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ABSTRACT

The Internet of Things will need to support ubiquitous and contin-

uous connectivity to resource constrained and energy constrained

devices. To this end, we consider the optimization of cryptographic

protocols under energy harvesting conditions. Traditionally, com-

puting using energy harvesting power sources is handled as a case

of intermittent-computing: working towards the completion of a

goal under uncertain energy supply. In our work we consider the of-

ten ignored case when there is harvested energy available but there

are no useful operations to complete. In cryptographic protocols,

this can occur while the protocol waits for the next message. To

avoid waste, we partition cryptographic algorithms into an offline

portion and an online portion, where only the online portion has a

real-time dependency to the availability of data. The offline portion

is precomputed with the result stored as a coupon for the remaining

online operation. We show that this structure brings multiple bene-

fits including decreased response latency, a smaller energy store

requirement, and reduced energy waste in a harvester supported

system. We present a case study of two canonical cryptographic

applications: true random number generation and bulk-encryption.

We analyze the precomputed implementations on an MSP430 with

ferroelectric RAM and an ARM Cortex M4 with nonvolatile flash

memory. Our solutions avoid energy waste during the offline phase,

and they offer gains in energy efficiency during the online phase of

up to 28 times for bulk-encryption and over 100 times for random

number generation.
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1 INTRODUCTION

Devices within the Internet of Things (IoT) are expected to main-

tain a ubiquitous network connection. This presents a significant

challenge in its implementation as many devices lack access to a

continuous and uninterrupted power supply. Energy harvesting

devices resolve this problem by recharging their local power reser-

voir, often a supercapacitor or a rechargeable battery, via energy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASHES’17, November 3, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5397-7/17/11. . . $15.00
http://dx.doi.org/10.1145/3139324.3139329

available in their surroundings. This improves IoT logistics, but cre-

ates a challenge in the computing domain through the introduction

of unexpected and difficult to predict power loss.

The domain of intermittent computing contains a significant

amount of work to address power loss during a devices operation

including techniques such as DINO, Clank, or Hibernus [18] [12]

[4]. In all of these cases there is an assumption that the device

will be doing more work than there is energy available, and this is

reflected in their design to preserve the system state gracefully or

avoid ever reaching a state where power loss is detrimental to the

device’s computations. In this paper we analyze the less addressed

case that an IoT device will have excess power during periods where

there is little to no work to be done.

Computing devices have long periods of idle activity before

executing their necessary task. These idle periods are common

enough to lead to the development of power management features

to reduce the amount of power wasted on non-productive CPU

cycles. Energy harvested systems face similar problems and many

technologies exist, such as the low power modes of the MSP430

chip family, to reduce power draw when a system is idle. However,

energy harvested systems are bounded on the other extreme by

the maximum amount of harvested energy they can store in their

local battery or supercapacitor. As a result, remaining idle during

a period where the storage medium is full and additional energy

is collected by the energy harvested results in a complete waste of

useful energy.

The expectation of excess energy for energy harvested systems

is not unreasonable. Work by Simjee and Chou showed that a solar

cell could rapidly, within a few minutes, recharge a supercapacitor

while powering a sensor node and that there were large periods of

time during a multi-day stress test where the supercapacitor was

fully charged during sensor operation [26].

We propose the alteration of an energy harvested system’s cryp-

tographic algorithms to exploit the energy wasted when the har-

vester continues to collect energy after the storage medium is full.

Specifically, we show the device can use this excess energy to gen-

erate coupons for future cryptographic operations. These coupons

consist of the offline portions of cryptographic operations that do

not rely on the runtime inputs. Examples of this type of precom-

putation include: generating the full hash chain of a Winternitz

one time signature [3], generation and storage of random numbers,

and the expansion of a key schedule [1]. These operations must

be completed for the cryptographic operation to be successful, but

they do not need to be done at the exact moment the operation is

requested. Previous work has exploited this relationship to improve

performance in many fields [6] [29] [25] [22]. We explore this ca-

pability to improve the energy efficiency of devices with may have

excess, or free, energy available for use.
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Both side effects of precomputation: the reduction in runtime

latency and the reduction in energy required for the runtime opera-

tion, benefit energy harvested devices. In energy harvested devices

the ability to power precomputation efforts with energy that would

otherwise be unused is valuable and unique. Our work demon-

strates a coupon precomputation scheme which allows the system

to execute AES-CTR encryptions for up to 28 times less energy

at runtime and generate random numbers for over 100 times less

energy at runtime compared to the energy required to execute the

entire operation.

1.1 Contributions

In this paper we present the following contributions for the opti-

mization of cryptographic operations in energy harvesting applica-

tions:

(1) Precomputation as an Energy Optimization: We demonstrate

the expansion of precomputation from a latency optimiza-

tion to an energy optimization in cases where an energy

harvester can collect more energy than can be stored locally.

This energy optimization allows system designers to service

more requests with an identical device, reduce the size of the

necessary energy store to meet a designated worst case op-

erational capacity, and increase the device’s security against

hardware attacks.

(2) Identify Algorithms that Benefit from Precomputation: We

demonstrate two different algorithms that specifically ben-

efit from this method of precomputation and highlight the

features of the algorithms that make them good candidates

for coupon precomputation. We describe empirical findings

in the case of AES-CTR mode encryption on MSP-430 and

ARM-Cortex M4, and a true random number generator (on

MSP-430.

(3) Metric for Comparison: We present a framework of metrics

for the comparison of algorithms and the effect of precompu-

tation on their performance in terms of energy consumed, cy-

cle count, operational delay, and the Energy-Delay Produce

(EDP) of their execution. This framework enables effective

judgement on the suitability of precomputation for a partic-

ular implementation and provides insight into the potential

performance of a device utilizing precomputed coupons for

cryptographic operations.

The remaining paper is structured in the following manner. Sec-

tion 2 discusses previous work in energy harvested systems, pre-

computation of cyprtographic algorithms, scaling within the IoT,

and our threat model. Section 3 details our core concepts: the com-

putation of coupons and our framework of metrics for comparison

between precomputed and non-precomputed algorithms. Section 4

contains the two case studies and their related analysis. Section 5

and Section 6 present future work and our conclusions respectively.

2 BACKGROUND

Neither energy harvested systems nor precomputation are new

ideas or paradigms. Significant previous work has outlined the

growth and operation of energy harvested systems and the diffi-

culties created in intermittent computing operations. Additionally,

precomputation has been discussed as an optimization technique

Table 1: Data and Energy Retention Time

Technology Format Retention Time ( ~20◦C)
Supercapacitor [19] Energy 5.5 days

Li-Ion Battery [27] Energy 1-2 years

FRAM [28] Data 100 years

for decades in cryptography [6]. Here we discuss these previous

works, and how their contributions enable our work to optimize

the operation of energy harvested devices.

2.1 Energy Harvested System Operations

Energy harvested systems are a class of transiently powered devices

that gather energy from the surrounding environment to power

their operation. The methods used range from solar cells, to the

RFID PHY and MAC layer, to motion and vibration via piezoelectric

circuits [7] [22]. In all cases, the energy harvested device uses this

ambient available energy to power its operation and often fill a local

energy store in the form of a rechargeable battery or supercapacitor.

The nature of energy harvested devices leads to the possibility

that power will be lost at any point during an operation. A grow-

ing body of work on intermittent computing provides potential

solutions to this problem. For our study, we assume one of these

solutions from Mementos to QuickRecall or a hardware enabled

solution like Clank is sufficient to resolve the loss of power mid-

computation [23] [14] [12]. It must be noted that without such a

solution, it is possible for the device to land in an undefined state

as data has been written to non-volatile memory by a partial com-

pleted operation, and subsequent operations will fail due to these

faulty or unexpected inputs [18] [9].

The volatile nature of power for energy harvested systems high-

lights the stable nature of data stored in non-volatile memory com-

pared to the retention of energy stored in a battery or supercapacitor.

Energy within a supercapacitor will discharge based on the leak-

age current and surrounding circuitry at a relatively quick rate. A

rechargeable battery will retain the same energy for a longer period

of time, but will also eventually discharge even if the device has

not executed any operations but no additional energy is provided

[27] [19].

When that energy is converted to a coupon and stored in non-

volatile memory, it can be maintained in FRAM for 100 years at

room temperature (20◦ C) and 10 years in extreme conditions (85◦
C). The stability of this data is illustrated on Table 1 and is a strong

argument for precomputation when energy is available as the loss

of energy in the future will have little effect on data stored in a

non-volatile memory [28].

The existence of this excess energy is a unique benefit of energy

harvested devices. Work in the mid 2000s by Kansal et al. and

Hsu et al. showed the potential to increase or decrease the duty

cycle of energy harvested devices to match the energy available

from a harvester. When additional energy was available, energy

harvested systems could consume that energy to activate more

frequently while maintaining a neutral energy balance, and thereby

conducting more operations than a similar system not making use

of the increased energy available from the harvester [13] [16]. In this
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Figure 1: The process for a single operation, shown on left,

and the precomputed operation, shown on right.When com-

bined, the coupon and runtime data, available only imme-

diately before execution, allow the generation of an output

identical to the single, monolithic, process.

paper we explore using this excess energy to precompute coupons

and improve the efficiency of later cryptographic operations rather

than increase the sample or measurement rate of a sensor.

2.2 Previous Work in Precomputation

The concept of doing work ahead of time for an operation has been

used throughout history for complex techniques in the form of

lookup tables and references. This process is illustrated in Figure 1

highlighting the separation of a process into an offline, precompute,

portion and an online, runtime, portion. The application of this

to cryptographic operations is a straight forward adaptation and

underlies the concept of rainbow tables and a other optimization

techniques [20] [6]. Additionally, precomputation has proven an

effective optimization tool in other fields, such as Quality of Service

routing within large networks, where some parameters of a problem

are known ahead of time and latency is a critical metric [21].

Precomputation does not reduce operational latency without

introducing its own challenges. The energy cost of the precomputa-

tion itself must be accounted for, the precomputed values must be

kept secure, even during potential power loss, and the algorithms

must be partitioned in such a way that the runtime operation is

sufficiently faster to warrant the data storage expense imposed by

coupons. In the case of energy harvested systems, the ability to

employ excess energy reduces the energy cost of the precomputed

coupons to zero. This leaves only the security of coupons and algo-

rithmic partitioning as challenges to address in the implementation

of precomputation for energy harvested systems.

Within the IoT, previous work has identified the value of precom-

putation for resource constrained devices. Ateniese et al. identified

and demonstrated the potential benefits for the precomputation

of ECDSA signatures in wireless sensor nodes in [1] and further

expanded on their work in [2] in 2017. This work highlighted the

applicability of precomputation for IoT devices and a cryptographic

operation. We show here a more general concept for the utilization

of the excess energy generated by energy harvested devices and its

effectiveness across two very different cryptographic primitives.

2.3 Scaling Within the Internet of Things

Neither precomputation nor energy harvesting would be valuable

avenues of consideration if IoT devices scaled in the same manner

as traditional computers. Unfortunately, the nature of the IoT is to

deploy many small devices, too many to easily manage or service,

across a large area over a long period of time [24]. This paradigm

leads to cheap devices that are expected to operate for as long as

possible without additional human interaction or support [8].

Batteries, if they scaled in the same manner as silicon, would

provide the perfect power source for such devices. Unfortunately,

batteries do not scale in a manner similar to Moore’s Law, and often

make up the majority of mass in modern electrical equipment to

provide only a short period of power before recharging is required.

Energy harvested devices provide a solution as a device with its own

recharging mechanism paired with an energy store, either a battery

or supercapacitor depending on the application. This improves the

scaling of IoT devices by allowing each device to remain small, and

cheap, while staying operational without human intervention for

far longer than a normal battery’s lifetime [26].

A challenge of energy harvested systems is the likelihood that

at some points there will be no energy available for the system and

at other times there will be excess energy unused by the system.

Previous work on intermittent computing addresses the former case

and provides a backstop to ensure proper behavior when power is

limited [18] [12]. Our work provides an opportunity to exploit the

latter case of excess energy. This is illustrated in Figure 2 which

highlights the ability of an intermittent process to produce as much

output as there is energy available, while a precomputation enabled

process produces as much output as there is data available and

generates coupons with any excess energy.

Other scaling solutions for the IoT have been proposed, but they

require much steeper trade-offs in operational flexibility and cost

for their improvements in IoT device performance. For example,

bespoke processors take a very different approach to operational

efficiency, and have shown dramatic improvements in energy usage.

A bespoke processor is a microcontroller that has been modified by

removing all capability not required to properly execute its expected

program. This provides a significant energy cost improvement as

all unnecessary hardware components of the processor have been

removed, but incurs additional costs as the device is no longer

reconfigurable and must be custom manufactured for a specific

implementation [8].

Our proposal for precomputation with energy harvested devices

provides a solution to the scaling problem facing new IoT devices

without the drawbacks demonstrated by recent hardware proposals

and with full interoperability with existing intermittent computing

paradigms.

2.4 Threat Model

A multitude of threats exist for energy harvested systems, espe-

cially those deployed in remote and unsecured areas. In recognition
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Figure 2: Intermittent computing ensures that as much out-

put as possible is created during a scarcity of energy. Our

work ensures that excess energy is utilized to improve the

efficiency of future operations with coupons.

of this, our threat model includes adversaries that can physically

access and control the environment around the device. Addition-

ally, it is assumed that adversaries can control the systems inputs

and outputs during operation and take physical measurements of

the system during operation. We do not expect an adversary to be

able to view on-chip memory or register values during operation

and expect this to be beyond the capability of a competent adver-

sary when the proper configuration recommendations are observed

(JTAG locking enabled, no debugging port available, etc). This is

a key consideration of our coupon precomputation scheme as an

adversary that can view on-chip memory during device operation

would be able to observe precomputed values prior to their use

in cryptographic operations and bypass all reasonable attempts to

secure the operation of the system.

3 PRECOMPUTATION, ENERGY HARVESTED
DEVICES, AND CRYPTOGRAPHY

How can the latency and efficiency of cryptographic operations on

these platforms be improved? First, we evaluate the limiting factors

of energy harvested platforms for cryptographic operations, Second,

we evaluate the partitioning of cryptographic algorithms, the use

of intermediate value coupons and their effect on process execution.

Finally, we consider a framework of metrics for evaluating the

benefit to a particular implementation in terms of energy efficiency.

In all of our considered cases the underlying premise is the op-

portunity to exploit excess energy collected by an energy harvester.

We propose utilizing this excess energy to precompute coupons

consisting of non-input related computations for future crypto-

graphic operations. Their use has ramifications for the design of

future algorithms within this space according to our analysis and

the results of our case studies in Section 4.

3.1 Intermittent Computing and Cryptography

In this paper, we focus on methods to exploit the case where an

abundance of energy is available, but all of our proposed solutions

should be implemented in conjunction with an intermittent com-

puting paradigm (checkpointing, idempotent processing, etc) to

ensure proper operation when during periods of low energy when

coupons are most likely to be consumed and performance benefits

realized.

3.2 Coupons and the Precomputation of
Algorithms

A coupon is some amount of data generated during a period of

excess energy in preparation for a future cryptographic operation.

It must be stored in a secure location (in our case studies on-chip

non-volatile memory) and be readily available for the runtime op-

eration in order to maximize the coupon’s reduction of the runtime

operation’s latency and energy cost.

The generation of a coupon will be unique to each cryptographic

operation, but in all cases it represents a function that accepts some

input data not dependent on runtime parameters and some amount

of energy to produce an intermediate data block in the operation.

This process converts energy that would normally be stored in an

energy storage medium, a supercapacitor or rechargeable battery,

into data that can be stored on silicon. By executing this conversion,

the energy harvesting system converts energy into data for a future

operation thereby reducing the energy required to produce the final

output at runtime as illustrated by the equations in (1).

Eor iдinal ≤ Eprecomputation + Eruntime

Eruntime < Eor iдinal
(1)

The value of this transformation can be seen when consider-

ing the energy-delay product (EDP) of the final computation. A

difference in the EDP of the runtime operation shows that the en-

ergy efficiency improvements were not achieved strictly through

a reduction in processing speed or increased latency. The EDP

improvements demonstrated in the Section 4 make it clear that

cryptographic operations utilizing coupons provide better energy

efficiency and performance than those without.

3.3 Metrics for Comparison

To properly evaluate the effectiveness of coupon precomputation

we considered the energy required to complete an operation, the

operation’s cycle count, an operation’s delay, and the Energy-Delay

Product (EDP) of the computation. This framework of metrics al-

lows evaluation of the benefit of precomputing a particular algo-

rithm. Additionally, these metrics support the comparison between

different implementations of cryptographic algorithms on energy

harvested devices, and show definitively that the proper implemen-

tation of a coupon precomputation scheme can be beneficial.

The first set of metrics considered are for a non-precomputed,

or standard, operation. These are taken as the energy (Eo ), the
cycle count (Co ), the delay (Do ), and the EDP (EDPo ), computed

as Eo × Do . These are compared with the separated metrics for

precomputation, identified with a subscript p, and for the runtime

only operation, identified with a subscript r . In general it is expected
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Figure 3: Illustration of the energy required for amonolithic

computation versus seperation into a precomputation and

runtime operation.

that the following relationships are true:

Eo ≤ Ep + Er

Co ≤ Cp +Cr

Do ≤ Dp + Dr

(2)

This follows from the most efficient separation of an algorithm

being an exact split without any supporting logic for data manipu-

lation. In the majority of cases the sum of the precomputation and

runtime operations will be slightly greater than a monolithic execu-

tion of the operation. Despite this, we are able to show tremendous

gains in operational efficiently because the runtime operational

parameters (Er ,Cr ,Dr ) are much smaller than the monolithic or

original operations.

The EDP of the operation is an important metric to identify im-

provements in operational efficiency when a device is able to reduce

its energy consumption and work more slowly on an operation

or perform the opposite. By taking the EDP we are able to show

that the precomputed operations are significantly more efficient

than the monolithic operations regardless of operating mode for

the device.

Finally, when analyzing a specific implementation we consider

the ratios of the runtime operation to the monolithic operation as

the following terms:

Speedup : Ci =
Co
Cr

Energy Improvement : Ei =
Eo
Er

Latency Improvement : Di =
Do

Dr

EDP Improvement : EDPi =
EDPo
EDPr

(3)

By considering a ratio of the original computation to the runtime

computation, which utilizes a coupon, we are able to measure the

benefit conferred by precomputing a portion of the algorithm. The

cost of computing a coupon, Ep , is less valuable than the ratio of

Eo and Er because the coupon computation is executed during

periods of excess energy. The Energy Improvement, Ei , provides
a comparison of the unavoidable energy costs associated with the

operation despite a precomputation scheme and supports analysis

on the value of precomputation for that specific cryptographic

operation.

Similarly, precomputation delay, Dp , is not considered when an-

alyzing a specific implementation because the coupon computation
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Figure 4: Operations per second as a function of Energy in-

flux into the system. When coupons are available the device

is able to execute more operations within a given time pe-

riod until limited by the latency of the minimum runtime

computation (Dr ).

should be executed when no other tasks are pending. However,

it should be noted that both Ep and Dp are non-zero and limit a

system’s performance if additional operations are required after

all precomputed coupons have been consumed. This will prevent a

system from permanently executing at the upper limit, 1
Dr

, shown

in Figure 4.

3.4 Conversion of Energy to Data via
Precomputation

The value of converting excess energy to data via precomputation

deserves additional examination. The size of the system’s energy

store defines an upperbound on the number of consecutive op-

erations that can be done without harvesting additional energy

from the environment. Ultimately, this serves as a limit on the de-

signs maximum capacity for concurrently requested operations,

including cryptographic operations, forcing either a limitation on

its expected performance or an increase in the size of the energy

store. By precomputing elements of necessary cryptographic oper-

ations as coupons it is possible to transform a portion of this energy

storage requirement to a data storage requirement. As discussed

in the Background, modern non-volatile storage technologies such

as FRAM provide a more efficient and stable storage medium for

data than current battery or supercapacitor technologies provide

for energy.

The transformation of energy to coupons for future use allows

us to exploit the improved data storage capacity of modern energy

harvesting systems and improve the runtime performance of our

cryptographic operations. This is illustrated by Figure 4 which

highlights the potential to improve the performance of an energy

harvested device, measured in completed operations per second.

The solid line represents the operation of a system without pre-

computation, with a maximum value where the number of opera-

tions executed per second is limited by the execution latency (delay,

Do ) of the operation. With a precomputation method in place, the
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new theoretical maximum number of operations per second is lim-

ited by the delay of the runtime only computation, Dr , which may

be orders of magnitude shorter than the original operation depend-

ing on the algorithm. In reality, the theoretical limit, the dotted

line, will not be reached since it requires an infinite number of

precomputed coupons. Instead the device will operate within the

highlighted area between the lower bound of operations lacking

any precomputation and an upper bound where all operations have

been precomputed, changing position depending on the number of

coupons the device was able to generate and store during periods

of excess energy availability.

The inflection points for the two bounds are the points at which

the available power, P , is equal to the energy required for an oper-

ation divided by the operation’s delay. This is the point at which

sufficient power is available for the system to run the operation

continuously and the limiting factor changes from power to la-

tency. The points are highlighted in Figure 4 as Eo
Do

for the original

operation and Er
Dr

for the runtime operation with coupons.

3.5 Effect of Precomputation on Security

The security of the device is also improved through the implemen-

tation of a coupon precomputation scheme. As previously discussed

the energy required for the completion of a cryptographic opera-

tion and the actual number of processor cycles needed to complete

an operation are reduced when compared to a normal operation.

This has side effects including reduced latency as observed by the

distant end of communications, reduced emanations susceptible

to side-channel analysis, temporal separation of data dependent

operations, and improved resilience to denial of service attacks.

3.5.1 Denial of Service. In all cases, the device is still susceptible

to an adversary denying its operation through physical destruction

or disconnection. If no energy is available to the energy harvester,

then no operations will be completed with or without a precompu-

tation scheme in place. However, with a precomputation scheme

in place the device will recover from such an attack faster if any

coupons remain in non-volatile memory from before such an attack

began. In this work we assume such coupons are still valid since

they are stored on-chip and therefore would require an adversary

well outside our threat model to effectively access and compromise

these coupons without destroying the device. Effectively, such a

denial of service attack is only a threat to the availability of coupons

but not a threat to their integrity or confidentiality. This is still an

improvement over a non-precomputed case since work can resume

more quickly once the device is available.

3.5.2 Temporal Separation of Data Dependent Operations. For

some cryptographic operations a coupon precomputation scheme

can temporally separate data dependent operations. If a key sched-

ule is computed as a coupon, it is more difficult for an adversary

to determine when this is occurring and attempt to observe the

device. Similarly, in our first case study we show that AES-CTR can

be precomputed up to the one-time pad (OTP) byte stream to be

XOR’d with input data. This limits an attacker to observing only

the interaction of the attacker provided input and the OTP byte

stream rather than the entire AES-CTR operation. To bypass this,

an attacker must now determine when coupons are being created

and which specific coupon is being processed to observe the activity.

3.5.3 Reduced Risk of Side Channel Leakage. Precomputing brings

two advantages from the perspective of side-channel attacks. First,

the reduction in cycle count for the runtime operation increases

the difficulty for an attacker to properly identify the effects of the

cryptographic operation on the device’s side channels. Second, pre-

computing allows to uncouple the generation of keystreams from

their usage. Device-level master secrets will ideally only be accessed

during the precomputation phase, and the device will not generate

external input/ouput operations during that time. This eliminates

straightforward differential power analysis. And by using only pre-

computed keystreams during the online phase, differential power

analysis becomes harder for the online phase as well.

3.5.4 Reduced Operational Latency. By reducing the operational

latency of our device we further limit attackers in their ability to hi-

jack communications or protocols dependent on the completion of

cryptographic operations. Communications with a device utilizing

precomputation can utilize larger key sizes or stronger ciphers that

are more resistant to compromise than those available to a device

unable to precompute portions of its cryptographic operations. For

example, in our TRNG case study we demonstrate the dramatic

reduction in runtime latency, over 2000 times faster, to access a

256-bit random value when a coupon is used compared collecting

the necessary entropy via oscillator jitter at runtime. This is an

extreme case, but any level of improvement can be directly applied

to an increased computational complexity in the security proto-

col employed for the device, providing a proportional amount of

increased protection against attacks.

4 CASE STUDIES

The following case studies examine the effects of precomputation

on two cryptographic primitives. First, we analyze the precomputa-

tion of coupons for the key schedule and OTP for AES in Counter

mode (AES-CTR) and the benefit they bring to the execution of

the runtime encryption. Second, we analyze a true random num-

ber generator as one of the best cases for the precomputation of

coupons. Energy, delay and cycle count measurements from the two

case studies are for generating cipher text or a random number, the

case studies do not include measurements for the communication

overhead which would appear in a remote energy harvested node.

Table 2: Key features of MSP430FR5994 and MSP432P401R

Features MSP430FR5994 MSP432P401R

Core 16 bit RISC 32 bit ARM Cortex M4

Memory 8kB SRAM up to 64kB SRAM

NVM 256kB - FRAM 256kB - Flash

AM 1 current 100 μA/MHz 80 μA/MHz

HW accelerators AES/CRC/MPY AES/CRC

Operating mode AM, various LPM2 AM, various LPM

DMA 3-channel 8-channel

1AM : Active mode
2LPM : Low Power Mode
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Figure 5: Block diagramof countermode operation [15]with

precomputable portion highlighted.

4.1 Experimental setup

We have used the Texas Instruments(TI) MSP430FR5994 and the

TI SimpleLink MSP432P401R launchpad development kits in our

case studies. Different styles of TRNG were implemented on the

MSP430FR5994 and AES-CTR mode was implemented on both

the devices. Table 2 lists some important features that makes the

selected devices ideal to be used as an energy harvested node. Code

was developed using Code Composer Studio (CCSv7) and the energy

profile was measured using the integrated EnergyTrace technology.

The principle of energy measurement of EnergyTrace is based on

counting charge cycles of a switched-mode power-supply [10].

The two devices have specialized debug circuitry to work with

EnergyTrace.

4.2 AES counter mode

AES as a block cipher can be used in different modes of operation to

encrypt messages that are longer than one block of data. In counter

mode (AES-CTR), a counter value is encrypted first. The encrypted

counter value - also known as one-time pad (OTP) is then XOR’d

with the message block to generate the cipher text. Decryption

proceeds by XORing again with a synchronized keystream. In AES-

CTR mode, the actual block cipher operation is independent of the

input message, making it a good candidate for parallelizing the

encryption/decryption process. Similar to how the key schedule of

one block of AES can be precomputed offline [17], OTPs in AES-

CTR can also be precomputed offline. Figure 5 shows the two inputs

needed for offline encryption, EK , are key K and counter value IV .

When a messagemn is available at runtime, it can be XOR’d with

the precomputed OTP which provides the resultant cipher text cn .

Based on these features AES-CTR was chosen to demonstrate how

precomputing can optimize both energy required at runtime and

latency of the algorithm.

Since both the chosen microcontrollers have a dedicated AES

encryption and decryption co-processor, we have chosen to experi-

ment on both software and hardware implementations of AES. TI

provides a C library for 128 bit encryption and decryption which

was incorporated along with the hardware AES module in AES-

CTR mode. We also implemented AES-CTR mode using a software

implementation of T-box based encryption on the MSP432 [11]. In

the following experiments we have considered a 128 byte message

(8 blocks of 16 bytes each) to be encrypted using a 128 bit key.

char *aes_ctr_monolithic(char *key , char *ctr ,

char *PT) {

while(blocks < 8) {

aes_encrypt(char *ctr ,char *key);

increment_counter(char *ctr);

xor_mask(char *PT, char *OTP , char *CT);

}

return CT;

}

Figure 6: Pseudo-code for Monolithic AES-CTR

Table 3: Cost of Monolithic AES-CTR encryption

Device Test case Co Eo Do EDPo
Cycles μ J μs 10−12 J

MSP432 SW T-box 18474 75.0 6055 454125.0

SW S-box 94981 384.2 31405 12065801.0

HW 10995 44.6 3605 160783.0

MSP430 SW S-box 153989 244.4 165746 40508322.4

HW 13043 17.8 12370 220186.0

char *aes_ctr_online(char *PT,

char *precomp -coupons) {

while(blocks < 8) {

xor_mask(char *PT, char *precomp -coupons ,

char *CT);

}

return CT;

}

Figure 7: Pseudo-code for precomputed AES-CTR

4.2.1 AES-CTR as a monolithic block. When no precomputation

is involved, whole encryption of the message using AES-CTR mode

would be performed at runtime. This requires a node to perform

the code sequence in Figure 6 to encrypt a message.

The aes_encrypt() function first performs key expansion and

then encrypts the counter for every block of message.

When the whole encryption is done in one online stage, we

measured a delay of 6055 μs to finish encrypting a 128 byte block

using T-box implementation of software AES in MSP432P401R

(Table 3). This delay is proportional to the latency of algorithm at

runtime.

4.2.2 AES-CTR with precomputation. The above program in

Figure 6 is optimized by precomputing the functions aes_encrypt()

and increment_counter() in the offline stage. Precomputed OTPs can

then be stored as coupons in non-volatile memory such as FRAM

in MSP430FR5994 or flash in MSP432P401R. The AES block cipher

operation is then confined to the offline stage and removed from the

critical path of the online process. The only remaining function to

be executed during runtime is xor_masking(), as shown in Figure 7,

which greatly reduces the runtime energy requirement.

Table 4 gives a clear picture of the cost of XOR masking in both

MCUs. Since AES block cipher operations are precomputed in the
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Table 4: Runtime Cost of AES-CTR with precomputed OTP

Device Test case Cr Er Dr EDPr
Cycles μ J μs 10−12 J

MSP432 XOR masking 3455 13.8 1105 15249.0

MSP430 XOR masking 6904 8.7 6312 54914.4

Table 5: Improvements in AES-CTR with precomputation

Device Test case Co
Cr

Eo
Er

Do

Dr

EDPo
EDPr

MSP432 SW T-box 5.4 5.4 5.5 29.8

SW S-box 27.5 27.8 28.4 791.3

HW 3.2 3.2 3.3 10.5

MSP430 SW S-box 22.3 28.1 26.3 737.7

HW 1.9 2.1 2.0 4.0

offline stage, the runtime latency arises from retrieving precom-

puted coupons from non-volatile memory and XORing the plain

text message with those coupons. The energy required for fetching

coupons and XOR masking in MSP432P401R is 13.8 μJ.

4.2.3 Discussion. By partitioning the AES-CTR algorithm, it

can be optimized for latency and energy. Excess energy from the

harvester can be utilized for precomputing OTPs which are needed

for XOR masking. This precomputation can be continued as long as

there is excess energy to compute OTPs and memory available to

store them. Even if only 10 % of non-volatile memory is allocated

for coupon storage, both devices can store almost 25.6kB of coupons.

When the MSP432P401R is programmed to encrypt messages in

AES-CTR mode using a software S-box implementation, it can store

1600 OTPs, enough to encrypt the same number of message blocks

with a latency reduction by a factor of 27.5 for each message encryp-

tion. Instead of consuming 76.9 mJ of energy for encrypting 1600

blocks (monolithic encryption), a precomputed algorithm would

require only 2.76 mJ of energy at runtime to compute the same

amount of cipher text. This energy consumption improvement from

precomputation, a factor of 28, could be utilized to reduce the re-

quired size of attached energy storage or allow more executions per

charge. These values are also applicable for the decryption process

as AES-CTR works in the same way for both encryption and de-

cryption. From a security point of view, the encryption/decryption

operations performed using precomputed OTPs are protected from

side-channel analysis since the AES computations are performed

during an offline stage. Power traces of the online stage will not

reveal any information related to the key or counter value.

It can be seen that there is a vast improvement in runtime la-

tency, energy requirement and security in AES-CTR mode when

OTPs are precomputed. The EDP improvement for the AES-CTR

implementations using hardware co-processors is lower than other

implementations listed in Table 5. This is because the hardware

co-processors are already optimized and they do not contribute to

much of the energy and delay values of the algorithm.

Table 6: TRNG Structures and Labels

Label Structure

osc_clksft Oscillator jitter with clock frequency shifting

osc_noclksft Oscillator jitter with a Von Neumann extrac-

tor and XOR compression

sram_aes SRAM values processed with a HW AES co-

processor

sram_swaes SRAM values processed with a SW AES im-

plementation

sram_sha256 SRAM values processed through a SHA256

hash function

sram_xor16cvn SRAM values processed with a 16 to 1 XOR

and a Von Neumann extractor

sram_xor32cvn SRAM values processed with a 32 to 1 XOR

and a Von Neumann extractor

4.3 Hardware Random Number Generator

This case study analyzes a true random number generator as a pos-

sible best case situation for the precomputation of coupons. A RNG

is a possible best case example because all random number genera-

tion can be completed and securely stored before it is required by a

runtime operation. This generally reduces the request for a random

value to a single memory access to retrieve the next pre-generated

random number. We implement two different styles of TRNG on an

MSP430FR5994 one which derives entropy from the jitter between

two on-chip oscillators and one which extracts entropy from the

start-up values of an 8 kB SRAM. For all examples considered in this

case study the random number generators were used to generate a

256-bit random value stored in non-volatile memory (FRAM).

4.3.1 Generator Structure. The first type of TRNG implemented

was an oscillator based RNG constructed on an MSP430FR5994

following the recommendations from Texas Instruments [30]. This

oscillator based TRNG generated a random value based on the jitter

between two separate oscillators, the very-low-frequency oscillator

(VLO) and the digitally controlled oscillator (DCO), and included a

number of techniques to avoid any bias that might be present on

the device and influence the resulting random value. The second

TRNG constructed was SRAM based, and extracted a random value

from the startup state of the MSP430FR5994’s 8kB SRAM. A number

of different techniques were measured for their energy and latency

efficiency when extracting a random value from the startup state

of the SRAM. In all cases, the resultant random values were tested

with the NIST Statistical Test Suite to validate the randomness

the results [5]. Table 6 identifies the specific TRNGs used within

the case study and the label associated with that TRNG’s results

throughout our collected data.

4.3.2 True Random Number GenerationWithout Precomputation.

In normal operation, when a program requests a random value ex-

ecution is handed off to a a TRNG process or a cryptographically

secure pseudorandom number generator (PRNG) that has been

seeded with a truly random value of sufficient entropy. This pro-

cess then generates the random value to provide to the requesting

program. Depending on the implementation, the TRNG may block
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Table 7: TRNG Measurements and Precomputation

Monolithic Computation Improvement with Precomputation

RNG Structure Co Eo Do EDPo
Co
Cr

Eo
Er

Do

Dr

EDPo
EDPr

cycles μ J μs 10−12 Js
sram_aes 142285 81.7 94.0 7680.9 209.6 118.2 132.6 15680.2

sram_swaes 178747 118.9 130.0 15462.7 263.3 172.1 183.5 31566.6

sram_xor16cvn 251140 196.8 301.3 59295.8 369.9 284.8 425.0 121050.5

sram_xor32cvn 450498 382.7 406.8 155692.7 663.5 553.8 573.9 317841.6

sram_sha256 1791832 1677.2 1752.4 2939160.5 2638.9 2427.2 2472.1 6000200.7

osc_clksft 9603395 3131.6 1709.0 5352070.4 14143.4 4531.9 2410.9 10926077.8

osc_noclksft 3233803 2955.9 3241.5 9581641.5 4762.6 4277.6 4572.8 19560609.8

Precomputation Cr Er Dr EDPr

Read from FRAM 679 0.691 0.709 0.490

execution until sufficient entropy is harvested from the environ-

ment or a computation completes. The oscillator based TRNGs

tested here would work very well in this style of implementation.

They are able to generate an arbitrary number of random bits, sim-

ply requiring a longer collection time for larger bit strings. The

SRAM based TRNGs are more difficult to employ in this manner

because the device must be turned off or placed in a Low Power

Mode, which removes power from the SRAM modules, in order to

collect additional entropy. This places an additional delay burden

on the non precomputed versions of the SRAM based TRNG imple-

mentations that is not reflected in our results. If included this delay

would only serve to further amplify the benefits of precomputation

for this structure of TRNG.

4.3.3 Random Number Generation With Precomputation. When

precomputation is available to an energy harvested system, the

energy and latency cost of random number generation is reduced

to a non-volatile memory access to retrieve the next viable random

number. For theMSP430FR5994, we calculated 679 clock cycles were

required to copy a 32 byte, 256-bit, value from FRAM to SRAM,

requiring 0.691 μJ of energy, and causing a delay of 0.709 μs . This
is a multiple order of magnitude improvement for all of the TRNG

implementations, in line with the dramatic reduction in complexity

and difficulty when changing the operation to a simple memory

access and copy. Copying the data from the coupon into SRAM

was chosen as the precomputed case because it was representative

of another operation accessing the random value in FRAM, via a

normal extended memory access, and writing a value into SRAM

for use in any application specific operations.

4.3.4 Discussion. This case shows the best possible situation

for the precomputation of a cryptographic operation when excess

energy is readily available. The algorithm does not need to be par-

titioned as all operations except reading the result can be executed

during the precomputation and stored as a coupon. Additionally,

the algorithm can be executed as often as possible until the data

storage area for coupons is filled.

Given these favorable conditions it is not surprising that the im-

provements seen between the monolithic operation and the runtime

operation are tremendous. Depending on the speed and resources

required by the specific TRNG structure we observed multiple or-

der of magnitude improvements in latency and energy required

to produce a 256 bit random value. For an energy harvested de-

vice, computing strong random values as coupons during periods

of excess energy will dramatically improve the rate at which cryp-

tographic operations can be executed during runtime operations.

Additionally, by precomputing random values it is much easier to

exploit more efficient entropy sources such as SRAM startup values

that are otherwise awkward or impossible to access in the middle

of a larger computation.

It should be noted that the methods reviewed in this section

were for true random number generators and did not specifically

address pseudorandom number generation (PRNG) techniques. It

is possible to construct a hybrid PRNG for a system that uses one

of the analyzed TRNGs to generate a seed value and then executes

a less energy intensive computation for each iteration of the PRNG.

Ultimately, this technique would still benefit from precomputation

and would also result in an energy and latency cost equivalent to a

single pointer update after the use of a coupon. Due to the similarity

of these results, we have highlighted only the TRNG case in this

study.

5 FUTUREWORK

Developing a standard method for the identification of precom-

putable algorithms used within the IoT is a clear next step in our

work. Additionally, exploration of the extent to which our precom-

putation methods can be combined with developments from the

intermittent computing research to create an IoT device that behav-

iors favorably in all conditions would provide additional insight

into the optimization of cryptographic operations in this realm. A

detailed study of the effects coupon computation has on the resis-

tance of IoT devices to side channel analysis would also strengthen

our understanding of these techniques and the level of security

improvement they provide. Analysis of coupon storage costs is also

necessary before implementation in production systems. Finally,

it is critical to define the points at which precomputation is not

worthwhile for future developers to bracket their operations and
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ensure future devices are always executing in the most efficient

manner.

6 CONCLUSION

This paper presented an effective method for exploiting the ex-

cess energy available to energy harvested devices to improve the

efficiency of cryptographic operations. We explored the underly-

ing concepts of this method, the conversion of excess energy in

to coupons via precomputation, and the utilization of coupons to

improve the efficiency of cryptographic operations executed at a

later time. The security benefits of precomputation were identified

and explored as a countermeasure against hardware attacks made

at runtime on an IoT device. Finally, we demonstrated the effective-

ness of this method with two different cryptographic operations,

AES-CTR and a true random number generator, as concrete ex-

amples of the energy efficiency improvements available to energy

harvested systems when precomputation is employed to exploit

their access to excess energy.
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