The VLDB Journal (2018) 27:201-223
https://doi.org/10.1007/500778-017-0492-3

REGULAR PAPER

@ CrossMark

PrivPfC: differentially private data publication for classification

Dong Su'® - Jianneng Cao? - Ninghui Li' - Min Lyu3

Received: 25 September 2016 / Revised: 19 November 2017 / Accepted: 14 December 2017 / Published online: 2 February 2018

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

In this paper, we tackle the problem of constructing a differentially private synopsis for the classification analysis. Several
state-of-the-art methods follow the structure of existing classification algorithms and are all iterative, which is suboptimal
due to the locally optimal choices and division of the privacy budget among many sequentially composed steps. We propose
PrivPfC, a new differentially private method for releasing data for classification. The key idea underlying PrivPfC is to
privately select, in a single step, a grid, which partitions the data domain into a number of cells. This selection is done by
using the exponential mechanism with a novel quality function, which maximizes the expected number of correctly classified
records by a histogram classifier. PrivPfC supports both the binary classification and the multiclass classification. Through
extensive experiments on real datasets, we demonstrate PrivPfC’s superiority over the state-of-the-art methods.

Keywords Differential privacy - Classification - Privacy preserving data publishing

1 Introduction

Classification is an important tool for data analysis. How-
ever, publishing parameters of a classifier learned from a
dataset can result in privacy concerns [12,13]. One way
to deal with the privacy concerns is to conduct classifica-
tion while satisfying differential privacy [11]. Differentially
private algorithms work by injecting randomness into the
computation of summary statistics which are computed from
the underlying sensitive data, which makes the distribution
of the noisy results being relatively insensitive to any single
record change in the original dataset. This ensures that the
adversary cannot infer the membership information of any
particular record with high confidence (controlled by param-
eter €), even if he/she has complete knowledge of all other

B Dong Su
sul7@cs.purdue.edu

Jianneng Cao
caojn@i2r.a-star.edu.sg

Ninghui Li
ninghui @cs.purdue.edu

Min Lyu
lvmin05 @ustc.edu.cn
1" Purdue University, West Lafayette, IN, USA
Institute for Infocomm Research, Singapore, Singapore

University of Science and Technology of China, Hefei, China

records of the dataset [11,30]. On the other hand, the noisy
results should be close to the unperturbed ones in order to
be useful in practice. Therefore, the goal of a differentially
private data classification mechanism is to maximize clas-
sification accuracy, while satisfying the privacy guarantees.
Several approaches for learning classifiers while satisfying
differential privacy have been proposed in recent years. Some
methods compute a classifier as the output [4,6,7,14,19,37].
Other methods [26,34,38] publish a synopsis of the dataset,
often in the form of a noisy histogram, so that synthetic
datasets can be generated and classifiers can be learned from
these synthetic datasets. Publishing a synopsis enables addi-
tional exploratory and predictive data analysis tasks to be
performed and can be argued to be more preferred.
Publishing noisy histograms for one-dimensional or two-
dimensional datasets has been studied extensively in recent
years, see [17] for a recent survey. However, as observed in
[28,34], these approaches do not work well when the number
of attributes/dimensions goes above a few. Many datasets that
are of interest have multiple attributes. For a multi-attribute
dataset with more than a dozen or so attributes, publishing a
histogram with all the attributes results in a sparse histogram
where noises may overwhelm the true counts. Therefore, it
is necessary to select a subset of the attributes that are “use-
ful” for the intended data analysis tasks, and to determine
how to discretize the attributes. These selections partition the
domain into a number of cells. We call the result a “grid.”

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0492-3&domain=pdf
http://orcid.org/0000-0002-1410-2468

202

D.Suetal.

Once a grid is selected, the next step is straightforward: one
adds Laplace noises [11] to the cell counts to produce a noisy
histogram.

Thus, the key design choice in algorithms for publishing
noisy histograms is how to select a suitable grid. Publishing a
histogram is similar to performing generalization for the pur-
pose of achieving k-anonymization, since the exact attribute
values for records within a cell no longer matter, and only
the cell boundary and the number of records in a cell matter.
A key challenge studied in research on k-anonymization was
also how to find a high-quality grid [2,21,22]. However, these
proposed methods for k-anonymization have been found to
be vulnerable to attacks exploiting background information,
e.g., the minimality attack [8,35]. Fortunately, an approach to
select a grid while satisfying differential privacy, as proposed
in this paper, can help to defend against these attacks [10,11].

In this paper we propose the Private Publication for
Classification (PrivPfC), a differentially private method for
publishing projected histograms for classification. On the
key decision of how to select a grid, PrivPfC differs from
previous approaches in that it selects a high-quality grid in
a single step, whereas previous approaches use an iterative
process and as a consequence suffer from two weaknesses.
First, an iterative process has to divide the privacy budget
among all the iterations, causing the choice made in each
iteration to have significant noise. Second, an iterative pro-
cess is a greedy process and tends to result in a suboptimal
global choice even without considering noises.

The exponential mechanism [24] enables the private selec-
tion of a grid in a single step. However, there are a number of
challenges to use it effectively. One needs to generate a pool
of candidate grids that include the high-quality grids, with-
out making the candidate pool too large, which affects both
running time and accuracy. Furthermore, one needs a quality
function that can effectively identify high-quality grids and
simultaneously has a low sensitivity.

From the perspective of classification which maps the
set of feature attributes into the class attribute, PrivPfC can
be seen as projecting the full set of feature attributes onto
a small number of selected informative attributes that are
highly correlated with the response attribute. Since for rela-
tional data the number of informative attributes is always
not large, PrivPfC can identify most of them and construct
histogram to summarize data distribution with high utility
for classification. Since PrivPfC does not rely on any exist-
ing classification algorithm to work, the data published by
our PrivPfC method can be used for performing all existing
classification tasks.

The first contribution of this paper is PrivPfC, an algorithm
for privately publishing noisy histograms optimized for clas-
sification. PrivPfC has two novel ideas. One is a method to
enumerate through candidate grids when given a cap on how
many grids the algorithm is allowed to consider. And the

@ Springer

other one is a new quality function that enables the selec-
tion of a high-quality “grid”. This quality function considers
the impact of injected noises on the classification accuracy,
adapts to the privacy parameter € and has a low sensitivity.

Our second contribution is that, through extensive exper-
iments on real datasets, we have compared PrivPfC against
other state-of-the-art methods for data publishing as well as
private classification, demonstrating that PrivPfC improves
the state-of-the-art. We also analyze variants of competing
algorithms, showing that their weaknesses come from the
iterative structure of their algorithms. We note that the fact
that PrivPfC outperforms state-of-the-art algorithms specif-
ically designed for privately publishing classifiers is quite
counter-intuitive. PrivPfC publishes a histogram, which con-
tains more information than a classifier; thus, one would
expect the classifiers it produces are less accurate. Experi-
mental results demonstrate otherwise. We believe this points
to the possibility of designing better private classification
algorithms by using as few steps as possible, avoiding spread-
ing the privacy budget too thin.

The rest of the paper is organized as follows. In Sect. 2,
we give preliminary information about differential privacy.
Related works are summarized in Sect. 3. Our PrivPfC
approach is presented in Sect. 4. The experimental results
are shown in Sect. 5. Section 6 concludes our work.

2 Background

Definition 1 (e-differential privacy [10,11]) A randomized
mechanism A gives e-differential privacy, if for any pair of
neighboring datasets D and D’ and any S € Range(A),

PrlA(D) = S] < e - Pr[AD) = 5].

In this paper we consider 2 datasets D and D’ to be neigh-
bors if and only if either D = D’ +r or D’ = D + 1, where
D + t denotes the dataset resulted from adding the tuple 7 to
the dataset D. We use D >~ D’ to denote this.

There are several primitives for satisfying e-differential
privacy. In this paper we use two of them, Laplace mecha-
nism [11] and exponential mechanism [24].

Given an analysis task f which tasks the dataset as the
input and outputs a numerical value, the Laplace mecha-
nism perturbs f’s output with random noise drawn from the
Laplace distribution with the scale parameter proportional to
A ¢, the global sensitivity of the function f. Specifically, we
use Laplace mechanism A ¢ to compute f on a dataset D in
a differentially private way, where:

A
Ap(D) = f(D) + Lap (f) ,

€

PrivPfC: differentially private data publication for classification

203

where Ay = maxp~p' | f(D)—f(D’)|,and Pr[Lap (B) = x]
= zLe—IX\/ﬂ'

In the above, Lap (8) denotes a random variable sampled
from the zero mean Laplace distribution with scale parameter
B.

While the Laplace mechanism provides a solution to han-
dle tasks with numerical outputs, it cannot be applied to
those with non-numeric value outputs. This motivates the
development of the exponential mechanism [24], which can
be applied whether a function’s output is numerical or cate-
gorical. The exponential mechanism releases a differentially
private version of the task f, by sampling from f’s out-
put domain O. The sampling probability for each output
o € O is determined based on a user-specified quality func-
tion g : D x O — R that assigns a real valued score to one
output 0 € O when the input dataset is D, where higher
scores indicate more desirable outputs. Given the quality
function ¢, its global sensitivity A, is defined as:

A, = max max |g(D, 0) — q(D’, 0)|.
g =max max |q(D,0) —q (D", 0)]
The following method satisfies e-differential privacy:

Pr[r is selected] e(mq“’m).

Differential privacy is sequentially composable in the
sense that combining multiple mechanisms Ay, ..., A, that
satisfy differential privacy for €, ..., €, results in a mecha-
nism that satisfies e-differential privacy fore =) ; ¢;. When
a task involves multiple steps, each step uses a portion of €
so that the sum of these portions is no more than €. Differen-
tial privacy is also parallel composable. Suppose the data are
partitioned into m arbitrary disjoint subsets, and mechanism
A; is executed on the i’th subset. The parallel execution of
A, ..., A, satisfies max; (¢;)-differential privacy.

3 Related work

Classification is typically formulated as an optimization
problem. We use D to denote the input dataset, w to denote the
model parameter, ™ to denote the desired model parameter,
and J(D, w) to denote the objective function to be mini-
mized. That is, we want to output * = argmin, J (D, w).
We now discuss techniques that have been developed to per-
form such optimization tasks while satisfying DP.

3.1 Output perturbation
One natural method is to directly perturb the output of the

optimization problem. This requires analyzing the sensi-
tivity of the optimization problem; that is, how much w*

changes when the input dataset D changes by one tuple.
Unfortunately, the sensitivities of the optimization problems
for classification tasks such as logistic regression and SVM
tend to be so high that such output perturbation destroys util-
ity [6,7].

3.2 Objective perturbation

An interesting approach, first introduced in [6], is to perturb
the optimization objective function so that solving it results
in a private solution. We now discuss two such techniques.
Adding a Linear Noise Term to the Optimization Objective
Function. Chaudhuri et al. [6,7] proposed to generate a vector
of Gamma noises and add the inner product of this vector and
the model parameter w to the optimization objective function.
Specifically, the original objective function is,

|D|
1
J(D, w) = ﬁZLw(x,») + he(),
i=1

where D is the dataset, x; is the i ’th pointin D, | D| is the size
of D, w is the model parameter, L, (x;) defines the loss of
the model with parameter w on the data point x;, c(w) is the
regularizer to prevent over-fitting and A is the regularization
parameter to control the degree of regularization. Assuming
that both L, (x;) and c(w) are strictly convex and everywhere
differentiable for w, then the perturbed objective function is

T

" . b'w
J (D,w)_J(D,w)—i—m,

where b is a random vector sampled from the Gamma dis-
2

tribution with shape parameter d and rate parameter Dl
Chaudhuri et al. [6,7] showed that solving argmin,, J*(D,)
satisfies e-DP for both logistic regression and SVM.
The functional mechanism Zhang et al. [39] proposed to per-
turb the objective function by first approximating it using
a polynomial, and then perturbing every coefficient of the
polynomial. The number of coefficients depends on both the
number of attributes and the degree of the polynomial.
When applied to linear regression, the scale of Laplace
noise is 2(1 4+ 2d + d?), where d is the number of dimen-
sions of the dataset D. Note that this sensitivity becomes very
large as d increases. Adding noises with this magnitude to
every coefficient, and then optimizing for that objective func-
tion result in poor performances. For other regression tasks,
e.g., logistic regression, where the objective function is not
a polynomial with finite order, Zhang et al. [39] proposed to
use the first two terms of Taylor expansion to approximate
this kind of objective function.

@ Springer

204

D.Suetal.

3.3 Make an existing algorithm private

Another approach for differentially private optimization is to
take a non-private optimization algorithm, and to apply the
Laplace mechanism or the exponential mechanism to ensure
that every step is private. Often times, one takes an itera-
tive algorithm for an optimization task, and then makes each
iteration private.

DiffPID3: differential private ID3 algorithm for decision tree
classification In [4], the algorithm for constructing an ID3
decision tree classifier is made differentially private. When
the ID3 algorithm needs to get the number of records with
a specific feature value, it queries the SuLQ interface to
get the corresponding noise count. The DiffPID3 algorithm
in [14] improved this approach by redesigning the classic ID3
classifier construction algorithm to use an attribute quality
function that has low sensitivity. Specifically, the DiffPID3
algorithm starts with the most general partition of the under-
lying dataset. Then, the algorithm chooses the attribute that
maximizes the purity metrics (e.g., information gain or Gini
index) by using the exponential mechanism. Next, the algo-
rithm splits the dataset with the selected attribute. The same
process is applied recursively on each subset of the dataset
until there is no further split that improve the purity. In [14],
DiffPC-4.5 is proposed as the extension of DiffPID3 to sup-
port continuous attributes and pruning.

3.4 lterative local search via the exponential
mechanism

The third approach is to iteratively apply the exponential
mechanism to conduct a local search for the optimal model
parameter w*. In order to do this, one has to generate a can-
didate set, e.g., by generating multiple perturbations of the
current model parameter w, and then select among the set in
a private fashion.

PrivGene: differentially private model fitting using genetic
algorithms PrivGene [38] is a general-purpose differentially
private model fitting framework based on genetic algorithms.
It initializes a candidate set of possible parameters w and
iteratively refines them by mimicking the process of natural
evolution. Specifically, in each iteration, PrivGene selects m’
parameters from the candidate set and generates from them
offsprings by crossover and mutation. The selection is done
by using the exponential mechanism with the fitting function
of the target model as the quality function. The fitting func-
tion measures how well the model with the parameter fits the
dataset. Then, it creates a new parameter set, which includes
all the offsprings. At the last iteration, a single parameter is

@ Springer

selected and outputted as the final result. PrivGene is applied
to logistic regression, SVM, and k-means clustering.

PrivLocal: iterative local search A more effective local
search algorithm was developed using ideas from the Priv-
Gene paper [38], but does not use features of genetic
programming. The algorithm is implemented in the code
accompanying the PrivGene paper [38], even though the
algorithm did not appear in the paper. Since this algorithm
has not appeared in any publication so far, we present it in
Algorithm 1.

Algorithm 1 PrivLocal

INPUT D: Dataset, d: number of dimensions of D, J: objective func-
tion, €: privacy parameter, r: number of iterations, wy: initial parameter,
s: perturbation increment (default value: 0.5), 8 < 1: scaling parameter
(default value: 0.95)

Output w: selected parameter

w <—
e «—¢/r > Privacy budget for each iteration
fori =1tordo

Q <« {} > Initialize candidate pool

for j € {l..d} do
o' < w with j’s attribute + s
®? < w with s attribute — s
Q <« QU{w', w?}
for j =1 — |Q]do
q < J(D, Q) > Use value of objective function as the quality
¢/

pj < e?A > Ay is the global sensitivity of the objective
function J
< sample ; with prob S5
s <«s-pB
return o

This algorithm has several interesting ideas. Each round,
it uses the exponential mechanism to select a parameter
resulted from a single local perturbation that improves the
current solution. Compared with PrivGene, which selects
multiple candidates (for the purpose of using crossovers to
generate the pool of candidates), this means that more pri-
vacy budget can be used in each selection. Since only one
candidate is selected, there is no crossover. The mutation
step takes the form of perturbing the coefficient in a single
dimension. That is, each iteration can be viewed as moving
along one dimension toward a potentially better parameter.
Finally, the perturbation increment s exponentially decays so
that the amount of changes decreases. This makes sense as
when one starts to converge to the optimal parameter, smaller
adjustments are needed.

3.5 Histograms optimized for optimization

Approaches that are most closely related to our proposed
method publish a synopsis of the dataset in the form of a
noisy histogram, so that synthetic datasets can be generated

PrivPfC: differentially private data publication for classification

205

and optimizers can be learned from these synthetic datasets.
Publishing a synopsis enables additional exploratory and pre-
dictive data analysis tasks to be performed, and can be argued
to be more preferred.

Low-dimensional datasets with numerical attributes Lei [23]
proposed a scheme to partition the data space into M equal-
width grid cells and then publish noisy counts in each cell.
It suggestzsd to choose the number of cells to be M =

(L) 2+d, where N is the dataset size and d is the num-

Viog N
ber of dimensions. This approach does not depend on the
privacy parameter €. Qardaji et al. [27] proposed Uniform
Griding (UG) for two-dimensional datasets with numerical
attributes. UG partitions the space into M = % of cells. Su

et al. [31,32] extended UG to higher-dimensional case, and
2d
Ney 2L
set M = (55)7.

DiffGen: differentially private anonymization based on gen-
eralization Mohammed et al. [26] proposed DiffGen to
publish histograms for classification under differential pri-
vacy. It consists of 2 steps, partition and perturbation. Given a
dataset D and taxonomy trees for each predictor attribute, the
partition step starts by generalizing all attributes’ values into
the topmost nodes in their taxonomy trees. It then iteratively
selects one attribute’s taxonomy tree node at a time for spe-
cialization by using the exponential mechanism. The quality
of each candidate specialization is based on the heuristics
used by the decision tree constructions, such as information
gain and majority class. The partition step terminates after a
given number of specializations. The perturbation step injects
Laplace noise into each cell of the partition and outputs all
the cells with their noisy counts as the noisy synopsis of the
data. Privacy budget needs to be evenly distributed to all the
specialization steps.

PPH: private projected histogram Vinterbo [34] proposed
another data publishing algorithm, called Private Projected
Histogram (PPH). PPH first decides how many attributes
are to be selected, then incrementally selects attributes via
the exponential mechanism to maximize the discernibility of
the selected attributes. For each categorical attribute, the full
domain is used. For numerical attribute, it uses the formula
proposed in [23] to decide how many bins to discretize them.
In this method, the number of attributes and how attributes
are partitioned are independent of the privacy budget.

PrivBayes: private data release via Bayesian networks
Zhang et al. [37] proposed PrivBayes, which publishes a
noisy Bayesian network that approximates the data distri-
bution by several low-dimensional marginals (histograms).
PrivBayes determines the structure of a Bayesian network
by first randomly selecting an attribute as the first node, and
then iteratively selecting another attribute to create a new
node with up to k nodes already created as the new node’s

parent nodes. After the structure is determined, PrivBayes
perturbs the marginals needed for computing the conditional
distributions of the data.

4 PrivPfC Framework

In this section, we present PrivPfC, an algorithm for privately
publishing noisy histograms optimized for classification. The
main idea of PrivPfC is simple: it uses a single step to pri-
vately select a grid which partitions the data domain into
a number of cells. It then injects noises to the histogram
defined by the selected grid and finally releases the noisy his-
togram. The key point underlying PrivPfC is how to design
a quality function which is used by the exponential mech-
anism to select a good grid. The quality should satisfy the
following design goals: (1) quality score should measure the
closeness of a classifier learned from a noisy histogram gen-
erated using the grid and a classifier learned from the original
data; (2) it should consider the impact of injected noises on
the classification accuracy; (3) it should support both binary
classification and multiclass classification; (4) it should not
rely on any particular classification algorithm. We propose a
novel quality function whose quality score is defined by the
expected number of correctly classified records by a noisy
histogram classifier. And we show that this quality function
meets the above design goals.

We consider a dataset with a set of predictor variables and
one response variable. The predictor variables can be numer-
ical or categorical. Following [2,15,18,26], for each predictor
variable A;, we assume the existence of a taxonomy hierar-
chy (also called a generalization hierarchy in the literature).
Fig. 1 shows the taxonomy hierarchies for Relationship, a cat-
egorical variable and Education-num, a numerical variable.
In a hierarchy, the root node represents the whole domain of
the variable, and a parent node is a generalization (or a cover)
of its children. Child nodes under the same parent node are
semantically closer to each other than to nodes under a dif-
ferent parent node.

Each level of a predictor variable’s taxonomy hierarchy
forms a partition of its domain. On the basis of the taxonomy
hierarchy and its levels, we introduce the notion of a grid.

Definition2 (Grid) Let A = {A1, ..., Ag} be the set of pre-
dictor variables in a dataset and T = {71, ..., Ty} be their
taxonomy hierarchies, respectively. Then, a grid g is defined
by the level used in each predictor variable. Specifically,
g = (£1,...,Lg), where ¢; is the index of used level in T;,
1 <¥¢; < hjandh; betheheightof 7;,1 < i < d.Suchagrid
g defines a partitioning of the data domain into cells where
each predictor variable A; is partitioned into the values at
level ¢; in the hierarchy 7;. The set of the cells in the grid g is
denoted by C, 1. In the following, we will abuse notation and

@ Springer

206 D.Suetal.
Relationship Education-num
Levelol =« v cvomme e e ANY o 1-20
\ [| \ \ | \
Level-2 -« cvvevennn In-f1mi|y ~~~~~~~~~ Not-in‘-family Other-relative Unmz?rried ------ 1-10 - v v 10-20
| | | ‘ l—‘ﬁ !—‘—\
Level-3 -« - - Wife Husband Own-child Not—in;family Other-relative Unmarried - -- 15 -..- 5-10 ---- 10-15 ---- 15-20

Fig.1 Taxonomy hierarchies of Relationship attribute and Education-num attribute

write C, as shorthand for the set of the cells in g. The size of g
is the number of cells in C,, size(g) = |Cq| = 1'[1‘.121 |T; 1111,
where |T;[l;]] is the number of nodes in the level /; of the
hierarchy 7;. And the number of all possible grids is Hflzlh i

Example 1 For two taxonomy hierarchies of the Relation-
ship attribute and Education-num attribute (see Fig. 1), we
can constructa grid g = (2, 3), which means that the grid g is
defined by the 2nd level of the Relationship hierarchy and the
3rd level of the Education-num hierarchy. The full represen-
tation of the grid is {In-family, Not-in-Family, Other-relative,
Unmarried} x {1-5, 6-10, 11-15, 16-20}. And the size of
g is size(g) = 4 x 4 = 16. The number of all possible grids
is 3 x 3 = 9 since the heights of two taxonomy hierarchies
are both 3.

Definition 3 (Histogram) Given a dataset D and a grid g, a
histogram H(D, g) partitions D into cells according to g, and
in each cell outputs the number of records for each value of
the response variable.

PrivPfC publishes H(D, g), a noisy histogram of the input
dataset D, which adds Laplace noise into the counts in the
histogram H(D, g). The key challenge lies in selecting a suit-
able grid g. Our approach is to define a quality score for each
grid, which measures the usefulness for classification of each
grid, and apply the exponential mechanism to privately select
a grid.

4.1 The quality function

The quality function needs to satisfy the following condi-
tions. First, it needs to accurately measure the desirability of
using a particular grid g. Second, it should have a low sen-
sitivity. Intuitively, we want to ensure that classifiers learned
from H(D, g), a noisy histogram of D using g to partition the
data domain, are close to classifiers learned from D directly.
Furthermore, we desire this to hold regardless of which par-
ticular classification algorithm is used and to hold for both
the binary classification and the multiclass classification.
We propose to define the quality function to maximize the
number of records in D that are classified correctly by the
following classifier: for each cell in the grid defined by g,

@ Springer

it predicts the class with the highest count according to the
noisy histogram H(D, g). This classifier is in the same spirit
as histogram classifiers [9], and we use HC"(?-#) to denote it.
When a grid g is fixed, the noisy histogram includes random
noises; therefore, the number of correctly classified records is
arandom variable. We use the expected value of this random
variable as the quality function. Therefore, the quality of the
grid g can be defined as:

Definition 4 (Grid quality) Given adataset D with k different
class labels, L. = {1, 2, ..., k}, a grid g and € for the param-
eter of adding Laplace noise to the counts, the grid quality
is measured by the expected number of correctly classified
records of the histogram classifier HC™(?-8):

k
ga(D,g) =y » nl-pl, (1)

ceCy i=1

where i € L ranges over the class labels, n’c is the number
of data points in the cell ¢ with class label i, and p. is the
probability that class i is the dominant class in cell ¢ (i.e.,
with the highest noise count) after injecting Laplace noises.
The probability pé is given below:

pé =Pr [Class i is the dominant class after adding noise]

=Pr |:nlc +Z; > max (ng + Zj):|

JjeL/{i}
)) .

/ (Pr[n’C+Zi:x:| l_[Pr[n£+Zj<x]) dx
o JeL/tiy

[I re-h)os o

JeL/{i}

where Z; is the Laplace noise added to class i’s count, and
f(-)and F (-) are, respectively, the probabilistic density func-
tion and the cumulative distribution function of the Laplace
distribution Lap(1/€). The probability pf. depends on €, the
privacy budget for perturbation, and on the counts of every
classes in the cell c.

Intuitively, since the grid quality function gq (Eq. 1)
counts number of records, it should have a low sensitivity,

PrivPfC: differentially private data publication for classification

207

since adding or removing a record affects only one of the
counts, and changes the count by just 1. However, changing
the counts also affects the probabilities. Thus, analyzing the
sensitivity of the quality function is quite non-trivial.

4.2 Sensitivity in the binary classification case
We first study the sensitivity of the grid quality (Eq. 1) in the
special case where the response variable is binary.

Lemma1 (Grid quality for binary classification) Given a
dataset D with class labels 1. = {1, 2}, the global sensitivity
of the quality function gq is bounded by 1.1.

More specifically, for each € value, the sensitivity is given
by

Agqle) = xe{rln% K Se(x), 3)

where

Je(x) =

emc—h e(x—1)
“‘”'(T(”T)

—€X

S () (- 049)

’

“

The global maximum points for f.(x), where x ranges over
all positive real number, are given below.

. €€+ /2 — (4 —2¢€) e + €2ef
x* = .
—€ + €e€

The proof is deferred to the “Appendix” section. Lemma 1
enables us to compute the sensitivity of the quality function
for each € value used for adding noises. Figure 2 shows the
calculated sensitivity for 700 different € values in the range of

1.2

11

1.0t

09+

Agq

0.8+

0.7+

0.6

0.5

Perturbation budget, €

Fig.2 Tllustration of the sensitivity of grid quality (Eq. 3)

0.00001 to 100. We note that each time one invokes PrivP{C,
the € value is fixed and one can thus compute the sensitivity to
be used in the exponential mechanism. Using this instead of
1.1 slightly improves the utility, while satisfying differential
privacy.

4.3 The sensitivity of grid quality in the multiclass
classification case

For the general multiclass classification case, where there
are more than 2 class labels, deriving an analytical formula
similar to Lemma 1 is challenging. Recall that the noisy his-
togram classifier determines the class label of each cell by
ranking all classes according to their noisy counts. The grid
quality (Eq. 1) models the process by computing the proba-
bility that each class is ranked first after adding noises to each
cell. However, since k independent Laplace random variables
are involved in this ranking process, getting the closed form
of the density of the joint distribution is very challenging.
To get a function for the multiclass case whose global sen-
sitivity is easy to bound, we propose a simple and effective
approximation of the grid quality (Eq. 5) which for each cell
considers only the two classes with the highest counts in that
cell.

Definition 5 (Approximation of grid quality) Given a dataset
D with class labels L = {1, 2, ..., k}, where k > 2, a grid
g and € for the parameter of adding Laplacian noises to the
counts, the grid quality is

ga(D,g) = > _n - pV 4@ . p®,)
ceCy
where ngl) and n£2) are the highest class count and the second

highest count in the cell ¢ respectively, pgw is the probability
that ngl) +Zuy = ngz) + Z2) and péz) =1- pgl).

We experimentally study the correlation between the grid
quality function (Eq. 1) and its approximation (Eq. 5) over 4
multiclass real datasets (Adult-Multiclass, Bank-Multiclass,
US-Multiclass, BR-Multiclass) and 5 privacy budgets (0.05,
0.1, 0.2, 0.5, 1.0), 20 cases in total. For each of cases, we
generate 10K candidate grids and compute their grid qual-
ity scores by both the grid quality function (Eq. 1) and its
approximation (Eq. 5). Figure 3 is the scatterplot of these
grid quality scores. We also plot the linear least square fit
line to show the tend of the point distribution. Over the 20
cases, the average Pearson correlation coefficient between the
grid quality measure (Eq. 1) and its approximation (Eq. 5)
is 0.936 with standard deviation 0.026. Therefore, we can
see that the simplified multiclass quality function (Eq. (5) is
highly correlated with the original one and can well represent
the grid quality in multiclass setting.

@ Springer

208

D.Suetal.

50000

450001

400001

350001

Approximation Eq.(5)

300001

250 L L L L L L
00000 20000 25000 30000 35000 40000 45000 50000
Grid Quality Eqg.(1)

Fig. 3 Scatterplot to illustrate the correlation between grid quality
scores computed by grid quality (Eq. 1) and its approximation (Eq. 5)
The red line is the linear least square fit for all the points to represent
the trend. Average Pearson correlation coefficient is 0.936 with standard
deviation 0.026

Lemma2 For any € > 0, the global sensitivity of the
approximation of the grid quality function for multiclass clas-
sification (Eq. 5) is bounded by 1.1, that is, Agq < 1.1.

The proof is deferred to the “Appendix” section.
4.4 Candidate grids enumeration

PrivPfC takes as input &, the maximum number of candidate
grids, and generates a pool of at most @ candidate grids. We
also limit the number of cells in each candidate grid, to pre-
vent the average counts in grid cells from being dominated by
the injected noises. More specifically, we limit the maximum
allowed number of cells in any candidate grid g to be

T = 0.2Neper, (©6)

where €y is the privacy budget reserved for adding Laplace
noises to the histogram, and Nisa noisy estimate of the total
number of records. The threshold 7 is computed by assuming
that tuples in the given dataset are of uniform distribution.

Then, on average the number of tuples in a cell is equal to
N 1
- LetlLap P
cells, where €pert is the privacy budget used to generate the
perturbation noises. We require that the noise-to-signal ratio

to be less than 20%, that is

1
oo ()
€pert

Since E HLap(1)H = ﬁ, we can set the grid size

€pert

threshold, 7, to be 0.2Ne.

) be the variable of Laplace noises added to

N
-, 7
T

]520%-

@ Springer

This ensures that the average noise magnitude is no more
than the 20% of the average cell count. This non-dominating
rule has been used in several differentially private data pub-
lishing works [27,37].

PrivPfC generates candidate grids by a level-wise search.
It starts from the most general grid, (1, 1, ..., 1), where the
whole domain is a single cell, and first generates L, the list
of all grids that have a single attribute going beyond the top
level, then generates Lo, the list of all grids that have exactly
two attributes going beyond the top level, and so on. It will
include a grid as a candidate only when the grid includes no
more than t cells. It stops when either it has included all grids
with no more than t cells, or it has included ® grids.

The choice of ® depends on the amount of computing
resources one is willing to spend. When @ is too large, one
runs out of candidate grids that have at most t cells, and
increasing ®@ further would not increase the size of the pool.

4.5 Putting things together for PrivPfC

Now we are able to put all the pieces together for the PrivPfC
method. The algorithm is given in Algorithm 2. PrivPfC
takes as inputs D (dataset), T (set of taxonomy hierarchies
of predictor variables), € (total privacy budget) and @ (max-
imum gird pool size). It returns a noisy histogram which can
be used to synthetically generate dataset for classification.
PrivPfC has three main steps: (1) Enumerate candidate grids
(Line 5); (2) Privately select grid (Line 6); (3) Publish noisy
counts (Line 7). Before these steps, it computes the noisy
version of dataset size and uses it to compute the grid size
threshold according to Eq. 6. We divide the privacy budget
into three portions: (1) 3%e is used to privately estimate the
dataset size, (2) 37%e is used for selecting grid (Function
selectGrid) and (3) 60%e is used for publishing noisy counts
(Function perturbHistogram). The enumeration step does
not access the dataset D and does not consume any privacy
budget. The rationale behind this privacy budget allocation
is threefold: (1) The noisy dataset size is used for computing
grid size threshold which does not need to be very accurate
and can tolerate changes within a large range, e.g., one order
of magnitude. Therefore, we only need to allocate a small por-
tion of privacy budget to get the noisy dataset size; (2) there
are always a couple of high-quality grids among all gener-
ated candidate grids. Selecting any of them can offer good
enough classification accuracy. Therefore, this grid selection
step does not need large amount of privacy budget; (3) the
injected noises for perturbing histogram directly affect the
quality of the data and allocating more privacy budget can
directly boost the classification accuracy. The privacy bud-
getallocation is the hyperparameter of the PrivPfC algorithm.
The current configuration was not finely tuned and may not
be optimal. The optimal privacy budget allocation depends
on characteristics of the dataset D, the generated grid candi-

PrivPfC: differentially private data publication for classification

209

Algorithm 2 PrivPfC: Differentially Private Data Publication for Classification

Input: D: dataset, T: set of taxonomy hierarchies of predictor vari-
ables, e: total privacy budget, @: maximum grid pool size.

Algorithmic Parameters: aize + otsel + dpert = 1 decides what pro-
portions of the privacy budget are allocated to the different steps. We
use agize = 0.03, ap = 0.37, a3 = 0.6.

: function PrivPfC(D, T, ¢, ®)

: €size < lgize€, €sel <~ Usel€, €pert < Opert€
N < D+ Lap(1/esie)
T «20% - N - €pert

1

2

3 > Noisy estimation of dataset size
4:

5: G <« Enumerate(T, O, 1)

6‘

7

8

> Grid size threshold

g < selectGrid(D, G, €g1)
H <« perturbHistogram(D, T, g, €pert)
: return H
9: end function

10: function selectGrid(D, G, €ge])
11: fori=1— |G| do

12: q < 99(G;) > Compute the grid quality for the i’th grid G;,
gq is defined in Eq. (1) and Eq. (5)
13: Di < Pl B Agq is bounded by 1.1 by Lemma 1 and 2

Di

14: g < sample G; with prob S

15: return g
16: end function

17: function perturbHistogram(D, T, g, epeﬂ)

18: H < Initialize(g, T)

19: Given grid g and taxonomy hierarchies T, generate list of cells,
Cg, defined by grid the g

20: for eachcell ¢ € C; do

21: for each class label j do

22: H(c, j) < [count(D, c, j) + Lap(1/€per) |

23: return H

24: end function

25: function Enumerate(T, @, 1)
26: Lo < {{1,1,...,1)}

27: count <0

28: fork=0— |T|—1do

29: Liy1 < {} > List of grid with k + 1 attributes
30: for each grid g € Ly do
31: for j =1— |T|do
32: if g; = 1then o If the j’th attribute of grid g has not
been generalized
33: for i =2 — height(T;) do
34: new_g = clone(g)
35: new_g;j =1i
36: if size(new_g) < v then
37: Liy1 = Lgy1 U {new_g}
38: count <— count + 1
39: if count > © then go to 41
40: if Ly11 == {} then go to 41
7|

41: return |J L;
j=1
42: end function

Other functions used in the algorithm:

43: Initialize(g, T): Initialize histogram defined by the grid g and tax-
onomy hierarchies T

44: count(D, ¢, j): Count the number of points in cell ¢ with class
label j

45: size(g): the number of cells in the grid defined by g (Definition 2)

46: height(T): the number of levels of the j’th taxonomy hierarchy.

dates and the total privacy budget. Given a dataset, it is still an
open problem to automatically find the optimal budget allo-
cation satisfying differential privacy while preserving high
utility.

Theorem 1 PrivPfCin Algorithm 2 satisfies € -differential pri-
vacy.

The proof of Theorem 1 straightforwardly follows the
primitives and composability properties of differential pri-
vacy as shown in Sect. 2. In particular, the dataset size
estimation step (Line 3) consumes 3%e, the grid selection
step (Line 6) consumes 37%e and the histogram perturbation
step (Line 7) consumes 60%e¢. The candidate grids enumer-
ation step (Line 5) does not access to the dataset. Therefore,
as all data-dependent steps satisfy differential privacy, by the
sequential composition property of differential privacy, the
PrivPfC algorithm satisfies e-differential privacy.

Time complexity. The most time-consuming step of the
algorithm is that of computing the quality of all candidate
grids (Line 6), which considers at most ® candidate grids.

Suppose the dataset size is N, computing the quality of one
candidate grid takes time O (N) and therefore selecting the
grid takes a total time O (N - ®). Once a grid is selected, only
a single pass over the dataset is needed to do the perturba-
tion (Line 17). Hence, the total running time for PrivPfC is
O(N -).

5 Experiment
5.1 Experimental settings

Evaluation methodology We evaluate the performance of
PrivPfC and other competing methods as shown in Table 2
on three different classification tasks: building the CART
decision tree classifier, building the support vector machine
(SVM) classifier with radial basis kernel and building the
logistic regression classifier. For all the experiments, we
vary € from 0.05 to 1.0. Similar to the experiment settings
of [14,26,34], under each privacy budget, we execute tenfold

@ Springer

210

D.Suetal.

stratified cross-validation to evaluate the misclassification
rate of the methods in Table 2. In this tenfold stratified
cross-validation, the dataset is randomly partitioned into 10
subsets, where each subset size is (nearly) equal and pre-
serves the percentage of samples for each class. We then run
the experiments for 10 times—for each time, 9 subsets are
taken as training data, and the remaining 1 subset is for test-
ing/verification. After running the experiments for 10 times,
each subset is used for testing one and only once. For each
train-test pair, we use the training data to privately compute a
classifier or privately publish the data and build classifier on
it. We evaluate classifier’s accuracy on the testing data, which
is disjoint from the training data. We repeat the process 10
times for each train-test pair. We report the average measure-
ments over the 10 runs and the tenfold cross-validations.

The implementation and experiments of PrivPfC were
done in Python 2.7, and all experiments were conducted on
an Intel Core 17-3770 3.40GHz PC with 16GB memory.

For methods that output a classifier, i.e., DiffPC-4.5, Priva-
teERM, PrivGene, PrivLocal and FunctionalMechanism, we
use parameters suggested by the corresponding papers. For
other data publishing methods, i.e., PrivPfC, PPH, DiffGen,
and PrivBayes, we generate private synthetic datasets and
then use standard implementations of classification methods
on these datasets. To evaluate their performance in terms
of the decision tree model, we use the rpart [33] library to
build decision trees on synthetic datasets. For evaluation in
terms of SVM model, we use the LibSVM package [5]. For
evaluation in terms of logistic regression, we use R’s glm
(generalized linear model) function. When comparing dif-
ferent approaches, we use the same sets of parameters for
these classifiers.

We consider two baselines—Majority and NoiseFree.
Majority is the misclassification rate by majority voting on
the class attribute, which predicts each test case with the
majority class label in the train dataset. NoiseFree is the mis-
classification rate of a decision tree, an SVM classifier or a
logistic regression classifier built on the true data. We expect
that a good algorithm to perform significantly better than
Majority, and gets close to NoiseFree as € increases.

Datasets We experimented with 8 real datasets and 2 sets
of synthetically generated datasets. They are summarized in
Table 1.

The first real dataset is the Adult dataset from the UCI
machine learning repository [1]. It contains 6 numerical
attributes and 8 categorical attributes, and is widely used
for evaluating the performance of classification algorithms.
After removing missing values, the dataset contains 45,222
records. We create a multiclass version of the Adult dataset,
called Adult-Multiclass, by using the 3-valued marital status
attribute as the class attribute.

@ Springer

Table 1 Dataset characteristics

Classification task

Class

Num # Cate # Rec

Dim

Dataset

Determine whether a person makes over 50K a year

45,222
45,222
41,188
41,188
39,187
39,187
57,333
57,333

15
15
21

Adult

Determine the three classes marital status of a person

Adult-Multiclass

Bank

Determine whether the client subscribed a term deposit

10
10
31
30
28

10
10
15
15
14
14
20
20

Determine three types of outcome of the previous campaign

21

Bank-Multiclass

us

Determine whether a person makes over 50K a year

47

Determine the four types of school attended by a person

46
43

US-Multiclass

BR

Determine whether a person makes over 300 per month

Determine the four types of employment status of a person

28

43
21

BR-Multiclass

Determine class label {0, 1} of a point

{5K, 10K, 20K, 50K, 100K, 200K, 500K}
{5K, 10K, 20K, 50K,100K, 200K, 500K}

Synthe-binary

21 Determine class label {0, 1, 2, 3, 4} of a point

Synthe-multi

PrivPfC: differentially private data publication for classification

211

Table 2 Summary of differentially private classification methods

Methods Description
Data publishing
PrivPfC Our proposed method

PrivPfC-SeINF
DiffGen [26]
DiffGen-Struct-NF
PrivBayes [37]
PrivBayes-Struct-NF
PPH [34]
Classifier-outputting
DiffPC-4.5 [14]
PrivGene [38]
PrivLocal [38]
FunctionalMechanism [39]
PrivateERM [7]

Our proposed method with noise-free grid selection

Private data release for classification via recursive partitioning
DiffGen with noise-free partitioning procedure

Private Data Release via Bayes network

PrivBayes with noise-free network learning procedure

Private data release for classification by projection and perturbation

Privately construct C4.5 decision tree classifier
Private model fitting based on genetic algorithms
Private local search algorithm

Private model fitting by perturbing the fitting function

Private classifier construction based on empirical risk minimization

The second dataset is the Bank marketing dataset from
the same repository. It contains 10 numerical attributes and
10 categorical attributes ON 41,188 individuals. The multi-
class version of the Bank dataset is created by using 3-valued
the poutcome attribute as the class attribute. The third is
the US dataset from the Integrated Public Use Microdata
Series USA (IPUMS-USA) [29]. It has 39,187 US census
records in 2010, with 15 numerical attributes and 31 cat-
egorical ones. The multiclass version of the US dataset is
created by using the 4-valued SCHLTYPE attribute as the
class attribute. We remove one categorical attribute which is
highly correlated with the SCHLTYPE attribute in the mul-
ticlass version of US dataset. The fourth is the BR dataset
from the Integrated Public Use Microdata Series Interna-
tional (IPUMS-International) [25], which contains 57,333
Brazil census records in 2010 and has 14 numerical attributes
and 28 categorical ones. The multiclass version of the BR
dataset is created by using the 4-valued EMPSTAT attribute
as the class attribute.

We generate 2 sets of synthetic datasets for evaluating
algorithms’ performances on varying dataset sizes. The first
set of synthetic datasets, which we call Synthe-binary, con-
tains 7 datasets with binary class labels and with size 5K,
10K, 20K, 50K, 100K, 200K and 500K, respectively. The
second set of synthetic datasets, which we call Synthe-multi,
contains 7 dataset with 5 class labels and with size 5K, 10K,
20K, 50K, 100K, 200K and 500K, respectively.

Taxonomy hierarchies For the Adult and Adult-Multiclass
datasets, we use the same taxonomy hierarchies as those
in DiffGen [26]. For the remaining 6 datasets, we create
taxonomy hierarchies as follows. For numerical attributes,
we partition each domain into equal size bins and build
hierarchies over them. For categorical attributes, we build

taxonomy hierarchies by considering the semantic meanings
of the attribute values.

5.2 Competing methods

We compare PrivPfC with 8 state-of-the-art methods in terms
of misclassification rate. These include 3 data publishing
methods that publish either a noisy histogram or a noisy
Bayesian network, which can be used to generate a synthetic
dataset: DiffGen [26], PrivBayes [37], and PPH [34]; and 5
methods that directly output a classifier, PrivLocal [38], Priv-
Gene [38], FunctionalMechanism [39], DiffPC-4.5 [14], and
PrivateERM [7]. Table 2 summarizes the competing methods
mentioned in this paper.

DiffGen [26] also uses taxonomy and publishes a noisy
histogram. However, it chooses the grid in a way different
from PrivPfC. In DiffGen, one iteratively selects one attribute
atatime for specialization, using the exponential mechanism.
The quality function suggested in [26] aims to maximize the
number of records that have the majority class label in all
cells.

The number of specialization steps is an important param-
eter and is an input to the algorithm. As suggested in [26], we
set the number of specialization steps to be 10 for the Adult
dataset, Adult-Multiclass and the bank dataset. For the US
dataset and its multiclass version, we set the number to be 6.
For the BR dataset and its multiclass version, we set it to be 8.
Because beyond these numbers, the DiffGen implementation
runs into memory problems, because the taxonomy trees for
these datasets have larger fan-outs.

PPH [34] also publishes a noisy histogram. It uses the
exponential mechanism to select & attributes, using a quality
function that maximizes the discernibility score regarding

@ Springer

212

D.Suetal.

the label attribute. The grid is determined by the k attributes.
For each categorical attribute, the full domain is used. For a
numerical attribute, it uses the formula proposed in Lei [23]
to decide how many bins to discretize the attribute domain.

PrivBayes [37] publishes a noisy Bayesian network. It
determines the structure of a Bayesian network by first
randomly selecting an attribute as the first node, and then iter-
atively selecting another attribute to create a new node and
up to k already created nodes as the new node’s parent nodes.
PrivBayes is only applicable on binary classification. After
the structure is determined, PrivBayes perturbs the marginals
needed for computing the conditional distributions. The per-
formance of the PrivBayes algorithm depends on k. We set
k = 3 for the Adult dataset and the Bank dataset, which
is the same as the one used in [37]. For the US and BR
datasets, which were not used in [37], setting k = 3 runs out
of memory in our experiments because these datasets have
more attributes; we set k = 2 for them.

Classifier-outputting methods PrivGene [38] is a general-
purpose private model fitting framework based on genetic
algorithms, which can be applied to SVM classification and
logistic regression. PrivLocal is a differentially private local
search algorithm. DiffPC-4.5 [14] outputs a C-4.5 deci-
sion tree classifier differentially privately. PrivateERM [7]
outputs an SVM classifier by injecting noise into the risk
function first and then optimizing the perturbed risk func-
tion.

The source codes of DiffGen, PrivBayes, PPH, DiffPC-
4.5, PrivLocal were shared by authors of corresponding
papers. The source code of PrivateERM was shared by the
authors of PrivGene. We implement the PrivGene algorithm
by strictly following the paper [38].

5.3 Comparison with existing solutions

For each classification method, we compare PrivPfC with
® = 10,000, with three existing data publishing meth-
ods DiffGen, PrivBayes, PPH and any classifier-outputting
method that can be applied to this classification method. We
note that PrivBayes is not designed to be optimized for a sin-
gle classification task, thus in some sense is not expected to
perform well.

Figure 4 reports the average misclassification rates and
the corresponding standard deviations for the decision tree
classification.

Clearly, PrivPfC has the best performance in most cases,
followed by DiffGen, PPH, DiffPC-4.5 and PrivBayes. The
performance of PrivPfC is also the most robust, as can be
seen from the fact that the standard deviations of its misclas-
sification rates are always the lowest.

Figure 5 shows similar experimental results for SVM clas-
sification. PrivPfC has the best performance, followed by

@ Springer

DiffGen, PrivLocal, PPH, PrivateERM, PrivBayes and Priv-
Gene. PrivGene performs the worst, because the crossover
operation in each iteration significantly destroys the struc-
ture selected SVM parameter by misaligning the parameter
values to their corresponding dimensions. On the other hand,
PrivLocal only uses perturbation to generate offsprings and
the structure of SVM parameters can be largely kept. This
result also confirms our remarks on the effectiveness of Priv-
Gene.

We can also see that as the increase of privacy budget from
0.05 to 1.0, PrivPfC, DiffGen and PPH’s performances are
not affected too much, PrivBayes’s performances sometimes
change a lot, and PrivLocal and PrivateERM’s performance
constantly improve. The reason is threefold. (1) PrivPfC,
DiffGen and PPH allocate a portion of privacy budget to
determine the histogram structure to partition the data. And
there are always a couple of structures which result in
close classification performance. With a small change of pri-
vacy budget, these algorithm might still select a structure
which has close performance with the previous one. (2) For
PrivBayes, it uses privacy budget to heuristically determine
the degree of the Bayesian network structure, where more
privacy budget results in larger degree. However, PrivBayes
has to round the computed degree to the closest integer.
Therefore, as we see in Fig. 5, especially figures for US and
BR datasets, when the privacy budget reaches 0.2, the mis-
classification error of PrivBayes is significantly reduced and
then only gets minor improvements as the privacy budget
increases until reaching the next point to change the rounded
integer degree. (3) For PrivateERM, since noises are directly
injected into the objective function, less noise can make the
noisy objective function being closer to the true version,
which improves PrivateERM more directly.

Figure 6 reports the experimental results on logistic regres-
sion. Overall, PrivPfC has the best performance, followed
by PrivLocal, DiffGen, PPH, PrivBayes, FunctionalMecha-
nism and PrivGene. PrivGene performs the worst again. Note
that, in the US and BR dataset, when the privacy budget is
large, PrivLocal outperforms PrivPfC with a slight advan-
tage. This is because PrivLocal has a tighter sensitivity bound
when applying to logistic regression. Besides, when the pri-
vacy budget is large, PrivPfC selects a subset of features to
build histogram, whereas the PrivLocal can use the full set
of dimensions to build the classifier.

While the idea of making a genetic programming algo-
rithm differentially private is interesting, the effectiveness of
the PrivGene algorithm is questionable for several reasons.
First, the crossover operation often does not result in com-
petitive candidates. Second, with crossover and mutation, the
convergence rate is low, which means that a larger number of
iterations are needed. Third, for each iteration, the algorithm
requires making a large number of selections, with every sin-
gle one of them consuming some privacy budget.

PrivPfC: differentially private data publication for classification

213

PrivPfC-DT :--EF--:
DiffGen-DT * -¥ - !

Majority
NoiseFree

Misclassificaiton Rate, log scale

0.05 0.07 0.1 0.15 0.2 03 04 05

Privacy Budget, log scale

(a)

Misclassificaiton Rate, log scale

1005 007 0.1 0.15 0.2 03 04 05 07 1.0

Privacy Budget, log scale

(0

PrivBayes-DT r-Q@ -, DiffP-C4.5

PPH-DT A+

[}

= .

2 _

[=1] : |

S ; : .

g R S _

& - \A\-A_._\A oo
= ~ ! = — e A
= YR e
§ EI *"‘*-*-

A | R H

E o B gop
g

= Lol [[

0.1 0.15 02 03 04 05 07 1.0
Privacy Budget, log scale

(b)

Misclassificaiton Rate, log scale
(=]
(3]
(=]
|
1

0.1
0.05 0.07 0.1 0.15 0.2 03 04 05

Privacy Budget, log scale

(d)

Fig.4 Comparison of PrivPfC, DiffGen, PrivBayes, PPH and DiffPC-4.5 by decision tree classification. DT: evaluated by decision tree classification.

a Adult, b Bank, ¢ US, d BR

As the increase of privacy budget from 0.05 to 1.0, we also
get similar observations as those in Fig. 5. In this figure, Func-
tionalMechanism’s performance constantly improves. This
is because in FunctionalMechanism, the noises are injected
into the coefficients of the approximation polynomial of the
objective function. Therefore, the injected noises have direct
impact to the classification accuracy.

Furthermore, when comparing PrivPfC’s performances
under three classification tasks in Figs. 4, 5 and 6, one can
see that the gap between PrivPfC and the noise-free baseline
on decision tree classification is relatively larger than those
for SVM and logistic regression classification. This is mainly
because PrivPfC only selects informative attributes and dis-
cards other non-informative attributes Given data under these
informative attributes, linear models like SVM and logistic
regression can make accurate classification, while decision
tree models always need information from other less infor-
mative attributes to achieve similar performance.

Comparison on multiclass classification We compare
five approaches: PrivPfC, DiffGen, PPH, PrivLocal and

PrivGene on multiclass classification on 4 real datasets,
Adult-Multiclass, Bank-Multiclass, US-Multiclass and BR-
Multiclass. The evaluations of the three non-interactive data
publishing methods, PrivPfC, DiffGen and PPH are done by
the decision tree classification, since these methods privately
generate synthetic datasets and decision tree can naturally
supports multiclass classification. The PrivLocal and Priv-
Gene methods only produce one classifier, SVM or Logistic
regression at a time. We therefore use the One-vs.-rest
approach [3] to reduce the multiclass classification problem
into the binary classification problem and use € /k budget to
train each classifier, where k is the number of classes. Fig-
ure 7 shows the experimental results. PrivPfC is again the
winner in most cases.

5.4 Varying parameters in PrivPfC
We now explore the effect of changing @, the maximum

grid pool size and the effect of using different privacy budget
allocation plans in PrivPfC. Figure 8 reports the results of

@ Springer

D.Suetal.

214

Majority PrivPfC-SVM :--E}--

NoiseFree ———- DiffGen-SVM - -% - |
2 0.40 \\l T T ' l ! ! ' -' T 1 T L=
< - | |

0.35 -
B Voo ++-—+\
on 0.32 s
S 030 —
5 0.27 4 - —
=~ - N o

= 024 AT~ . g\\.—: = B
.‘2 & = - _:.g;_:g__';g- -
§ 0.21 --*___*__m.___;:; Tl s
= 019 F T e D -
2 0.18 .. T
'—g 8}% """"""" S 2 [EEEE = PP Et----E-- e Ef----
S 015 o g4 _ =
= o1 cot oo g

0.15 0.2 03 04 05 0.7
Privacy Budget, log scale

(a)

0.07 0.1

0351—.—3' -0-- 90

— e
0.30 | ,.,‘ ~2__;.6 T
025 - . - r‘?l |' [
oz b -Tdd
*

017~ -
______ .- K- -
0.15 = :é

Misclassificaiton Rate, log scale

0.13 |~ |
0.12 L
0.05 0.07 0.1

0.15 0.2 03 04 05
Privacy Budget, log scale

(0

PrivateERM |—4—| PrivGene-SVM - -v— -

PPH-SVM [—4- 4

PrivLocal-SVM
PrivBayes-SVM + -Q -1

0.27

0.23
0.20

0.17
0.15

Misclassificaiton Rate, log scale

0.080
0.05 0.07 0.1

04 05 0.7 1.0

0.15 02 0.3
Privacy Budget, log scale

(b)

s
B S A B
$ 036 " _
50 . -
Sl - I
50.25 A T -
e R S OO S
5 o7 ~§_ _h L ; i
Z o015 TR é—*‘ $$- sl
kS
2
2

0.12
PoYS il ol Sty St ity Bl i il S
0.05 0.07 0.1 0.15 0.2 03 04 05 07 1.0

Privacy Budget, log scale

(d)

Fig.5 Comparison of PrivPfC, DiffGen, PrivBayes, PPH, PrivGene and PrivateERM by SVM classification. SVM: evaluated by SVM classification.

a Adult, b Bank, ¢ US, d BR

PrivPfC’s performance under three @ values, 100, 10,000
and 200,000. The evaluation is done on the BR dataset with
two privacy budgets, 0.05 and 0.5. We can see that with the
increasing of the maximum pool size, PrivPfC’s performance
gets significant improvement from ® = 100to & = 10,000.
When setting ® to the largest value, 200,000, PrivP{C also
gets a small amount of improvement.

PrivPfC distributes the privacy budget among three steps,
size estimation, grid selection and perturbation, with the ratio
3-37-60%.

We have experimentally evaluated other privacy budget
allocation ratios, ranging from 20% to 60%, for the grid
selection and perturbation steps respectively. We have found
that the differences among different budget allocations are
minor, so long as the last step receives at least 30% of the
privacy budget. Figure 9 compares the performance of Diff-
Gen, PrivPfC with privacy budget allocation 3-37-60% and
PrivPfC with privacy budget allocation ratio 3—10-87%. Both
PrivPfC versions use ® = 10,000. We can see that PrivPfC-
3-10-87% performs reasonably well, and in fact slightly
better than the standard PrivPfC when € > 0.2.

@ Springer

This also shows that our PrivPfC algorithm is robust under
different privacy budget allocation plans.

5.5 Analyses of sources of errors

We have seen that PrivPfC outperforms the other data pub-
lishing methods such as DiffGen and PrivBayes. The key
difference in PrivPfC is that we choose the grid g in a sin-
gle step, instead of arriving at the final grid through a series
of decisions. For example, DiffGen iteratively chooses the
attributes and ways to partition them, and PrivBayes itera-
tively builds a Bayesian network. There are two reasons why
such an iterative approach does not perform well. The first is
that the decisions made in each iteration may be suboptimal
because of the randomization necessary for satisfying differ-
ential privacy. The second is that even if the decision made
in each iteration is locally optimal, the combination of them
is not globally optimal. To see to what extent the latter factor
affects accuracy, we consider variants of them, respectively,
DiffGen-Struct-NF and PrivBayes-Struct-NF. In these vari-
ants, the decisions in each iteration are performed without

PrivPfC: differentially private data publication for classification

215

PrivPfC-log :--E}--
DiffGen-log - -X¥ -

Majority
NoiseFree ———-

Misclassificaiton Rate, log scale

1005 007 0.1
Privacy Budget, log scale

0.15 02 03 04 05 07 1.0

(a)
Sl I NI ERE EN R I I B RN
¥ x_ | | -l [I

040 I TR - 4§ -
035¢=—90—0 90— —————, —

0- g -t 4
0.30 [~ -0- B
025 = =

Misclassificaiton Rate, log scale

0.05 007 0.1 0.15 02 03 04 05 07 1.0

Privacy Budget, log scale

(©)

PrivLocal-log PrivGene-log - -v—+

FM-log —4—

PrivBayes-log -@ -1
PPH-log 1 —4-4

027
0254 !

020 |~

017
0.15

0.13
0.12 A
0.11 = 7
0.1
o090 pm =
0080 I [I LT 1 31,5

0.05 0.07 0.1 0.15 0.2 03 04 05 0.7 1.0

Privacy Budget, log scale

(b)

Misclassificaiton Rate, log scale

%o - - .
KooK - - -
_______ E‘"‘D—L}

Misclassificaiton Rate, log scale

005 007 0.1

Privacy Budget, log scale

(@)

Fig.6 Comparison of PrivPfC, DiffGen, PrivBayes, PPH and FunctionalMechanism by logistic regression classification. log: evaluated by logistic

regression. a Adult, b Bank, ¢ US, d BR

any perturbation, but noises are still added when publishing
the counts.

We also consider a variant of PrivPfC, called PrivPfC-
SeINF, in which the histogram selection step is noise-free.
All these variants are not private; they are used to understand
the source of errors only.

Figure 10 reports the experimental results of comparing
these methods, using the decision tree classifier. We first
observe that PrivPfC-SeINF indeed outperforms PrivPfC,
although the differences tend to be smaller than the differ-
ence between PrivPfC and DiffGen. We also observe that
PrivBayes-Struct-NF still performs poorly; in fact, it per-
forms significantly worse than PrivPfC. Again, this is not
surprising given that the iterative Bayes network construction
approach is not designed to optimize one classification task.
Similarly DiffGen-Struct-NF still underperforms PrivPfC.
This suggests that the inherent iterative structure of DiffGen
is suboptimal. In summary, in releasing data for classifica-
tion under differential privacy, it is better to determine the

structure of the data synopsis in a single step instead of a
series of steps.

5.6 Scalability over dimensions, dataset size and
runtime

We study the scalability of dimensions of our algorithm as
well as our competitors. This experiment is performed on
the US dataset. First, we sort all of its predictor variables
by their degrees of correlation to the response variable in
descending order. The correlation is measured by the x>
statistic, which is one of the most effective methods of fea-
ture selection for classification [16,36]. We then generate the
set of datasets with lower number of dimensions by pro-
jecting the US dataset to dimensions defined by the first
d — 1 predictor variables and the response variable, where
d =10, 15, 20, 25, 30, 35, 40, 47.

Figure 11 shows the results. We can see that as the increas-
ing of dimensionality, PrivPfC, DiffGen and PPH offer stable
classification performance. PrivPfC is still the best among

@ Springer

216 D.Suetal.
Majority PrivPfC-DT :--EF-- PrivLocal-log-MC PrivGene-log-MC + -v—-
NoiseFree ———- DiffGen-DT * -¥ -! PPH-DT [—4-4
065 [1 T 1]) 040 T ‘I T I T _l
% v———“——-—AL—"*“1———4~-ﬂl——lﬁ——1———r 'c_'g 0.30‘:__*__ ——_* l_——-l——l *“‘*'-——JV
8 050 2 02
en r)
) 040 |~ . =] - 0.1 = —
S 5} o =
£ 03044 v : — Bs F - 3
& " - 004 - - -
= 025} ,L. : - — = L _ i
g ~&. .4 - £ - - AT e i
§ 020 = A L J; . § '--_*!e - q \$ L | T ' ':_ z
Z 016F - -%-._ 3 S ﬁ&_i_ — = 001 Tl 0T ~¢L§‘L_ .
2 "‘*--_*__%_ p 170! - S 3., . *"*---.*__ _*_'_-#__'
ettt T T R AR R
2 0.11 __ t]_ ::@ FALLELE LT £ FER I FERPRI =2 AP 3 [E Cz CPPRPE 1Y PRPPPS g oo04p= - - e
= b1l L1 [T T T 0,000 L+ 1 1 [[T N B

0.15 0.2 03 04 05 0.7 1.0
Privacy Budget, log scale

0.05 0.07 0.1

(a)

., 050 T T T T
S 040 4 S A S |
& 030 = =
< 025 [~ —
E 020 - ;L —

0.16 -~ 3. _ -
Eonl | L $— L L ,L ,L S
E 0.10 *-x** T
% 007 TR g k=
é’) 0.05 ';':1_3'_':';E_i'_'"_':Ei:-_--E-_--:;E-_--_--g_--_g.-._.._.g_.-

]]] L1 14
0.15 0.2 03 04 05 07 1.0

Privacy Budget, log scale
(0

Fig.7 Comparison of PrivPfC, DiffGen, PPH, PrivLocal and PrivGene
by decision tree classification and logistic regression classification on
the multiclass datasets. DT: evaluated by decision tree classification,

0.04 "
0.05 0.07 0.1

0.26 = NoiseFree EEE PrivPfC-DT-200K
0.24 B89 PrivPfC-DT-100 [E@ DiffGen-DT

’ B PrivPfC-DT-10K

0.22

0.20

Misclassification Rate

e=0.5
Privacy Budget

e=0.05

Fig.8 Varying the maximum pool size @ on PrivPfC by decision tree
classification on the BR dataset. DT: evaluated by decision tree classi-
fication. 100, 10K, 200K are values of ®@

them. In essence, all of these three algorithms are trying to
construct a histogram structure to partition the dataset by
identifying all informative attributes for classification. The

@ Springer

0.05 0.07 0.1 0.15 0.2 03 04 05 07 1.0

Privacy Budget, log scale

(b)
MEYT 3 3+ %]

Misclassificaiton Rate, log scale

7005 007 0.1 0.15 0.2 03 04 05 07 1.0

Privacy Budget, log scale
(d)

log: evaluated by logistic regression, MC: multiclass classification. a
Adult-Multiclass, b Bank-Multiclass, ¢ US-multiclass, d BR-multiclass

0.27 T T 7] T T T T T 1 11
Majority —

NoiseFree - —
EN PrivPfC-DT FEN & S

N _-)l* - N PrivPfC-DT-10%-87% Ir—A -|—

~ . e Kl Pllfchn—D:l“_ B bl 3 _

_ T - - . ! o b —t

Misclassificaiton Rate, log scale

0.07 0.1 0.15 0.2 03 04 05 07 1.0
Privacy Budget, log scale

Fig. 9 Comparison of two different privacy budget allocations on
PrivPfC by decision tree classification on the Adult dataset. DT: evalu-
ated by decision tree classification. 10-87%: in PrivPfC, allocate 10%
of privacy budget to selectGrid step and 87% to perturbHistogram step

number of informative features of the census dataset, e.g.,
US dataset, is relatively smaller than the total number of
dimensions. All of these three algorithm can find most of

PrivPfC: differentially private data

publication for classification

217

Majority
NoiseFree

PrivPfC-DT :--EF--:
PrivPfC-SeINF-DT :--@--:

DiffGen-DT - -¥ -,
DiffGen-Struct-NF-DT - -

PrivBayes-DT r -
PrivBayes-Struct-NF-DT F

SO S

T EEE - LR

Misclassification Rate, log scale
(=]
5

0.13
0.05 0.07 0.1

0.15 0.2 03 04 05 0.7 1.0
Privacy Budget, log scale

(a)

Misclassification Rate, log scale

']]] | I I
0.07 0.1 0.15 0.2 03 04 05 0.7 1.0

Privacy Budget, log scale

()

o
@

Misclassification Rate, log scale
(=)

0.080
0.05 007 0.1

0.15 0.2 03 04 05
Privacy Budget, log scale

(b)
| | | I DL B

B]
5 6. %4 .. I

Misclassification Rate, log scale

0.15 0.2 03 04 05
Privacy Budget, log scale

(d)

0.07 0.1

Fig. 10 Analyses of PrivPfC, DiffGen and PrivBayes by decision tree classification. DT: evaluated by decision Tree classification. a Adult, b Bank,

¢ US,d BR

0.45 T T T T T T
0.40

0.35
0.30

—Majority

NoiseFree
rivPfC-DT PR = A N

| DiffGen-DT L ! -
PPH-DT [—A- '

| PrivBayes-DT r-O- 5 "

0.25

0.22
0.20

0.17
0.15

0.13
0.12

Misclassificaiton Rate, log scale

20 25 30 35 40 47
Privacy Budget, log scale

Fig. 11 Comparison of PrivPfC, DiftGen, PrivBayes and PPH by vary-
ing dimensions (decision tree classification). € = 0.5. DT: evaluated by
decision tree classification

these informative attributes. But among them, PrivPfC does
the best job. PrivBayes is the poorest in all cases, and its per-
formance goes worse as the dimensionality increases. This
is because in PrivBayes, the magnitude of the noises injected
into the marginals of constructed Bayesian network is pro-
portional to the number of dimensions.

We compare the scalability of our algorithm and non-
interactive data publishing algorithms, DiffGen, PPH and
PrivBayes over datasets with different sizes. We use the set of
synthetically generated datasets, Synthe-binary and Synthe-
multi, for binary classification and multiclass classification,
respectively. Figure 12 shows the comparison results. As
the increasing of dataset size, the misclassification rates of
all methods decrease. PrivPfC always gives the best perfor-
mance.

We also compare the running time of 4 data publishing
algorithms, PrivPfC, DiffGen, PrivBayes and PPH, on the
US dataset with privacy budget 0.05 and 0.5, respectively.
Figure 13 shows the comparison results. PrivBayes is the
most inefficient one, followed by PrivPfC, PPH and DiffGen.
By considering runtime comparison results and accuracy
comparison results (Figs. 4, 5, 6, 7) together, we can see
that PrivPfC trades more runtime for accuracy improvement.
From the runtime comparison result, we can also see that
under different privacy budgets, PrivBayes, PrivPfC and PPH
have close runtime, while DiffGen needs longer time when
the privacy budget gets larger. This is because with more pri-

@ Springer

218 D.Suetal.
1.00
| | | Q | | | | g
o 050 $ P o S O.SOH —é\ I
< - - 1 - - - s - -
Q 0404="""F -y - o 0.60 |~ —- —
& ~. S 050 |- .1’&7"\&5__§_—
< 030 |- L S 040 [- T =
g 0B L § 0.30 “x
= 30 b= -
& 0.20 = = 0250 . -
=] [3. i)) el ~\\ -
2 o015 Pajoridt .. —— ERE o <
154 NoiseFree e = 0.15 FMajority L
'q% 0.12 FprivPfC-DT : : Qﬁ 0.12 | NoiseFree tm— -
‘2 0.1 PDiffGen-DT LX) S (10 [ErivPfC-DT oMo o
= .08 EPPH-DT P —A-o S - FDiffGen-DT :-¥-; = 12 O
g ° ErrivBayes-DT - k- = 0.08 FPPHDT (A4 | AR
S 0.06 ! 0.06 1 4-- T P T
5K 10K 20K 50K 100K 200K 500K 5K 10K 20K 50K 100K 200K 500K
Dataset Size, log scale Dataset Size, log scale
(@) (b)

Fig.12 Comparison of PrivPfC, DiffGen, PrivBayes and PPH by varying dataset size on Synthe-binary datasets and Synthe-multi datasets (decision
tree classification). € = 0.1. DT: evaluated by decision tree classification. a Synthe-binary, b synthe-multi

A PrivPfC
Il PrivBayes

¥=Z2 PPH
== DiffGen

Runtime (Sec)

€=0.05

e=0.5
Privacy Budget,

Fig. 13 Runtime comparison of PrivPfC, DiffGen, PPH and PrivBayes
by decision tree classification on the US dataset

vacy budget DiffGen is likely to choose finer partitions in
attribute taxonomy hierarchy, which results in more time to
project data into the partition structure.

For those classifier-outputting methods, DiffPC-4.5 is
always the fast approach, since the differentially private deci-
sion tree is constructed quickly. Compared with DiffPC-4.5,
FunctionalMechanism and PrivateERM have higher running
time cost, since they both have to invoke numerical optimizer
to optimize the perturbed objective functions. PrivGene and
PrivLocal always need larger running time since they need a
larger number of iterations.

5.7 Discussion

Running time As shown in Sect. 4.5, PrivPfC has time
complexity O(N - @), where N is the dataset size and @
is the maximum grid pool size. From Figs. 8 and 13, we
can see that when using a small ® value, PrivPfC has close
classification accuracy with DiffGen. When increasing ®&
values, PrivPfC is able to offer better accuracy, at the cost
of increasing running time. In other words, compared with

@ Springer

DiffGen, PrivPfC offers an extra “tuning nob,” where one
can get better utility by using more computational resources.
DiffGen and other algorithms do not have such a “tuning
nob.”

We argue that this “tuning” capability is highly valuable.
Many datasets that people want to use are small. Such small
datasets create the most serious contentions between privacy
and utility, because the impact of noises is larger for smaller
datasets. PrivPfC can relax such contention by providing
a way to improve utility by spending more computational
resources. Also, for small datasets, even the higher computa-
tional costs of PrivPfC are easily affordable. We also note that
since PrivPfC publishes a noisy histogram. For each dataset,
one needs to run PrivPfC only once.

Dimensionality We use datasets of less than 50 dimen-
sions/attributes to compare the scalability over dimensions
of our PrivPfC and other competing methods. From Fig. 11,
we can see that PrivPfC keeps its superiority on classification
accuracy and scales at least as well as other competing meth-
ods except the PrivBayes. PrivBayes’s classification error
grows with the increase of number of dimensions, since it
has to perturb marginals with Laplace noise which scales
linearly to the number of dimensions.

However, it is an open question how to accurately per-
form classification while satisfying differential privacy for
datasets with hundreds or more dimensions. This challenge
is in twofold.

First, for datasets of higher dimensions and more than sev-
eral informative attributes, PrivPfC need a high & value to
ensure that the good grids (which partition several informa-
tive attributes) are included in the pool of candidates. This
makes PrivPfC prohibitively expensive.

Second, given a relational dataset and one class attribute,
there are always a few informative attributes which are
highly correlated with this class attribute. One data record’s

PrivPfC: differentially private data publication for classification

219

class label can be largely determined by values under these
attributes. Therefore, from the perspective of dimension
reduction, PrivPfC can be seen as projecting the data space
into a lower dimension by selecting a set of informative
attributes which are highly correlated with the class attribute.
As long as the number of informative attributes is not very
large, PrivPfC can always work well, even if the total num-
ber of attributes is large. On the other hand, if the number
of informative attribute is large, selecting a grid to capture
all of them and perturbing the selected histogram to get good
classification accuracy might be challenging. This is because
good grid candidates cannot easily stand out from a very large
pool of candidate grids and the exponential mechanism can-
not accurately select a good grid from it. Even if the good grid
can still be selected, the class counts in each cell of resulted
histogram might be very small and are easily dominated by
the injected noises.

Privacy budget allocation PrivPfC divides the total privacy
budget € into three portions: 3%e for estimating the total
number of records, 37%e for selecting the grid, and 60%¢
for adding noises to the histogram. The choice of how € is
partitioned is heuristic in nature. While it is desirable to have
a more principled approach to decide how the total privacy
budget is partitioned among different steps, unfortunately,
the current state of the art in designing differentially private
algorithms does not provide the tools to do this. The main
challenge lies on the unclear relationship between the classi-
fication accuracy and the injected randomness into each data
accessing steps.

On generalizability of PrivPfC to other machine learn-
ing tasks The data published by our PrivPfC method can be
used for performing all existing classification tasks. PrivPfC
does not rely on any existing classification algorithm to work.
Given a dataset and the class attribute of it, PrivPfC pri-
vately releases a synthetic version of the data by selecting
a grid structure to partition the data space and perturbing
the resulted histogram. This selection is done by privately
picking the grid which maximizes the expected number of
correctly classified records over all cells in the histogram
defined by such grid. When we design the grid quality func-
tion in Sect. 4.1, we use the term, histogram classifier, to
describe the quality function. Such histogram classifier is
actually a theoretical classifier which is always used for mod-
eling the data distribution for classification.

For unsupervised learning tasks, e.g., k-means clustering,
we also proposed a method, called Extended Uniform Grid-
ing (EUG) [31,32] to construct noisy histograms to privately
publish data for k-means clustering. We showed that EUG has
good enough performance for data with number of dimen-
sions from 2 to 10 comparing with other competing methods
on differentially private k-means clustering. PrivPfC cannot
be applied to this setting, since it is tailored for classifica-

tion on relational data and assumes the dataset has a class
attribute.

6 Conclusion

In this paper, we have introduced PrivPfC, a novel frame-
work for publishing data for classification under differential
privacy. As a core part of PrivPfC, we have introduced a
novel quality function that enables the selection of a good
“grid” for publishing noisy histograms in a single step. We
have conducted extensive experiments on 8§ real datasets with
3 commonly used classification models, and compared with
8 competing methods. Experimental results show that our
approach greatly outperforms several other state-of-the-art
methods for private data publishing as well as private clas-
sification. This counter-intuitive result points to the future
research direction of designing better private classification
algorithms by using as few steps as possible, avoiding spread-
ing the privacy budget too thin, perhaps by exploiting the
exponential mechanism directly.

Acknowledgements We thank the reviewers for their valuable com-
ments. This paper is based upon work supported by the United States
National Science Foundation under grants CNS-1116991 and CNS-
1640374 and Key Laboratory on High Performance Computing, Anhui
Province, NSFC (61672486, 61672480,11671376), Key Program of
NSFC (71631006).

7 Appendix

Lemma 3 gives the distribution of the difference of two i.i.d.
Laplace random variables, which will be used in the proof of
Lemma 1.

Lemma 3 [20] Let Z; and Z, be two i.i.d. random variables
that follow the Laplace distribution with mean 0 and scale
%. Then the density of their difference Y = Z1 — Z» is

€
fr(y) = Ze*'y'(l +ely) —oo<y<oo,

and the corresponding cumulative distribution function is

o
1—e2 (1+%y), if y >0,
Fy(y) =

ey
< (1-9),
2 2

Proof of Lemma 1

®)

otherwise.

Proof We show the global sensitivity of the grid quality
(Eq. 1) in the binary classification setting can be safely
bounded by 1.1.

@ Springer

220

D.Suetal.

Given a dataset D, and without loss of generality we
assume that D has 2 class labels {1, 2} and the neighbor-
ing dataset of D is D’ = D — t , where the tuple ¢ falls into
cell e and has class label 1. Given a grid g, the quality values
of all cells of it are the same except the cell e. In the cell e,
we have the number of data points with label 1, n n ,and
that With label 2, n 1 for D and D/, respectively, Where
n =n' + 1 and n =n', 2 Each class also has a probability,
pe, belng the dommant class in cell e, where i = {1, 2}.

To compute the global sensitivity of the grid quality
(Eq. 1), we first present the difference of the grid quality
function for the neighboring datasets D and D’ in terms of
n é, ng, pl . and p? .. Then we show that the difference can be
bounded by 1.1.

The global sensitivity of the grid quality function for
binary classification can be computed by,

Agq = |9q<D g — gq(D’ 2
.2

R

’ epe+nepe

since n

n,—1

+(ne 1)
+(ne 1)
+ (ne =g =

where pi is the probability of Class 1 is still the dominant
class after adding noise. The last equality holds, because

p?:l—p;andpezzl—pel.
As for pl, by Lemma 3,

pi =Pr|:nel,—|—Zl an—i—Zz]:PrI:Zz—Z] fn;—ng]

e—e(ncl,—ng) € (né — ng) 1)
1-— 1+ , ifn, —ng, >1,

2 2

ee(né—nz) € (né — n%) 1 5
MR A S——a ifn) —n2 <o0.

2 2
(10)

Since the probability pg, (Eq. 10) takes different forms
depending on whether ni — ng > 0 or not, we analyze the
global sensitivity Agq by two cases: Class 1 is the dominant
class in the cell e for D, nl —n? > 1ornot,n} —n2 <0.
We show that for)} — n > 1, the upper bound of the global
sensitivity is 1.1 and for n - n < 0, the upper bound is 0. 5
Note that the two conditions cover all cases, since n) and n2
are integers. Therefore, the global sensitivity can be bounded
by 1.1.

@ Springer

Casel:n! —n2 > 1.
In this case, n;l — n;z =nl—1-n2 > 0.ByEgs. (9) and
(10), we have

e—cni—n?) ¢ (nl _nz)
Agq = |1 — 1 £
94 ‘ > + 3 +
—e(n 1,2 1_ .2
(nl _n2_1> e €y —ny) 1+e(ne }’le)
e e 2 2
12
e €ne—ne) 1+6(né—n§) ‘
2 2
By letting x = n! — n2, we have

o€ efe(xfl)
Agqg = |1 — -1 1
e e
€x

(1+5)- 5 0+5)]

(x — De—€¢&=D e(x—1) xe ¢* ex
1 — 14+ —
2 * 2 2 (+ 2) ’

e(x—1)
L)

where x > 1.

For simplicity, let us consider the function gi(x) =
5 + £, and thus the sensitivity becomes Agq =
1+ g1(x —1) — g1(x)].

Note that g1 (x) is differentiable and its derivative gi (x) =

8_4“ (2 — €2x?). Thus, by Lagrange’s Mean Value Theorem,
for any x > 1, there exists some & between x — 1 and x (thus
& > 0), so that

Agq = [T+g1(x—1) = g1(x)]
=1 -¢1®|

e ¢
—l1- (2— 22).
N

To bound the expression above, consider another function

e (2 — szz) ,
4

where x > 0. The function A (x) reaches the maximum at
the point 1122 ”f

interval [0]J”/»] and decreases in the interval (”T‘[, oo).
When x € [0, 31, 7(0) < h(x) < h(1+¥3) which means
h(x) € [0.5, 1.1]. When x € (1+—f

and lies in (1, 1.1], because limy—_s 400 2(x) = 1. Therefore,
in this case,

h(x)=1—

with the maximum value 1.1, increases in the
oo) h(x) decreases

Agq = |h(&)| € 0.5, 1.1].

PrivPfC: differentially private data publication for classification

221

Case2:n! —n2 <0
In this case,

n_,2_ 1 2
n, —n, =n,—1—-n; <0.

Similarly, by letting x = n é — ng

ee(n;—ng) € (I’lé — n%)
—_— -2+

(n —ng) € (n; — n%)
)
pEmi—n2—1) (1 - € (né — ng — 1))]’
2 2

-Z)+a-D

e €x €D e(x—1)
{2(1_2)_ 2 (1_ 2) ’

€x (x — Dec@=D e(x—1)
2 (1 B 7) B 2 (1 2)

where x < 0.

Similarly to Case 1, let g>(x) = %4~ (1 — <), and then
the sensitivity becomes Agq = |g2(x) — g2(x — D).

The function gp(x) is differentiable and its first order
derivative is g (x) = % (2 - e2x2). The derivative g5 (x)

_M)

, we have

Agq =

’

decreases when x € (—oo, increases when x €

[1+f

] And when x = 1+‘f the function g5 (x)

reaches the minimum value —0.09. Thus, when x < #5
g5(x) € [-0.09, 0) because hm gz(x) = 0and gj(x) €

[—0.09,0.5] when x € [—1+T‘[, 0]. Applying Lagrange’s
Mean Value Theorem to g2(x), for any x < 0, there exists
some 1 between x — 1 and x, thus n < 0, so that

Agq = [82(x) — g2(x — 1|
= |gr()|

<0.5.

In summary, by considering the above two cases, the
global sensitivity for grid quality on binary classification Agq
is bounded by 1.1 and reaches its maximum when Case 1
holds, at

e €e + /2 — (4 — 2¢€) € + €2¢€
N —€ 4 €ef '

The global maximum point x* is obtained by taking deriva-
tive of 1 4+ g1(x — 1) — g1(x). This completes the proof.
]

Proof of Lemma 2

Proof Given a dataset D, without loss of generality we
assume that the neighboring dataset of D is D’ = D — 1,
where the tuple 7 is in cell e. The quality values of all cells
other than cell e are the same. Denote /; as the class label of
t.

Since the approximation of the grid quality (Eq. 5)
involves only the top two classes, and the quality values
of all cells other than cell e are the same, the difference of
the approximated grid quality function Agq = |gq(D, g) —
gq(D’, g)| is 0 or not depends on whether the count of Class
I; is in the top two class counts of cell e in D and D’. Tt is
worth pointing out that the rank of Class /; does not rise in
D’ = D —t because deleting the tuple 7 can only decrease the
count of Class I;. Therefore, we bound Agq by considering
three separated cases: (1) Class /; is not in the top two classes
in D and D’, (2) Class [, is in the top two classes in D and
D', and (3) Class [; is in the top two classes in D but not in
D’. For convenience, we use [, € {(1), (2)} to represent the
fact that the class count of It is in top 2, and /; ¢ {(1), (2)} to
represent that it is not.

Case 1: [; ¢ {(1), (2)} in both D and D’. Class I, does
not rank in top-2 in both D and D’. In this case, delet-

ing the tuple ¢ does not affect the first 2 classes. n(l) =

‘(1 2 "2 1 ‘(1 2 "2
N I L R T

gq(D, g) = gq(D’, g), which means Agq = 0.

Case 2: I; € {(1),(2)} in both D and D’. Class I, ranks
in top-2 in both D and D’. In this case, the rank of I, may
change. So let us consider the following subcases.

Subcase 2.1: Class /; ranks first (resp. second) in both D

and D’. Then, we have n(l) /(1) + 1 and n(z) = ;(2)

(resp. n(]) = ne(l) and n(z) = e(z) 4+ 1). Similar to the proof
of Lemma 1, we obtain Agq < 1.1.

Subcase 2.2: Class /; ranks first in D and ranks second
in D’. Deleting one tuple makes the class with the highest
count become the second highest class, which occurs only
when there is a tie between two highest classes in D. (This
tie can be resolved the alphabetical order of class labels.) In
this case, we have

D =0 =@, =D 1 an

Thus,

ga(D’,)|
2 2 (1) (1
1P @) = (0 5

Agq = 19a(D, g) —
1 1
|0+

_ ‘ngl)(() + (2)) < gl)p;(l) + (ngl) _ 1)17;(2))‘
- (-)

=|p?| =1,

‘2 @2
n®p?)]

@ Springer

222

D.Suetal.

where the third equality holds because of Eq. (11) and the

1 "2
1—P£) e()z

fourth equality holds because péz) =
1-p0.

Case3: [, € {(1),(2)}in D and I; ¢ {(1), (2)} in D’. Class
[; ranks in top-2 in D, but does not rank in top-2 in D’.
Similar to Subcase 2.2, this case occurs only when there is
a tie among Class /; and other s(> 1) classes which are not
ranked in top-2. Deleting the tuple t makes /; ranked out of
top-2. So, by our tie resolving rule, one of the s classes with
the same count as Class /; is ranked into top-2. For example,
suppose the number of class k = 3, n! = n2 = n3 = 10,
the first highest classes with counts ngl) = ngz) = 10. After
removing the tuple ¢ with label 1, we have n> = n’> = 10,
and n!! = 9. The class containing ¢ is ranked out of top-2
and the class with label 3 is ranked into top-2, and the counts
of the top two classes in D’ are still the same, which means

n;(l) = n;(z) = 10. That is to say,

and p

ngl) = nﬁ,z), n;(l) = nﬁ,l), n;(z) = ngl). (12)
Similarly, we have

Agq = 199(D, &) — gq(D’,)|
(000 +22) = (105 525
w0 (p0 4 p2) = (0P 4 00|

n | =0,

where the second equality holds because of Eq. (12).
In summary, the global sensitivity for the approximation
of grid quality on multiclass classification Agq < 1.1. O

References

1. Asuncion, A., Newman, D.: UCI machine learning repository
(2010)

2. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-
anonymization. In: ICDE, pp. 217-228 (2005)

3. Bishop, C.M.: Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer, Secaucus (2006)

4. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy:
the SuLQ framework. In: PODS, pp. 128-138 (2005)

5. Chang, C.C., Lin, C.-J.: LIBSVM: a library for support vector
machines. ACM Trans. Intell. Syst. Technol. 2, 27:1-27:27 (2011)

6. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regres-
sion. In: NIPS, pp. 289-296 (2008)

7. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially
private empirical risk minimization. J. Mach. Learn. Res. 12, 1069—
1109 (2011)

8. Cormode, G., Srivastava, D., Li, N., Li, T.: Minimizing minimal-
ity and maximizing utility: analyzing method-based attacks on
anonymized data. PVLDB 3(1-2), 1045-1056 (2010)

@ Springer

10.
11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

. Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pat-

tern Recognition. Applications of Mathematics. Springer, Berlin
(1996)

Dwork, C.: Differential privacy. In: ICALP, pp. 1-12 (2006)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise
to sensitivity in private data analysis. In: TCC, pp. 265-284 (2006)
Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks
that exploit confidence information and basic countermeasures. In:
CCS, pp. 1322-1333 (2015)

. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart,

T.: Privacy in pharmacogenetics: an end-to-end case study of per-
sonalized warfarin dosing. In: USENIX Security Symposium, pp.
17-32 (2014)

Friedman, A., Schuster, A.: Data mining with differential privacy.
In: KDD, pp. 493-502 (2010)

Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for
information and privacy preservation. In: ICDE, pp. 205-216
(2005)

Geng, X., Liu, T.Y., Qin, T., Li, H.: Feature selection for ranking.
In: SIGIR, pp. 407-414 (2007)

Hay, M., Machanavajjhala, A., Miklau, G., Chen, Y., Zhang, D.:
Principled evaluation of differentially private algorithms using
dpbench. In: SIGMOD, pp. 139-154 (2016)

Iyengar, V.S.: Transforming data to satisfy privacy constraints. In:
KDD, pp. 279-288 (2002)

Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A practical
differentially private random decision tree classifier. Trans. Data
Priv. 5, 273-295 (2012)

Kotz, S., Kozubowski, T., Podgorski, K.: The Laplace Distribution
and Generalizations: A Revisit with Applications to Communi-
cations, Economics, Engineering, and Finance. Springer, Berlin
(2001)

LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: efficient
full-domain k-anonymity. In: SIGMOD, pp. 49-60 (2005)
LeFevre, K., DeWitt, D., Ramakrishnan, R.: Mondrian multidi-
mensional k-anonymity. In: ICDE, p. 25 (2006)

Lei, J.: Differentially private m-estimators. In: NIPS, pp. 361-369
(2011)

McSherry, F., Talwar, K.: Mechanism design via differential pri-
vacy. In: FOCS, pp. 94-103 (2007)

Minnesota Population Center: Integrated Public Use Microdata
Series, International: Version 6.5 [dataset]. University of Min-
nesota, Minneapolis (2017). https://doi.org/10.18128/D020.V6.5
Mohammed, N., Chen, R., Fung, B.C.M., Yu, P.S.: Differentially
private data release for data mining. In: KDD, pp. 493-501 (2011)
Qardaji, W., Yang, W., Li, N.: Differentially private grids for
geospatial data. In: ICDE, pp. 757-768 (2013)

Qardaji, W., Yang, W., Li, N.: Understanding hierarchical methods
for differentially private histograms. PVLDB 6(14), 1954-1965
(2013)

Ruggles, S., Genadek, K., Goeken, R., Grover, J., Sobek, M.:
Integrated Public Use Microdata Series: Version 7.0 [dataset].
University of Minnesota, Minneapolis (2017). https://doi.org/10.
18128/D010.V7.0

Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership
inference attacks against machine learning models. In: 2017 IEEE
Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,
May 22-26, 2017, pp. 3—-18 (2017)

Su, D., Cao, J., Li, N., Bertino, E., Jin, H.: Differentially private k-
means clustering. In: Proceedings of the Sixth ACM on Conference
on Data and Application Security and Privacy, CODASPY 2016,
New Orleans, LA, USA, March 9-11, 2016, pp. 26-37 (2016)
Su, D., Cao, J., Li, N., Bertino, E., Lyu, M., Jin, H.: Differentially
private k-means clustering and a hybrid approach to private opti-
mization. ACM Trans. Priv. Secur. 20(4), 16:1-16:33 (2017)

https://doi.org/10.18128/D020.V6.5
https://doi.org/10.18128/D010.V7.0
https://doi.org/10.18128/D010.V7.0

PrivPfC: differentially private data publication for classification

223

33.

34.

35.

36.

37.

Therneau, T.M., Atkinson, B.: Package: rpart (2014). http://cran.r-
project.org/web/packages/rpart/rpart.pdf

Vinterbo, S A.: Differentially private projected histograms: con-
struction and use for prediction. In: ECML PKDD’12, pp. 19-34
(2012)

Wong, R.C.W., Fu, A. W. C., Wang, K., Pei, J.: Minimality attack in
privacy preserving data publishing. In: VLDB, pp. 543-554 (2007)
Yang, Y., Pedersen, J.O.: A comparative study on feature selection
in text categorization. In: ICML, pp. 412-420 (1997)

Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.:
Privbayes: private data release via bayesian networks. In: SIGMOD
"14, pp. 1423-1434 (2014)

38.

39.

Zhang,J., XiaoXia, X., Yang, Y., Zhang, Z., Winslett, M.: Privgene:
differentially private model fitting using genetic algorithms. In:
SIGMOD ’13, pp. 665-676 (2013)

Zhang, J., Zhang, Z., Xiao, X., Yang, Y., Winslett, M.: Functional
mechanism: regression analysis under differential privacy. PVLDB
5(11), 1364-1375 (2012)

@ Springer

http://cran.r-project.org/web/packages/rpart/rpart.pdf
http://cran.r-project.org/web/packages/rpart/rpart.pdf

	PrivPfC: differentially private data publication for classification
	Abstract
	1 Introduction
	2 Background
	3 Related work
	3.1 Output perturbation
	3.2 Objective perturbation
	3.3 Make an existing algorithm private
	3.4 Iterative local search via the exponential mechanism
	3.5 Histograms optimized for optimization

	4 PrivPfC Framework
	4.1 The quality function
	4.2 Sensitivity in the binary classification case
	4.3 The sensitivity of grid quality in the multiclass classification case
	4.4 Candidate grids enumeration
	4.5 Putting things together for PrivPfC

	5 Experiment
	5.1 Experimental settings
	5.2 Competing methods
	5.3 Comparison with existing solutions
	5.4 Varying parameters in PrivPfC
	5.5 Analyses of sources of errors
	5.6 Scalability over dimensions, dataset size and runtime
	5.7 Discussion

	6 Conclusion
	Acknowledgements
	7 Appendix
	References

