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ABSTRACT

Head movement is an integral part of face-to-face communications.
It is important to investigate methodologies to generate naturalis-
tic movements for conversational agents (CAs). The predominant
method for head movement generation is using rules based on the
meaning of the message. However, the variations of head move-
ments by these methods are bounded by the predefined dictionary
of gestures. Speech-driven methods offer an alternative approach,
learning the relationship between speech and head movements from
real recordings. However, previous studies do not generate novel
realizations for a repeated speech signal. Conditional generative
adversarial network (GAN) provides a framework to generate mul-
tiple realizations of head movements for each speech segment by
sampling from a conditioned distribution. We build a conditional
GAN with bidirectional long-short term memory (BLSTM), which
is suitable for capturing the long-short term dependencies of time-
continuous signals. This model learns the distribution of head move-
ments conditioned on speech prosodic features. We compare this
model with a dynamic Bayesian network (DBN) and BLSTM mod-
els optimized to reduce mean squared error (MSE) or to increase
concordance correlation. The objective evaluations and subjective
evaluations of the results showed better performance for the condi-
tional GAN model compared with these baseline systems.

Index Terms— Head movements synthesis; speech-driven ani-
mation; conditional generative adversarial networks.

1. INTRODUCTION

Head movement plays various roles during face-to-face conversa-
tions [1, 2]. People use head movements to manage turn taking, sig-
nal contrast, emphasize their mood, show hesitation, and communi-
cate backchannels. Previous studies have demonstrated that the in-
clusion of head movements in conversational agents (CAs) increases
speech intelligibility [3], enhances the level of warmth and compe-
tence of the CA [4], and improves the perceived naturalness of the
CA [5]. Therefore, it is important to study frameworks that can help
in generating more convincing movements for CAs.

The predominant approach to synthesize head movements is us-
ing rule-based frameworks [6,7]. These methods rely on a predefined
dictionary of gestures. They define mappings between the commu-
nicative goals of the utterance and gestures, which are usually de-
rived from the outcomes of psychological studies. The problem with
these methods is that the variations in these methods are limited to
the predefined dictionary of the gestures in the system. Hence, the
movements may look repetitive after some time. Furthermore, the
temporal synchronization between speech and gestures also needs to
be specified in the system.
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More than 90% of human gestures occur while speaking [8].
Speech and head movements are combined in a non-trivial manner,
externalizing the speakers thought, emotions, and intents. Human
recordings of speech and head movements have revealed a strong
coupling between these two modalities, showing co-occurrence of
head movements with speech prosodic patterns [3,9, 10]. Due to the
high level of synchrony between speech prosodic features and head
movements, speech-driven approaches [2, 5, 11–18] are proposed as
an alternative to rule-based systems. These methods aim to capture
the variations of head movements in real recordings, learning the
synchrony between speech and head movements from data.

Most of the previous speech-driven frameworks generate head
movements with limited variations or small range of movements.
Although previous studies have proposed strategies to improve the
range of movements synthesized by the model by incorporating other
factors such as prototypical gestures [18], or discourse functions
[19], still the common architectures which are supposed to capture
the beat-like gestures [8] lack the capability to model the range of
movements seen in real recordings.

We propose a model based on generative adversarial networks
(GANs) [20]. GANs learn the distribution of the data, increasing
the range of beat-like head movements derived by the model. We
propose to use a conditional GAN, which is conditioned on speech
prosodic features. This model can generate multiple novel realiza-
tions of head movements for an input speech signal by sampling
from the conditional distribution of the data. The objective and sub-
jective evaluations demonstrate the benefit of the proposed model.

2. RELATED WORK

There are several recent studies on speech-driven head movements
with deep neural networks (DNNs). For instance, Ding et al. [13]
explored DNNs implemented with only fully-connected layers, only
bidirectional long-short term memory (BLSTM) units, and a hy-
brid approach that is built with fully connected layers and BLSTMs.
These models mapped filter bank features of speech to head move-
ments, optimized to minimize the sum of squared errors (SSE) be-
tween the predictions and original head movements. Their results
demonstrated better performance when using only BLSTM model
compared with only fully connected DNN. They achieved their best
performance by the hybrid approach. Haag et al. [14] proposed to
extract bottleneck features extracted with a feed-forward network.
They used the bottleneck features along with input speech features
in a separate model composed of BLSTM and fully-connected lay-
ers, resulting in some improvements. Greenwood et al. [21] built
separate deep models for the listening and speaking turns, mapping
the filter bank features extracted from speech to head poses. They in-
vestigated comparisons between a BLSTM model and a conditional
variational auto-encoder (CVAE) by illustrating the statistical prop-



erties of the moments for the generated head movements.
Note that most of the previous studies only generate one se-

quence of head movements per speech signal. However, the mapping
between speech prosodic features and beat-like head movements is
a one to many problem. We propose to build speech-driven head
movement models with conditional GANs, conditioning the model
on speech prosodic features. This model learns the conditional distri-
butions of the data. During testing, it generates novel realizations by
sampling from this conditional distribution, resulting in many head
movements for each speech sentence. The model captures the dy-
namics of the head movements from the changes in the prosodic fea-
tures. The noise provided to the model captures the global variation
of head pose across time conditioned on the input speech features.
During training, we also provide mismatched samples of audio and
head movements to the discriminator as extra fake samples. This
approach helps the discriminator to learn the underlying coupling
between speech features and head movements, which in turn helps
the generator synthesize head movements which are coupled with
the speech features to better fool the discriminator. Note that we
share the model between speaking and listening segments, captur-
ing the transitions between them. We compare the results from our
model with the DBN model proposed by Mariooryad and Busso [5],
a BLSTM model optimized to reduce the MSE inspired by [13], and
a BLSTM model optimized to increase the concordance correlation.

3. RESOURCES AND BACKGROUND

3.1. The IEMOCAP Corpus

For our experiments, we use the interactive dyadic emotional mo-
tion capture (IEMOCAP) corpus [22], consisting of audio, video,
and motion capture data from dyadic interactions between 10 ac-
tors. The actors performed script-based and improvisation scenar-
ios, where the scenarios were designed to elicit different emotions.
We arbitrarily chose the recordings of the first female subject for our
experiments, comprising 14 sessions (1h6m) of dyadic interactions
between her and another actor. We divide these sessions into 8 ses-
sions for training, 3 for validation, and 3 for testing.

From the motion capture recordings, we obtain the head rota-
tions for pitch, yaw and roll. From audio, we rely on prosodic fea-
tures of speech, similar to previous studies on speech-driven head
motion synthesis [5, 12, 15, 23]. We extract the fundamental fre-
quency and intensity from speech using Praat over each 40ms win-
dow, shifting the window by 16.7ms each time (60 fps). We up-
sample the prosodic features to match the sampling rate of the mo-
tion capture data (120 fps). We provide the first and second deriva-
tives of these features to the models. Furthermore, since we use
full sessions of the recordings consisting of listening and speaking
segments, we also consider a binary input variable for each frame,
where one represents speaking turns, and zero represents listening
turns.

3.2. Rendering Head Movements

We rely on Xface [24] for rendering the animations. Xface is an
MPEG-4 compatible rendering tool. Most facial markers in the
IEMOCAP corpus follow the MPEG-4 standard. We follow the
same approach used by Mariooryad and Busso [5] to map the
markers to facial action parameters (FAPs). When generating the
animated clips, all the facial markers are rendered with the origi-
nal motion capture recordings, replacing only the head movements
generated by each model (conditional GAN or baselines).

4. METHODOLOGY

4.1. Bidirectional Long-short Term Memory (BLSTMs)

Speech and head movements are time continuous signals. To cap-
ture the temporal and cross modality dependencies, we use recurrent
neural networks (RNNs). RNNs consider weights between consecu-
tive frames, tied at all frames, which makes their learning tractable.
However, vanilla RNNs suffer from exploding or vanishing gradi-
ents during training [25]. Hence, alternative versions of RNNs with
gating mechanisms such as LSTMs [25] have been proposed to han-
dle these issues. Each LSTM node is associated with a cell variable
to keep track of the history. Our model entails three gates: input,
forget and output. The input gate uses the previous hidden state (in
time) and the input values to determine how much of the input is
stored in the cell. The forget gate uses the previous hidden state and
input values to determine how much of the current content in the cell
has to be forgotten. The output gate uses the previous hidden state,
the current cell content, and the input value to determine the output
value of the node.

We rely on bidirectional LSTMs, which use previous and future
information. In practice this model can be used in real time with a
short delay. However, we assume the whole speech signal is given
for our experiments. LSTMs can help the model to learn the long
and short term dependencies between speech and head movements.

4.2. Generative Adversarial Networks (GANs)

GANs were proposed to learn the distribution of the data using ad-
versarial training [20]. GAN is composed of a generator, and a dis-
criminator. The generator generates data by sampling from a noise
distribution (z). The samples from the original data are called real
samples (labeled as 1), and the samples generated from the gener-
ator are called fake samples (labeled as 0). The generator and the
discriminator play a minimax game, where the role of the discrim-
inator is to distinguish between the real and fake samples, and the
role of the generator is to fool the discriminator (i.e., generate sam-
ples close to the original). To achieve this goal during training, the
weights of the generator are frozen and the discriminator weights
change to reduce the binary cross entropy loss function to distin-
guish between the fake and real samples. Then, the discriminator
weights are frozen and the generator changes its weights to max-
imize the cross entropy on the fake samples. This is achieved by
changing the labels assigned to the fake samples to one.

4.3. Conditional GAN

Our proposed model is a conditional GAN (Fig. 1). Both the dis-
criminator and the generator are conditioned on the speech features.
The generator captures the distribution of head movements condi-
tioned on prosodic features. During testing, we can sample from this
conditional distribution by selecting different noise values, generat-
ing multiple novel realizations of head movements for one speech
signal.

As aforementioned in Section 4.2, the discriminator is trained to
distinguish the samples generated by the generator (fake) from the
original samples (real). The generator needs to capture the temporal
and cross-modality dependencies to fool the discriminator. There-
fore, the discriminator has to distinguish two types of fake samples:
head pose sequences which do not look realistic, and head pose se-
quences which do not match the speech features. To account for the
first fake samples, we generate samples by sampling from the noise
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Fig. 1. Conditional GAN used for head movement synthesis, where
st represents speech features at time t, z represents noise sample,
xt represents the output of the generator, dt represents head pose at
time t and yt represents prediction by the discriminator at time t.

distribution as is commonly done on GAN. To account for the sec-
ond fake samples during training the discriminator, we add another
type of fake samples inspired by the matching-aware discriminator
in the conditional GAN proposed by Reed et al. [26] for text-to-
image synthesis. These new sets of fake samples are mismatched
segments of audio and visual sequences selected from the original
data. Although without using this error the discriminator can learn
the couplings between audio and head movements, adding this as-
pect in the loss function is very helpful to expedite the learning.

Note that in this model the generator is composed of two
BLSTM layers with 128 nodes, and a linear output layer tied across
the time frames. The discriminator has two layers of BLSTMs with
128 nodes, and a sigmoid output layer tied across time frames. The
generator uses the same noise sample across the entire sequence to
avoid introducing discontinuities in the generated sequence. The
dynamics of the sequence is learned from the time varying speech
features provided at each frame. Note that the generator has to learn
not only realistic static head poses, but also it has to generate se-
quences with realistic dynamics. Hence, the discriminator which is
supposed to guide the generator towards the data distribution has to
learn these aspects. If we only consider the labels at the final frame
of the sequence, it may be harder to correct the static errors of the
rest of the frames. Furthermore, although LSTMs are supposed to
capture long term dependencies, this feature is less effective as the
length of the sequence gets very large. Due to all these reasons, we
used fake/real labels for all the frames, facilitating the learning of
static and dynamic long and short term errors. Our experiments also
demonstrate that this approach expedites the learning by the model.

5. EXPERIMENTS
5.1. Baselines

Dynamic Bayesian Network (DBN): We use the DBN, proposed by
Mariooryad and Busso [5] as one of our baseline models. This model
uses two sets of input variable: speech features (Speech) and head
poses (Head ). The model uses discrete hidden states to capture the
coupling between these two variables. The transitions between the
states follow the Markov property of order one. Each of these vari-
ables are continuous. Hence, they are modeled with Gaussian dis-
tributions with full covariance matrices. During testing, we have
partial evidence (only Speech), which propagates through the net-
work providing the expected values of Head at each frame. They
optimized this model on the IEMOCAP corpus, selecting six hid-
den states for the head model. Their model is optimized only on the
speaking turns. However, we use this model for speaking and listen-
ing segments. Hence, we add a new node to the model, representing
the talking or listening segments, modeled by a binary distribution
(i.e., S/L). Figure 2 illustrates this model. We train the model using

Fig. 2. The DBN model proposed by Mariooryad and Busso [5],
with an extra input variable S/L.

the expectation maximization (EM) algorithm to maximize the log-
likelihood of the model on the entire sequence, using the popular
forward-backward algorithm. We train the model with 10 iterations.
BLSTM-MSE: Our second baseline model is inspired by the study
conducted by Ding et al. [13]. This model is composed of two lay-
ers of BLSTMs with 128 nodes for each path, and a linear output
layer, in which the weights are tied across the frames. The model
is optimized to reduce the MSE between the predicted and original
data.
BLSTM-CC: Our third baseline model (BLSTM-CC) has the same
structure as BLSTM-MSE. However, the objective function is 1-ρc
[27]. ρc is the concordance correlation (CC) between the predictions
and the original head poses.

5.2. Experimental Evaluation

We implemented BLSTM models with Keras. We initialize the
weights of all the nodes, using the method of Glorot et al. [28].
To avoid overfitting, we use a dropout of 0.20 over all the layers.
For optimization, we rely on adaptive moment estimation (ADAM),
which utilizes the history of the gradient in terms of its first and sec-
ond moments, making the learning rate more robust during different
epochs. We select a learning rate of 0.0001, after experimenting with
different values ([0.1 − 0.0001]), and observing the changes of loss
on the validation set. As our batch size, we use one sample at a time,
where the length of the sequence is 1,024 (8.5s). We experimented
with shorter sequences (∼ {100, 200, 400}). However, we found
out there are longer term dependencies between head pose frames,
which are not captured by the model if the sequence length is short.
We noticed 1,024 frames (8.5s) gives reasonable performance on the
validation set.

We consider an m dimensional zero mean Gaussian noise with
an identity covariance matrix as the noise for the generator. We ex-
plored different noise dimensions ∼ {1, 10, 100}, where 10 gave
the best result on the validation set. We noticed that pre-training the
generator with concordance correlation objective improves the speed
of training. Therefore, we pre-train the generator for 10 epochs, and
then the discriminator for 5 epochs. Next, we alternate between up-
dating the generator and the discriminator over each batch, training
the GAN for 10 epochs. For the baseline BLSTM models, we trained
the models for 10 epochs.

We smooth the predicted trajectories following the method pro-
posed by Busso et al. [23]. This method consists of converting the
rotations into quaternions, and then selecting 15 key points per sec-
ond, interpolating the intermediate frames.

5.3. Objective Evaluations

The synthesized results by GAN are usually objectively evaluated
by fitting a distribution to the generated samples, and finding the
likelihood of the test samples in the distributions [20]. We use the
unseen audio samples of the test set, and generate their correspond-
ing outputs by sampling from noise. For this evaluation, we treat
each frame of the generated sequences as one sample, resulting in



Table 1. Objective evaluation of the generated head movements in
term of log-likelihood (the values in the parentheses are the standard
deviations of the metrics, by sampling multiple times from noise).

Type Model Log-likelihood
MEAN STD

Baseline
DBN -121.406 120.976
BLSTM-MSE -106.107 113.766
BLSTM-CC -38.415 65.410

Proposed Conditional GAN -30.559 (3.2752) 48.674 (3.8405)
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Fig. 3. The figures demonstrate 5 different realizations of three head
angles synthesized by sampling from the conditional GAN.

103.7K samples. These samples are then used to fit a Parzen ker-
nel density, where the bandwidth of the kernel is optimized by 3-
fold cross validation on the samples. Table 1 gives the average and
standard deviation of these values. Since the conditional GAN uses
noise as input, we estimate the results for GAN five times by sam-
pling from the noise distribution, reporting the average of the re-
sults in terms of the log-likelihood mean and standard deviations.
Note that all the pairwise comparisons are statistically different (z-
test: p−value < 0.001). These results demonstrate the best perfor-
mance is achieved with our conditional GAN. The results are better
for BLSTM compared to DBN. The results clearly demonstrate the
benefit of using a concordance correlation-based objective function
compared with MSE.

Note that one of the benefits of GAN is generating novel realiza-
tions for the same input speech by sampling from noise (z). Figure
3 demonstrates the three head angles synthesized by sampling five
times from the conditional GAN, relying on the same input speech
but different noise values. Visual inspection shows that the five se-
quences are reasonable.

5.4. Subjective Evaluations

For subjective evaluation, we randomly select five continuous seg-
ments from the test samples with at least 15 seconds of talking du-
ration. The average length of the dialogs is 39.2s. We render the
videos with the head movements synthesized by the three baseline
models and the conditional GAN. Comparing two videos is usually
less susceptible to personal biases than separately rating a stimulus.
Therefore, we devise a comparison task consisting of the head move-
ments by conditional GAN with one of the baseline models. For
each task, the placement of the videos are randomized. The evalu-
ators are provided with two videos labeled as video 1 and video 2
and the question “Which video has more natural head movements?”.
To allow the annotators to convey their soft perceptions, we provide
multiple choices: 1. “Definitely video 1”, 2. “Video 1”, 3. “Mod-
erately video 1”, 4. “Slightly video 1”, 5. “Both look similar”, 6.
“Slightly video 2”, 7. “Moderately video 2”, 8. “Video 2”, 9. “Defi-
nitely video 2”.

We use Amazon mechanical turk (AMT) to recruit annotators for
our evaluations. We only allow the task to be done by annotators who
performed well in our previous tasks [2,29,30]. This helps avoiding
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Fig. 4. The figure gives the comparison results between the condi-
tional GAN and the three baseline models.

spammers. Furthermore, the evaluators are shown one pair of videos
at a time, where the order is randomized for each person. The ques-
tion is shown after the evaluator has played the videos, reducing the
chance of answering the question before watching the videos.

Each comparison task is composed of evaluating five videos syn-
thesized by the conditional GAN model with the five videos synthe-
sized by one of the baseline models. In total, we have three separate
tasks, where we recruit 12 people from AMT for the evaluation (four
per task). We replaced three subjects (one per condition) whose av-
erage pairwise Cronbach’s alpha with the rest of the annotators are
less than zero. The Cronbach’s alpha values between the annota-
tors are 0.459 (DBN), 0.640 (BLSTM-MSE) and 0.718 (BLSTM-
CC). Figure 4 gives the comparison results. On average, people
preferred the head movements generated by the conditional GAN
model more than 50% over the baselines. We compute the propor-
tion of preferences for the conditional GAN model compared with
each of the baseline models. We get the proportions using Equa-
tion 1, where ai is the preference for the ith sample, from n total
samples. The proportion of preferences for the conditional GAN
compared to the baselines are 0.682 (DBN), 0.737 (BLSTM-MSE)
and 0.542 (BSLTM-CC). Proportion test shows significantly higher
proportion than 50% for conditional GAN compared with BLSTM-
MSE (p−value < 0.05). The p-values of this test on the compar-
isons for DBN and BLSTM-CC are 0.0977 and 0.3860, respectively.

p =
Count (ai ≥ 50%)

[Count (ai ≥ 50%) + Count (ai ≤ 50%)]
, i ∈ {1, · · · , n}

(1)

6. CONCLUSIONS & FUTURE WORK
This paper proposed a novel strategy to utilize conditional GAN
for head movement synthesis. Beat gestures of head have intrin-
sic random properties, and conditional GANs provide an appropri-
ate framework to capture them by fitting a conditional distributions
to the observed training samples. We propose to condition a GAN
model on prosodic features, which are varying from one frame to an-
other, capturing the dynamics of head movements. The input noise
for the GAN model captures different variations of head motions un-
der the same prosodic states. After training the model, we generate
novel realizations of head movements by sampling from the condi-
tional distribution learned by the model (i.e., prosodic features plus
different noise values). The average log-likelihood of the test sam-
ples in the fitted distributions of the generated samples by the condi-
tional GAN is higher compared with the baseline models, showing
that the model better fits the distribution of the data. The direct com-
parisons between the conditional GAN model and the three baselines
showed higher average preferences for the conditional GAN model.
The preference of the proposed model is significantly higher than
BLSTM-MSE.

The conditional GAN proposed in this study is shared between
speaking and listening segments. Adding more audio-visual features
from the interlocutor during the speaking segments may provide
more predictive features of the head pose of the listener. Although
we propose this model for head movement synthesis, this model can
be applied to learn facial movements during conversations.
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