
Dalı́: A Periodically Persistent Hash Map

Faisal Nawab∗‡, Joseph Izraelevitz†‡,
Charles B. Morrey III‡, Dhruva R. Chakrabarti‡, Michael L. Scott†

∗University of California, Santa Cruz †University of Rochester
fnawab@ucsc.edu {jhi1,scott}@cs.rochester.edu

I. INTRODUCTION

In current real-world processors, instructions to control the
ordering, timing, and granularity of writes-back from caches
to NVM main memory are rather limited. Even in the best
of circumstances, however, “persisting” an individual store
(e.g., using CLFLUSH) and ordering it with respect to other
stores (e.g., using MFENCE) is likely to take at least tens of
cycles. Additionally, due to power constraints, we expect that
writes into NVM will be guaranteed to be failure-atomic only
at increments of eight bytes—not across a 64-byte cache line.

We use the term incremental persistence to refer to the
strategy of persisting store w1 before performing store w2

whenever w1 occurs before w2 in the happens-before order of
the program during normal execution. Given the expected
latency of even an optimized persist, this strategy seems
doomed to impose significant overhead on the operations of
any data structure intended to survive program crashes.

As an alternative, this work introduces a strategy we refer to
as periodic persistence. The key to this strategy is to design a
data structure in such a way that modifications can safely
leak into persistence in any order, removing the need to
persist locations incrementally and explicitly as an operation
progresses. To ensure that an operation’s stores eventually
become persistent, we periodically execute a global fence that
forces all cached data to be written back to memory. The
interval between global fences bounds the amount of work
that can ever be lost in a crash (though some work may be
lost). To avoid depending on the fine-grain ordering of writes-
back, we arrange for “leaked” lines to be ignored by any
recovery procedure that executes before a subsequent global
fence. After the fence, however, a known set of cache lines
will have been written back, making their contents safe to read.
Like naive uninstrumented code, periodic persistence allows
stores to persist out of order. It guarantees, however, that the
recovery procedure will never use a value v from memory
unless it can be sure that all values on which v depends have
also safely persisted.

As an example of periodic persistence, we introduce
Dalı́,1 a transactional hash map for nonvolatile memory. Dalı́

‡This work was  supported in part by the US Department of Energy 
under Cooperative Agreement no. DESC0012199 while the indicated 
authors were members of Hewlett Packard Labs. At the University of 
Rochester, the work was supported in part by NSF grants CNS-1319417, 
CCF-1337224, and CCF-1422649, and by a Google Faculty Research award.
1The name is inspired by Dalı́’s painting The Persistence of Memory.

demonstrates the feasibility of using periodic persistence in a
nontrivial way, and is provably correct under buffered durable
linearizability [2], an extension of traditional linearizability
that accommodates whole-system crashes. Experience with a
prototype implementation confirms that Dalı́ can significantly
outperform alternatives based on either incremental or tradi-
tional file-system-based persistence. Our prototype implements
the global fence by flushing (writing back and invalidating)
all on-chip caches. Performance results would presumably
be even better with hardware support for whole-cache write-
back without invalidation. Dalı́ was previously published at
DISC’17 [4].

II. DALÍ

Dalı́ is our prepend-only transactional hash map designed
using periodic persistence. Dalı́ consists of an array of buckets,
each of which points to a singly-linked list of records. Each
record is a key-value pair. For the sake of simplicity, each list
is prepend-only: records closer to the head are more recent.

Dalı́ uses a periodic global fence to guarantee that changes
to the data structure have become persistent. We say that the
initiation points of the global fences divide time into epochs,
which are numbered monotonically from the beginning of
time (the numbers do not reset after a crash). Each update
is logically confined to a single epoch, and the fence whose
initiation terminates epoch E serves to persist all updates that
executed in E. The execution of the fence, however, may
overlap the execution of updates in epoch E+1. As a result, in
the absence of crashes, we are guaranteed during epoch E+1
that any update executed in epoch E−1 has persisted. If a
crash occurs in epoch F , however, updates from epochs F and
F−1 cannot be guaranteed to be persistent (they failed, and
should therefore be ignored. Failed epochs are maintained in a
persistent failure list, updated during the recovery procedure.

In Dalı́, hash map records are classified according to their
persistence status. Assume that we are in epoch E. Committed
records are ones that were written in a non-failed epoch at or
before epoch E−2. In-flight records are ones that were written
in epoch E−1 if it is not a failed epoch. Active records are
ones that were written during the current epoch E. Records
that were written in a failed epoch are called failed records. By
steering application threads around failed records, Dalı́ ensures
consistency in the wake of a crash.



Dalı́ adds metadata to each bucket to track the persistence
status of the bucket’s records and to avoid persisting records
incrementally. Specifically, a Dalı́ bucket contains not only a
singly-linked list of records, but also a 64-bit status indicator
and, in lieu of a head pointer for the list of records, a set of
three list pointers. The status indicator comprises a snapshot
(SS) field, denoting the epoch in which the most recent record
was prepended to the bucket, and three 2-bit role IDs, which
indicate the roles of the three list pointers (i.e. active, in-flight,
or committed). A single STORE suffices to atomically update
the status indicator on today’s 64-bit machines.

Figure 1a shows an example bucket. In the figure SS is equal
to 5, which means that the most recent record was prepended
during epoch 5. The active pointer is Pointer 0. It points to
record e, which means that e was added in epoch 5, even if we
are reading the status indicator during a later epoch. Pointer 1
is the in-flight pointer, which makes d the most recently added
record in epoch 4. Finally, Pointer 2 is the committed pointer.
This makes record b the most recently added record before
or during epoch 3. By transitivity, the earlier record a was
also added before or during epoch 3. Both record b and the
earlier record a are therefore guaranteed persistent (shown
in green) as of the most recent update (the time at which e
was added), while the remainder of the records may not be
persistent (shown in red). It is important to note that the status
indicator reflects the bucket’s state at SS (the epoch of the
most recent update to the bucket) even if a thread inspects the
bucket during a later epoch.

Reads. A reader begins by using a hash function to identify
the appropriate bucket for its key, and locks the bucket. It then
consults the bucket’s epoch number (SS) and the global failed
epoch list to identify the most recent, yet valid, of the three
potential pointers into the bucket’s linked list (Figure 1a). We
call this pointer the valid head.

Updates. Updates in Dalı́ prepend a new version of a record.
Like the read method, update locks the bucket. An update
to a Dalı́ bucket comprises several steps: (1) Determine the
most recent, valid, head. (2) Create a new record with the key
and its new value. (3) Determine the new pointer roles (if the
new and old epochs are different). (4) Retarget the new active
pointer to the new record node. (5) Update SS and the role
IDs by overwriting the status indicator.

Step 3 is the most important part of the update algorithm,
as it is the part that allows the update’s component writes to
be reordered. The problem to be addressed is the possibility
that writes from neighboring epochs might be written back and
become mixed in the persistent state. We might, for example,
mix the snapshot indicator from the later epoch with the pointer
values from the earlier epoch. Given any combination of update
writes from bordering epochs, and an indication of epoch
success or failure, the read procedure must find the valid
head, and the list beyond that head must be persistent. In order
to maintain this invariant, the new pointer roles are rotated
based on their previous values and the success (or failure) of
epochs SS and SS − 1.

(a) Initial state in
epoch 5.

(b) Adding record g in
epoch 6.

status indicator

Snapshot (ss) = 71

T

2

cfa

abcde

Ptr. 0 Ptr. 1 Ptr. 2

fgh

(c) Adding record h in
epoch 7; epochs 5 and
6 have failed.

Fig. 1: A sequence of Dalı́ updates.

III. EXPERIMENTS

We have implemented a prototype version of Dalı́ in C/C++.
We implemented the global fence by exposing the privileged
WBINVD instruction to user code. As a representative workload
for a hash map, we chose the transactional version of the
Yahoo! Cloud Serving Benchmark (YCSB) [1] where each
transaction consists of 75% reads. We compare against: Silo [6]
an in-memory database configured to use NVM for persistent
storage; FOEDUS [3] an online transaction processing engine,
explicitly designed for heterogeneous machines with both
DRAM and NVM; and IP, an incrementally persistent hash
map [5]. Figure 2 shows the transaction throughput of Dalı́ and
the comparison systems while varying the number of worker
threads from 1 to 60; transactions here comprise three reads
and one write. Dalı́ achieves a throughput improvement of
2–3× over Silo and FOEDUS across the range of threads.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  10  20  30  40  50  60

T
h
ro

u
g
h
p
u
t 
(M

o
p
s
/s

)

Number of threads

Dali
FOEDUS

IP
Silo

Fig. 2: Scalability (75% reads).

REFERENCES

[1] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In: 1st ACM Symp.
on Cloud Computing. SoCC ’10. Indianapolis, Indiana, USA, 2010.

[2] J. Izraelevitz, H. Mendes, and M. L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In: 30th Intl.
Conf. on Distributed Computing. DISC ’16. Paris, France, 2016.

[3] H. Kimura. Foedus: OLTP engine for a thousand cores and NVRAM.
In: 2015 ACM SIGMOD Intl. Conf. on Management of Data. SIGMOD
’15. Melbourne, Victoria, Australia, 2015.

[4] F. Nawab, J. Izraelevitz, T. Kelly, C. B. Morrey, D. Chakrabarti, and
M. L. Scott. Dalı́: A periodically persistent hash map. In: 31st Intl. Symp.
on Distributed Computing. DISC ’17. Vienna, Austria, 2017.

[5] D. Schwalb, M. Dreseler, M. Uflacker, and H. Plattner. NVC-hashmap:
A persistent and concurrent hashmap for non-volatile memories. In: 3rd
VLDB Wkshp. on In-Memory Data Mangement and Analytics. IMDM
’15. Kohala Coast, HI, USA, 2015.

[6] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. In: SOSP. Farmington,
PA, USA, 2013.


	Introduction
	Dalí
	Experiments



