,e and the particular ¢ value. Essentially, when
|I| > (40% —¢)- €€ + 1, Generalized Random Response should
be used. Replacing the FO protocol used in [30] with such an
adaptively chosen FO protocol greatly improves the accuracy
of the resulting frequent items.

We also observe that the selection of an appropriate ¢
is crucial, and it can be different depending on the goal.
Essentially, each user pads her itemset to size ¢, generating
two sources of errors: When ¢ is small, one would under-
estimate the frequency counts, since items in a set with more
than ¢ items will be sampled with probability less than 1/¢.
On the other hand, since ¢ is multiplied to a noisy estimate,
increasing ¢ magnifies the noises. The LDPMiner protocol
in [30] has two phases, the first phase selects 2k candidate
frequent items using a quite large ¢, and the second phase
computes their frequencies using ¢ = 2k. We observe that for
the purpose of identifying candidates for the frequent items,
setting ¢ = 1 is fine. While the resulting frequency counts
under-estimate the true counts, the frequencies of all items
are under-estimated, and it is very unlikely that the true top
k items are not among the 2k candidates. However, when the
goal is to estimate frequency, one needs select a larger /. But
¢ should not be increased to the point that there is absolutely
no under-estimation, because this increases the magnitude of
noises. Selecting £ is a trade-off between under-estimation and
noise.

Following these insights, we propose Set-Value Item Mining
(SVIM) protocol, which handles set values under the LDP
setting and provides much better accuracy than existing proto-
cols within the same privacy constraints. There are four steps:
First, users use PSFO with a small /¢ to report; the aggregator
identifies frequent items as candidates, and sends this set to
users. Second, users report (using a standard FO protocol) the
number of candidate items they have; the aggregator estimates
the distribution of how many candidate items the users have

and selects appropriate ¢, and sends ¢ to users. Third, users
use PSFO with the given ¢ to report occurrences of items in
the candidate set; the aggregator estimates the frequency of
these items. Fourth, the aggregator selects the top k frequent
items and use the size distribution in step two to further correct
undercounts. Experimental results how that SVIM significantly
outperforms LDPMiner in that it identifies more frequent items
as well as estimates the frequencies more accurately.

In the setting where each user’s input data is a set of items,

a natural problem is to find frequent itemsets. Frequent itemset
mining (FIM) is a well recognized data-mining problem. The
discovery of frequent itemsets can serve valuable economic
and research purposes, e.g., mining association rules [4],
predicting user behavior [3], and finding correlations [9]. FIM
while satisfying DP in the centralized setting has been studied
extensively, e.g., [7], [39], [26]. However, because of the
challenges of dealing with set-valued inputs in the LDP setting,
no solution for the LDP setting has been proposed. Authors
of [30] consider only the identification of frequent items, and
leave FIM as an open problem. Using the PSFO technique,
we are able to provide the first solution to FIM in the
LDP setting. We call the protocol Set-Value itemSet Mining
(SVSM) protocol; experimental evaluations demonstrates its
effectiveness.

To summarize, the main contributions of this paper are:

o We investigate padding-and-sample-based frequency or-
acles (PSFO) and discover the interesting phenomenon
that some FO protocols can benefit from the sampling
step, but others cannot. Based on this, we proposed to
adaptively select the best-performing FO protocol in each
usage of PSFO.

o We design and implement SVIM to find frequent values
together with their frequencies. Experimental results on
both empirical and real-world datasets demonstrate the
significant improvement over previous techniques.

¢ We provide the first FIM protocol under the LDP setting,
and empirically demonstrate its effectiveness on real-
world datasets. This solves a problem left open by [30].

Roadmap. In Section II, we present background knowledge
of LDP and FO. We then go over the problem definition
and existing solutions in Section III. With an investigation of
the sample-based frequency oracle in Section IV, we present
our proposed method in Section V. Experimental results are
presented in VI. Finally we discuss related work in Section VII
and provide concluding remarks in in Section VIIL

II. BACKGROUND

We consider a setting where there are several users and
one aggregator. Each user possesses a value v from a domain
D, and the aggregator wants to learn the distribution of values
among all users, in a way that protects the privacy of individual
users.

A. Differential Privacy in the Local Setting

In the local setting, each user perturbs the input value v
using an algorithm ¥ and sends ¥(v) to the aggregator. The

formal privacy requirement is that the algorithm W(-) satisfies
the following property:

Definition 1 (e Local Differential Privacy). An algorithm W (-)
satisfies e-local differential privacy (e-LDP), where ¢ > 0, if
and only if for any input vi,v9 € D, we have

VT C Range(¥) : Pr[¥(vy) € T] < e“Pr[¥(vy) € T,

where Range(W) denotes the set of all possible outputs of the
algorithm 0.

Similar to the centralized setting, there is sequential com-
position in the local setting. That is, if the user executes a set
of functions, each satisfying ¢;,-LDP, then the whole process
satisfies > ¢;-LDP. The value ¢ is also called the privacy
budget.

Compared to the centralized setting, the local version of DP
offers a stronger level of protection, because each user only
reports the perturbed data. Each user’s privacy is still protected
even if the aggregator is malicious.

B. Frequency Oracles

A frequency oracle (FO) protocol enables the estimation of
the frequency of any given value x € D under LDP. It is
specified by a pair algorithms: (¥, ®), where ¥ is used by
each user to perturb her input value, and ® is used by the
aggregator; ® takes as input the reports from all users, and
can be queried for the frequency of each value.

1) Generalized Randomized Response (GRR): This FO
protocol generalizes the randomized response technique [38].
In the special case where the value is one bit, i.e., when
d = |D| = 2, Ygrre)(v) keeps the bit unchanged with
probability QET and flips it with probability ﬁ In the
general case, when d > 2, the perturbation function is defined
as

p= S,
Yyep Pr [Uerr(e) (v) = y] = { S A
T oec+d—1

(D
This satisfies e-LDP since g = e°. To estimate the frequency

of € D, one counts how many times x is reported as C(x),
and then computes

ify=v

C(z) —ng
pP—q
where n is the total number of users. That is, the frequency
estimate is a linear transformation of the noisy count C(x), in
order to account for the effect of randomized response. In [36],
it is shown that this is an unbiased estimation of the true count,

and the variance for this estimation is
d—2+¢f
Var|®)| =——-—="n
[GRR(E)()] (eé — 1)2
The accuracy of this protocol deteriorates fast when the
domain size d increases. This is reflected in the fact that (3)
is linear in d.
More sophisticated frequency estimators have been studied
before [18], [5], [36]. In [36], several such protocols are

Derr(e) (7) = 2

3)

analyzed, optimized, and compared against each other, and it
was found that when d is large, the Optimized Local Hashing
(OLH) protocol provides the best accuracy while maintaining
a low communication cost. In this paper, we use the OLH
protocol as a primitive and describe it below.

2) Optimized Local Hashing (OLH) [36]: The Optimized
Local Hashing (OLH) protocol deals with a large domain
size d by first using a hash function to map an input value
into a smaller domain of size g (typically ¢ < d), and
then applying randomized response to the hashed value in the
smaller domain. In this protocol, both the hashing step and
the randomization step result in information loss. The choice
of the parameter g is a tradeoff between losing information
during the hashing step and losing information during the
randomization step. In [36], it is found that the optimal
(minimal variance) choice of g is [e€ 4 1].

In OLH, the reporting protocol is

\IIOLH(E) (1)) = <H7 \I/GRR(E) (H(’U))>,

where H is randomly chosen from a family of hash functions
that hash each value in D to {1...g}, and WgRrg() is given
in (1), while operating on the domain {1...g}.

Let (H7,y7) be the report from the j’th user. For each value
x € D, to compute its frequency, one first computes C(z) =
{j | H'(x) = y’}|. That is, C(x) is the number of reports
that “supports” that the input is z. One then transforms C'(z)
to its unbiased estimation

C(z) —n/yg
P olx) = . 4)
OLH()() p— 1/9
The variance of this estimation is
4e€
Var[@on() (2)] = (e =17 “n. &)

Compared with (3), the factor d — 2 + €€ is replaced by 4e°.
This suggests that for smaller d (such that d — 2 < 3e€), one
is better off with GRR; but for large d, OLH is better and has
a variance that does not depend on d.

III. SET VALUES UNDER LDP

In [30], Qin et al. considered the problem where each user’s
value is a set. Such set-valued settings occur frequently in
the situation where LDP is applied. For example, iOS users
type many emoji’s every day, and Apple wants to estimate the
frequencies of the emoji’s [34].

A. Problem Definition and Challenge

Specifically, the aggregator knows a set I of items. There
are n users. The j’th user has a value vJ C I. We call this a
transaction. For any item x € I, its frequency is defined as the
number of transactions that include z, i.e., f, == [{v/ | x €
v/ }|. Similarly, the frequency of any itemset x C I is defined
as the number of transactions that include x as a subset, i.e.,
f = [{¥ [x C VY.

With the constraint of LDP defined on each user’s value v,
the goal in this setting is to find items and, more generally,

itemsets that are frequent in the population. An item (itemset)
is a top-k frequent item (itemset) if its frequency is among the
k highest for all items (itemsets).

This problem is quite challenging even when one just
tries to find frequent items. Encoding each transaction as a
single value in the domain D = £(I) (i.e., D is the power
set of I), and using existing FO protocols does not work.
While there exist protocols specifically designed for larges
domains (such as [37], [6]), such techniques still doesn’t
scale to the case where the binary encoding of the input
domain has more than a few hundred bits. We want to
be able deal with hundreds or thousands of items. An FO
protocol can identify only values that are very frequent in the
population, because the scale of the added noises is linear to
square root of the population size [11]. It is quite possible
that each particular transaction appears relative infrequently,
even though some items and itemsets appear very frequently.
When no value in Z(I) is fre-

quent enough to be identified, us- Transaction

ing a direct encoding an aggregator a,c,e

can obtain only noises. b.d,e
See Table I for an example with a,b,e

five transactions. While no transac- a,d, e

tion appears more than once, items a, f

a and e each appears 4 times, and TABLE I

the itemset {a, e} appears 3 times. ~ TRANSACTIONS EXAMPLE.

Thus the three most frequent item-
sets are {a}, {e}, {a,e}.
B. The LDPMiner

To the best of our knowledge, LDPMiner [30] is the only
protocol for dealing with set values in the LDP setting. While
finding frequent itemsets is a natural goal, LDPMiner finds
only frequent items (i.e., singleton itemsets) and leaves the
frequent itemset mining as an open problem. LDPMiner has
two phases.

Phase 1: Candidate Set Identification. The goal of Phase 1
is to identify a candidate set for frequent items. The protocol
requires as input a parameter L, which is the 90th percentile
of transaction lengths . That is, about 90% of all transactions
have length no more than L. When L is not known, it needs
to be estimated. In [30], it is assumed that L is available.

In Phase 1, each user whose transaction v has less than L
items first pads it with dummy items so that the transaction
has size L. Then, the user selects at uniform random one item
v from the padded transaction (which could result in a dummy
item), and uses FO to report it with privacy budget €/2. That
is, each user sends to the aggregator Wgg(c/2)(v). Note that
the FO can perturb the original value into any value including
the dummy item.

The aggregator then computes, for each item z € I, its
estimated frequency as

Pro(e/2)(z) - L

The intuition behind the above estimation is that in each
transaction of length L, each item x will be selected and

reported with probability % Hence one needs to multiply the
frequency oracle’s estimation by a factor of L. Since 90%
of transactions will have length exactly L after padding, this
estimation is reasonably accurate. From the estimates, the
aggregator identifies S, the set of 2k items that have the
highest estimated frequencies, and sends S to the users. Size
of S is set to be twice that of the goal so that few candidates
are missed in this step.

Phase 2: Frequency Estimation. On receiving S, each user
intersects it with v, which results in a transaction of length no
more than |S| = 2k. She then pads her transaction v N S to
be of size 2k, selects at uniform random one item v from the
padded transaction, and sends Wgg(c/2)(v) to the aggregator.
Since each user sends two things, each in a way that satisfies
(e/2)-LDP, by sequential composition, the protocol satisfies
e-LDP.
The aggregator estimates frequency for each item z € S:

Pro(e/2) () - 2k

Since the size of all user’s transactions have size 2k after
padding, the estimated frequencies are unbiased.

IV. PADDING-AND-SAMPLING-BASED FREQUENCY
ORACLES

The LDPMiner protocol deals with the challenge of set-
valued inputs by using padding and sampling before applying
an FO protocol to report. We call such protocols Padding-and-
Sampling-based Frequency Oracle (PSFO) protocols. They
use a padding-and-sampling function, defined as follows.

Definition 2 (PS). The padding and sampling function PS is
specified by a positive integer { and takes a setv C I as input.
It assumes the existence of ¢ dummy items 11, Lo, ... 1, & L.
PS¢(v) does the following: If |v| < ¢, it adds ¢ — |v| different
random dummy elements to v. It then selects an element v at
uniform random and outputs that element.

A PSFO protocol then uses an FO protocol to transmit
the element v. Note that the domain of the FO becomes
TU{ly, Lo,..., Ly} To estimate the frequency of an item
x, one obtains the frequency estimation of = from the FO
protocol, and then multiplies it by ¢. More formally,

Definition 3 (PSFO). A padding-and-sample-based frequency
oracle (PSFO) protocol is specified by three parameters: a
positive integer ¢, a frequency oracle FO, and the privacy
budget e. It is composed of a pair of algorithms: (¥, P),
defined as follows.

PSFO(¢, FO, €) := (Vo) (PSe(")), Pro(e) (") - €)

Note that if one does not do the padding step, it is equivalent
to setting £ = 1. Doing so significantly under-estimates the
true counts. With padding to length ¢ and then sampling,
one can multiply the estimated counts by ¢ to correct the
under estimation. However, items that appear in transactions
longer than ¢ can still be underestimated. At the same time,

multiplying the estimation by ¢ will enlarge any error due to
noise by a factor of £.

Using this notation, the two phases of LDPMiner can be cast
as using PSFO(L, FO, ¢/2) in Phase 1 and PSFO(2k, FO, ¢/2)
in Phase 2.

A. Privacy Amplification of GRR

LDPMiner uses the FO protocol in a black-box fashion.
That is, in order to satisfy e-LDP, it invokes the FO protocol
with the same privacy parameter e. We observe that, since the
sampling step randomly selects an item, it has an amplification
effect for privacy. This effect has been observed and studied
in the standard DP setting [25]: If one applies an algorithm to
a dataset randomly sampled from the input with a sampling
rate of 8 < 1, to satisfy ¢-DP, the algorithm can use a privacy
budget of € such that <=1 = 3

We observe that the same privacy amplification effect exists
when using the Generalized Random Response (GRR) in

PSFO.

Theorem 1 (PSFO-GRR: Privacy
Werr(er)(PSe(+)) satisfies e-LDP, such
In(¢-(ec—1)+1).

Amplification).
that ¢ =

Proof. Let d’ = |I| 4 ¢ be the size of the new domain (I’ =

TU{Ly,...,L¢}), € as the privacy budget used in GRR. As
EI 1
e’ +d'—1

defined in (1), we have p’ = P

the perturbation probabilities.

and ¢ = as

It suffices to prove that for any ¢ > 0, any vy,ve C I, and
any possible output t € I’, % < ef, where

p1 = Pr [Werr(er)(PSe(v1))
p2 = Pr [Werr(e) (PSe(v2))

}, and

]

t
t
We first examine p;. When ¢ € vy,

p1 =Pr [t is sampled| - p’ + Pr [t is not sampled] - ¢’
, max{|vi|,¢{} -1 ,
max{|vy]|, ¢}

¥ —=4d)

" max{|vi],(}
o
max{|vy|, {}

/

!/ 1 / !
<q +Z'(p -q')
1

_ ’+u
T

/

When t & vy, p1 = ¢'. Similarly, for ps, when ¢ € vo,

p2 =Pr [t is sampled| - p’ 4 Pr [t is not sampled] - ¢’
=Pr [t is sampled] - (¢ +p' — ¢)
+Pr [t is not sampled] - ¢
=q' + Pr|t is sampled] - (p' — ¢') > ¢

. ¢ 2 5 10 20 50 100
0.1 0.19 | 042 | 0.72 | 1.13 | 1.83 | 2.44
0.5 0.83 | 1.45 | 2.01 | 2.64 | 3.51 | 4.19
1.0 1.49 | 2.26 | 2.90 | 3.57 | 4.46 | 5.15
2.0 2.62 | 3.49 | 4.17 | 4.86 | 5.77 | 6.46
4.0 4.68 | 559 | 6.29 | 6.98 | 7.89 | 8.59

TABLE I

NUMERICAL VALUE OF € UNDER DIFFERENT € AND £.

Fig. 1.

Privacy amplification effect for different £.

When t € va, po = ¢'. Thus g—; is maximized when p; =
%p’ + e’qu’ and py = ¢. That is,
P _ /-1
p2 q

Approximately, the privacy budget will be amplified by a
factor of In ¢ (will be the same if £ = 1). Table II and Figure 1
give the corresponding € value for e under different .

B. No Privacy Amplification of other FO

Interestingly, we found that this privacy amplification effect
does not exist for OLH. The reason is that, in GRR, the output
domain of the perturbation is the same as the input domain;
thus each reported value y can “support” a single input element
x = y in I. In OLH, however, the reported value takes the
form of (H, j) and can support any element x in I such that
H(z) = j. In case the chosen hash function H hashes all the
user’s items into the same value, no matter how we sample,
the hashed result after sampling will always be the same value.
Therefore, there is no privacy amplification in the sampling.

Theorem 2 (PSFO-OLH: No Privacy Amplification).
Worn(er)(PSe(+)) does not satisfy e-LDP for any € < € when
the input domain I is sufficiently large.

Proof. Let g be the output size of hash functions. Consider an
input domain I such that [I| > g¢ + 1. Let H be the chosen
hash function. By the pigeon hole principle, there exists a

value y such that H hashes at least ¢ items into y. Let vy
consists of ¢ items that are hashed to y, and vy consists of
items that are not hashed to y. Then

Pr[WoLn(e) (PSe(v1)) = (H,y)]
Pr [WoLn(e)(PSe(v2)) = (H,y)]
_ Pr[Werp(e) (H(PS¢(v1))) = y|H]
T Pr [\IIGRR(E)((PS/(VQ))> y|H|
Pr[H is picked] -p" p' o

[

“PrlH is picked] - ¢/ ¢
Therefore, o py(ey(PSe(-)) is not e-LDP for any € < ¢'. [

In [36], another FO protocol, Optimal Unary Encoding
(OUE), was proposed. It has similar accuracy as OLH. In OUE,
the reported value is a binary vector, each bit representing one
possible input value. One reported value can have multiple bits
being 1, supporting multiple input values. Similar to OLH, in
case the reported vector supports all the user’s items, there is
no privacy amplification.

Note that from each user’s point of view, the hash function
H is randomly chosen. Thus only when the user happens to
choose a hash function H that hashes all the user’s items into
the same hash value, would there be no privacy amplification
benefit at all. However, this can happen with only small
probability. This observation suggests that (e,0)-LDP can
be applied to obtain some amplification effect, as will be
discussed in Appendix A.

C. Utility of PSFO

We now analyze the accuracy of PSFO. We first show that
PSFO is unbiased when each user’s itemset size is no more
than /.

Theorem 3 (PSFO Expectation). PSFO(¢, FO, ¢€) is unbiased
when { > max;cp,) v/ |. That is,

E [®psro(efo.0(T)] = na,
where n, is the number of users who have item x.

Proof. We prove for GRR, using the aggregate function de-
fined in (2). The proof for OLH (with aggregate function in (4))
can also be derived similarly.

E [®psro(s,crr.¢) (7) |
C(z) — ng
:E [@GRR(E/)(x) . E:I = E |:p/—q/ . E
S+ (n—ng)d —ngd
P —q
ne3 (0 = ¢) +n2q' + (n = na)qd —ngd
P —q

/. nw%p/“'nw

:’)’Lm
O

The estimation is inherently noisy. We now calculate the
variance of the estimation.

Theorem 4 (PSFO Variance). PSFO(¢,FO,€) has variance
% times that of FO when { > maxc,) |v/|. That is,

Var[®psro ,Fo,¢) ()] = £ - Var[®ro(e (z)],
=In(¢-(e“—1)+1)if FO is GRR.

Proof. We prove for GRR, and the proof for OLH can be easily
derived.

where €

Var[®psro(e,crR,e) ()] = Vaf[‘I’GRR(n(x) -4

el
e)
+W—nw¢ﬂ—dﬂ

1 /-1
1—(p +——
)((6“ 71
62

gy (=Dl = Varl@emre) @)

O

D. Adaptive FO

PSFO needs to use an FO protocol. In [36], it was shown
that one should choose GRR when d < 3e® 4+ 2 (where
d = |D| is the size of the domain under consideration), and
OLH otherwise. With sampling, GRR can benefit from privacy
amplification, but OLH benefit less. As a result, the criterion
for choosing between GRR and OLH changes. For GRR, when
€ is used in PSFO, the effective privacy budget GRR can use
becomes In(¢(e® — 1) + 1). We use (3) (with domain size
|[I'| = d + ¢) and get:

Var[Perr(in(e(ec—1)41) (Z) -]
dtl—240- (e —1)+1

=n - f2.
" (C(ef—1)+1-1)2
_odHl—-1+L-(ef—1)
- (e — 12
e l+d—-1
= (6)
For OLH, by (5) we have variance independent on d:
407 . €
Var[®one (z) - €] =n- (e —1)2 (7
Comparing (6) and (7), when
d< (46 —1)e+1, (8)

using GRR itemset will lead to better accuracy. Note that by
taking ¢ = 1, (8) is slightly different from the inequality of
d < 3ef + 2 from [36]. This is because here we consider
a more general setting where some user may have no item
at all, while the setting of [36] is that each user has exactly
one item. We propose Adap, which becomes GRR or OLH
adaptively (with new budget) based on (8). That is,

GRR(In(¢(ef — 1) + 1) if d < e“l(40 — 1) + 1,
Adap(e) = { OLH(e) otherwise.

E. Choosing /¢

To use PSFO, one needs to decide what value of ¢ to use.
When ¢ is small, there is less variance but more bias (in the
form of under estimation); when ¢ is large, there is more
variance and less bias. To find the suitable ¢, the high level
idea is to find the right tradeoff between bias and variance.

When identifying candidate items, the goal is find the most
frequent items (but not accurate frequencies for them), we
propose to use a small ¢. The intuition is that, while the
bias is large when ¢ is small, the bias tends to be the same
direction (namely under estimation) for all items. While the
absolute values of the counts are very inaccurate, the relative
order remain mostly unchanged. Note that it is possible the
order is reversed after sampling (if one item appears more
often in smaller transactions, and another item appears more
often in larger transactions). To reduce this risk, we identify
2k candidate items (the optimal size of the candidate set is
dependent on the data distribution; we tried different values
and 2k appears to be a reasonable choice).

When estimating the actual frequency, one should use a
larger ¢ to reduce bias. We propose to use the 90th percentile
L of the length of the input itemsets. While under estimation
can still occur, the degree is limited. Furthermore, when given
the distribution of the lengths of input itemsets, we propose
to correct this under estimation by multiplying the estimation
by the factor:

B N

= y .
N — Ze:L+1 nt(¢—1L)

Here N denotes the total number of items, n‘ denotes the

number of users with itemset size ¢, and Z?: L N —1L)
gives the total number of missed items.

u(L) ©))

V. PROPOSED METHOD

In this section, we propose solution for the frequent item
and itemset mining. We first present Set-Value Item Mining
(SVIM) protocol to find frequent items in the set-value setting.
Based on the result from SVIM, we build Set-Value itemSet
Mining (SVSM) protocol to find frequent itemsets. The high
level protocol structure is given in Figure 2.

A. Frequent Item Mining

At a high level, SVIM works as follows: A set of candidate

items are identified first. Then these items are estimated and
updated. The users are partitioned into three groups, each
participating in a task. Given that each task requires privacy
budget of €, each user is protected by e-LDP.
Step 1: Prune the Domain. When the domain is big (e.g.,
tens of thousands), the aggregator has to first narrow down the
focus to a small candidate set. Specifically, in Step 1, each
user reports with a randomly selected value from her private
set with length limit set to 1:

Upsro(1,Adap,e) (V)-

—,! J—
"“ Report itemset Find S
o : 0
. Report size Find L
S, L
.9” Report intersected itemset .
‘ Estimate
"‘ Update Y
Frequent
() ® BuildIS| items
) IS
"“ Report size Find L
o IS, L
® - —
:g"‘ Report intersected itemsets Estimate
Update —y
— Frequent

itemsets

Fig. 2. Illustration of SVIM and SVSM. The users to the left are partitioned
into five groups. The aggregator to the right first runs SVIM with the first
three groups, and find the frequent items. Then the aggregator interacts with
the following two groups to find frequent itemsets.

The advantages of setting £ = 1 are first, every user will report
an item, making the signal strong; second, there is no extra
cost of obtaining the exact L value.
The aggregator then estimates the frequency of the domain
by
Ppsro(1,Adap,e) (T)s

and obtains the set S of the 2k most frequent items. .S is then
sent to users who participate in Step 2. Note that this phase
is unnecessary when the original domain size close to or less
than 2k.
Step 2: Size Estimation. Having narrowed down the domain
from I to .S, the aggregator now estimates frequencies of items
in S. As suggested by the analysis of PSFO (Section IV-E),
the aggregator first finds the 90-th percentile L (in this step)
and then uses it as the limit to estimate frequencies of .S’ (next
step).

To find L, each user in this task reports the size of the
private set intersected with the candidate S, i.e.,

Yo ([vN S)).

There is no sampling involved in this step, because each user
has only one value. Here OLH is as FO by default.

The aggregator in this step estimates the length distribution
by calculating

PoLH(e) (£)

for all ¢ € [1,2,...,2k], and finds the 90 percentile L.

That is, the aggregator then finds the smallest L such that
Xy Pouno (9
S22k @on(e (0)
to the users for the next task.

> 0.9. Information of S and L are then sent

Note that some of the estimates may be overwhelmed

by noise, making it useless. For this reason, we use the
significance threshold T' = F—! (1 — %) V/Var to filter the
estimates, where F'~! is the inverse of standard normal CDF,
and Var is specified by (5). Specifically, the aggregator keeps
estimates that are greater than 7', and replaces all the others
with zeros.
Step 3: Candidates Estimation. On receiving S and L,
each of the rest of the users reports a value sampled from
the intersection of his private set v and the candidate set .S,
padded to L, i.e.,

UpsFo(L,Adap,e) (VN S).

The aggregator can estimates the candidates by running

PpsFo(L,Adap,e) (L),

for all z € S. Since the 90-th percentile L is used as limit,
the estimates are slightly under-estimate the truth. Therefore,
the estimates are updated in the next step.

Step 4: Estimation Update. The update assumes that the
missed count follow similar distribution as the reported ones.
Given that L is the 90 percentile, the difference will not be
significant. Thus the estimate for each item x is multiplied
with a fixed update factor (the noisy version of (9))

Z?il PoLH(e) (£)

S @orm (6) — S0F 1 Porme (0) (€~ L)
(10)

W' (L) :

Note that there is no privacy concern in this step because no
user is involved. The information is obtained from Step 2 and
3.

Difference from LDPMiner. The major differences between
SVIM and LDPMiner are many. (1) In Phase 1 of SVIM, the
limit is set to one, instead of the 90-th percentile of lengths of
full transactions. (2) In Phase 2 of SVIM, the limit is reduced
from | S| to the 90-th percentile L of the length of transactions
when limited to items in S. (3) Phase 1 of LDPMiner uses
the 90-th percentile; it was assumed that this is provided as
input. In SVIM, the 90-th percentile of length is obtained in a
way that satisfies LDP. (4) SVIM uses Adap instead of black
box FO. (5) SVIM has an update step at the end, which uses
the length distribution information to further reduces the bias.
(6) In SVIM, users are partitioned into groups, each answering
one separate question, instead of answering multiple questions
each with part of e. It is proved in [36] that this will make
the overall result more accurate. (7) SVIM uses OLH, a more
accurate FO introduced in [36]. Since improvements (6) and
(7) are not introduced in this paper, in the experiments, for
a fair comparison, we evaluate on an improved version of
LDPMiner. Specifically, OLH is used as the FO, and users
are partitioned into groups. That is, the evaluation shows only
differences due to (1), (2), (4), (5). Difference (3) means that
SVIM is end-to-end private, and LDPMiner needs a data-
dependent input.

B. Frequent Itemset Mining

The problem of mining frequent itemsets is similar to
mining frequent items. The desired result becomes a set of
itemsets instead of items. These frequent itemsets can be
used, for example, by websites, to mine assocition rules and
make recommendations. However, the task is much more
challenging, because there are exponentially more itemsets to
consider, and each user also has many more potential itemsets.

In this section, we introduce SVSM for finding frequent
itemsets effectively. In the high level, the aggregator first
obtains the frequent items by executing SVIM. The aggregator
then constructs a candidate set of itemsets IS. Finally the set
IS is estimated in a fashion similar to the latter part of SVIM.
Constructing Candidate Set. The challenging part of fre-
quent itemset mining is to construct I.S. There are exponen-
tially many possible itemsets that can be frequent. If one can
reduce it to a manageable range (thousands), one can cast the
problem to the item mining problem and run SVIM. Moreover,
if size of IS is close to k, only the estimation of 1.5 (latter
part of SVIM) suffices.

Let S’ be the k most frequent items returned by SVIM.
To effectively further reduce the candidate size, we use infor-
mation of the estimates of S’. Specifically, for an itemset X,
we first guess its frequency, denoted by fx, as the product of
the estimates for all its items, i.e., fx = erX ®’(x), where
O (z) = % is the normalized estimate. The 0.9
factor of ®’(x) serves to lower the normalized estimates for the
most frequent item, because otherwise, the guessed frequency
of any set without the most frequent item equals that of the set
plus the most frequent item, which is unlikely to be true. Then
2k itemsets with highest guessing frequencies are selected to
construct [.S. The intuition is that, it is very unlikely that
a frequent itemset is composed of several infrequent items
(while it is theoretically possible). The guessing frequency is
thus an effective measurement of the likelihood each itemset
is among the frequent ones.

Formally, in SVSM, the domain .S is constructed as

IS = {x:ng’,1<|X\<log2k,H<I>’(m)>t},

rex

where t is choosen so that |I.S| = 2k.

Mining Frequent Itemset. After the domain 1.5 is defined,
the following protocol works similar to SVIM for frequent item
mining. Note that step 1 is not necessary since 1.5 is already
small. For each user with value v, a set of values from the
domain IS is obtained first:

vs={x:x€ IS xCv}

such that each itemset x € vs is a value in 1.S.
Then a group of users report the size of their vs’s with FO:

WoLH(e) (vs])-

After the aggregator evaluates the number of users that has
¢ itemsets for each £ € [1,2,...,2k], the aggregator finds the

90 percentile L and send it to the users in the final group, who
then reports vs by

Upsro(L,Adap,e) (VS)-

The aggregator obtains the estimates by evaluating

DPpsro(L,Adap,e) (X) - u' (L)

for any itemset x € IS, where u'(L) is the update factor used
for correcting bias (same format as (10)), and get results for
the heavy itemsets and their estimates.

VI. EVALUATION

Now we discuss experiments that evaluate different pro-
tocols. Basically, we want to answer the following questions:
First, how many frequent items and itemsets can be effectively
identified. Second, how much do our proposed protocols
improve over existing ones.

As a highlight, in the POS dataset, our protocols can cor-
rectly identify around 45 frequent items (while existing ones
can identify around 12), with much more accurate estimates
(error is 3 orders of magnitudes less).

A. Experimental Setup

Environment. All algorithms are implemented in Python 2.7
and all the experiments are conducted on an Intel Core 17-4790
3.60GHz PC with 16GB memory. Each experiment is run 10
times, with mean and standard deviation reported.

Datasets. We run experiments on the following datasets:

« POS: A dataset containing merchant transactions of half
a million users and 1657 categories.

o Kosarak: A dataset of click streams on a Hungarian
website that contains around one million users and 42
thousand categories.

e Online: Similar to POS dataset, this is a dataset that
contains merchant transactions of half a million users and
2603 categories.

o Synthesize: The dataset is generated by the IBM Syn-
thetic Data Generation Code for Associations and Se-
quential Patterns 1.8 million transactions was generated,
with 1000 categories. The average transaction size is 5.

For brevity, we only plot results for the one dataset (POS). The
detailed results for other datasets are deferred to the appendix.
Metrics. To measure utility, we use the following metrics.
Define z; as the i-th most frequent value (x; is an item in the
task of item mining and an itemset in itemset mining). Let
the ground truth for top & values as x; = {x1,za,...,2%}.
Denote the k values identified by the protocol using x,.. Then
x¢ N X, is the set of real top-k values that are identified by the
protocol.

1. Normalized Cumulative Rank (NCR). For each value x,
we assign a quality function ¢(-) to each value, and use the
Normalized Cumulative Gain (NCG) metric [22]:

2zex, 4(7)

NCG = .
ZIGXt Q(x)

We instantiate the quality function using x’s rank as follows:
the highest ranked value has a score of k (i.e., ¢(z1) = k),
the next one has score k — 1, and so on; the k-th value has a
score of 1, and all other values have scores of 0. To normalize
this into a value between 0 and 1, we divide the sum of scores
by the maximum possible score, i.e., k(k; D This gives rise
to what we call the Normalized Cumulative Rank (NCR); this
metric uses the true rank information of the top-k values.

2. Squared Error (Var): We measure the estimation accuracy

by squared errors. That is,

Note that we only account heavy hitters that are successfully
identified by the protocol, i.e., x € x; N X,..

B. Evaluation of Item Mining

For the item mining problem, our main focus is to compare
the performance of our proposed method SVIM, and the
existing method, LDPMiner. We implemented them as follows:

LDPMiner is almost implemented as described in [30].
For a fair comparison, we made two modifications. First, we
partition the users into two groups. The first group focus on
finding S, while the second focus on estimating S. Users
in each group use the full privacy budget € to report. It is
proven [36] that by this way, the overall utility is better,
compared to keeping asking all the users multiple questions,
with splited privacy budget. Second, to get the 90th percentile
L, an additional group of users are assigned to report the size
of their private set. As a result, there will be three groups,
10% of users report size in advance, 40% report in the first
phase, and 50% report in the second phase.

For SVIM, we do the similar thing. Half of the users report
based on the original itemsets to find the candidate set S,
and the other half report after seeing the candidate set to
estimate S. The difference is, the 90th percentile L is used
when estimating S. Therefore, 10% of all users are allocated
to estimate L from the second half. That is, 50% report in
the first phase, 10% of users report size of the their itemsets
intersected with S, and 40% report one actual item.

To demonstrate the precise effect of each design detail, we
also line up several intermediate protocols between LDPMiner
and SVIM. We present them with synonyms (that specify the
FO and 7 used in both tasks) to highlight the difference as
follows:

o (BLH, L), (SUE,2k): LDPMiner. LDPMiner uses two
FO’s BLH [5] and SUE [18]. It is proven in [36] that
the two performs not as good as OLH.

e (OLH, L), (OLH, 2k): The frequency oracles are replaced
with OLH.

e (OLH,1),(OLH,2k): The first phase uses £ = 1. Note
that L is no longer needed, so there are two groups each
consists of half of the users.

e (OLH, 1), (Adap,2k): The second phase uses adaptive
frequency oracle.

e (OLH, 1), (Adap, L): The second phase uses L. An extra
group of 10% of users are assigned to estimate that.

e (OLH,1),(Adap, L)(c): The final results are updated
based on the length distribution. This is the SVIM.

Note that the allocation of 10% of users for length distribution
is not fully justified. This is because the optimal allocation
depends heavily on the dataset, and 10% seems a reasonable
choice.

Detailed Results. In Figure 3, we evaluate the above six
protocols on POS dataset, and plot the NCR and Var scores.
Overall, the identification accuracy (indicated by NCR) in-
creases with €, and decreases with k. Similarly, the estimation
accuracy becomes better (as the indicator Var decreases) when
€ is larger, and worse (Var increases) if k is larger. Now we
analyze performance of each competitor in more detail.

1. (BLH, L), (SUE,2k) — (OLH, L), (OLH,2k): First of
all, we observe the identification accuracy improves when the
FO in the first phase is changed from BLH to OLH. This
happens because, by using OLH, a more accurate S will be
returned, and by using OLH in the second phase, one can better
identify the top k items. Note that the estimation accuracy
actually does not improve significantly, because better FO does
a better job at reducing the noise for the lower ranked values
(thus NCR is higher). The estimation improvement is nearly
unnoticeable in the log based figures.

2. (OLH, L), (OLH,2k) — (OLH, 1), (OLH,2k): One ma-
jor NCR improvement happens when the length limit is
changed from the 90th percentile L to 1. To this point, the
top 2k items returned by the first phase contains most of the
top k items. The NCR bottle neck lies on the second phase,
which cannot effectively identify the top k from the 2k items.
Note that the estimation accuracy does not improve because
the same FO is used in the second phase.

3. (OLH, 1), (OLH, 2k) — (OLH, 1), (Adap, 2k): The most
significant improvement happens when changing from OLH to
Adap in the second phase. Both identification and estimation
accuracy significantly (NCR almost doubled, and Var reduced
by two magnitudes). This is because Adap significantly re-
duces the variance (from a factor of (2k)? to 2k).

4. (OLH,1), (Adap, L) and (OLH, 1), (Adap, L)(c): By re-
ducing 2k to the 90th percentile L in the second phase, the
results are further improved. Note that the improvement is
not that significant but still meaningful. This is partly because
an additional 10% of users are assigned to estimate the size
distribution (to find L and update the results).

Remark. Because of the noisy nature (noise is in the order
of y/n) of the local setting of DP, in order to get meaningful
information, one has to increase ¢ or n (or both). When the
number of users is not sufficiently large, as in our experiment,
the improvement is not significant in the small € range, as
being used by experiments of centralized DP (e.g., 0.1).
However, in the case of deployed LDP protocol (Google uses
€ > 4 [18], and Apple uses € = 1 or 2 [32]), the advantage of
the proposed protocol is profound.

10

C. Evaluation of Itemset Mining

We evaluate the effectiveness of SVSM. We want to answer
the questions how many itemsets can be identified, and the
effectiveness of using SVIM in SVSM.

We implement SVSM as follows, half of the users are

allocated to find frequent items first. Then the set IS is
constructed and estimated, by taking each of the element of
it as an independent item. To compare the effect of SVIM
over LDPMiner, we also instantiate SVSM using LDPMiner.
Specifically, half of the users are allocated to find frequent
items using LDPMiner; then IS is constructed similarly;
finally, Phase 2 of LDPMiner is executed to estimate frequency
of IS and output the most frequent k& itemsets. Note that
the 50% — 50% allocation is used since mining singletons
and itemsets are two goals. One can allocate more users to
singletons if singleton mining is more important.
Detailed Results. Figure 4 shows the results of mining
frequent itemsets. As we can see from the upper two sub-
figures, when fixing & = 64, the proposed SVSM protocol
(instantiated with SVIM, as default) can achieve the NCR
score of 0.7 at ¢ = 1 and 0.9 when ¢ = 2. As to when
LDPMiner is used to instantiate SVSM, the utility drops to
around 0.2. When ¢ is fixed at 2, the improvement of SVIM
over LDPMiner is also significant, especially when k is greater
than 64 (SVSM-SVIM keeps NCR greater than 0.8, while
NCR for SVSM-LDPMiner drops to below 0.2). This suggests
that SVSM with LDPMiner can effectively find only around
10 most frequent itemsets, while SVSM with SVIM can find
around 70, demonstrating a 7Xx improvement.

For the estimation accuracy shown by the bottom two sub-
figures, we can see that the estimation error drops with €, and
increases with k. When using LDPMiner in SVSM the error is
two magnitudes greater than using SVIM. This effect is more
significant when k is greater than 64. This is because Var for
LDPMiner is heavily dependent on k, while SVIM not.

VII. RELATED WORK

Differential privacy has been the de facto notion protect-
ing privacy. In the centralized settings, many DP algorithms
have been proposed (see [17], [35] for theoretical treatments
and [24] in a more practical perspective). Recently, Uber has
deployed a system enforcing DP during SQL queries [23],
Google also proposed several works that combine DP with
machine learning, e.g., [29]. In the local setting, we have also
seen real world deployment: Google deployed RAP [18] as
an extension within Chrome, and Apple [34], [33] also uses
similar methods to help with predictions of spelling and other
things.

Of all the problems, one basic mechanism in LDP is to
estimate frequencies of values. Wang et al. compare different
mechanisms using estimation variance [36]. They conclude
that when the domain size is small, the Generalized Ran-
dom Response provides best utility, and Optimal Local Hash
(OLH)/Optimal Unary Encoding (OUE) [36] perform better
when the domain is large. There also exist other mechanisms
with higher variance: Binary Local Hash (BLH) by Bassily

(BLH.L),(SUE,2k)
(OLH.L),(OLH,2k)
(OLH,1),(OLH,2k) }—&—|

(OLH, 1),(Adap,2k)
(OLH,1),(Adap,L)
(OLH, 1),(Adap,L)(c)

(a) POS, NCR, vary €,k = 64

(BLH.L),(SUE,2k)
(OLH.L),(OLH,2k)
(OLH,1),(OLH,2k) —&—]

(OLH,1),(Adap,2k)
(OLH,1),(Adap,L)
(OLH, 1),(Adap,L)(c)

(c) POS, Var, vary €,k = 64

Fig. 3.

and Smith [5] can be viewed as OLH with hash range always
equal to 2 and RAPPOR (SUE) by Erlingsson et al. [18],
whose simple version can be viewed as OUE with suboptimal
parameters. These protocols use ideas from earlier work [27],
[13].

The frequent itemset mining problem is to identify the
frequent set of items that appear simultaneously where each
user has a set of items. There exist protocols to handle this
in the classic DP setting [39], [26]. In the local setting,
Evfimievski et al. [19] considered an easier setting where each
user has a fixed amount of items. The protocol cannot be
applied for the general itemset problem. Qin et al. proposed
LDPMiner [30] that finds only the frequent singletons. In this
paper, we propose and optimize PSFO, and thus be able to
identify both singletons and itemsets effectively.

Besides the frequent itemset mining problem, there are other
problems in the LDP setting that rely on mechanisms for
frequency estimation. The problem of finding heavy hitters in
a very large domain was exhaustively investigated [21], [27],
(201, [51, [33], [6], [37], [10].

Nguyén et al. [28] studied the problem of empirical risk
minimization. Smith et al. [31] also propose a protocol for the
same problem but without interaction. Ding [12] and Nguyén
et al. [28] studied mean estimation in the setting where the

11

(BLH.L),(SUE,2k)
(OLH.L),(OLH,2k)
(OLH, 1),(OLH,2k) }—4—]

(OLH,1),(Adap.2k)
(OLH,1),(Adap,L)
(OLH,1),(Adap,L)(c)

(b) POS, NCR vary k,e =2

(BLH.L),(SUE,2k)
(OLH.L),(OLH,2k)
(OLH, 1),(OLH,2k) }—&—]

(OLH,1),(Adap.2k)
(OLH, 1) (Adap.L)
(OLH, 1),(Adap,L)(c)

80

(d) POS, Var vary k,e =2

Singleton identification.

private values are continuous.

VIII. CONCLUSIONS

In this paper, we investigate the LDP protocols in a setting
where each user has a set of items. We introduce PSFO,
that enables users to sample one item from the set to report.
The utility of PSFO is thoroughly analyzed and optimized,
resulting two key observations: First, we identify the additional
privacy gain provided by the sampling step, which we call
privacy amplification effect; Second, we observe that the
padding size ¢ should be small when domain size is large,
and ¢ should be large when domain is small. Based on the
analysis, we propose SVIM that significantly outperforms the
existing protocol LDPMiner. Then we propose SVSM to find
frequent itemset, which is an open problem in [30], for the first
time. We demonstrate the effectiveness of SVIM and SVSM
using empirical experiment on both synthetic and real-world
datasets.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
helpful comments. The work is supported in part by a Purdue
Research Foundation award, and the NSF grant No. 1640374.

[1]
[2]

[3]

[4]

[5]

[6

[t

[7

—

[8

=

[91

[10]

SVSM(LDPMiner) —+—|

SVSM(SVIM) —=—]

ncr

(a) NCR, vary ¢,k = 64

0 SVSM(LDPMiner) —— SVSM(SVIM) —H—
I I I I I

sl wiful s

g
W

(c) Var, vary €,k = 64

ncr

0.0

SVSM(LDPMiner) —+—|

SVSM(SVIM) =]

| | | | |
20 40 60 80 100
k

(b) NCR vary k,e =2

SVSM(LDPMiner) —— SVSM(SVIM) —HE—
LT

|
80

|
100

60
k

(d) Var, vary k,e = 2

Fig. 4. POS Itemset Mining Results.

REFERENCES

Mozilla governance: Usage of differential privacy & rappor.

(11]

[12]

https://groups.google.com/forum/#!topic/mozilla.governance/81gMQeMELOw.

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, 1. Mironov,
K. Talwar, and L. Zhang. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 308-318. ACM, 2016.

E. Adar, D. S. Weld, B. N. Bershad, and S. S. Gribble. Why we search:
visualizing and predicting user behavior. In Proceedings of the 16th
international conference on World Wide Web, pages 161-170. ACM,
2007.

R. Agrawal, R. Srikant, et al. Fast algorithms for mining association
rules. In Proc. 20th int. conf. very large data bases, VLDB, volume
1215, pages 487-499, 1994.

R. Bassily and A. Smith. Local, private, efficient protocols for succinct
histograms. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, pages 127-135. ACM, 2015.

R. Bassily, U. Stemmer, A. G. Thakurta, et al. Practical locally private
heavy hitters. In Advances in Neural Information Processing Systems,
pages 2285-2293, 2017.

R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Discovering frequent
patterns in sensitive data. In KDD, pages 503-512, 2010.

A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,
D. Lie, M. Rudominer, U. Kode, J. Tinnes, and B. Seefeld. Prochlo:
Strong privacy for analytics in the crowd. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 441-459. ACM,
2017.

S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets:
Generalizing association rules to correlations. In Acm Sigmod Record,
volume 26, pages 265-276. ACM, 1997.

M. Bun, J. Nelson, and U. Stemmer. Heavy hitters and the structure of
local privacy. arXiv preprint arXiv:1711.04740, 2017.

12

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

T.-H. H. Chan, M. Li, E. Shi, and W. Xu. Differentially private continual
monitoring of heavy hitters from distributed streams. In Privacy
Enhancing Technologies, volume 7384, pages 140—159. Springer, 2012.
B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data
privately. In Advances in Neural Information Processing Systems, pages
3574-3583, 2017.

J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and
statistical minimax rates. In FOCS, pages 429-438, 2013.

C. Dwork. Differential privacy. In ICALP, pages 1-12, 2006.

C. Dwork. A firm foundation for private data analysis. Commun. ACM,
54(1):86-95, 2011.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, pages 265-284, 2006.

C. Dwork and A. Roth. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science, 9(3-
4):211-407, 2014.

U. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized
aggregatable privacy-preserving ordinal response. In Proceedings of
the 2014 ACM SIGSAC conference on computer and communications
security, pages 1054-1067. ACM, 2014.

A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches
in privacy preserving data mining. In Proceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 211-222. ACM, 2003.

G. Fanti, V. Pihur, and U. Erlingsson. Building a rappor with the un-
known: Privacy-preserving learning of associations and data dictionaries.
Proceedings on Privacy Enhancing Technologies (PoPETS), issue 3,
2016, 2016.

J. Hsu, S. Khanna, and A. Roth. Distributed private heavy hitters. In
International Colloquium on Automata, Languages, and Programming,
pages 461-472. Springer, 2012.

K. Jdrvelin and J. Kekildinen. Cumulated gain-based evaluation of
ir techniques. ACM Transactions on Information Systems (TOIS),
20(4):422-446, 2002.

[23] N. Johnson, J. P. Near, and D. Song. Practical differential privacy for
sql queries using elastic sensitivity. arXiv preprint arXiv:1706.09479,
2017.

N. Li, M. Lyu, D. Su, and W. Yang. Differential Privacy: From Theory
to Practice. Synthesis Lectures on Information Security, Privacy, and
Trust. Morgan Claypool, 2016.

N. Li, W. Qardaji, and D. Su. On sampling, anonymization, and
differential privacy or, k-anonymization meets differential privacy. In
ASIACCS, 2012.

N. Li, W. H. Qardaji, D. Su, and J. Cao. Privbasis: Frequent itemset
mining with differential privacy. VLDB, 5(11):1340-1351, 2012.

N. Mishra and M. Sandler. Privacy via pseudorandom sketches. In Pro-
ceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 143—152. ACM, 2006.

T. T. Nguyén, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin.
Collecting and analyzing data from smart device users with local
differential privacy. arXiv preprint arXiv:1606.05053, 2016.

N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and
U. Erlingsson. Scalable private learning with pate. 2018.

Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren. Heavy hitter
estimation over set-valued data with local differential privacy. In CCS,
2016.

A. Smith, A. Thakurta, and J. Upadhyay. Is interaction necessary
for distributed private learning? In IEEE Symposium on Security and
Privacy, 2017.

J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang. Privacy loss in
apple’s implementation of differential privacy on macos 10.12. arXiv
preprint arXiv:1709.02753, 2017.

A. G. Thakurta, A. H. Vyrros, U. S. Vaishampayan, G. Kapoor,
J. Freudiger, V. R. Sridhar, and D. Davidson. Learning new words,
Mar. 14 2017. US Patent 9,594,741.

A. G. Thakurta, A. H. Vyrros, U. S. Vaishampayan, G. Kapoor,
J. Freudinger, V. V. Prakash, A. Legendre, and S. Duplinsky. Emoji
frequency detection and deep link frequency, July 11 2017. US Patent
9,705,908.

S. Vadhan. The complexity of differential privacy. In Tutorials on the
Foundations of Cryptography, pages 347-450. Springer, 2017.

T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private
protocols for frequency estimation. In USENIX'17: Proceedings of 26th
USENIX Security Symposium on USENIX Security Symposium. USENIX
Association, 2017.

T. Wang, N. Li, and S. Jha. Locally differentially private heavy hitter
identification. arXiv preprint arXiv:1708.06674, 2017.

S. L. Warner. Randomized response: A survey technique for eliminating
evasive answer bias. Journal of the American Statistical Association,
60(309):63-69, 1965.

C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private frequent
itemset mining. Proceedings of the VLDB Endowment, 6(1):25-36,
2012.

[24]
[25]

[26]

[27]
(28]

[29]

(30]
[31]
[32]
(33]

[34]

[35]

[36]

(371

[38]

[39]

APPENDIX
A. (¢,0)-LDP and Limited Amplification Effect

In (€,9)-LDP, the value § (which is typically very small)
has an intuitive interpretation of “failure” probability. That is,
with probability 1 — ¢, ¥ is e-LDP. When § = 0, (¢,0)-LDP
becomes e-LDP.

Definition 4 ((¢,) Local Differential Privacy). An algorithm
U satisfies (e, 0)-local differential privacy ((e,0)-LDP), where
€ >0, and 0 < § < 1 if and only if for any input vy,vo C I,
we have

VT C Range(U) : Pr[¥(vy) € T] < e Pr[¥(vy) € T| + 6,

where Range(V) denotes the set of all possible outputs of the
algorithm .

To apply the privacy amplification, one uses J to measure
the probability that failure (multiple values are hashed to the

same value) happens, and derive the corresponding ¢’ that OLH
can use. For example, when ¢ = 2, the probability both the
user’s items are hashed into the same value by the chosen hash
function is § = %, where g = [e€ +1] is the range of the hash
function. Under the condition the user’s items are hashed to
at least two results, OLH can be used with ¢ = In(2e€ — 1).

Theorem 5 ((¢, §)-LDP by OLH(€')). Wop(er)(PSe(-)) satis-
fies (€,0)-LDP, where € = In (Zﬁf ~(ef=1)+1), and ' is an
integer such that

¢ 1 5
0 r1) L (e — =
+ [4/ (ef — 1)+ 2]

That is, for any € > 0, any input v1,vo C I, and any set of
possible output T' C Range(Vpsro(r,GRR,e))

Pr [Wornen (PS(v1,¢)) € T

< e“Pr [Top(er) (PS(v2,£)) € T] + 6. (1D

Proof. To prove (11), it is equivalent to first prove that a
“failure” event, where more than ¢ items in v; are hashed
to the same value, happens with probability less than ¢, and
then prove that under the condition the “failure” event does
not happen, o) (PSe(-)) satisfies e-LDP.

Given that the hash function is chosen randomly, and the
hash family is random, bounding the “failure” probability is
equivalent to bounding the probability of throwing ¢ balls
randomly into g bins, and the max load is more than ¢'. The
probability can be calculated as follows:

Let E; , be the event that bin 7 contains more than a balls,
then

l 1
PriEid| = <a N 1) gor1

By union bound, we know that

5 =Pr U Eip| < Z Pr[E;] =

i€lg] @

l 1
Vi +1 gé’
where g = [e¢ + 1] =[£ - (e — 1) +2].
Now it suffices to prove that for any € > 0, any vi,vy C1,

any possible hash function H (such that at most ¢’ items are
hashed into the same value), and any ¢ € [g], %; < ef, where

p1 = Pr [Wornen (PSe(v1)) = (
P2 = Pr [Worn(e)(PSe(va)) = (

13

(a) Amplification of OLH with § = 10~3

Fig. 5.

We first upper bound p;,
p1 =Pr[H is picked] - Pr [Wgrr(e)(H(PSe(v1))) = t|H]

=Pr [H is picked] - (Pr [v is sampled A H(v) =t]p

+Pr[v is sampled A H(v) # t] q')
v
max{|vi|, 6} ©

| max{|val, €} — £ .q,)

max{|vy|, ¢}

<Pr[H is picked] - (

The equality holds when H (v) = t for all v;. Similarly, we
lower bound ps,

p2 =Pr [H is picked] - Pr [Wgrr(e) (H(PSe(v2))) = t|H]

=Pr[H is picked] - <Pr [v is sampled A H(v) =t]p

+Pr[v is sampled A H(v) # t] q’)
0 /

max{|vi|, ¢} 7
max{|vi], ¢}

¢) = Pr[H is picked] - ¢/
— R q) r[H is picked] - ¢

>Pr [H is picked] - (

The equality holds when none of the items from v, are
hashed to ¢ by H. Thus, we now bound f)—;:

P P 4 max{|vy|,¢} — ¢
p2 ~ ¢ max{|v1], ¢} max{|v1], ¢}
El p/
1L (E_4
T max{wil. 0 <q' >

/

§1+%-(eﬁ'—1)

o[
=14+—.(=.
*7 (zzf
The equality is achieved when H(v) = ¢ for all v; while
H(v) # t for all vs.

(66—1)+1—1>:e€.

O

(b) Amplification of OLH with § = 10—°

Privacy amplification effect for different £.

. ¢ 2 5 10 20 50 100
0.1 0.10 | 0.10 | 0.11 | 0.13 | 0.15 | 0.15
0.5 0.50 | 0.50 | 0.54 | 0.62 | 0.68 | 0.80
1.0 1.00 | 1.00 | 1.24 | 1.35 | 1.59 | 1.73
2.0 2.00 | 2.20 | 2.62 | 3.10 | 3.71 | 4.28
4.0 4.00 | 450 | 5.19 | 5.88 | 6.80 | 7.20
0.1 0.10 | 0.10 | 0.10 | 0.10 | 0.12 | 0.14
0.5 0.50 | 0.50 | 0.50 | 0.52 | 0.59 | 0.65
1.0 1.00 | 1.00 | 1.00 | 1.07 | 1.30 | 1.51
2.0 2.00 | 2.00 | 2.00 | 2.38 | 2,93 | 3.49
4.0 4.00 | 4.00 | 450 | 5.04 | 5.82 | 6.51

TABLE III

NUMERICAL VALUE OF € UNDER DIFFERENT € AND £. THE UPPER PART IS
FOR § = 103, AND THE LOWER PART IS FOR § = 1079,

The theorem above gives us the formula to calculate § and
¢’ for any ¢'. Therefore, if § is specified, we are able to come
up with the highest ¢'. Table III and Figure 5 give results of
¢ given € and /, under the condition & equals 10~3 and 1079,
respectively. We can see €’ > ¢, the difference becomes more
significant when e or ¢ is large. However, the increased amount
is less than that for GRR, as shown in Table II and Figure 1.

Note that however, the (e, §)-LDP notion is strictly weaker
(Iess secure) than e-LDP and thus not directly comparable
here.

B. Additional Results

Item Mining. We report experimental results of item mining
for the datasets of Kosarak, Online and Synthesize in Figures 6
and 7. We can see similar trends as that of Figure 3. Note that
performance on different dataset is slightly different, because
of different size, distribution, etc. Specifically, NCR and Var
are worse in the Kosarak dataset, than that on the others,
because the original domain is big (42 thousand, while the
others are 1 to 3 thousand). Overall, the proposed method
SVIM works persistently better than its competitors.

Itemset Mining. We also plot results for itemset mining in
Figure 8. Results for the synthetic dataset is not included be-
cause there is no frequent itemset (the items from the generator
are independent). For the others, we can still see similar trends
and that our proposed solution works persistently better.

ncr

(BLH,L),(SUE,2k)

t (OLH, 1),(Adap,2k) (BLH,L),(SUE,2k) + (OLH, 1),(Adap,2k)
(OLH,L),(OLH,2k) (— (OLH,1),(Adap,L) (OLH,L),(OLH,2k) (— (OLH,1),(Adap,L)
(OLH,1),(OLH,2k) A (OLH,1),(Adap,L)(c) (OLH,1),(OLH,2k) A (OLH,1),(Adap,L)(c)

10 ! |

ncr

(a) Kosarak, NCR, vary ¢, k = 64

(BLH,L),(SUE,2k)

(b) Kosarak, NCR vary k,e =2

t (OLH,1),(Adap,2k) (BLH,L),(SUE,2k) —+ (OLH,1),(Adap,2k)
(OLH,L),(OLH,2k) =} (OLH,1),(Adap,L) (OLH,L),(OLH,2k) =} (OLH,1),(Adap.L)
(OLH,1),(OLH,2k) —& (OLH, 1),(Adap,L)(c) (OLH,1),(OLH,2k) —& (OLH, 1),(Adap,L)(c)

ncr

(c) Online, NCR, vary €, k = 64

ncr

(BLH,L),(SUE,2k) }—+ (OLH, 1),(Adap,2k) (BLH,L),(SUE,2k) }—+ (OLH, 1),(Adap,2k)
(OLH,L),(OLH,2k) = (OLH,1),(Adap.L) (OLH,L),(OLH,2k) = (OLH,1),(Adap.L)
(OLH, 1),(OLH,2k) f—= (OLH, 1),(Adap,L)(c) A

(OLH, 1),(OLH,2K)

(OLH,1),(Adap,L)(c)

ncr

20 40

60
k

80 100

(e) Synthetic, NCR, vary ¢, k = 64

(f) Synthetic, NCR vary k,e = 2

Fig. 6. More results on singleton identification.

15

(BLH,L),(SUE,2k)

(OLH,L),(OLH,2k)

Jiind

(OLH,1),(OLH,2k)

(OLH, 1),(Adap,2k)
(OLH,1),(Adap,L)
(OLH, 1),(Adap,L)(c)

(BLH,L),(SUE,2k)

(OLH,L),(OLH.2k) —
(OLH,1),(OLH,2K) |—&

(OLH, 1),(Adap,2k)
(OLH,1),(Adap,L)
(OLH, 1),(Adap,L)(c)

20 40 60

80 100

k
(b) Kosarak, Var vary k,e¢ = 2

(a) Kosarak, Var, vary €, k = 64

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)

Jiind

(OLH,1),(Adap.2k)
(OLH,1),(Adap,L)
(OLH, 1),(Adap,L)(c)

(BLH,L),(SUE,2k)

1

t
(OLH,L),(OLH2k) —

2

(OLH,1),(OLH,2k)

(OLH,1),(Adap.2k)
(OLH,1),(Adap,L)
(OLH, 1),(Adap,L)(c)

(OLH,1),(OLH,2k)

(c) Online, Var, vary €,k = 64
(OLH, 1),(Adap,2k)
(OLH,1),(Adap.L)

(OLH, 1),(Adap,L)(c)

(BLH.L),(SUE,2k) +
(OLH,L),(OLH,2k) =
(OLH,1),(OLH,2k) f—&

(OLH,1),(Adap,2k)
(OLH, 1),(Adap,L)
(OLH,1),(Adap,L)(c) 1012

(BLH,L),(SUE,2k)
(OLH,L),(OLH,2k)
__(OLH,1),(OLH,2k)

r[0+

(f) Synthetic, Var vary k,e = 2

(e) Synthetic, Var, vary €, k = 64

Fig. 7. More results on singleton estimation.

16

ncr

ncr

SVSM(LDPMiner) —+—

SVSM(SVIM) 4

(a) Kosarak NCR, vary ¢,k = 64

SVSM(LDPMiner) —+— SVSM(SVIM) 4

(c) Online NCR, vary €,k = 64

SVSM(LDPMiner) —— SVSM(SVIM) =]

(e) Kosarak Var, vary €,k = 64

SVSM(SVIM) 53—+

SVSM(LDPMiner) —+—
|

(g) Online Var, vary €, k = 64

Fig. 8.

17

SVSM(LDPMiner) —+—

SVSM(SVIM) 4

ncr

0.0

| | | | |
20 40 60 80 100
k

(b) Kosarak NCR vary k, e = 2

SVSM(LDPMiner) —+— SVSM(SVIM) =

ncr

0.0

| | | | |
20 40 60 80 100
k

(d) Online NCR vary k,e = 2

1 SVSM(LDPMiner) —— SVSM(SVIM) =]

1=

var

]]]]]
20 40 60 80 100
k

(f) Kosarak Var, vary k,e = 2

SVSM(LDPMiner) —— SVSM(SVIM) =]

10"
10°
105 E—1 I I I I
20 40 60 80 100
k

(h) Online Var, vary k,e = 2

More results on itemset mining results for Kosarak dataset.

