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ABSTRACT

The Internet of Things will need to support ubiquitous and contin-
uous connectivity to resource constrained and energy constrained
devices. To this end, we consider the optimization of cryptographic
protocols under energy harvesting conditions. Traditionally, com-
puting using energy harvesting power sources is handled as a case
of intermittent-computing: working towards the completion of a
goal under uncertain energy supply. In our work we consider the of-
ten ignored case when there is harvested energy available but there
are no useful operations to complete. In cryptographic protocols,
this can occur while the protocol waits for the next message. To
avoid waste, we partition cryptographic algorithms into an offline
portion and an online portion, where only the online portion has a
real-time dependency to the availability of data. The offline portion
is precomputed with the result stored as a coupon for the remaining
online operation. We show that this structure brings multiple bene-
fits including decreased response latency, a smaller energy store
requirement, and reduced energy waste in a harvester supported
system. We present a case study of two canonical cryptographic
applications: true random number generation and bulk-encryption.
We analyze the precomputed implementations on an MSP430 with
ferroelectric RAM and an ARM Cortex M4 with nonvolatile flash
memory. Our solutions avoid energy waste during the offline phase,
and they offer gains in energy efficiency during the online phase of
up to 28 times for bulk-encryption and over 100 times for random
number generation.
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1 INTRODUCTION

Devices within the Internet of Things (IoT) are expected to main-
tain a ubiquitous network connection. This presents a significant
challenge in its implementation as many devices lack access to a
continuous and uninterrupted power supply. Energy harvesting
devices resolve this problem by recharging their local power reser-
voir, often a supercapacitor or a rechargeable battery, via energy
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available in their surroundings. This improves IoT logistics, but cre-
ates a challenge in the computing domain through the introduction
of unexpected and difficult to predict power loss.

The domain of intermittent computing contains a significant
amount of work to address power loss during a devices operation
including techniques such as DINO, Clank, or Hibernus [18] [12]
[4]. In all of these cases there is an assumption that the device
will be doing more work than there is energy available, and this is
reflected in their design to preserve the system state gracefully or
avoid ever reaching a state where power loss is detrimental to the
device’s computations. In this paper we analyze the less addressed
case that an IoT device will have excess power during periods where
there is little to no work to be done.

Computing devices have long periods of idle activity before
executing their necessary task. These idle periods are common
enough to lead to the development of power management features
to reduce the amount of power wasted on non-productive CPU
cycles. Energy harvested systems face similar problems and many
technologies exist, such as the low power modes of the MSP430
chip family, to reduce power draw when a system is idle. However,
energy harvested systems are bounded on the other extreme by
the maximum amount of harvested energy they can store in their
local battery or supercapacitor. As a result, remaining idle during
a period where the storage medium is full and additional energy
is collected by the energy harvested results in a complete waste of
useful energy.

The expectation of excess energy for energy harvested systems
is not unreasonable. Work by Simjee and Chou showed that a solar
cell could rapidly, within a few minutes, recharge a supercapacitor
while powering a sensor node and that there were large periods of
time during a multi-day stress test where the supercapacitor was
fully charged during sensor operation [26].

We propose the alteration of an energy harvested system’s cryp-
tographic algorithms to exploit the energy wasted when the har-
vester continues to collect energy after the storage medium is full.
Specifically, we show the device can use this excess energy to gen-
erate coupons for future cryptographic operations. These coupons
consist of the offline portions of cryptographic operations that do
not rely on the runtime inputs. Examples of this type of precom-
putation include: generating the full hash chain of a Winternitz
one time signature [3], generation and storage of random numbers,
and the expansion of a key schedule [1]. These operations must
be completed for the cryptographic operation to be successful, but
they do not need to be done at the exact moment the operation is
requested. Previous work has exploited this relationship to improve
performance in many fields [6] [29] [25] [22]. We explore this ca-
pability to improve the energy efficiency of devices with may have
excess, or free, energy available for use.
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Both side effects of precomputation: the reduction in runtime
latency and the reduction in energy required for the runtime opera-
tion, benefit energy harvested devices. In energy harvested devices
the ability to power precomputation efforts with energy that would
otherwise be unused is valuable and unique. Our work demon-
strates a coupon precomputation scheme which allows the system
to execute AES-CTR encryptions for up to 28 times less energy
at runtime and generate random numbers for over 100 times less
energy at runtime compared to the energy required to execute the
entire operation.

1.1 Contributions

In this paper we present the following contributions for the opti-
mization of cryptographic operations in energy harvesting applica-
tions:

(1) Precomputation as an Energy Optimization: We demonstrate
the expansion of precomputation from a latency optimiza-
tion to an energy optimization in cases where an energy
harvester can collect more energy than can be stored locally.
This energy optimization allows system designers to service
more requests with an identical device, reduce the size of the
necessary energy store to meet a designated worst case op-
erational capacity, and increase the device’s security against
hardware attacks.

Identify Algorithms that Benefit from Precomputation: We
demonstrate two different algorithms that specifically ben-
efit from this method of precomputation and highlight the
features of the algorithms that make them good candidates
for coupon precomputation. We describe empirical findings
in the case of AES-CTR mode encryption on MSP-430 and
ARM-Cortex M4, and a true random number generator (on
MSP-430.

Metric for Comparison: We present a framework of metrics
for the comparison of algorithms and the effect of precompu-
tation on their performance in terms of energy consumed, cy-
cle count, operational delay, and the Energy-Delay Produce
(EDP) of their execution. This framework enables effective
judgement on the suitability of precomputation for a partic-
ular implementation and provides insight into the potential
performance of a device utilizing precomputed coupons for
cryptographic operations.
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The remaining paper is structured in the following manner. Sec-
tion 2 discusses previous work in energy harvested systems, pre-
computation of cyprtographic algorithms, scaling within the IoT,
and our threat model. Section 3 details our core concepts: the com-
putation of coupons and our framework of metrics for comparison
between precomputed and non-precomputed algorithms. Section 4
contains the two case studies and their related analysis. Section 5
and Section 6 present future work and our conclusions respectively.

2 BACKGROUND

Neither energy harvested systems nor precomputation are new
ideas or paradigms. Significant previous work has outlined the
growth and operation of energy harvested systems and the diffi-
culties created in intermittent computing operations. Additionally,
precomputation has been discussed as an optimization technique

18

ASHES'17, November 3, 2017, Dallas, TX, USA

Table 1: Data and Energy Retention Time

Technology Format Retention Time (~20°C)
Supercapacitor [19]  Energy 5.5 days
Li-Ion Battery [27]  Energy 1-2 years
FRAM [28] Data 100 years

for decades in cryptography [6]. Here we discuss these previous
works, and how their contributions enable our work to optimize
the operation of energy harvested devices.

2.1 Energy Harvested System Operations

Energy harvested systems are a class of transiently powered devices
that gather energy from the surrounding environment to power
their operation. The methods used range from solar cells, to the
RFID PHY and MAC layer, to motion and vibration via piezoelectric
circuits [7] [22]. In all cases, the energy harvested device uses this
ambient available energy to power its operation and often fill a local
energy store in the form of a rechargeable battery or supercapacitor.

The nature of energy harvested devices leads to the possibility
that power will be lost at any point during an operation. A grow-
ing body of work on intermittent computing provides potential
solutions to this problem. For our study, we assume one of these
solutions from Mementos to QuickRecall or a hardware enabled
solution like Clank is sufficient to resolve the loss of power mid-
computation [23] [14] [12]. It must be noted that without such a
solution, it is possible for the device to land in an undefined state
as data has been written to non-volatile memory by a partial com-
pleted operation, and subsequent operations will fail due to these
faulty or unexpected inputs [18] [9].

The volatile nature of power for energy harvested systems high-
lights the stable nature of data stored in non-volatile memory com-
pared to the retention of energy stored in a battery or supercapacitor.
Energy within a supercapacitor will discharge based on the leak-
age current and surrounding circuitry at a relatively quick rate. A
rechargeable battery will retain the same energy for a longer period
of time, but will also eventually discharge even if the device has
not executed any operations but no additional energy is provided
[27] [19].

When that energy is converted to a coupon and stored in non-
volatile memory, it can be maintained in FRAM for 100 years at
room temperature (20° C) and 10 years in extreme conditions (85°
C). The stability of this data is illustrated on Table 1 and is a strong
argument for precomputation when energy is available as the loss
of energy in the future will have little effect on data stored in a
non-volatile memory [28].

The existence of this excess energy is a unique benefit of energy
harvested devices. Work in the mid 2000s by Kansal et al. and
Hsu et al. showed the potential to increase or decrease the duty
cycle of energy harvested devices to match the energy available
from a harvester. When additional energy was available, energy
harvested systems could consume that energy to activate more
frequently while maintaining a neutral energy balance, and thereby
conducting more operations than a similar system not making use
of the increased energy available from the harvester [13] [16]. In this
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Figure 1: The process for a single operation, shown on left,
and the precomputed operation, shown on right. When com-
bined, the coupon and runtime data, available only imme-
diately before execution, allow the generation of an output
identical to the single, monolithic, process.

paper we explore using this excess energy to precompute coupons
and improve the efficiency of later cryptographic operations rather
than increase the sample or measurement rate of a sensor.

2.2 Previous Work in Precomputation

The concept of doing work ahead of time for an operation has been
used throughout history for complex techniques in the form of
lookup tables and references. This process is illustrated in Figure 1
highlighting the separation of a process into an offline, precompute,
portion and an online, runtime, portion. The application of this
to cryptographic operations is a straight forward adaptation and
underlies the concept of rainbow tables and a other optimization
techniques [20] [6]. Additionally, precomputation has proven an
effective optimization tool in other fields, such as Quality of Service
routing within large networks, where some parameters of a problem
are known ahead of time and latency is a critical metric [21].

Precomputation does not reduce operational latency without
introducing its own challenges. The energy cost of the precomputa-
tion itself must be accounted for, the precomputed values must be
kept secure, even during potential power loss, and the algorithms
must be partitioned in such a way that the runtime operation is
sufficiently faster to warrant the data storage expense imposed by
coupons. In the case of energy harvested systems, the ability to
employ excess energy reduces the energy cost of the precomputed
coupons to zero. This leaves only the security of coupons and algo-
rithmic partitioning as challenges to address in the implementation
of precomputation for energy harvested systems.

Within the IoT, previous work has identified the value of precom-
putation for resource constrained devices. Ateniese et al. identified
and demonstrated the potential benefits for the precomputation
of ECDSA signatures in wireless sensor nodes in [1] and further
expanded on their work in [2] in 2017. This work highlighted the
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applicability of precomputation for IoT devices and a cryptographic
operation. We show here a more general concept for the utilization
of the excess energy generated by energy harvested devices and its
effectiveness across two very different cryptographic primitives.

2.3 Scaling Within the Internet of Things

Neither precomputation nor energy harvesting would be valuable
avenues of consideration if IoT devices scaled in the same manner
as traditional computers. Unfortunately, the nature of the IoT is to
deploy many small devices, too many to easily manage or service,
across a large area over a long period of time [24]. This paradigm
leads to cheap devices that are expected to operate for as long as
possible without additional human interaction or support [8].

Batteries, if they scaled in the same manner as silicon, would
provide the perfect power source for such devices. Unfortunately,
batteries do not scale in a manner similar to Moore’s Law, and often
make up the majority of mass in modern electrical equipment to
provide only a short period of power before recharging is required.
Energy harvested devices provide a solution as a device with its own
recharging mechanism paired with an energy store, either a battery
or supercapacitor depending on the application. This improves the
scaling of IoT devices by allowing each device to remain small, and
cheap, while staying operational without human intervention for
far longer than a normal battery’s lifetime [26].

A challenge of energy harvested systems is the likelihood that
at some points there will be no energy available for the system and
at other times there will be excess energy unused by the system.
Previous work on intermittent computing addresses the former case
and provides a backstop to ensure proper behavior when power is
limited [18] [12]. Our work provides an opportunity to exploit the
latter case of excess energy. This is illustrated in Figure 2 which
highlights the ability of an intermittent process to produce as much
output as there is energy available, while a precomputation enabled
process produces as much output as there is data available and
generates coupons with any excess energy.

Other scaling solutions for the IoT have been proposed, but they
require much steeper trade-offs in operational flexibility and cost
for their improvements in IoT device performance. For example,
bespoke processors take a very different approach to operational
efficiency, and have shown dramatic improvements in energy usage.
A bespoke processor is a microcontroller that has been modified by
removing all capability not required to properly execute its expected
program. This provides a significant energy cost improvement as
all unnecessary hardware components of the processor have been
removed, but incurs additional costs as the device is no longer
reconfigurable and must be custom manufactured for a specific
implementation [8].

Our proposal for precomputation with energy harvested devices
provides a solution to the scaling problem facing new IoT devices
without the drawbacks demonstrated by recent hardware proposals
and with full interoperability with existing intermittent computing
paradigms.

2.4 Threat Model

A multitude of threats exist for energy harvested systems, espe-
cially those deployed in remote and unsecured areas. In recognition
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Figure 2: Intermittent computing ensures that as much out-
put as possible is created during a scarcity of energy. Our
work ensures that excess energy is utilized to improve the
efficiency of future operations with coupons.

of this, our threat model includes adversaries that can physically
access and control the environment around the device. Addition-
ally, it is assumed that adversaries can control the systems inputs
and outputs during operation and take physical measurements of
the system during operation. We do not expect an adversary to be
able to view on-chip memory or register values during operation
and expect this to be beyond the capability of a competent adver-
sary when the proper configuration recommendations are observed
(JTAG locking enabled, no debugging port available, etc). This is
a key consideration of our coupon precomputation scheme as an
adversary that can view on-chip memory during device operation
would be able to observe precomputed values prior to their use
in cryptographic operations and bypass all reasonable attempts to
secure the operation of the system.

3 PRECOMPUTATION, ENERGY HARVESTED
DEVICES, AND CRYPTOGRAPHY

How can the latency and efficiency of cryptographic operations on
these platforms be improved? First, we evaluate the limiting factors
of energy harvested platforms for cryptographic operations, Second,
we evaluate the partitioning of cryptographic algorithms, the use
of intermediate value coupons and their effect on process execution.
Finally, we consider a framework of metrics for evaluating the
benefit to a particular implementation in terms of energy efficiency.

In all of our considered cases the underlying premise is the op-
portunity to exploit excess energy collected by an energy harvester.
We propose utilizing this excess energy to precompute coupons
consisting of non-input related computations for future crypto-
graphic operations. Their use has ramifications for the design of
future algorithms within this space according to our analysis and
the results of our case studies in Section 4.
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3.1 Intermittent Computing and Cryptography

In this paper, we focus on methods to exploit the case where an
abundance of energy is available, but all of our proposed solutions
should be implemented in conjunction with an intermittent com-
puting paradigm (checkpointing, idempotent processing, etc) to
ensure proper operation when during periods of low energy when
coupons are most likely to be consumed and performance benefits
realized.

3.2 Coupons and the Precomputation of
Algorithms

A coupon is some amount of data generated during a period of
excess energy in preparation for a future cryptographic operation.
It must be stored in a secure location (in our case studies on-chip
non-volatile memory) and be readily available for the runtime op-
eration in order to maximize the coupon’s reduction of the runtime
operation’s latency and energy cost.

The generation of a coupon will be unique to each cryptographic
operation, but in all cases it represents a function that accepts some
input data not dependent on runtime parameters and some amount
of energy to produce an intermediate data block in the operation.
This process converts energy that would normally be stored in an
energy storage medium, a supercapacitor or rechargeable battery,
into data that can be stored on silicon. By executing this conversion,
the energy harvesting system converts energy into data for a future
operation thereby reducing the energy required to produce the final
output at runtime as illustrated by the equations in (1).

Eoriginal < Eprecomputation + Eruntime
Eruntime < Eoriginal M
gina

The value of this transformation can be seen when consider-
ing the energy-delay product (EDP) of the final computation. A
difference in the EDP of the runtime operation shows that the en-
ergy efficiency improvements were not achieved strictly through
a reduction in processing speed or increased latency. The EDP
improvements demonstrated in the Section 4 make it clear that
cryptographic operations utilizing coupons provide better energy

efficiency and performance than those without.

3.3 Metrics for Comparison

To properly evaluate the effectiveness of coupon precomputation
we considered the energy required to complete an operation, the
operation’s cycle count, an operation’s delay, and the Energy-Delay
Product (EDP) of the computation. This framework of metrics al-
lows evaluation of the benefit of precomputing a particular algo-
rithm. Additionally, these metrics support the comparison between
different implementations of cryptographic algorithms on energy
harvested devices, and show definitively that the proper implemen-
tation of a coupon precomputation scheme can be beneficial.

The first set of metrics considered are for a non-precomputed,
or standard, operation. These are taken as the energy (E,), the
cycle count (Cy), the delay (D,), and the EDP (EDP,), computed
as E, X D,. These are compared with the separated metrics for
precomputation, identified with a subscript p, and for the runtime
only operation, identified with a subscript r. In general it is expected
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that the following relationships are true:
Eo < Ep+E,

Co<Cp+Cy

Do < Dp + Dy

@)

This follows from the most efficient separation of an algorithm
being an exact split without any supporting logic for data manipu-
lation. In the majority of cases the sum of the precomputation and
runtime operations will be slightly greater than a monolithic execu-
tion of the operation. Despite this, we are able to show tremendous
gains in operational efficiently because the runtime operational
parameters (E,, Cr, D) are much smaller than the monolithic or
original operations.

The EDP of the operation is an important metric to identify im-
provements in operational efficiency when a device is able to reduce
its energy consumption and work more slowly on an operation
or perform the opposite. By taking the EDP we are able to show
that the precomputed operations are significantly more efficient
than the monolithic operations regardless of operating mode for
the device.

Finally, when analyzing a specific implementation we consider
the ratios of the runtime operation to the monolithic operation as
the following terms:

Go

Speedup : C; = —

peedup : C; c,

Eo

Energy Improvement : E; = I
D (3)

Latency Improvement : D; = —

D,

EDP,

EDP Improvement : EDP; =
EDP,

By considering a ratio of the original computation to the runtime
computation, which utilizes a coupon, we are able to measure the
benefit conferred by precomputing a portion of the algorithm. The
cost of computing a coupon, Ey, is less valuable than the ratio of
E, and E, because the coupon computation is executed during
periods of excess energy. The Energy Improvement, E;, provides
a comparison of the unavoidable energy costs associated with the
operation despite a precomputation scheme and supports analysis
on the value of precomputation for that specific cryptographic
operation.

Similarly, precomputation delay, Dy, is not considered when an-
alyzing a specific implementation because the coupon computation
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Figure 4: Operations per second as a function of Energy in-
flux into the system. When coupons are available the device
is able to execute more operations within a given time pe-
riod until limited by the latency of the minimum runtime
computation (D).

should be executed when no other tasks are pending. However,
it should be noted that both E;, and D), are non-zero and limit a
system’s performance if additional operations are required after
all precomputed coupons have been consumed. This will prevent a
system from permanently executing at the upper limit, DL,’ shown
in Figure 4.

3.4 Conversion of Energy to Data via
Precomputation

The value of converting excess energy to data via precomputation
deserves additional examination. The size of the system’s energy
store defines an upperbound on the number of consecutive op-
erations that can be done without harvesting additional energy
from the environment. Ultimately, this serves as a limit on the de-
signs maximum capacity for concurrently requested operations,
including cryptographic operations, forcing either a limitation on
its expected performance or an increase in the size of the energy
store. By precomputing elements of necessary cryptographic oper-
ations as coupons it is possible to transform a portion of this energy
storage requirement to a data storage requirement. As discussed
in the Background, modern non-volatile storage technologies such
as FRAM provide a more efficient and stable storage medium for
data than current battery or supercapacitor technologies provide
for energy.

The transformation of energy to coupons for future use allows
us to exploit the improved data storage capacity of modern energy
harvesting systems and improve the runtime performance of our
cryptographic operations. This is illustrated by Figure 4 which
highlights the potential to improve the performance of an energy
harvested device, measured in completed operations per second.

The solid line represents the operation of a system without pre-
computation, with a maximum value where the number of opera-
tions executed per second is limited by the execution latency (delay,
D,) of the operation. With a precomputation method in place, the
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new theoretical maximum number of operations per second is lim-
ited by the delay of the runtime only computation, D,, which may
be orders of magnitude shorter than the original operation depend-
ing on the algorithm. In reality, the theoretical limit, the dotted
line, will not be reached since it requires an infinite number of
precomputed coupons. Instead the device will operate within the
highlighted area between the lower bound of operations lacking
any precomputation and an upper bound where all operations have
been precomputed, changing position depending on the number of
coupons the device was able to generate and store during periods
of excess energy availability.

The inflection points for the two bounds are the points at which
the available power, P, is equal to the energy required for an oper-
ation divided by the operation’s delay. This is the point at which
sufficient power is available for the system to run the operation
continuously and the limiting factor changes from power to la-
tency. The points are highlighted in Figure 4 as g—‘; for the original

operation and % for the runtime operation with coupons.
r

3.5 Effect of Precomputation on Security

The security of the device is also improved through the implemen-
tation of a coupon precomputation scheme. As previously discussed
the energy required for the completion of a cryptographic opera-
tion and the actual number of processor cycles needed to complete
an operation are reduced when compared to a normal operation.
This has side effects including reduced latency as observed by the
distant end of communications, reduced emanations susceptible
to side-channel analysis, temporal separation of data dependent
operations, and improved resilience to denial of service attacks.

3.5.1 Denial of Service. In all cases, the device is still susceptible
to an adversary denying its operation through physical destruction
or disconnection. If no energy is available to the energy harvester,
then no operations will be completed with or without a precompu-
tation scheme in place. However, with a precomputation scheme
in place the device will recover from such an attack faster if any
coupons remain in non-volatile memory from before such an attack
began. In this work we assume such coupons are still valid since
they are stored on-chip and therefore would require an adversary
well outside our threat model to effectively access and compromise
these coupons without destroying the device. Effectively, such a
denial of service attack is only a threat to the availability of coupons
but not a threat to their integrity or confidentiality. This is still an
improvement over a non-precomputed case since work can resume
more quickly once the device is available.

3.5.2  Temporal Separation of Data Dependent Operations. For
some cryptographic operations a coupon precomputation scheme
can temporally separate data dependent operations. If a key sched-
ule is computed as a coupon, it is more difficult for an adversary
to determine when this is occurring and attempt to observe the
device. Similarly, in our first case study we show that AES-CTR can
be precomputed up to the one-time pad (OTP) byte stream to be
XOR’d with input data. This limits an attacker to observing only
the interaction of the attacker provided input and the OTP byte
stream rather than the entire AES-CTR operation. To bypass this,
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an attacker must now determine when coupons are being created
and which specific coupon is being processed to observe the activity.

3.5.3 Reduced Risk of Side Channel Leakage. Precomputing brings
two advantages from the perspective of side-channel attacks. First,
the reduction in cycle count for the runtime operation increases
the difficulty for an attacker to properly identify the effects of the
cryptographic operation on the device’s side channels. Second, pre-
computing allows to uncouple the generation of keystreams from
their usage. Device-level master secrets will ideally only be accessed
during the precomputation phase, and the device will not generate
external input/ouput operations during that time. This eliminates
straightforward differential power analysis. And by using only pre-
computed keystreams during the online phase, differential power
analysis becomes harder for the online phase as well.

3.5.4 Reduced Operational Latency. By reducing the operational
latency of our device we further limit attackers in their ability to hi-
jack communications or protocols dependent on the completion of
cryptographic operations. Communications with a device utilizing
precomputation can utilize larger key sizes or stronger ciphers that
are more resistant to compromise than those available to a device
unable to precompute portions of its cryptographic operations. For
example, in our TRNG case study we demonstrate the dramatic
reduction in runtime latency, over 2000 times faster, to access a
256-bit random value when a coupon is used compared collecting
the necessary entropy via oscillator jitter at runtime. This is an
extreme case, but any level of improvement can be directly applied
to an increased computational complexity in the security proto-
col employed for the device, providing a proportional amount of
increased protection against attacks.

4 CASE STUDIES

The following case studies examine the effects of precomputation
on two cryptographic primitives. First, we analyze the precomputa-
tion of coupons for the key schedule and OTP for AES in Counter
mode (AES-CTR) and the benefit they bring to the execution of
the runtime encryption. Second, we analyze a true random num-
ber generator as one of the best cases for the precomputation of
coupons. Energy, delay and cycle count measurements from the two
case studies are for generating cipher text or a random number, the
case studies do not include measurements for the communication
overhead which would appear in a remote energy harvested node.

Table 2: Key features of MSP430FR5994 and MSP432P401R

Features MSP430FR5994 MSP432P401R
Core 16 bit RISC 32 bit ARM Cortex M4
Memory 8kB SRAM up to 64kB SRAM
NVM 256kB - FRAM 256kB - Flash
AM ! current 100 pA/MHz 80 pA/MHz
HW accelerators AES/CRC/MPY AES/CRC
Operating mode AM, various LPM? AM, various LPM
DMA 3-channel 8-channel

1AM : Active mode
2LPM : Low Power Mode
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Figure 5: Block diagram of counter mode operation [15] with
precomputable portion highlighted.

4.1 Experimental setup

We have used the Texas Instruments(TI) MSP430FR5994 and the
TI SimpleLink MSP432P401R launchpad development kits in our
case studies. Different styles of TRNG were implemented on the
MSP430FR5994 and AES-CTR mode was implemented on both
the devices. Table 2 lists some important features that makes the
selected devices ideal to be used as an energy harvested node. Code
was developed using Code Composer Studio (CCSv7) and the energy
profile was measured using the integrated EnergyTrace technology.
The principle of energy measurement of EnergyTrace is based on
counting charge cycles of a switched-mode power-supply [10].
The two devices have specialized debug circuitry to work with
EnergyTrace.

4.2 AES counter mode

AES as a block cipher can be used in different modes of operation to
encrypt messages that are longer than one block of data. In counter
mode (AES-CTR), a counter value is encrypted first. The encrypted
counter value - also known as one-time pad (OTP) is then XOR’d
with the message block to generate the cipher text. Decryption
proceeds by XORing again with a synchronized keystream. In AES-
CTR mode, the actual block cipher operation is independent of the
input message, making it a good candidate for parallelizing the
encryption/decryption process. Similar to how the key schedule of
one block of AES can be precomputed offline [17], OTPs in AES-
CTR can also be precomputed offline. Figure 5 shows the two inputs
needed for offline encryption, Eg, are key K and counter value IV.
When a message m,, is available at runtime, it can be XOR’d with
the precomputed OTP which provides the resultant cipher text c;, .
Based on these features AES-CTR was chosen to demonstrate how
precomputing can optimize both energy required at runtime and
latency of the algorithm.

Since both the chosen microcontrollers have a dedicated AES
encryption and decryption co-processor, we have chosen to experi-
ment on both software and hardware implementations of AES. TI
provides a C library for 128 bit encryption and decryption which
was incorporated along with the hardware AES module in AES-
CTR mode. We also implemented AES-CTR mode using a software
implementation of T-box based encryption on the MSP432 [11]. In
the following experiments we have considered a 128 byte message
(8 blocks of 16 bytes each) to be encrypted using a 128 bit key.
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char xaes_ctr_monolithic(char xkey,

char *PT) {

while(blocks < 8) {
aes_encrypt(char xctr,char xkey);
increment_counter (char xctr);
xor_mask (char *PT, char x0TP,

3

return CT;

}

char =xctr,

char *CT);

Figure 6: Pseudo-code for Monolithic AES-CTR

Table 3: Cost of Monolithic AES-CTR encryption

Device Test case Co E, D, EDP,
Cycles pJ us 10712]
MSP432 SW T-box 18474 75.0 6055 454125.0
SW S-box 94981 384.2 31405 12065801.0
HW 10995 44.6 3605 160783.0
MSP430 SW S-box 153989 244.4 165746 40508322.4
HW 13043  17.8 12370 220186.0

char xaes_ctr_online(char =*PT,
char xprecomp-coupons) {
while(blocks < 8) {
xor_mask (char *PT,
char *CT);

char *precomp-coupons,

}

return CT;

}

Figure 7: Pseudo-code for precomputed AES-CTR

4.2.1  AES-CTR as a monolithic block. When no precomputation
is involved, whole encryption of the message using AES-CTR mode
would be performed at runtime. This requires a node to perform
the code sequence in Figure 6 to encrypt a message.

The aes_encrypt() function first performs key expansion and
then encrypts the counter for every block of message.

When the whole encryption is done in one online stage, we
measured a delay of 6055 s to finish encrypting a 128 byte block
using T-box implementation of software AES in MSP432P401R
(Table 3). This delay is proportional to the latency of algorithm at
runtime.

4.2.2  AES-CTR with precomputation. The above program in
Figure 6 is optimized by precomputing the functions aes_encrypt()
and increment_counter() in the offline stage. Precomputed OTPs can
then be stored as coupons in non-volatile memory such as FRAM
in MSP430FR5994 or flash in MSP432P401R. The AES block cipher
operation is then confined to the offline stage and removed from the
critical path of the online process. The only remaining function to
be executed during runtime is xor_masking(), as shown in Figure 7,
which greatly reduces the runtime energy requirement.

Table 4 gives a clear picture of the cost of XOR masking in both
MCUs. Since AES block cipher operations are precomputed in the
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Table 4: Runtime Cost of AES-CTR with precomputed OTP

Device Test case Cy E, D, EDP,
Cycles pJ pus  10712)

MSP432 XOR masking 3455 13.8 1105 15249.0

MSP430 XOR masking 6904 8.7 6312 54914.4

Table 5: Improvements in AES-CTR with precomputation

Device Test case g—‘r’ g—‘r’ g—‘r’ gg%
MSP432 SW T-box 5.4 54 5.5 29.8
SW S-box 275 27.8 28.4 791.3

HW 32 32 33 10.5

MSP430 SW S-box 223 28.1 26.3 737.7
HW 1.9 2.1 2.0 4.0

offline stage, the runtime latency arises from retrieving precom-
puted coupons from non-volatile memory and XORing the plain
text message with those coupons. The energy required for fetching
coupons and XOR masking in MSP432P401R is 13.8 pJ.

4.2.3 Discussion. By partitioning the AES-CTR algorithm, it
can be optimized for latency and energy. Excess energy from the
harvester can be utilized for precomputing OTPs which are needed
for XOR masking. This precomputation can be continued as long as
there is excess energy to compute OTPs and memory available to
store them. Even if only 10 % of non-volatile memory is allocated
for coupon storage, both devices can store almost 25.6kB of coupons.
When the MSP432P401R is programmed to encrypt messages in
AES-CTR mode using a software S-box implementation, it can store
1600 OTPs, enough to encrypt the same number of message blocks
with a latency reduction by a factor of 27.5 for each message encryp-
tion. Instead of consuming 76.9 mJ of energy for encrypting 1600
blocks (monolithic encryption), a precomputed algorithm would
require only 2.76 mJ of energy at runtime to compute the same
amount of cipher text. This energy consumption improvement from
precomputation, a factor of 28, could be utilized to reduce the re-
quired size of attached energy storage or allow more executions per
charge. These values are also applicable for the decryption process
as AES-CTR works in the same way for both encryption and de-
cryption. From a security point of view, the encryption/decryption
operations performed using precomputed OTPs are protected from
side-channel analysis since the AES computations are performed
during an offline stage. Power traces of the online stage will not
reveal any information related to the key or counter value.

It can be seen that there is a vast improvement in runtime la-
tency, energy requirement and security in AES-CTR mode when
OTPs are precomputed. The EDP improvement for the AES-CTR
implementations using hardware co-processors is lower than other
implementations listed in Table 5. This is because the hardware
co-processors are already optimized and they do not contribute to
much of the energy and delay values of the algorithm.
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Table 6: TRNG Structures and Labels

Label

osc_clksft
osc_noclksft

Structure

Oscillator jitter with clock frequency shifting
Oscillator jitter with a Von Neumann extrac-
tor and XOR compression

sram_aes SRAM values processed with a HW AES co-
processor

sram_swaes SRAM values processed with a SW AES im-
plementation

sram_sha256 SRAM values processed through a SHA256
hash function

SRAM values processed with a 16 to 1 XOR
and a Von Neumann extractor

SRAM values processed with a 32 to 1 XOR

and a Von Neumann extractor

sram_xor16cvn

sram_xor32cvn

4.3 Hardware Random Number Generator

This case study analyzes a true random number generator as a pos-
sible best case situation for the precomputation of coupons. A RNG
is a possible best case example because all random number genera-
tion can be completed and securely stored before it is required by a
runtime operation. This generally reduces the request for a random
value to a single memory access to retrieve the next pre-generated
random number. We implement two different styles of TRNG on an
MSP430FR5994 one which derives entropy from the jitter between
two on-chip oscillators and one which extracts entropy from the
start-up values of an 8 kB SRAM. For all examples considered in this
case study the random number generators were used to generate a
256-bit random value stored in non-volatile memory (FRAM).

4.3.1 Generator Structure. The first type of TRNG implemented
was an oscillator based RNG constructed on an MSP430FR5994
following the recommendations from Texas Instruments [30]. This
oscillator based TRNG generated a random value based on the jitter
between two separate oscillators, the very-low-frequency oscillator
(VLO) and the digitally controlled oscillator (DCO), and included a
number of techniques to avoid any bias that might be present on
the device and influence the resulting random value. The second
TRNG constructed was SRAM based, and extracted a random value
from the startup state of the MSP430FR5994’s 8kB SRAM. A number
of different techniques were measured for their energy and latency
efficiency when extracting a random value from the startup state
of the SRAM. In all cases, the resultant random values were tested
with the NIST Statistical Test Suite to validate the randomness
the results [5]. Table 6 identifies the specific TRNGs used within
the case study and the label associated with that TRNG’s results
throughout our collected data.

4.3.2  True Random Number Generation Without Precomputation.
In normal operation, when a program requests a random value ex-
ecution is handed off to a a TRNG process or a cryptographically
secure pseudorandom number generator (PRNG) that has been
seeded with a truly random value of sufficient entropy. This pro-
cess then generates the random value to provide to the requesting
program. Depending on the implementation, the TRNG may block
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Table 7: TRNG Measurements and Precomputation

Monolithic Computation

Improvement with Precomputation

Co E, D, EDP,

RNG Structure Co E, D, EDP, fon o Dy EDP,

cycles uy us 10712]s
sram_aes 142285 81.7 94.0 7680.9 209.6 | 118.2 | 132.6 15680.2
sram_swaes 178747 118.9 130.0 15462.7 263.3 172.1 183.5 31566.6
sram_xor16cvn 251140 196.8 301.3 59295.8 369.9 284.8 425.0 121050.5
sram_xor32cvn 450498 | 382.7 | 406.8 | 155692.7 663.5 | 553.8 | 5739 317841.6
sram_sha256 1791832 | 1677.2 | 1752.4 | 2939160.5 2638.9 | 2427.2 | 2472.1 6000200.7
osc_clksft 9603395 | 3131.6 | 1709.0 | 5352070.4 | 14143.4 | 4531.9 | 2410.9 | 10926077.8
osc_noclksft 3233803 | 2955.9 | 3241.5 | 9581641.5 | 4762.6 | 4277.6 | 4572.8 | 19560609.8
Precomputation Cr E, D, EDP,
Read from FRAM 679  0.691  0.709 0.490

execution until sufficient entropy is harvested from the environ-
ment or a computation completes. The oscillator based TRNGs
tested here would work very well in this style of implementation.
They are able to generate an arbitrary number of random bits, sim-
ply requiring a longer collection time for larger bit strings. The
SRAM based TRNGs are more difficult to employ in this manner
because the device must be turned off or placed in a Low Power
Mode, which removes power from the SRAM modules, in order to
collect additional entropy. This places an additional delay burden
on the non precomputed versions of the SRAM based TRNG imple-
mentations that is not reflected in our results. If included this delay
would only serve to further amplify the benefits of precomputation
for this structure of TRNG.

4.3.3 Random Number Generation With Precomputation. When
precomputation is available to an energy harvested system, the
energy and latency cost of random number generation is reduced
to a non-volatile memory access to retrieve the next viable random
number. For the MSP430FR5994, we calculated 679 clock cycles were
required to copy a 32 byte, 256-bit, value from FRAM to SRAM,
requiring 0.691 pJ of energy, and causing a delay of 0.709 us. This
is a multiple order of magnitude improvement for all of the TRNG
implementations, in line with the dramatic reduction in complexity
and difficulty when changing the operation to a simple memory
access and copy. Copying the data from the coupon into SRAM
was chosen as the precomputed case because it was representative
of another operation accessing the random value in FRAM, via a
normal extended memory access, and writing a value into SRAM
for use in any application specific operations.

4.3.4 Discussion. This case shows the best possible situation
for the precomputation of a cryptographic operation when excess
energy is readily available. The algorithm does not need to be par-
titioned as all operations except reading the result can be executed
during the precomputation and stored as a coupon. Additionally,
the algorithm can be executed as often as possible until the data
storage area for coupons is filled.

Given these favorable conditions it is not surprising that the im-
provements seen between the monolithic operation and the runtime
operation are tremendous. Depending on the speed and resources
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required by the specific TRNG structure we observed multiple or-
der of magnitude improvements in latency and energy required
to produce a 256 bit random value. For an energy harvested de-
vice, computing strong random values as coupons during periods
of excess energy will dramatically improve the rate at which cryp-
tographic operations can be executed during runtime operations.
Additionally, by precomputing random values it is much easier to
exploit more efficient entropy sources such as SRAM startup values
that are otherwise awkward or impossible to access in the middle
of a larger computation.

It should be noted that the methods reviewed in this section
were for true random number generators and did not specifically
address pseudorandom number generation (PRNG) techniques. It
is possible to construct a hybrid PRNG for a system that uses one
of the analyzed TRNGs to generate a seed value and then executes
a less energy intensive computation for each iteration of the PRNG.
Ultimately, this technique would still benefit from precomputation
and would also result in an energy and latency cost equivalent to a
single pointer update after the use of a coupon. Due to the similarity
of these results, we have highlighted only the TRNG case in this
study.

5 FUTURE WORK

Developing a standard method for the identification of precom-
putable algorithms used within the IoT is a clear next step in our
work. Additionally, exploration of the extent to which our precom-
putation methods can be combined with developments from the
intermittent computing research to create an IoT device that behav-
iors favorably in all conditions would provide additional insight
into the optimization of cryptographic operations in this realm. A
detailed study of the effects coupon computation has on the resis-
tance of IoT devices to side channel analysis would also strengthen
our understanding of these techniques and the level of security
improvement they provide. Analysis of coupon storage costs is also
necessary before implementation in production systems. Finally,
it is critical to define the points at which precomputation is not
worthwhile for future developers to bracket their operations and
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ensure future devices are always executing in the most efficient
manner.

6 CONCLUSION

This paper presented an effective method for exploiting the ex-
cess energy available to energy harvested devices to improve the
efficiency of cryptographic operations. We explored the underly-
ing concepts of this method, the conversion of excess energy in
to coupons via precomputation, and the utilization of coupons to
improve the efficiency of cryptographic operations executed at a
later time. The security benefits of precomputation were identified
and explored as a countermeasure against hardware attacks made
at runtime on an IoT device. Finally, we demonstrated the effective-
ness of this method with two different cryptographic operations,
AES-CTR and a true random number generator, as concrete ex-
amples of the energy efficiency improvements available to energy
harvested systems when precomputation is employed to exploit
their access to excess energy.
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