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Abstract. The face conveys a blend of verbal and nonverbal information
playing an important role in daily interaction. While speech articulation
mostly affects the orofacial areas, emotional behaviors are externalized
across the entire face. Considering the relation between verbal and non-
verbal behaviors is important to create naturalistic facial movements
for conversational agents (CAs). Furthermore, facial muscles connect ar-
eas across the face, creating principled relationships and dependencies
between the movements that have to be taken into account. These re-
lationships are ignored when facial movements across the face are sep-
arately generated. This paper proposes to create speech-driven models
that jointly capture the relationship not only between speech and facial
movements, but also across facial movements. The input to the models
are features extracted from speech that convey the verbal and emotional
states of the speakers. We build our models with bidirectional long-short
term memory (BLSTM) units which are shown to be very successful in
modeling dependencies for sequential data. The objective and subjective
evaluations of the results demonstrate the benefits of joint modeling of
facial regions using this framework.

1 Introduction

While spoken language is the primary way of communication, nonverbal infor-
mation provides important information that enriches speech during face-to-face
interaction. Nonverbal information not only complements speech, but also con-
veys extra information [26]. Humans unconsciously use different channels to ex-
press and externalize their thoughts, emotions and intentions. These channels
are integrated in a non-trivial manner. However, listeners can easily decode the
message, inferring each of these communicative goals. The models should con-
sider these relationships, if we want to design better conversational agents (CAs)
that express realistic expressive human-like behaviors.

The face is one of the primary channels to express different communicative
goals. Different facial muscles contribute in creating speech articulation and
facial expression. Previous studies have shown the temporal and spatial interplay



between speech and emotion in the face [7,24]. In general, the activity in the
orofacial area is dominated by speech articulation, and the activity in the upper
face area is dominated by emotions. However, the interplay is not trivial. Since
humans can easily decode these communication goals, an effective CA should
capture this interplay. Likewise, emotional traits associated with an emotion
may involve multiple facial movements (e.g., surprise externalized as opening
of mouth and raising of eyebrows). Even a single facial muscle may activate
different facial regions. For example, the Zygomaticus major, which affects the
cheek area, allows us to smile. The activation of the Levator labii superioris
affects the lips and the upper facial region. The aforementioned relations not
only between speech and facial expression, but also across facial regions suggest
that generating realistic behaviors for CAs require careful consideration of these
underlying dependencies. In fact, previous studies have demonstrated that joint
models for eyebrow and head motion produced more realistic sequences than the
ones created with separate models [13,23].

Speech carries verbal and nonverbal cues, including the externalizations of the
affective state of the speaker. Given the strong correlation between speech and
facial expressions [6], speech-driven models offer appealing solutions to generate
human-like behaviors that preserve the timing relation between modalities. This
study proposes to create joint speech-driven models for facial expressions using
the latest advances in deep learning. The framework relies on bidirectional long-
short term memory (LSTM) units to capture (1) the relation between speech and
facial expressions, (2) the relation across facial features. We use deep structures
that help learning the interplay between the facial movements in different regions
of the face in a systematic and principled manner. We achieve this goal by using
multitask learning, where predictions for lower, middle and upper facial regions
are jointly estimated. Our results demonstrate the benefit of learning the facial
regions jointly rather than separately. While other studies used generative models
to jointly model facial behaviors [13,23, 28], this is the first study that solves
this problem using multitask learning with deep learning.

2 Related Works

The conventional approach for facial animations is the use of rule-based system.
For example, predefined shapes based on the target articulatory unit can be
concatenated to generate facial movements [12,32]. Defining facial trajectories
that are tightly coupled with speech is a challenge, especially in the presence of
emotion (rhythm, emphasis). Although some studies have considered continuous
emotional descriptors (e.g. Albrecht et al. [1]), the most common approach to
model emotion is to consider specific models created for prototypical emotional
categories [25,27]. However, defining the facial expressions per emotion reduces
the subtle differences that exist between slightly different facial expressions, and
makes the animation seem repetitive. As an appealing alternative, data-driven
methods are usually better at handling these fine changes, by learning the vari-



ations shown in real recordings [2, 10, 21]. This study focuses on data-driven
solutions.

There are several data-driven studies to predict facial movements from speech.
Brand [4] proposed to use HMMs to learn the mapping between speech and fa-
cial features using entropy minimization. Gutierrez et al. [18] designed a system
to synthesize facial movements from speech features. Their system used 12 per-
ceptual critical band features (PCBFSs), fundamental frequency and energy. The
approach predicts lip movements by identifying the 12 nearest neighbors (NNs) in
the speech feature space The selected segments are concatenated and smoothed
by a moving average window. Taylor et al. [30] proposed to use deep neural net-
work (DNNs) composed of densely connected rectified linear units (RELUSs) to
predict lip movements from speech. They used 25 mel frequency cepstral coef-
ficients (MFCCs) as speech features. They concatenated the acoustic features
extracted for each frame over a window, predicting the lip movements, which
are smoothed by averaging the estimations over a target window. Subjective and
objective evaluations demonstrated better performance over an HMM inversion
(HMMI) method proposed by Choi et al. [11]. Fan et al. [16] explored different
deep bidirectional LSTMs (DBLSTMs) for mapping speech or speech plus text
into lips movements. When using speech as input, they extracted 13 MFCCs,
and their first and second order derivatives (i.e. 39D) as the input. When the
text is provided, they concatenate the input with tri-phonemes. Their objective
and subjective evaluations showed better results for the DBLSTMs compared
with HMMs. All these studies did not directly consider emotional information.

There are also studies that have generated expressive facial movements using
data driven models, when the input is text. Cao et al. [10] conducted one of the
early data-driven works on generating expressive facial movements. Their ap-
proach relied on defining expressive units of articulations. They segmented and
stored their recordings into anime nodes indexed by the corresponding phoneme,
emotion, prosodic features, and motion capture features. For synthesis, suitable
anime nodes are selected, time warped, concatenated and smoothed as dictated
by the target requirement. Mana and Pianesi [22] trained different left-to-right
HMMs for pairs of visemes and emotions. Anderson et al. [2] proposed a vi-
sual text-to-speech system that synthesizes expressive audiovisual speech with
a set of continuous weights for emotional categories. They used cluster adaptive
training (CAT) which is built upon hidden Markov models (HMMs) for text-to-
speech. The HMM states are modeled by decision trees, and the model learns
the appropriate weight vector for each emotion, which is used to find the linear
combination of states. They evaluated the synthesized results in terms of the
precision of the perceived target emotion. All these studies used text as input.

To the best of our knowledge, there is only one study on expressive facial
movement synthesis, using emotional audio features and the target emotion as
the input. Li et al. [21] proposed several structures using DBLSTMs to synthe-
size emotional facial movements based on limited emotional data. They used
a neutral corpus with 321 utterances, and an emotional corpus of 44 subjects
reading sentences in six different emotional categories. They evaluated their pro-



posed structures in terms of the perceived naturalness and expressiveness of the
videos. Their best structure is composed of two models. The first one is trained
with neutral data, and is used to predict the movements for emotional inputs.
These predictions are concatenated with the input audio features and used as
the input to another model which is trained with emotional data to predict
the emotional movements. Our study also generates expressive facial behaviors
from speech. However, (1) our approach does not require the target emotion of
the input speech to be known, rather it captures the relationship between facial
movements and emotional features extracted from speech, (2) we rely on a bigger
database, and (3) we investigate joint versus separate modeling of facial features
from the speech signal using powerful deep learning structures with BLSTMs
under multitask framework.

3 Resources

3.1 IEMOCAP Corpus

This paper uses the interactive emotional dyadic motion capture (IEMOCAP)
database [9]. This database is multimodal, comprising audio, video, and motion
capture recordings from 10 actors during spontaneous and script-based dyadic
interactions. We use the data from all the actors in our experiments. From the
motion capture data, we use the position of the facial markers grouped into three
regions; upper face region, middle face area, and lower face area (Fig. 1(a)). Note
that the three regions here are chosen inspired by the study conducted by Busso
et al. [8]. In the extreme case, we can consider each marker as a region. Busso
et al. [9] provides more details about this corpus.

3.2 Multimodal Features

From the motion capture recordings, we use 19 markers for the upper facial
region (19 x 3D), 12 markers for the middle facial region (12 x 3D), and 15
markers for the lower facial region (15x3D). The motion capture data is recorded
at 120 frame per second (fps). From the speech signal, we extract 25 MFCCs,
fundamental frequency, and energy with Praat over 25ms windows every 8.3ms.
Eyben et al. [14] proposed the extended Geneva minimalistic acoustic parameter
set (E-GeMAPS), which is a compact set of features that were carefully selected
for paralinguistic tasks. The set has 23 low level descriptors (LLDs), where six
of them are already included in the features extracted by Praat. Therefore, we
add the rest of these features (17 D). These features are extracted over 20ms or
60ms every 10ms. We up-sample the speech features using linear interpolation
to get 120 fps, matching the sampling rate of the motion capture data. We use
Z-normalization per subject for the speech and visual features.

3.3 Rendering the Animations with Xface

For rendering the animations, we use Xface [3]. Xface uses the MPEG4 stan-
dard to define facial points (FPs). To animate the face, Xface uses facial action
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Fig. 1. Layout and groups of facial markers (a) markers belonging to upper, middle and
lower face regions, (b) markers mapped to FAPs in Xface (highlighted with arrows).

parameters (FAPs) which change the position of the FPs. Most of the mark-
ers used in the IEMOCAP database were placed following the FPs defined by
the MPEG4 standard, facilitating the mapping between markers and FAPs. We
follow the same mapping proposed by Mariooryad and Busso [23]. Figure 1(b)
highlights the markers that are mapped into FAPs in Xface. We use the idle
position of the markers for the actors as the neutral pose, and extract the range
of movements for each actor. The neutral pose is mapped to the neutral pose
of the face in Xface defined by FAPs, and the changes in the position of the
markers are scaled to the changes of FAPs allowed by Xface. While there are
other more realistic talking heads, the direct map between markers and FAPs
facilitate the evaluation of this study.

3.4 Objective Metrics

The models in this paper learn how to derive facial movements. Therefore, the
outputs of the models are continuous variables, where previous studies have
either minimized the mean squared error (MSE) [15,30], or maximized the con-
cordance correlation (p:) [31]. If  and y are the target and predicted values,
Equation 1 defines p., where p is the Pearson correlation between = and y, and
2 and pi,, and o, and o, are the means and variances of x and y, respectively.

2p0 0y
og + 0y + (e — py)?

Pc = (1)

Our preliminary experiments showed that using p. as the optimizing criterion
generates higher range of movements for the target variable, which looks better



when the trajectories are visualized. Therefore, we relied on minimizing 1 — p,
for our experiments. However, we report both metrics to assess the performance
of the models after concatenating all the test segments.

4 Speech-Driven Models with Deep Learning

Deep learning structures are very powerful to learn complex temporal relation-
ships between modalities, hence, they are a perfect framework for speech-driven
models for facial expressions. This study proposes to build joints models that
consider the relation not only between speech and facial movements, but also
across facial regions. For comparison, we assess models that either separately or
jointly generate facial movements for the lower, middle and upper facial regions.

We build our models by stacking multiple non-linear layers where the input
corresponds to the 44D speech feature set (Sec. 3.2). The models have densely
connected layers with rectified linear units (RELUs), BLSTMs, and a linear layer
at the top, since the task is to generate the position of the markers.

4.1 Bidirectional Long-Short Term Memory (BLSTM)

We rely on recurrent neural networks (RNNs) to capture the temporal depen-
dencies for continuous signals. RNNs use temporal connections between consec-
utive hidden units at each layer to model the dependencies between time frames.
However, as the length of the input signal increases, RNNs are susceptible to
the problem of exploding or vanishing gradients [19]. LSTMs are an extension
of RNNs, which were introduced to handle this problem [19].

LSTM utilizes a cell to keep track of the useful past content given the input,
and previous hidden state. LSTM uses gating mechanisms to capture the long
and short term dependencies in the temporal signals. It uses three gates for this
goal: input, forget, and output gates. The input gate controls the amount of the
current input to be stored in the cell unit. The forget gate controls the amount of
the previous cell content being retained in the cell. The output gate modulates
the amount of the cell content being used as the output of the hidden state at
time t. We use the implementation of LSTM in Keras.

An extension of LSTM is its bidirectional version, BLSTM, which utilizes
the previous and future frames to predict the outputs at each time (Fig. 2). The
implementation of BLSTM consists of training forward and backward LSTMs,
and concatenating their hidden units. The key benefit of BLSTMs is that they
generate more smooth movements. Although BLSTMs can be used in real time
by using a post-buffer, this study estimates the facial movements off-line using
the whole turn sequence. We run BLSTMs on each turn, predicting a sequence
of the same length as the output (speech features are up-sampled to 120fps).

4.2 Separate Models

Our baseline models consists of structures that separately generate facial behav-
iors for the lower, middle and upper face regions. These models independently
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Fig. 2. Illustration of BLSTM composed of forward and backward paths.

create the facial markers trajectories for each region. While local relationships
within regions are preserved, the intrinsic relationship across regions are ne-
glected. The underlying assumptions is that these relationships across the three
regions are not important. Figure 3 shows two alternative frameworks. Separate-1
uses one BLSTM layer, whereas Separate-2 uses two BLSTM layers. We consider

FACIAL MARKERS

t
LINEAR

BLSTMs BLSTMs

MFCCs | [ E-Gemaps-L | MFCCs | [ E-Gemaps-LLD

(a) Separate-1 (b) Separate-2

Fig. 3. Baseline speech-driven models, where the facial movements for the lower, middle
and upper face regions are separately generated.

4.3 Joint Models

We create the proposed joint models using multitask learning. Multitask learning
aims to jointly solve related problems using shared layer representation. In our
formulation, we have three related tasks consisting of predicting the movements



of the lower, middle and upper face regions, where part of the neural networks
are shared between all the tasks. These models assume that facial movements
over different regions have principled relationships. From a learning perspective,
when predicting movements in one region, the estimation of the movements for
the other two regions can be considered as a systematic regularization that helps
the network to learn more robust features with better generalization.

Figure 4 shows the two joint models that we investigate. The model Joint-
1 has the whole network shared between the three tasks except for the linear
output layer. This model has shared representation of the three tasks in all
the nonlinear layers, regularizing the whole network. This network is equivalent
to a model that predicts all the facial movements at once. The model Joint-2
shares the first two layers between all the tasks. However, the last two layers are
task-specific. The task specific layers capture localized facial relationship within
regions. while the shared lavers preserve relationship across regions.

UPPER FACE MIDDLE FACE LOWER FACE
UPPER FACE ~ MIDDLE FACE LOWER FACE ‘ “N:EAR | | “NIEAR /| “N:EAR ‘
\ BLSTMs | BLSTMs | | BLSTMs |
BLSTMs
MFCCs | [ E-GemapsLip MFCCs | [ E-Gemaps-Lip
(a) Joint-1 (b) Joint-2

Fig. 4. Proposed joint speech-driven models for facial movements. The Joint-1 model
has shared layers. The Joint-2 model has shared and task-specific layers.

5 Experiment & Results

The proposed models are implemented and evaluated using the IEMOCAP cor-
pus, where we used 60% of the data for training, 20% for validation, and 20% for
testing. We use Keras with Theano as backend to implement and train the mod-
els. We rely on adaptive moment estimation (ADAM) [20] for the optimization of
the parameters. ADAM keeps track of estimates of first and second moments of
gradient during training, and utilizes the ratio between the bias-corrected first
moment and the bias-corrected second moment of the gradient to update the
parameters. This process helps scaling the update, according to the uncertainty
(second moment), and making the step size invariant to the magnitude of the
gradient. We use different learning rates («~ {0.1,0.01,0.001,0.0001}), and eval-
uated the model on the validation set. The results demonstrated that a learning
rate of 0.0001 works better. Furthermore, all the layers use dropout of 0.2 to
counter overfitting [29]. Our training examples have various lengths. We set a
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Table 1. Objective metrics for facial movements generated with joint and separate
models for the lower, middle and upper face region.

Model  ||# nodes per layer|# params Uprzpeerzfg Mplfdﬁ;;‘g L;:Ver]\;a;;
Separate-1 512 12.8M 0.140 1.47 |0.268 1.36 |0.401 1.12
Joint-1 512 4.4M 0.150 1.32 |0.274 1.30 |0.390 1.26
Separate-1 1024 50,8M 0.149 1.41 |0.277 1.16 |0.411 1.05
Joint-1 1024 17,1M 0.160 1.40 |0.297 1.24 |0.413 1.14
Separate-2 512 31.7M 0.135 1.44 10.260 1.24 |0.392 1.04
Joint-2 512 23.2M 0.160 1.37 |0.307 1.14 |0.411 1.06

batch size of 4,096, making sure that the total number of frames used in one
batch does not exceed this number. As a result, we have different number of
sequences in different batches. All the weights are initialized with the approach
proposed by Glorot et al. [17]. We train all the models with 50 epochs.

5.1 Objective Evaluation

We train the models with different number of nodes and layers for the joint and
separate models. Table 1 summarizes the results. When we compare Joint-1 and
Separate-1 with 512 nodes, the results show improvements in the joint model for
the middle and upper face regions. When we increase the number of nodes to
1,024, we observe improved performance for all the regions, where the joint model
achieves higher p. and smaller MSE. The table also compares the Separate-2 and
Joint-2 models which have the same number of layers. Changing the structure
to the Joint-2 and Separate-2 models tend to improve the MSE for all the
facial regions, compared to the Joint-1 and Separate-1 models. Furthermore,
the Joint-2 model achieves better concordance correlation than the Separate-
2 model. Note that the Separate-1 model requires approximately three times
more parameters than the Joint-1 model. Likewise, the Separate-2 model has
36.31% more parameters than the Joint-2 model. The proposed joint structure
not only provides better performance, but also requires less parameters which is
an advantage due to memory requirements.

Emotional Analysis We compare the performance of Separate-2 and joint-2
models for different emotional categories. The IEMOCAP corpus is emotionally
annotated at the speaking turn level by three annotators in term of nine emo-
tional categories (neutral, anger, happiness, sadness, fear, frustration, surprise,
disgust, and other). We derive a consensus label using the majority vote rule,
where turns without consensus are excluded from this analysis. In the test set,
we have the following distribution: 113 (neutral), 161 (anger), 86 (happiness),
131 (sadness), 3 (fear), 247 (frustration), 12 (surprise), 0 (disgust), and 2 (other).
We only consider emotional classes with more than 50 speaking turns. We con-
catenate all the speaking turns belonging to a given emotion, estimating p. and
MSE.
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Figure 5 shows the average p. and MSE for the three facial regions per
emotional category. For the upper face area, the Joint-2 model shows better
results across the emotions, except for p. for neutral. Furthermore, for the middle
face region, the results show improvements for all the emotions. For the lower
face region, p. shows improvements for neutral speech, happiness, and sadness,
while MSE is improved only for happiness.

‘ Wl Senarata-ol 1. Ininf-?‘

fru fru fru

sad —— sad sad
hap — hap hap

— ang ang

ANQ I—

NEU Pee—— NeU me— NEU ——
0 0.05 0.1 0.15 0 0.1 0.2 0 0.1 0.2 0.3 0.4
P P P
fru U e — U e —
S O e S O Sa( e —
Qe ETp === Pl ] ==
ang sang L ang !
neu [P === NEU —
0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5
MSE MSE MSE
(a) Upper face (b) Middle Face (¢) Lower Face

Fig. 5. Comparison of the results achieved for p. and MSE per emotional category
using the Separate-2 and Joint-2 models.

5.2 Subjective Evaluation

Subjective evaluations provide convincing evidences about the performances of
the models. Table 1 shows that the Joint-1 and Separate-1 models provide better
results with 1,024 nodes per layer than with 512 nodes per layer. Therefore, we
only include the Joint-1 and Separate-1 models trained with 512 nodes per layer.
The Joint-2, and Separate-2 models are trained with 512 nodes. The evaluation
also includes the animations generated with the original motion capture data.
Therefore, we have five conditions per speaking turn. We randomly selected
10 turns from the test set, and generated their animations for all of these five
conditions using Xface (50 videos). We do not include head motion, so our raters
can focus on facial movements. We use the original eyelid and nose markers
positions across all the videos.

The evaluation is conducted using crowdsourcing with Amazon mechanical
turk (AMT). We limit our pool of evaluators to workers who have performed
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well in our previous crowdsourcing tasks [5]. We ask each evaluator to rate the
naturalness of the 50 videos in a likert-like scale from 1 (low naturalness) to 10
(high naturalness). The task requires to annotate the perceived naturalness for
the overall animation. In addition, we ask the raters to annotate the naturalness
of the eyebrow and lips movements (i.e., three questions per video). Since we
have only animated one of the markers in the cheek area (see Fig. 1(b)), we do
not ask the annotators for separate ratings for the middle face region. We show
one video at a time to the annotators, displaying the questionnaire only after the
video is fully played. This approach reduces the chance of annotators providing
random answers without even looking at the video. We randomize the order of
the videos per evaluator. We recruited 20 subjects for this evaluation.

Figure 6 shows the average scores for the five conditions. The Cronbach’s
alpha between the annotators is a = 0.6720. One way analysis of variance
(ANOVA) shows statistically different values between the five cases for all three
questions (p < 0.001). Pairwise comparisons of the results between the five con-
ditions only show that the animations generated with the original sequences are
significantly better than the animations automatically generated from speech,
which is expected. This result reveals that the differences between the animations
generated with the joint and separate models were subtle. From the objective
metrics, we observe that the middle face region shows the highest improvements
when the joint models are used (Sec. 5.1). However, these differences may not be
visually perceived due to limitations in Xface. We hypothesize that the differ-
ence in facial movements will be more clear if we use a more expressive talking
head, which is the focus of our future work. Even with the these results, it is
important to highlight that using joint models allows the network to achieve
similar performances than separate models using fewer parameters.

Face Face Face
Original Original Original
Separate-2 (512) Separate-2 (512) Separate-2 512
Joint-2 (512) Joint-2 512 Joint-2 ( 512)
Separate-1 (1024) Separate-1 ( 1024 Separate-1 (1024)
Joint-1 (1024) Joint-1 ( 1024) Joint-1 (1024)
2 4
Naturalr Naturaln Naturalness
(a) Eyebrows (b) Mouth (c) Face

Fig. 6. Perceived naturalness of the animations. The color-coded asterisks indicate that
the bar is significantly higher than the bars identified by the asterisks’ colors (p < 0.01).

6 Conclusions

This paper explored multitask learning architectures to train speech-driven mod-
els for facial movements. The framework relied on BLSTMs to capture temporal
information, using speech features as the input to predict facial movements.
The models jointly learn the relationship not only between speech and facial
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expressions, but also across facial regions, capturing intrinsic dependencies. We
compared the results with models that separately estimate movements for the
lower, middle and upper part of the face, ignoring relations between regions.
Objective evaluation of the results showed improvements for the joint models
in different facial regions as measured by p. and MSE. The improvement are
higher for the Joint-2 model, which has shared layers and task specific layers.
Interesting, by sharing the layers the proposed solutions reduced the number of
parameters, which is another advantage of our approach. While subjective eval-
uations did not reveal any significant difference between the joint and separate
models, we believe that this result is due to the lack of expressiveness of Xface
to create animations with subtle behaviors. We will explore more sophisticate
toolkits to present our results, including photo realistic videos [30]. We will also
evaluate generating head motion driven by speech as an extra task in the multi-
task learning framework. We expect that the behaviors will be better synthesized
with the rest of the facial movements, providing better speech driven solutions.
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