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ABSTRACT 

With polarization becoming an increasingly common feature in classical molecular simulation, it is 

important to develop methods that can efficiently and accurately evaluate the many-body polarization 

solution. In this work we expand the theoretical framework of our inertial extended Langrangian, self-

consistent field iteration-free method (iEL/0-SCF), introduced for point induced dipoles, to the 

polarization model of a Drude oscillator. When applied to the polarizable simple point charge model 

(PSPC) for water, our iEL/0-SCF method for Drude polarization is as stable as a well-converged SCF 

solution and more stable than traditional extended Lagrangian (EL) approaches or EL formulations 

based on two temperature ensembles where Drude particles are kept “colder” than the real degrees of 

freedom. We show that the iEL/0-SCF method eliminates the need for mass repartitioning from parent 

atoms onto Drude particles, obeys system conservation of linear and angular momentum, and permits 

the extension of the integration time step of a basic molecular dynamics simulation to 6.0 fs for PSPC 

water. 
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INTRODUCTION 

Force fields that include many-body polarization offer a model that, when adequately parameterized1-2, 

is capable of greater accuracy and improved transferability, relative to their fixed charge counterparts3. 

This promise of better physics has led many research groups to take up polarization as a new advanced 

potential energy surface model4, but implemented in very different functional forms including the 

Drude oscillator5-11, the fluctuating charge model12-17, and the induced dipole model18-27. While the 

polarization solution for the point induced dipole model is typically solved through self-consistent field 

(SCF) methods28-30 or perturbation treatments31-33, Drude and fluctuating charge models are typically 

solved through an extended Lagrangian (EL) formulation to eliminate the cost of the many SCF 

iterations needed to converge the polarization solution8, 34-35.  

 Most recently we have developed a hybrid of an extended Lagrangian and an SCF solution to 

mutual polarization36, which we have adapted from a time-reversible formulation of ab initio 

molecular dynamics introduced by Niklasson and colleagues37-41. Our “inertial EL/SCF” (iEL/SCF) 

approach is based on an extended set of auxiliary induced dipoles that are dynamically integrated so as 

to serve as a time-reversible initial guess for the SCF solution of the real induced dipoles. 

Subsequently we introduced a new iEL/SCF method that eliminates the need for any SCF calculations, 

which we call iEL/0-SCF (i.e. no self consistent field iterations), illustrated with the AMOEBA 

induced dipole model.42 One of the main benefits of the iEL/0-SCF method is that the cost of 

evaluating mutual polarization is no more than the cost of the permanent electrostatics that is 

employed. 

 In this work we present the theory that extends the iEL/0-SCF approach to Drude polarization, 

in which we show that we eliminate the need for any mass repartitioning and thus temperature control 

in the two-temperature ensemble EL(T,T*) approaches used to solve Drude polarization9, thereby 

yielding standard NVE and NVT ensembles, and illustrated with simulations using the polarizable 

simple point charge (PSPC) Drude model for bulk water34. We show that our iEL/0-SCF method for 

Drude polarization is as stable as a tightly converged SCF calculation and more stable than the 

EL(T,T*) approach. This greater stability allows us to take molecular dynamics timesteps as large as 

6.0 fs while still preserving the properties of the PSPC model in the NVT ensemble.    

THEORY 

The PSPC model is a simple rigid water model8-9, with partial charges on both hydrogens and oxygen, 

and a Lennard-Jones site and a Drude particle that is harmonically bound to each oxygen atom. The 

total energy of the PSPC model is then given by  
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𝑈(𝒓$) = 𝑈'((𝒓$) +** 𝑞,𝑞-.𝒓𝒊 − 𝒓𝒋.-2,, +** 𝑞,𝑞3,-.𝒓𝒊 − 𝒓𝑫,𝒋.-, +** 𝑞3,,𝑞3,-.𝒓𝑫,𝒊 − 𝒓𝑫,𝒋.-2,, + 12𝑘3*.𝒓𝒊 − 𝒓𝑫,𝒊.𝟐,  

   (1) 

where 𝑈'((𝒓$)  is the standard Lennard-Jones term, the second through fourth terms are the 

electrostatic energy broken down into charge-charge, charge-Drude, and Drude-Drude interactions, 

respectively. The final term is the harmonic spring between Drude particles and their parent oxygen 

atom, where a Drude spring force constant, 𝑘3, of 1000 kcal/mol/Å is employed in the PSPC model.  

 The relationship between the Drude spring force constant, 𝑘3, polarizability, 𝛼, and Drude 

charge, 𝑞3, can be easily derived and is given by  

𝛼 = ;<=><       (2) 

The energy minima with respect to Drude displacements from their parent atom, 𝒅𝒊 = 𝒓𝑫,𝒊 − 𝒓𝒊, is  

@A@𝒓<,B = 𝑘3𝒅𝒊 − 𝑞3,,𝑬3,,(𝒅$) = 0    (3) 

where 𝑬,(𝒅$) is the electric field at site i due to the other atomic charges and Drude particles in the 

system.  Eq. (3) states that the system’s polarization energy is minimized when there is no net force on 

the Drude particles, and it defines the iterative equation that must be solved to determine the SCF 

solution for the Drude model. 

 Following generalized time reversible Born-Oppenheimer dynamics37-38 and its application to 

classical dipolar polarization42, we begin by defining a new extended Lagrangian for the Drude PSPC 

polarization model, given by Eq. (4). 

ℒ(𝒓$ , 𝒓̇$ , 𝒂3$ , 𝒂̇3$)
= 12*𝑚𝒊|𝒓̇𝒊|𝟐, −𝑈'((𝒓$) −** 𝑞,𝑞-.𝒓𝒊 − 𝒓𝒋.-2,, −** 𝑞,𝑞3,-.𝒓𝒊 − 𝒓𝑫,𝒋(𝒂3$).-,
−** 𝑞3,,𝑞3,-.𝒓𝑫,𝒊(𝒂3$) − 𝒓𝑫,𝒋(𝒂3$).-2,, − 12𝑘3*.𝒓𝒊 − 𝒂𝑫,𝒊(𝒂3$).𝟐,  

− JK𝑚L∑ .𝒂̇𝑫,𝒊.𝟐, − JK𝜔K𝑚L ∑ .𝒓𝑫,𝒊OPQ − 𝒂𝑫,𝒊.𝟐,                                 (4) 

The first six terms (kinetic energy, Lennard-Jones potential, Coulombic terms, and harmonic force 

between the Drude and parent atom) largely recapitulate Eq. (1), but with several important exceptions 

when formulated within our iEL/SCF hybrid approach: (1) we introduce an extended system of 

auxiliary Drude positions, 𝒂3,,, as dynamic degrees of freedom which have an associated fictitious 

mass, 𝑚L; (2) this in turn gives rise to a positional dependence of the real Drude particles on these 



4 

auxiliary degrees of freedom, 𝒓𝑫,𝒊(𝒂3$) and (3) a new kinetic energy term for the auxiliary degrees of 

freedom; and (4) a harmonic coupling between the auxiliary positions and the true SCF converged 

position, 𝒓𝑫,𝒊OPQ . The strength of this coupling is controlled by the parameter 𝜔, which should be as high 

as possible; it has been shown that the highest stable value of 𝜔 for a Verlet integration scheme is 

√2/𝛥𝑡, where 𝛥𝑡 is the time step.37  

 We now recognize that the most general form of the potential energy for the original Drude 

model from Eq. (4) is,  

 𝑈(𝒓$, 𝒂3$) = 𝑈'((𝒓$) +** 𝑞,𝑞-.𝒓𝒊 − 𝒓𝒋.-2,, +** 𝑞,𝑞3,-.𝒓𝒊 − 𝒓𝑫,𝒋(𝒂3$).-, +																																						
** 𝑞3,,𝑞3,-.𝒓𝑫,𝒊(𝒂3$) − 𝒓𝑫,𝒋(𝒂3$).-2,, + 12𝑘3*.𝒓𝒊 − 𝒓𝑫,𝒊(𝒂3$).𝟐, 					 

(5) 

i.e. since the Drude positions depend explicitly on the auxiliary Drude positions, there is no assumption 

that the potential energy 𝑈(𝒓$ , 𝒂3$) is at the ground state solution as per Eq. (3). The positional 

dependence of the real Drude particles on the auxiliary degrees of freedom, 𝒓𝑫,𝒊(𝒂3$), is formulated by 

making one evaluation of the electric field using the auxiliary positions as the positions of the Drude 

particles, 

𝒓𝑫,𝒊(𝒂3$) = ;<,B>< 𝑬3,,(𝒂3$) + 𝒓,                                             (6) 

and which can be more specifically constituted for the PSPC model in Eq. (7). 

𝒓3,,(𝒂3$) = −𝑞3,,𝑘3 W*𝑞-(𝒂3,, − 𝒓-).𝒂3,, − 𝒓-.𝟑- +*𝑞-(𝒂3,, − 𝒂3,-).𝒂3,, − 𝒂3,-.𝟑- Y + 𝒓, 
                        (7) 

 It is important to emphasize why the Drude oscillator model is different than an induced dipole 

model in an SCF process. For the induced dipole model, the electric field due to other permanent 

charges or multipoles in the system is defined at an atomic center. This direct component of the electric 

field will not change throughout an iterative procedure because the atomic positions do not change; it 

is only the field due to other induced dipoles in the system that will change throughout an iterative 

procedure. This is not true of a Drude model. In a Drude model, the electric field at the Drude particles 

due to both the permanent multipoles and other Drude particles will change because the position where 

we need to evaluate the electric field itself changes throughout the iterative process. We can see this 

explicitly in Eq. (7) where the first term in the bracket can be thought of as a direct electric field and 
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the second term as a mutual electric field, but for both terms they show that the optimized Drude 

positions depend specifically on the auxiliary Drude positions.  

 We can now use Eq. (5) to compact the description of the Lagrangian in Eq. (4). 

ℒ(𝒓$ , 𝒓̇$ , 𝒂3$ , 𝒂̇3$) = 12*𝑚𝒊|𝒓̇𝒊|𝟐, + 12𝑚L*.𝒂̇𝑫,𝒊.𝟐, − 12𝜔K𝑚L*.𝒓𝑫,𝒊OPQ − 𝒂𝑫,𝒊.𝟐, − 𝑈(𝒓$ , 𝒂3$) 
  (8) 

in order to apply the Euler-Lagrange equation of motion, in order to obtain equations of motion for 

both the real coordinates 𝒓𝑵 and the auxiliary dipoles 𝒂𝑫𝑵.  

 For our original iEL/SCF approach, the auxiliary positions would be used as an initial guess for 

a subsequent SCF calculation to the converged solution. The need for additional SCF iterations is 

undesirable especially for the Drude formulation since now the direct part of the electric field has to be 

evaluated at each iteration as described above and also because of the additional cost associated with 

iteration. However, in the iEL/0-SCF approach, we avoid the SCF by introducing a linear mixing of 

real and auxiliary Drude positions as an approximation to the ground state solution: 

 𝒓𝑫,𝒊OPQ ≈ 𝛾𝒓𝑫,𝒊 + (1 − 𝛾)𝒂3,,																																																										(9) 

Eq. (9) can be viewed as a predictor-corrector scheme43 to serve as an approximation to the SCF 

solution, but is only used to derive the first equation of motion for the auxiliary degrees of freedom 

when taking the limit of 𝑚L → 0 𝒂̈, = 𝛾𝜔K(𝒓3,, − 𝒂𝑫,𝒊)                                                      (10) 

Two points are worth mentioning at this juncture: (1) the predictor-corrector form of the converged 

solution in Eq. (9) is not used for the calculation of the polarization energy and forces, but only applies 

to the derivation of the auxiliary equation of motion in Eq. (10)42; (2) the Drude degrees of freedom 

now have no mass and thus there is no mass repartitioning in our approach.  

 The equation of motion for the auxiliaries is straightforward, simply taking the form of 

harmonic motion about the real Drude positions. This introduces one free parameter, 𝛾, that controls 

the mixing of the real and auxiliary Drude positions, and can be easily determined as we show in the 

Methods section and supplementary information (SI) material. The equation of motion for the atomic 

centers looks like the usual real particle equation of motion,  

𝑚,𝒓̈, =	− _A`𝒓𝑵,𝒂𝑫𝑵a_𝒓B b𝒂𝑫𝑵                                               (11) 

where we note again that, unlike the usual EL schemes, the atomic mass 𝑚, 	has not been reduced 

through repartitioning. The total potential derivative with respect to position is shown in Eq. (12) 
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_A`𝒓𝑵,𝒂𝑫𝑵a_𝒓B = @A`𝒓𝑵,𝒂𝑫𝑵a@𝒓B + ∑ @A`𝒓𝑵,𝒂𝑫𝑵a@𝒓<,c
@𝒓<,c@𝒓B-                                            (12) 

where the first term corresponds to the usual gradient terms for a standard EL scheme and the second 

term is a Drude ‘response’ term, which is normally not evaluated under an SCF approach since it goes 

to 0 in the limit of complete convergence. However, since the form of the potential, 𝑈(𝒓$, 𝒂3$), is now 

general, i.e. it does not assume complete convergence, we must explicitly evaluate the response terms 

to ensure that the potential and potential gradient are commensurate. These response terms, described 

in more detail below, do have an additional cost, which is approximately the same as a single iterative 

step.  But since we are doing no additional iterations, this is just a small cost overhead, especially when 

compared to a naïve successive over-relaxation (SOR)28 method that requires ~20 iterations to achieve 

convergence.   

 The force vectors 
@A`𝒓𝑵,𝒂𝑫𝑵a@𝒓B  and 

@A`𝒓𝑵,𝒂𝑫𝑵a@𝒓<,c  are already evaluated in a standard Drude oscillator 

simulation, so we can easily calculate these force vectors.  The first of these vectors, 
@A`𝒓𝑵,𝒂𝑫𝑵a@𝒓B , is 

simply the (negative) of the net force acting on the ith atom.  This force will be due to Lennard-Jones, 

Coulombic, and harmonic spring interactions.  The second of these vectors, 
@A`𝒓𝑵,𝒂𝑫𝑵a@𝒓<,c , is just the 

(negative) of the net force acting on the jth Drude particle, which will just be comprised of standard 

Coulombic and harmonic spring interactions. The new additional term, 
@𝒓<,c@𝒓B , when expanded, is  

@𝒓<,B@𝒓d = − ;<,B>< e∑ @@𝒓d f;c`𝒂<,Bg𝒓ca.𝒂<,Bg𝒓c.𝟑 h- +∑ @@𝒓d f;c`𝒂<,Bg𝒂<,ca.𝒂<,Bg𝒂<,c.𝟑 h- i + @𝒓B@𝒓d  

= ;<,B>< ∑ 𝑞- @@𝒓d f− `𝒂<,Bg𝒓ca.𝒂<,Bg𝒓c.𝟑h- + 𝛿,>𝑰																																														(13) 

One can recognize that the derivative term within the sum of Eq. (13) is actually the definition of a 

dipole interaction tensor, T, between the k atomic center, 𝒓>, and the ith auxiliary Drude position, 𝒂3,,, 
to yield Eq. (14). 

@𝒓<,B@𝒓d = ;<,B>< 𝑻L<,,>𝑞> + 𝛿,>𝑰                                                (14a) 

where  
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𝑻L<,,> =
⎣⎢
⎢⎢
⎢⎢
⎢⎡p`L<,B

q grd𝒙a𝟐.𝒂<,Bg𝒓d.𝟓 − J.𝒂<,Bg𝒓d.𝟑
p`L<,Bq grd𝒙auL<,Bv grd𝒚x.𝒂<,Bg𝒓d.𝟓

p`L<,Bq grd𝒙a`L<,By grd𝒛a.𝒂<,Bg𝒓d.𝟓
p`L<,Bq grd𝒙auL<,Bv grd𝒚x.𝒂<,Bg𝒓d.𝟓

puL<,Bv grd𝒚x𝟐.𝒂<,Bg𝒓d.𝟓 − J.𝒂<,Bg𝒓d.𝟑
puL<,Bv grd𝒚x`L<,By grd𝒛a.𝒂<,Bg𝒓d.𝟓p`L<,Bq grd𝒙a`L<,By grd𝒛a.𝒂<,Bg𝒓d.𝟓

puL<,Bv grd𝒚x`L<,By grd𝒛a.𝒂<,Bg𝒓d.𝟓
p`L<,By grd𝒛a𝟐.𝒂<,Bg𝒓d.𝟓 − J.𝒂<,Bg𝒓d.𝟑⎦⎥

⎥⎥
⎥⎥
⎥⎤
              (14b) 

Substituting Eq. (14) into Eq. (12) we obtain Eq. (15),  

_A`𝒓𝑵,𝒂𝑫𝑵a_𝒓B = @A`𝒓𝑵,𝒂𝑫𝑵a@𝒓B + ∑ @A`𝒓𝑵,𝒂𝑫𝑵a@𝒓<,c u;<,c;B>< 𝑻L<-,, + 𝛿-,𝑰x-                               (15) 

the working definition of the atomic center gradients that are used to drive the molecular dynamics 

updates of positions and velocities for the atomic and Drude particles. It should be noted that the 

introduction of the dipole interaction tensor, T, that follows from our theory are not always available 

from community codes that are currently restricted to point charges and point charge-only Ewald 

calculations. For this work we modified the Tinker8 software package44 to use Drude polarization 

instead of its usual induced point dipole formalism; Tinker8 already has code to handle the dipole 

interaction tensor and higher-order multipolar Ewald sums, meaning that much of the software 

infrastructure to properly evaluate Eq. (15) is already in place.  

METHODS 

Three different methods for solving the Drude polarization condition in Eq. (3) were then implemented 

for comparison purposes- an SCF solver, the iEL/0-SCF method described above, and the EL(T,T*) 

method based on the two temperature NPT,T* ensemble described by Lamoureux and Roux for the 

PSPC model9. The SCF solver is a naïve successive over-relaxation (SOR) method28 that iterates Eq. 

(3) to within some defined tolerance in terms of the root mean square change in force on the Drude 

particles between successive iterations. A range of tolerances were tested with the tightest being 10-6 

RMS kcal/mol/Å, which we define as the ‘gold standard’ for accuracy in this study.  

 The EL(T,T*) method for polarization was originated by Sprik45, and was used by Wodak and 

colleagues for point induced dipoles34 and by Lamoureux and Roux for Drude polarization9. Under the 

EL(T,T*) scheme the Drude particles themselves are given a portion of the mass of their parent atom, 𝑚3, and to conserve mass the parent atom now has a mass of 𝑚, −𝑚3.  The Lagrangian of the system 

then becomes  



8 

ℒ(𝒓$ , 𝒓̇$ , 𝒓3$ , 𝒓̇3$) = 12*(𝑚𝒊 −𝑚3)|𝒓̇𝒊|𝟐, + 12𝑚3*.𝒓̇𝑫,𝒊.𝟐, − 𝑈'((𝒓$) −** 𝑞,𝑞-.𝒓𝒊 − 𝒓𝒋.-2,, −** 𝑞,𝑞3,-.𝒓𝒊 − 𝒓𝑫,𝒋.-,
−** 𝑞3,,𝑞3,-.𝒓𝑫,𝒊 − 𝒓𝑫,𝒋.-2,, −−12𝑘3*.𝒓𝒊 − 𝒓𝑫,𝒊.𝟐,  

     (16) 

Where the last five terms give the potential energy of the system and the Lagrangian can be simplified 

as  

ℒ(𝒓$ , 𝒓̇$ , 𝒓3$, 𝒓̇3$) = 12*(𝑚𝒊−𝑚𝐷)|𝒓̇𝒊|𝟐, + 12𝑚3*.𝒓̇𝑫,𝒊.𝟐, −𝑈(𝒓$ , 𝒓3$) 
  (17) 

Applying the Euler-Lagrange equation of motion we now obtain equations of motion for atomic 

centers and Drude particles in Eqs. (18a) and (18b), respectively. 

(𝑚, −𝑚3)𝒓̈, = − _A_𝒓B                                                         (18a) 

𝑚3𝒓̈3,, = − _A_𝒓<,B                                                        (18b) 

In short, the dynamics of the atomic centers are driven by their usual forces, but with a smaller mass, 

and a net force now drives the dynamics of the Drude particles given by the harmonic spring attaching 

it to its parent atom and an electrostatic force through interactions with its charge and the charges of 

the rest of the system.  

 In the NVT,T* or NPT,T* ensemble of the EL(T,T*) method45, the atomic temperature T is 

defined by the total atomic mass 𝑚, and the center of mass velocity of the Drude-parent atom pair i, 𝑹̇,. 
𝑇 = 13𝑘�𝑁L��� * .𝑚,𝒓̇, +𝑚3𝒓̇3,,.K𝑚,,∈L��� = 13𝑘�𝑁L��� * 𝑚,𝑹̇,K,∈L���  

                        (19) 

where Natomic is the number of atomic centers. The Drude particles are kept at a lower temperature T*, 

defined by the reduced mass and the relative velocity of the Drude-parent atom pair, 𝑚,� and 𝒅̇,, 
respectively.  

𝑇∗ = 13𝑘�𝑁3r�_� * 𝑚3 �1 −𝑚3𝑚, � .𝒓̇3,, − 𝒓̇,.K,∈3r�_� = 13𝑘�𝑁3r�_� * 𝑚,�𝒅̇,K,∈3r�_�  

        (20) 

where NDrude is the number of Drude centers. By keeping the Drude temperature low, kinetic energy is 

bled out to better satisfy the Born-Oppenheimer condition. 
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 For the iEL/0-SCF and EL(T,T*) methods the Drude positions and auxiliaries were initialized 

to those of a tight SCF solution, and all production simulations were started from pre-equilibrated 

restart files; unless noted otherwise all simulations (NVT or NVE) are initialized at 298.0 K. For all 

methods all equations of motion were integrated with a velocity Verlet scheme46 and we used particle-

mesh Ewald summation to treat all electrostatic interactions47 with a real-space cutoff of 9.0 Å. Non-

bonded interactions were evaluated using neighbor lists and intra-molecular geometry of the PSPC 

model was constrained using the RATTLE algorithm48. When thermostats are used, either to perform 

NVT simulations or to couple to auxiliaries (for iEL/0-SCF) or relative Drude-parent atom harmonic 

motion (for EL(T,T*)), a time-reversible 4th-order Nosé-Hoover chain49 was used with a thermostat 

time scale parameter of 0.005 ps (expect for the EL method at a time step of 4.0 fs, which uses a time 

scale parameter of 0.01 ps, as 0.005 ps is unstable at that condition) . All three methods were tested 

over a range of time steps, ranging from 0.5 fs to 6.0 fs depending on method. 

 The iEL/0-SCF method requires the determination of an optimal value of 𝛾 , the mixing 

parameter that allows us to approximate a ground state polarization solution that will deviate from the 

true solution by a quantity, d. We have shown in previous work that the iEL/0-SCF is numerically 

stable over long simulation times because the general form of the polarization energy and forces (Eqs. 

(5) and (12) for the Drude model) ensures that small deviations from the converged solution only gives 

rise to errors on the order of O(d2) in energy and forces.42 Thus the mixing parameter 𝛾 will control the 

level of accuracy of the polarization solution and corresponding stability of the equations of motion.  

 In our previous work with the AMOEBA force field36, 42, we determined 𝛾 by looking for a 

value that best conserved the real system energy while minimizing the auxiliary “temperature” drift 

rate that arises from resonances (we refer the reader to the original formulation of the iEL/SCF 

method36 for further detail). For AMOEBA, we found an optimal 𝛾 = 0.9 value for water using a 0.5 fs 

time step in the NVE ensemble, with values of the time step greater than 0.5 fs and 𝛾 > 0.9 displaying 

unstable trajectories, and values of γ < 0.5 yielding very poor real system energy conservation 

regardless of time step.42 As shown in Figure S1-S3, the Drude model allows for a far greater range of 𝛾 values and a time step of up to 2.0 fs for which the NVE trajectory is both stable and exhibits good 

energy conservation comparable to or better than the SCF solution. We adopted a value of 𝛾 = 1 for all 

simulations reported in the Results section, indicating that the Drude positions calculated directly from 

the auxiliaries are of a high enough quality so as to drive the auxiliary equation of motion close to the 

true ground state with no additional correction as per Eq. (9).   
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RESULTS 

For the iEL/SCF methods, the equations of motion of the Drude particles given in Eq. (10) are defined 

in the limit 𝑚L → 0, so there are no contributions to the real system energy due to the kinetic energy of 

the Drude particles. This is equivalent to an SCF scheme under tight convergence (which we take to be 

10-6 RMS kcal/mol/Å), but is unlike an EL method where there is mass repartitioning between the 

Drude particle and its parent atom. For EL, the assignment of small Drude masses are preferred for 

energy conservation by minimizing the Drude kinetic energy (the Born-Oppenheimer condition) but 

the simulation is restricted to short time steps due to their higher frequency oscillations (since 

). By contrast larger masses in the EL scheme that allow for longer time steps tend to 

conserve energy more poorly due to the increasing Drude kinetic energy contribution. In what follows 

we report results in the EL method using the lowest stable Drude mass, 𝑚3, for a given time step.   

 In the NVE ensemble, since we are not enforcing temperature control through thermostats, the 

two extended Lagrangian approaches simplify to just the equivalent of EL/0-SCF (no inertial 

restraints) and EL methods. Figure S4 shows that the system energy, i.e. the sum of all kinetic and 

potential energy of atomic and Drude particle contributions, for both EL approaches is as well 

conserved as the SCF gold standard  at a time step of 1.0 fs over a 2.0 ns timescale. Figure 1a shows 

that while the EL/0-SCF method also conserves energy using a 2.0 fs time step – in fact better than the 

SCF method over the 2.0 ns trajectory – the EL method conserves energy poorly after ~250 ps at the 

lowest Drude mass where stable trajectories are possible. If we restrict ourselves to the first couple of 

hundreds of picoseconds for the EL method, we can collect values of the diffusion constant at 298K 

that are in good agreement between the methods, 4.00 x10-5 cm2/s (± 0.08, SCF), 4.06 x10-5 cm2/s (± 

0.08, EL/0-SCF), and 3.99 x10-5 cm2/s (± 0.23, EL), and all of which are in agreement with previous 

reported results for the PSPC model9. 

 The energy instability of EL after ~250 ps arises from the fact that even for small values of mD 

the Drude particles will eventually reach thermal equilibrium with the rest of the system, and the 

kinetic energy of the Drude particles – which is formally zero for the SCF and EL/0-SCF methods – 

will increase over time for the EL method. To show this, Figure 1b reports the Drude temperature for 

the relative Drude-parent atom motion for the SCF and EL methods and the ‘pseudo-temperature’ of 

the auxiliary dipoles, defined as 𝑇L�� = 1/3〈𝒂̇,K〉, for the EL/0-SCF method at the same 2.0 fs time step 

and simulated over 2.0 ns. The EL method shows exponential degradation, rising from near 0 K at the 

beginning of a simulation to almost the atomic temperature after 2 ns; this will be the case for the EL 

method even for smaller time steps where the same kinetic energy change will be evident but on a 

ω = k
D
m

D
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longer simulation time scale. By contrast the EL/0-SCF and SCF methods show linear increases in 

inertia throughout the simulation due to accumulation of integration error. Of course the point of the 

EL(T,T*) approach is to arrest this energy redistribution by keeping the Drude thermostat cold to stay 

on the Born-Oppenheimer surface. But the NVE results are instructive as they are a harbinger for the 

fact the EL/0-SCF is intrinsically more stable than the EL method at a given time step and length of 

simulation, and comparable in quality to a well converged SCF solution.  

(a)       (b) 

 
Figure 1:  NVE energy properties of the iEL/0SCF and EL(T,T*=0) method for the Drude PSPC 

model compared to the SCF reference. All simulations were performed with a time step of 2.0 fs on a 
test system of 512 water molecules with no thermostats. (a) Total real system energy for SCF (black), 
iEL/0-SCF (red), and EL (blue) (b) auxiliary variables pseudo temperature for iEL/0-SCF (red, left 
axis) and temperature of the Drude-parent atom motion of the EL method (blue, right axis). 
Temperature is placed on a log scale. 

 We show that this continues to hold in the NVT ensemble by next considering the polarization 

properties of the PSPC model, where the atomic degrees of freedom are coupled to a Nosé-Hoover 

thermostat to maintain a temperature of 298K. Figure 2a shows the extended system conserved energy 

quantity, which differs for the three methods, using a 2.0 fs timestep. The conserved quantity for the 

SCF gold standard corresponds to all potential and kinetic energy terms of the atomic degrees of 

freedom and the atomic thermostats49. For the EL(T,T*) method the ensemble is NV(T,T*), since a 

cold T* thermostat of 1.0K is coupled to the Drude-parent atom relative motion, and thus its conserved 

energy quantity now includes both sets of thermostats. The iEL/0-SCF method also couples the pseudo 

temperature of the auxiliaries to a thermostat, but it is set to a pseudo temperature that conserves the 

extended system energy that includes the potential energy and kinetic energies of all the particles in the 

system, all of the auxiliary variable contributions, and the potential and kinetic energy of all the 

thermostats (atomic and auxiliary). I.e. the extended system energy conservation is enforced by 

construction with errors only associated with uncertainty in the linear fit.  
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(a)       (b) 

 
Figure 2:  NVT energy properties of the EL, SCF and iEL/0-SCF method for the Drude PSPC water 

model. All simulations were performed with a time step of 2.0 fs on a test system of 512 water 
molecules. (a) The conserved quantity for the NVT extended system for the three methods, (b) the real 
system energy in the NVT ensemble at 298.0 K for SCF (black), EL(T*,T) (blue), and iEL/0-SCF 
(red). The system energy is the sum of the atomic kinetic and potential energies.  

 

Table 1 shows that the the EL(T,T*) method has more drift in the conserved energy than does the SCF 

solution, although the real system energy and molecular dipole properties among the three methods are 

well reproduced at a 2.0 fs time step. However, the greater drift in the conserved energy quantity for 

EL(T,T*) indicates that it is becoming more sensitive to integration errors and thus limitations on 

allowed time steps compared to the SCF and iEL/0-SCF approaches.  

Table 1. Conserved extended energy drift, average system potential energy, and average molecular 

dipole of the PSPC model in the NVT ensemble for the SCF, EL and iEL/0-SCF methods at different 

integration time steps (fs). 〈U〉 is the average system potential energy in kcal/mol, 〈µ���〉 is the average 
molecular dipole in units of Debye, and|ΔE|/Δt is the extended system conserved energy quantity in 
kcal/mol/ps. For iEL/0-SCF the conserved quantity is enforced by construction. Results are from 1.0 ns 
simulations of 512 water molecules at 298K.  

 SCF EL(T,T*) iEL/0-SCF 𝛥𝑡 〈𝜇���〉 〈𝑈〉 |𝛥𝐸|/𝛥𝑡 〈𝜇���〉 〈𝑈〉 |𝛥𝐸|/𝛥𝑡 〈𝜇���〉 〈𝑈〉 
1.0 2.71 ± 0.01 -4110 ± 35 -0.0011 2.71 ± 0.01 -4110 ± 35 -0.0023 2.71 ± 0.01 -4110 ± 35 
2.0 2.71 ± 0.01 -4100 ± 35 -0.0017 2.71 ± 0.01 -4100 ± 35 -0.014 2.71 ± 0.01 -4100 ± 35 
3.0 2.71 ± 0.01 -4090 ± 35 -0.0037 2.71 ± 0.01 -4080 ± 35 -1.8 2.71 ± 0.01 -4080 ± 35 
4.0 2.71 ± 0.01 -4070 ± 35 -0.0014 2.70 ± 0.01 -4070 ± 35 -81 2.70 ± 0.01 -4050 ± 35 
5.0 2.70 ± 0.01 -4040 ± 35 -0.0027 --- --- --- 2.70 ± 0.01 -4020 ± 35 
6.0 2.69 ± 0.01 -4010 ± 35 +0.057 --- --- --- 2.69 ± 0.01 -3990 ± 30 
7.0 2.69 ± 0.01 -3970 ± 35 +1.0 --- --- --- 2.69 ± 0.01 -3950 ± 35 

 

 This is confirmed in Figure 3a which plots the minimum Drude mass required to maintain a 

stable simulation as a function of increasing time step from 1.0 fs to 4.0 fs for the EL(T,T*) method 



13 

where T=298K and using a Drude-parent atom relative motion temperature T*= 1.0 K; beyond 4.0 fs 

the EL(T,T*) approach becomes unstable under any amount of mass repartitioning. As the integration 

time step increases, the repartitioned Drude mass must also increase, thereby becoming more and more 

untenable for accurately preserving the Born-Oppenheimer condition, which would manifest as evident 

degradation in polarization properties. This is seen in Figure 3b and 3c (as well as Figures S11 and 

S12) which reports the induced dipole distributions and induced dipole autocorrelation function at the 

4.0 fs time step, in which ~25% of the mass of the parent oxygen atom is partitioned to the Drude 

oscillator, that are in significant disagreement with the SCF result.  

(a)       (b) 

 
(c) 

 
Figure 3:  Molecular dynamics trajectory stability and polarization properties of the PSPC model 

using the EL(T,T*) method. (a) the minimum Drude mass required to maintain a stable MD simulation 
as a function of time step using a Drude-parent atom relative motion temperature set point of T*=1.0 
K; the EL(T,T*) method is unstable above 4.0 fs. (b) probability density distributions and (c) 
autocorrelation function for the oxygen induced dipole, 𝛍� = q ,�(𝐫 ,� − 𝐫�) from the EL(T,T*) method 
compared to SCF at a 4.0 fs time step. All simulations were performed in the NVT ensemble at 298.0 
K.  All calculations presented in this figure use an internal coordinate system where the z-direction is 
given by the H-O-H bisector, the y-direction is out of the H-O-H plane, and the x-direction is 
orthogonal to z and y (see [50] for details). 
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 By contrast, Figure 4a shows that the effective, fitted mass of the auxiliary Drude centers for 

the iEL/0-SCF method is ~2 orders of magnitude smaller than the repartitioned masses of the EL(T,T*) 

method, such that the effective temperature of the auxiliary degrees of freedom remain cold (<10K) for 

up to a 6.0 fs time step. Figure 4b and 4c show that the iEL/0-SCF method tracks the SCF result 

accurately for the induced dipole distributions and induced dipole autocorrelation function at the 4.0 fs 

time step, unlike the EL(T,T*) method. In fact, polarization properties are as well reproduced as the 

SCF solution all the way up to the 6.0 fs time step (Figure S10 and S11) and other properties generated 

by iEL/0-SCF, such as the radial distribution functions of the liquid, match the SCF result at this 

largest time step (Figure 5).  

(a)       (b) 

 
(c) 

 
Figure 4: Molecular dynamics trajectory stability and polarization properties of the PSPC model 

using the iEL/0-SCF method. (a) The effective auxiliary mass, 𝑚L,�¢¢  (left axis) and the resultant 
auxiliary mean temperatures (right axis) using the effective masses to convert from pseudo temperature 
to real temperature for the iEL/0-SCF method. (b) probability density distributions and (c) 
autocorrelation function for the oxygen induced dipole, 𝛍� = q ,�(𝐫 ,� − 𝐫�)  from the iEL/0-SCF 
method compared to SCF at a 4.0 fs time step. See Figure 3 for remaining details. 
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 (a)       (b) 

  
(c)       (d) 

 
Figure 5: Radial distribution functions (RDF) of the PSPC Drude water model using the SCF and 

iEL/0-SCF methods. (a) oxygen-oxygen RDF as a function of time step for the SCF method showing 
small changes in the first peak as time step increases. Oxygen-oxygen RDF (b), oxygen-hydrogen RDF 
(c), and hydrogen-hydrogen RDF for the SCF method and iEL/0-SCF method. Simulations were run in 
the NVT ensemble at 298.0 K and were at least 0.5 ns in length. Panels (b), (c), and (d) used a time 
step of 6.0 fs. 
 
 Finally we consider why the iEL/0-SCF method is as good as an SCF solution although it 

requires no explicit SCF calculations at each time step. Our explanation is that the induced dipole 

updates, or equivalently the position updates of the real Drude particles by making one evaluation of 

the electric field using the current auxiliary positions, is performing a tightly converged SCF 

calculation on the fly. To bolster this argument, Figure 6a shows the autocorrelation function for the 

real dipoles and the single exponential fit to the initial decay, while Figure 6b reports the fitted time 

constant, as a function of the integration time step. Since the decay constant is on the order of a couple 

of hundred femtoseconds, the numerical integration of the auxiliary dipoles can “keep up” for 

adjusting the real dipole positions for time steps up to 6.0 fs to follow that longer time scale decay. We 

found that a 7.0 fs time step remained stable but properties of the PSPC model were beginning to 

degrade, and at 8.0 fs the simulation ultimately developed numerical instabilities after ~1 ns. 
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 (a)       (b) 

 
Figure 6:  The initial time scales for decay of the oxygen time autocorrelation for the real induced 

dipoles for the iEL/0-SCF method. (a) single exponential fits (dotted lines) to the initial decay of the 
dipole created between the Drude and its parent atom, 𝛍 ,� = q ,�`𝐫 ,� − 𝐫�a (solid lines), for a range of 
time steps. (b) the time constant of the exponential fit to the initial decay from (a) as a function of time 
step.  
 

 
DISCUSSION AND CONCLUSION 

We have developed a Drude implementation of our iEL/0-SCF method, which proves to be as accurate 

and stable for both dynamic and thermodynamic properties for the PSPC water model when compared 

to a tightly converged SCF solution, and a significant improvement over the two temperature EL(T,T*) 

approaches by increasing the allowable integration time step by a factor of 2-3 with recommended time 

steps as large as 6.0 fs. For iEL/0-SCF the better stability likely comes from the exact analytical 

agreement between the energy and gradients compared to SCF, and the avoidance of any mass 

repartitioning when compared to EL so that the Born-Oppenheimer condition is easily satisfied without 

needing to introduce two temperature ensembles. We therefore conclude that we gain the benefits of 

the minimal computational expense of an extended Lagrangian approach but with greatly increased 

time steps with the accuracy and robustness of an SCF method for Drude polarization. As we have 

noted in the Theory section, the addition of the iEL/0-SCF method to community codes would need to 

handle the dipole interaction tensor (Eq. (15)) and higher-order multipolar Ewald sums47, 51. Given that 

Amber and CHARMM have implemented the AMOEBA model, the software to implement the iEL/0-

SCF approach is largely in place in these community codes. 

 It is interesting to analyze why the AMOEBA polarizable model for water is restricted to a time 

step that is a factor of 6 times smaller than the PSPC model using the iEL/0-SCF approach which we 

attribute to the following: (1) the PSPC has a rigid and not a flexible geometry like AMOEBA, (2) it 

does not include a Drude particle on the light hydrogen centers, unlike the AMOEBA model which 
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includes point dipoles on hydrogens, (3) PSPC has no intramolecular polarization, and (4) nor does 

PSPC have short ranged and a spatially rapid variation in forces arising from dipole and quadrupole 

permanent electrostatics. Thus the simplicity of the PSPC water model is better able to conform its 

motion on the Born-Oppenheimer surface using much longer time steps based on a simpler design 

choice of the polarizable and electrostatic model.  

 It therefore would also be expected that for a polarizable Drude model for a protein with 

flexible bonds or a 4-site Drude polarizable water model that places Drude particles on light hydrogens 

that the time step of 6 fs achieved with the PSPC model would need to decrease. However, there is a 

possibility that a time reversible integration of an auxiliary system could nonetheless help bootstrap the 

real degrees of freedom toward larger time steps even for these cases, although not likely as large as 

the 6 fs time step reported here for a simple water model.  We will be reporting on these results in the 

near future. 
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