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ABSTRACT

Hardware-assisted trusted execution environments are secure iso-

lation technologies that have been engineered to serve as e�cient

defense mechanisms to provide a security boundary at the system

level. Hardware vendors have introduced a variety of hardware-

assisted trusted execution environments including ARM TrustZone,

Intel Management Engine, and AMD Platform Security Processor.

Recently, Intel Software Guard eXtensions (SGX) and AMDMemory

Encryption Technology have been introduced. To the best of our

knowledge, this paper presents the �rst comparison study between

Intel SGX and AMD Memory Encryption Technology in terms of

functionality, use scenarios, security, and performance implications.

We summarize the pros and cons of these two approaches in com-

parison to each other.
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1 INTRODUCTION

One of the fundamental and practical approaches to achieve se-

curity is by isolating software execution at runtime so that sen-

sitive data is processed in a trusted environment. A common ap-

proach to isolate software execution is to use Virtual Machines

(VM). Virtualization is achieved with the use of a hypervisor or

OS, thus placing them inside the Trusted Computing Base (TCB).

This greatly increases the size of the TCB as the hypervisor and
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OS often consist of thousands of lines of code which are vulnerable

to attacks. For instance, the latest Xen hypervisor contains 586K

lines of code [19]. Moreover, hypervisor vulnerabilities have been

frequently reported [1, 13, 40, 52, 54, 55, 61]. Other issues with

virtualization include performance slowdowns that are caused by

a large amount of underlying processes, data tra�c, and context

switching between the host hypervisor and the guest VM envi-

ronment. The hypervisor or �rmware is also vulnerable to rootkit

attacks, which work with the same or higher-privileged access

to the system. An alternative solution to mitigate these issues is

to leverage a hardware-assisted Trusted Execution Environment

(TEE). This technology couples the isolated execution concept with

hardware-assisted technologies. Applying hardware-assisted tech-

nologies ensure performance and security improvements by expos-

ing a smaller TCB in the environment. During past years, hardware

vendors have introduced several hardware-assisted TEEs such as

ARMTrustZone, Intel Management Engine, AMD Platform Security

Processor, and SystemManagement Mode [64]. However, almost all

of these hardware-assisted TEEs do not provide a general purpose

security solution (e.g. user-applications). Recently, Intel introduced

Intel Software Guard eXtensions (SGX) [48] and AMD released

AMD Memory Encryption Technology [37] that are designed to be

general purpose hardware-assisted TEEs. Moreover, many research

groups have successfully leveraged Intel SGX security bene�ts in

applications ranging frommicroservices to complex enterprise level

applications [9, 10, 12, 23, 50, 53, 57]. The increasing level of popu-

larity towards applying general purpose hardware-assisted TEEs

has motivated us to perform a comparison study between Intel SGX

and the AMD Memory Encryption Technology. We summarize our

main contributions as follows:

• To the best of our knowledge, this is the �rst comparison

study between AMD Memory Encryption Technology and

Intel Software Guard eXtentions (SGX).

• This paper illustrates comparison information regarding the

functionality and use cases, security, and performance of

Intel SGX and AMDMemory Encryption Technology by per-

forming di�erent test cases ranging from executing simple

tasks to complex resource intensive workloads.

• The results of our experiments show that AMD Memory

Encryption Technology performs faster than Intel SGXwhen

a protected application requires a large amount of secure

memory resources. On the other hand, Intel SGX provides

memory integrity protection that shows better reliability

than AMD Memory Encryption Technology.
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The paper is organized as follows: Section 2 provides a background

of Intel SGX and AMD Memory Encryption Technology. Section 3

compares these two TEEs regarding their use cases and functional-

ity, security, and performance. Finally, in Section 4we have provided

a conclusion. A technical report of this work can be found at the

COMPASS Lab Website:

http://compass.cs.wayne.edu/compass/publications.html

2 BACKGROUND

2.1 Intel Software Guard eXtensions (SGX)
The �rst groundbreaking general purpose hardware-assisted TEE

achievement in the x86 family architecture is Intel SGX. Intel intro-

duced SGX in late 2015 as the latest general-purpose security solu-

tion [8, 24, 47, 48]. SGX is an architectural feature that introduces a

new set of CPU instructions that allow a user application to create

and use the hardware-assisted TEE referred to as an enclave. SGX

guarantees the con�dentiality and integrity of enclave code and

data at runtime, even when underlying high-privileged system soft-

ware such as the OS or hypervisor is malicious or compromised [9].

SGX also, resists against the physical memory access class of at-

tacks [10]. In the SGX security model, the TCB is considered to be

the CPU package while other parts of the system are considered un-

trusted. SGX creates a limited size of the encrypted memory region

which is called the Enclave Page Cache (EPC), where all enclaves

are created inside this region. In the current implementation, the

EPC size can be set between 32MB, 64MB, or 128MB [9, 12]. Also,

SGX provides a hardware access control mechanism that protects

the enclave memory. The result of illegally accessing the enclave

memory is a page-fault. Furthermore, SGX provides the capacity

to marshal data safely between system memory and EPC pages.

SGX uses a hardware Memory Encryption Engine (MEE) [21] to

apply encryption and decryption to the data. SGX allows the code

inside the enclave to access the memory directly outside of the EPC.

However, memory access from inside the enclave to the outside

memory is controlled by OS memory management policies. Thus,

the enclave cannot disregard OS memory access policies. This is

because the enclave code can only execute in ring 3 where the OS

handles any system calls [12]. Consequently, any illegal memory

access attempts to access memory outside of the enclave from the

code inside the enclave will result in a page-fault [12]. In addition,

SGX supports multi-threading inside of the enclave to speed up the

execution performance of parallel applications.

SGXApplication Design. Every SGX application contains at least

two distinguished parts; a trusted code that is located inside the

enclave and executed in the EPC and untrusted code that is lo-

cated and executed inside the untrusted system memory. In the

SGX framework, the enclave creation process is carried out by the

untrusted code by invoking the ECREATE, EADD and EINIT in-

structions, respectively [9, 10]. If an enclave application requires

more memory than available EPCmemory, SGX provides a memory

swapping mechanism to securely swap memory pages between

the EPC and untrusted system memory. Memory page swapping

requires both OS and system software supports and incurs perfor-

mance overhead [12]. After the enclave is initialized, the untrusted

code invokes the enclave code by calling the EENTER instruction,

which switches the processor mode from the protected mode to the

enclave mode. Then, the processor executes the callee code inside

the enclave. A call to the EEXIT instruction causes the executing

thread inside the enclave to exit the enclave and the execution

�ow returns to the untrusted code [9]. In addition to the user cre-

ated enclave, SGX uses some architectural enclaves such as Quoting

enclave and Provisioning enclave to facilitate Local or Remote Attes-

tation Mechanisms [16]. Finally, SGX provides an Enclave Sealing

Mechanism that protects the enclave data at rest [8, 25].

SGX Remote Attestation. Remote Attestation is a useful feature

of SGX. Remote Attestation evaluates the enclave identity, its struc-

ture, the integrity of the code inside an enclave, and guarantees a

genuine Intel SGX processor is executing the enclave. Furthermore,

Remote Attestation provides the preliminary shared secret between

the service provider and the enclave application to help setup a

trusted communication channel through an untrusted network.

In addition, Remote Attestation is considered to be a veri�cation

mechanism for the service provider to evaluate the health of an

enclave that is created at a remote location [8, 34, 59].

Enclave Sealing. SGX provides the Enclave Sealing Mechanism

that encrypts the enclave secret to be safely stored in an untrusted

storage medium such as a hard drive for later use. Furthermore,

Enclave Sealing allows enclave secrets to be retrieved when the

enclave is destroyed due to a power outage or by the application

itself. The seal �le is encrypted by a private seal key that is unique

to each platform. Enclave Sealing helps the enclave with retrieving

data and secrets from the sealed �le without performing a new

Remote Attestation [8, 25].

2.2 AMD Memory Encryption Technology
AMD Memory Encryption Technology is the most recent ground-

breaking general purpose hardware-assisted TEE achievement that

encrypts and protects system memory. AMD Memory Encryption

Technology is focused primarily on public cloud infrastructure and

speci�cally public infrastructure as a Service (IaaS). AMD Memory

Encryption Technology addresses two di�erent classes of attacks;

system software level and physical access attacks [35, 37]. The for-

mer attack includes a high-privileged entity that analyses the guest

VM memory space for malicious purposes or deploying attacks

that use hypervisor vulnerabilities to apply side-channel attacks

to other co-resident guest VMs [54]. The latter attacks include hot

memory I/O tapping attacks or cold boot attacks [22, 35, 37]. AMD

Memory Encryption Technology introduces an AES 128 encryption

engine inside the System on Chip (SoC) that transparently encrypts

and decrypts the data when the data leaves or enters the SoC re-

spectively. Based on the Memory Encryption Technology, AMD

proposed two main security features referred to as Secure Mem-

ory Encryption (SME) and Secure Encrypted Virtualization (SEV).

Both SEV and SME are managed by the OS or hypervisor, and no

application software changes are needed [35, 37]. Encryption key

management such as generating, storing, and delivering the keys

are carried out by the AMD secure processor and the encryption

keys are kept hidden from untrusted parts of the platform. The

AMD secure processor utilizes a 32-bit ARM Cortex A5, and uses

its memory and storage while executing a kernel that is signed by

AMD [35, 37].

Secure Memory Encryption (SME). SME is the security feature

that addresses physical access attacks. It uses an encryption key
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Table 1: SME, TSME, and SEV Feature Comparison [2, 35, 37].

AMDMemory Encryption Feature SME TSME SEV

Encyption Key Creation Time At boot time At boot time Upon VM owner request

Number of Encryption Key in Use One key One key One key each VM

Activation Method OS/Hypervisor BIOS VM

Software Change Requirements OS/Hypervisor No change Hypervisor and VM

Default Memory Setting Unencrypted Encrypted Encrypted with VM key

Direct Memory Access Support Each memory page Each memory page Only to unencrypted memory page

AMD Secure Processor and Kernel Direct Interaction Not required Not required Required

Table 2: Feature Comparison List [7, 16, 34, 35, 37].

Technology Highest Access Level Memory size limits SDK Software change Platform Attestation Veri�cation Mechanism

Intel SGX Ring 3 Up to 128MB EPC Provided Required Attested through remote attestation protocol and IAS

AMD SEV Ring 0 Up to available system RAM Not required Only Hypervisor and VM kernel Attested through AMD secure processor

that is randomly generated by the AMD secure processor and is

loaded into the memory controller at boot time to encrypt the mem-

ory. The OS is able to leverage the SME by setting a bit in the x86

page table that is called the encrypted bit or (C-bit) [35, 37]. When

the C-bit is set, access to that memory page is directed to the AMD

Memory Encryption Engine. In the SME design, all devices can

access the encrypted memory pages through DMA.

Transparent Secure Memory Encryption (TSME). TSME is a

hardware security feature in which all memory pages are encrypted

transparently at boot time. This feature is enabled through a BIOS

setting. This encrypted memory is transparent to the underlying

OS and user software [35, 37].

AMD Secure Encrypted Virtualization (SEV). SEV is a security

feature that mainly addresses the high-privileged system software

class of attacks by providing encrypted VM isolation. It encrypts

and protects the VM’s memory space with the VM’s speci�c en-

cryption key from the hypervisor or other VMs on the same plat-

form [7, 35, 37]. In addition, SEV does not require any modi�cations

to user application software and memory encryption is transparent

to the user application software that is executed in the SEV pro-

tected VM. SEV uses the AMD Memory Encryption Engine which

is capable of working with di�erent encryption keys for encrypting

and decrypting di�erent VM memory spaces on the same platform.

In SEV, a unique encryption key is associated with each guest VM.

When code and data arrives into the SoC, SEV tags all of the code

and data associated with the guest VM in the cache and limits access

only to the tag’s owner VM. When data leaves the SoC, the VM

encryption key is identi�ed by the tag value and data is encrypted

with the VM key [35, 37]. Additionally, initializing a SEV protected

VM requires direct interaction with the AMD secure processor. The

AMD secure processor provides a set of APIs for provisioning and

managing the platform in the cloud. The hypervisor’s SEV driver

can invoke these APIs. In the SEV architecture, a guest owner man-

ages her guest secrets and generates the policies for VM migration

or debugging [35]. The Di�e-Hellman key exchange protocol [17]

is used between the guest owner and the AMD secure processor to

open a secure channel between the guest owner and AMD secure

processor. The guest owner is enabled to authenticate the secure

processor and exchange information to set up the protected VM [35].

Also, the SEV architecture de�nes the shared page (unencrypted)

and the private page (encrypted) that can be set for each protected

guest VM. The C-bit is set to identify the private pages by the guest

OS. There are hardware rules enforcing security regarding these

Table 3: Testbeds Con�guration [3, 4, 26].

Testbed Machine Intel AMD

CPU Model Core i7-6700 EPYC 7251

CPU Physical Core Number 4 8

CPU Logical Thread Number 8 16

CPU Base Clock 3.4 GHz 2.1 GHz

CPU Boost Clock 4.0 GHz 2.9 GHz

Cache Type Smart Cache L3

Cache Size 8MB 32MB

Motherboard DELL OptiPlex 7040 GIGABYTE MZ31-AR0

Memory 8GB DDR4 No-ECC 32GB DDR4 ECC

Storage 1TB HDD 7200 RPM 512GB 3D-NAND SSD

Operating System Linux 16.04 LTS Linux 16.04 LTS

OS/Hypervisor kernel 4.15.7-041507-generic 4.15.0-rc1-kvm

Virtual Machine Kernel N/A 4.14.0-rc5-tip

TEE SDK Version SGX SDK Ver 2.00 N/A

pages in the SEV architecture [35]. If a page is set as a shared page,

the hypervisor can read it in plain text. In the SEV architecture,

DMA is allowed only on shared memory pages. Table 1 summarizes

the key di�erences between SME, TSME, and SEV technologies.

3 COMPARISON EVALUATION

3.1 Experimental Testbeds
To perform our comparison study, we have prepared two testbed

machines. An AMD machine that uses an AMD EPYC 7251 CPU,

with 8 physical cores, 16 logical threads, 32MB L3 cache, 32GB of

DDR4 RAM and 512GB 3D-NAND SSD. The EPYC CPU has the base

clock of 2.1GHz and is boosted up to 2.9GHz. The second machine

is an Intel SGX machine consisting of an Intel Core i7 6700 CPU

with 4 physical cores and 8 logical threads, 8MB of smart cache

memory, 8GB of DDR4 RAM and 1TB 7200 RPM HDD. The base

CPU frequency in the SGX machine is 3.4GHz and is boosted up

to 4.0GHz. For the software settings, the SGX testbed uses Ubuntu

16.04 LTS OS with the kernel 4.15.7-041507-generic and the SGX

SDK version 2.0. The AMD testbed uses Ubuntu 16.04 LTS OS with

the KVM kernel version 4.15.0-rc1-kvm as our hypervisor. All guest

VMs use Ubuntu 16.04 LTS OS with the SEV-enabled 4.14.0-rc5-tip

kernel [4]. All VMs use 8GB of memory for test purposes. Table 3

summarizes our testbeds.

3.2 Function and Use Cases Comparison
Intel SGX was initially designed to secure microservices and small

applications [60] such as securing a log-in process to a banking

account or securing password manager applications [27] that inter-

act with very security-sensitive but small amounts of data. We can

con�rm SGX’s initial design intentions by considering the limited

amount of EPC memory resources available to SGX and given that
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SGX is mainly featured in commodity desktop or mobile processor

families. In spite of the initial SGX design intentions, we can iden-

tify many research works that have attempted to leverage Intel SGX

for large and complex workloads such as enterprise-level services

or even public cloud applications [9, 12, 14, 41, 42, 57]. Moreover,

leveraging Intel SGX often requires major software changes. Legacy

applications may not easily migrate to Intel SGX without applying

proper code refactoring. Inherently, Intel SGX trusted code works

in ring 3, thus Intel SGX is not a suitable TEE for applications that

require many system calls. Additionally, the limited size of the EPC

memory space degrades the execution performance of Intel SGX sig-

ni�cantly when a larger trusted memory space is needed at enclave

runtime. On the other hand, Intel SGX provides robust security

protections, making it a suitable TEE for applications that require

an enhanced-degree of security protection. AMD SEV is designed

for the public cloud [37] where cross-VM and hypervisor-based

attacks are major concerns. AMD SEV uses memory encryption

and AMD-V virtualization to provision encrypted VMs that are pro-

tected from such attacks. For example, a hypervisor-based attack

cannot steal data from the encrypted memory image of a SEV-

enabled VM. Also, SEV is supported in the EPYC processors that

belong to the AMD server processor family [5]. In addition, SEV

protection is transparent to user application software, making it a

suitable TEE for securing unmodi�ed and legacy software applica-

tions. Leveraging SEV is almost e�ortless for its end-users since no

application software code refactoring is required. SEV protected

VMs provide ring 0 and high-privileged access that helps SEV to be

leveraged in a broader range of applications, particularly for those

that require many system calls. As SEV supports a large size for

trusted memory, SEV is a good �t for securing sophisticated and

enterprise-level applications and services. However, SEV puts the

underlying OS and hypervisor in the TCB, thus it is susceptible to a

broader class of attacks, therefore weakening its security protection

capabilities. So, SEV is not suitable as a TEE for applications which

need an enhanced-degree of security protections. Table 2 summa-

rizes the key technical di�erences between AMD SEV and Intel SGX.

AMD Memory Encryption Technology is suited for securing com-

plex and legacy applications. Intel SGX is suited for securing small

but security-sensitive workloads.

3.3 Security Comparison
One important characteristic of a trusted execution environment

is the amount of security that it o�ers. To this end, we explore

the design architectures and the attack surfaces of Intel SGX and

AMD Memory Encryption Technology in detail. One of the ar-

chitectural di�erences between AMD and Intel is in their Mem-

ory Encryption Engine (MEE) implementation. AMD MEE uses

AES in Electronic Codebook (ECB) mode [56] as a fast and fea-

sible approach for random memory encryption. There is a well-

known security issue with the ECB mode which leaks informa-

tion from the ciphertext [18]. In order to mitgate this informa-

tion leakage, AMD uses a physical address base tweak algorithm

that combines the base address and the plaintext before apply-

ing the AES-ECB encryption [37]. The e�ect of this combination

guarantees that the same plaintext in di�erent memory locations

will produce a di�erent ciphertext pattern. However, the AMD

Memory Encryption Technology does not provide memory in-

tegrity protection for a guest VM’s encrypted memory space in

SEV or SME. This weakens its protection capacity [18]. On the

other hand, Intel MEE [21] uses a tweaked AES Counter (CTR) [56]

mode and Intel SGX provides memory integrity protection [16].

Intel SGX provides memory integrity protection while AMD SME

and SEV do not provide memory integrity protection.

3.3.1 Intel SGX Vulnerabilities. At the base level, SGX was de-

signed to guarantee the integrity and con�dentiality of trusted code

and data in ring 3. Due to this, one of the attack vectors is the De-

nial of Service (DOS) attack [12]. This is because SGX relies on the

untrusted OS to handle each system call such as storage, I/O, and

network requests, which could be required by trusted code inside

the enclave. A malicious OS can easily deny the enclave requests

or even kill enclave processes, thus initiating a DOS attack. The

dependency of the untrusted OS is problematic since it endangers

task execution integrity inside the enclave. A malicious OS can

violate a task’s execution integrity by providing stale data to the en-

clave bu�er, dropping a network packet, or replying with arbitrary

data, thus causing untrustworthy �nal results. Assuming an honest

OS, the DOS attack can be applied by a malicious SGX application

inside the enclave thus forcing the CPU to go into lockdown mode

via violating the integrity of enclave memory access. Jang et al. [33]

showed how such an attack can be launched by a malicious SGX ap-

plication in the cloud to halt a server in a public cloud environment.

Another attack vector is possible when multi-threading is applied

inside the enclave. Although multi-threading increases overall ex-

ecution performance in an application that can leverage parallel

processing, it opens a new surface for attacks. Synchronization bug

vulnerabilities such as use-after-free and time-of-check-to-time-

of-use (TOCTTOU) in enclave trusted code can be exploited to

take the control �ow of the code inside the enclave. Weichbrodt et

al. [60] showed how such an attack can successfully be initiated

against an SGX application resulting in hijacking control �ow and

bypassing access controls. Another strong attack vector in SGX TEE

is side-channel attacks. In the SGX design, the TCB is considered

to be the CPU package, and data appears in plaintext inside the

CPU package. Although SGX performs some hardware protection

on cache data before the processor context switching happens, it

has been shown that careful cache access measurements can leak

enclave secrets to the attacker. Gotzfried et al. [20] demonstrated a

proof-of-concept cache-timing-attack that leaks secrets from the

enclave trusted code by an attacker with privileged access. The

most recent attack is Spectre attack, a powerful side-channel attack

discovered by Kocher et al. [39]. A Spectre attacker deceives an

application to access its memory speculatively and then through

the side-channel, the attacker captures the information from the

accessed memory in the cache. Intel SGX is vulnerable to Spectre

attack and proof-of-concepts for this attack were presented by the

LSDS group at Imperial College London [46] and by Chen et al. [15].

Many studies have been conducted on side-channel attacks and

the following is a list of papers that have successfully exploited

side-channels in Intel SGX [11, 44, 45, 49, 58, 63].

3.3.2 AMDMemory Encryption Technology Vulnerabilities. AMD

Memory Encryption Technology addresses two classes of attacks.

SME is designed to provide security against physical access attacks,
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