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We present a new solution for classical polarization that does not require any self-consistent field
iterations, the aspect of classical polarization that makes it computationally expensive. The new method
builds upon our iEL/SCF Lagrangian scheme that defines a set of auxiliary induced dipoles whose
original purpose was to serve as a time-reversible initial guess to the SCF solution of the set of real
induced dipoles. In the new iEL/0-SCF approach the auxiliary dipoles now drive the time evolution of the
real induced dipoles such that they stay close to the Born-Oppenheimer surface in order to achieve a truly
SCF-less method. We show the iEL/0-SCF exhibits no loss of simulation accuracy when analyzed across
bulk water, low to high concentration salt solutions, and small solutes to large proteins in water. In
addition, iEL/0-SCF offers significant computational savings over more expensive SCF calculations
based on traditional 1 fs time step integration using symplectic integrators and is as fast as reversible

reference system propagator algorithms with an outer 2 fs time step.
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INTRODUCTION

Polarization, the ability of a molecule’s electron density to deform, respond, and influence its
environment, is the leading order many-body interaction for advanced electrostatics used in molecular
simulation."® It has proven to be an important interaction that accurately captures intermolecular
interactions of ligand bound complexes’, heterogeneity at interfaces®”’, electric field environments of
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heterogeneous systems such as proteins®”, structure and dynamics of peptide-water solutions
also has been shown to be more transferable across the phase diagram of liquid water beyond the regions
where the force field was initially parameterized'?.

Complete convergence of mutual polarization is usually solved using an iterative self-consistent
field method (SCF) to determine a set of induced electrical dipoles within the system'>™'*. Self-consistent
iteration is usually preferred over dynamic methods such as extended Lagrangians (EL)">'° because of the
better stability with larger time steps. However, the repeated iteration can be a significant computational
cost even with the adoption of advanced SCF solvers such as the preconditioned conjugated gradient

(PCG)" or direct inversion of the iterative subspace (DIIS)'* '"'®

methods. Recently, several novel
methods have been introduced with the aim of achieving better energy conservation and/or reducing the
number of SCF iterations, without sacrificing accuracy. The classical IAMOEBA'? approach chooses to
only account for direct polarization, i.e. the response of inducible dipoles to the permanent electrostatics
with no mutual induction, thereby completely avoiding the iterative SCF step altogether. The extrapolated
perturbation theory (ExPT) is a method that uses a perturbation series for the polarization energy which is
truncated at low order and then extrapolated to infinite order to recover an approximation of the true, fully
converged SCF solution'’. In both of these cases there are some sacrifices to polarization accuracy that
must be recovered through either reparameterization of the underlying force field as done for iAMOEBA
or parameter adjustments of the method in the case of ExPT? that have led to significant improvements
through the OPTn methods>'. While recent approaches such as OPT4'" and the truncated conjugate
gradient TCG** have improved polarization solution accuracy compared to ExPT, they have not been able
to fully eliminate the cost of polarization, i.e. to eliminate the need to perform any SCF iterations.

2327 starts from the broken time-reversal

Another approach due to Niklasson and colleagues
symmetry problem in Born Oppenheimer molecular dynamics (BOMD) to derive a time-reversible
extrapolation scheme for the electronic degrees of freedom. Equivalently, it can be formulated in the form
of an extended Lagrangian in which an additional set of auxiliary electronic degrees of freedom are
propagated alongside the nuclei with the purpose of generating either good quality time-reversal guesses
for the SCF calculations, or as a stand-alone SCF-free extended Lagrangian formulation of BOMD.
Albaugh et al. extended the time-reversible extrapolation scheme to the solution for classical polarization
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using an extended Lagrangian solution for an auxiliary set of induced dipoles that serve as an initial guess
for the SCF solution of real dipoles®®. It is known that the numerical error in the SCF solutions (which are
never exact due to incomplete convergence and/or an approximate numerical algebra) will leak back to
the auxiliary degrees of freedom and give rise to instabilities in their equations of motion®” ***. To
address this problem Niklasson and co-workers have proposed a dissipative integration scheme for the
equations of motion of the electronic degrees of freedom using a modified form of the Verlet algorithm
that controls the numerical instability at the expense of a small amount of broken time-reversibility*. By
contrast, Albaugh et al. chose to couple the auxiliary velocities to a thermostat to prevent buildup of
inertia, thus preserving time-reversibility (which we refer to as an inertial extended Lagrangian,
iEL/SCF), through the use of a time-reversible solution to Nosé-Hoover thermostat variables for the
auxiliary degrees of freedom™.

While we have shown that the iEL/SCF methods reduces the number of SCF iterations required by
half for classical polarization”, and much more for linear scaling density functional theory (DFT) in the
BOMD code of ONETEP®, it did not eliminate the need for SCF iterations completely. In this work we
introduce an extension of the iEL/SCF method that eliminates the SCF step altogether in classical
molecular dynamics simulations with polarizable induced dipoles, which we refer to as the iEL/0-SCF
method. The iEL/0-SCF scheme presented here is not a straightforward extension of the SCF-less XL-
BOMD scheme”’ to polarizable force fields, but differs in significant ways as we show below. We find
that the iEL/O-SCF approach is as accurate as standard SCF approaches for pure water, dilute to
concentrated salt solutions, and small peptides and large proteins in water. In the TINKER
implementation of the iEL/0-SCF approach we show that it also scales better under OpenMP
parallelization than the standard SCF solvers, such that it is faster and at least as accurate as the default
SCF scheme using either Verlet or a simple multi-time step technique such as the reversible reference
system propagator algorithms (RESPA)*’ that uses a 2.0 fs outer time step. In summary, the iEL/0-SCF

approach offers a complete and accurate mutual polarization solution at the cost of direct polarization.

THEORY
To achieve a polarization scheme that does not require SCF iterations, we start with a Lagrangian for a
classical system of N atoms and examine how self-consistently iterated induced dipoles on each atom
contribute to the potential:

£V, iV) = SN mi? - u(rY, V) (M)
In Eq. (1) r; and 7; are the position and velocity of the i-th atom, respectively, and U(rN, u") is the

potential energy for the current atomic configuration. Here the potential energy can be broken into both a
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many-body polarization energy contribution, UP°!4 (rN, u¥ ), and all other contributions, U°the" (rN),
which can include non-bonded terms such as permanent electrostatic and van der Waals interactions and
bonded valence terms like bond-stretching, angle-bending, torsionals, and others.

U(TN,MN) — Uother(rN) + Upolar(rN' ﬂN) )
Assuming complete convergence of the induced dipoles to their SCF solutions, pgcr, the component of

the potential energy that depends on polarization, UP°'" (N, u), can be given as

! 1
U™ (Y, u8cr) = — S HScrE 3)

and where
Bscri = GE; + a; XV T ilscr s 4)

Here E; is the electric field contribution at site i due to permanent electrostatics in the system (fixed

charges, dipoles, quadrupoles, etc.), T is the induced dipole interaction matrix between sites i and j, and
g p q p ij p J

@;, is the atomic polarizability of the i-th atom. We can cast Eq. (4) in terms of a super-matrix C

tscr = C'E (%)
whose blocks are given by C;; = (0{]-_16ij — ng). While the induced dipoles can be solved exactly
through matrix inversion, as is done for two and three-body polarization interactions in our recent 3m-
AMOEBA model’', in practice it is prohibitively expensive to perform this calculation for very large
systems as it involves inverting the 3N by 3N C super matrix.

Usually Eq. (5) is solved iteratively using standard SCF methods such as PCG due to Wang and
Skeel" to some tolerance, usually with a predictor to accelerate the convergence of the SCF problem.
However, predictors that use information from previous steps break time reversibility in the context of
molecular dynamics, leading to an inevitable degradation in energy conservation. An alternative to
solving for the many-body electronic problem that avoids a self-consistent solution was originally
addressed by Car and Parrinello®”. In their seminal work they formulate an extended Lagrangian (EL) to
evolve the electronic degrees of freedom dynamically by introducing fictitious masses, and the EL
approach was extended to induced dipole polarization by Wodak and co-workers'®. Overall, standard EL
solutions to both quantum®” and classical'™ ** electronic degrees of freedom are found to be stable and
conserve energy, but only for reduced and sometimes very small time steps that precludes their practical
use in molecular simulation™ unless significant numerical error is tolerated.

Niklasson et al. tackled the problem of broken time-reversibility of the electronic dynamics
through a distinct formalism™ that can also be expressed in a Lagrangian formulation®*?’, which Albaugh

and co-workers have recently adapted for classical polarization®® as shown in Eq. (6)



/rtitatat) %Zlivzl miy + %Zlivzl Mg, a; - U("N' aN) - %wz X Mg, (”'SCF,i - ai)z (6)
Here a; and a; are the auxiliary induced dipole and corresponding velocity for atom i, each of which has
a fictitious mass associated with it, m, ;. The additional terms in the Lagrangian are now a kinetic energy
associated with the auxiliary dipoles and a harmonic potential that aims to keep the auxiliary dipoles close
to the true SCF dipoles, which in turn is determined by the steepness of this harmonic well and

characterized by a frequency w. It has been shown that for a time-reversible Verlet integration algorithm

with a finite integration time step At, the maximum stable value of w is v2/At.>’ These auxiliary
variables then serve as good initial guesses to the SCF solution for the real dipoles to reach the final

. . . . . 25 28
solution, ugcr; and with notable improvements in energy conservation™

. However, in practice the
iterative solution of the induced dipoles never reaches the exact solution, as the iteration is stopped at
some convergence threshold. This error couples to the auxiliary degrees of freedom through the potential
(last term in Eq. (6)), which corrupts the auxiliary dynamics such that they become more and more poor
initial guesses for the real degrees of freedom, and the number of SCF cycles increases without bound™®.

Niklasson proposed the introduction of dissipation for this numerical error that achieves only a
small amount of broken time-reversibility since it is introduced at an order commensurate with the
integration error.”® Unfortunately when the dissipative force is combined with the accurate classical
polarization force, the dissipation scheme unambiguously exhibits energy drift. An alternative approach
taken by Albaugh and co-workers was to introduce a simple thermostating scheme, illustrated using both
Berendsen weak coupling and Nosé-Hoover chain thermostats, applied to the auxiliary dipole velocities.”®
The latter case, i.e. the inertial iEL/SCF method, was shown to provide superior energy conservation with
less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all
properties of the classical polarization model in the NVT and NVE ensembles accurately.

Now turning to the problem of achieving an iteration-free dynamics for the electronic degrees of
freedom, given this background, we introduce modifications to the Lagrangian in Eq. (6) in two important
ways. First we introduce a general form for the polarization potential energy that does not assume

convergence of the real induced dipoles™
Upolar (TN, aN) — %MTC” _ MTE (7)
This means that if the real dipole differs from the exact self-consistent solution by a small amount &,

U = pugcr + 6, the polarization potential differs from the exact self-consistent solution by an order of the

square of the error, §2. To see this one can substitute gt = pgcr + 6 into Eq. (7),

yrelar = %(”SCF + 8)"C(uscr + 6) — (Uscr + 8)"E = _%ﬂSCFTE + §6TC8 (8)



which makes use of the requirement that for completely converged induced dipoles Cugcr — E = 0. The

difference between the general potential and the exact solution is
polar _ yypolar _ 1 oT — 2
U URGT =287Cs = 0(181%) ©)
so that for any small errors in the induced dipoles that result from no iteration, we push the error in the

potential to second order. The same analysis applies to the gradient of this potential, which affects the

forces for dynamics and is what is relevant in molecular dynamics. After differentiating Eq. (8)

daupolar 1 ac 0E 1 .70C
o :EMSCFTEMSCF _”SCFTE-FE‘S‘ ;5 (10)
and recognizing that
aubolar 4 ac OF
f;F = E”SCFT 5y HscF — Hscr I (11a)
and
ac duscr 5_E) _
(61‘”5CF +c ar or) 0 (llb)

we again confirm that error in the forces are also second order

avpoler  auBZtT 1 opac o 2
dr o dr - 28 61'6 - 0(|6| ) (12)

The second important ingredient is to control the error quantity . Like the iEL/SCF procedure,
the real induced dipoles will depend explicitly on using the auxiliary dipoles as an initial guess
ui = aE +a; XN, Ta, (13)
but in this case we perform no SCF cycles. Instead we define pgcr; from simple linear mixing of the real
and auxiliary induced dipoles via a local kernel approximation®’
Bscri = v+ (1= y)a; (14)
where y is an adjustable mixing parameter that will need to be tuned. This is similar in spirit to a
predictor-corrector scheme® in which Eq. (13) gives a prediction of the converged induced dipoles from
the auxiliary dipoles, and then Eq. (14) serves as a correction by mixing the time reversible solution
corresponding to the auxiliary variables with the solution for the real dipoles. While more complicated
forms of approximating the SCF dipole are possible, such as a non-local kernel method”’, we find that this
simple approximation works well for all cases shown in the Results. To be clear Eq. (14) is not used for
the calculation of the true polarization energy and forces, but only applies to the derivation of the
auxiliary equation of motion as we show below. It is now clear that the real dipoles, p, are dependent on

the auxiliary dipoles, a, so that the potential in Eq. (6) is now dependent on position and auxiliary dipoles,

U(r",a") instead of U(rN, uN) previously in Eq. (1).



We now apply the Euler-Lagrange equation to the Lagrangian in Eq. (6) for both the real

coordinates "V and the auxiliary dipoles aV to obtain equations of motion for each

. _dU(rN,aN)
mir; = —— " (15)
mga; = wzma,i(ﬂSCF,i - ai) + Z?’=1(aj_16ij - T’ij)(ﬂj - aj) (16)

Eq. (15) is the familiar statement of Newton’s law for the nuclei where the gradients of the various forms
of the potential energy on the right hand side remain in their usual forms, except for the polarization
potential energy, which now depends on the auxiliary dipoles directly as seen in form of Eq. (7). Eq. (16)
gives the equation of motion for the auxiliary dipoles, which we note has an extra term proportional to
(1 — a); it can be formally shown that by assuming m,~1/w?, and in the limit that m,; - 0 and w — oo
such that wm,; = constant, we recover an adiabatic Born-Oppenheimer-like approximation of the
auxiliary dipole moment. In practice we will show a posteriori that indeed this term is negligible and can
(and will be) ignored. When Eq. (14) is substituted into the auxiliary equation of motion in Eq. (16), we
obtain the final form
a; = w?y(u; — a) (17)
Of course for dynamics we will also need the forms of the gradient to calculate forces. In this case
we use the complete polarization gradient

auPol(rN) _ auPol(rN) = auPol(rN) op
dr - or + u or (18)

The first term on the right hand side of Eq. (18) is the nuclear term and the second term is the dipole

response term, which goes to 0 in the limit of perfectly converged induced dipoles'®*

. In practice,
although perfect convergence can never be achieved, the dipole response term is typically not explicitly
calculated with the understanding that this is a good approximation for a tight level of SCF convergence.
With the iEL/0-SCF approach, however, we need the dipole response term, since our analytical
polarization potential requires it, unlike the iterative SCF solvers. Since we have an explicit position
dependence of our dipoles, defined by Eq. (13), it is straightforward to calculate these dipole response
terms with no additional algorithmic expense. Substituting Eq. (7) and (13) into Eq. (18) we obtain the
final form of the gradient used for dynamics

aupol(rN 1 oT or’ orM
_dr(r ) _ —-u" ——p— [(@Tw)"+(aE)" —p"]>~a — [(aTw)"+(aE)"] =~ (19)

Finally, the AMOEBA potential has additional features of electrostatic and polarization scaling that are

further discussed in Appendix A, knowledge required to reproduce the results shown later in Results.



METHODS

The modifications to the polarization potential and gradient and the addition of auxiliary induced dipoles
were introduced into the TINKER software package™. For pure water systems we used the AMOEBA 14
force field*® which used Force Balance®’ to optimize the AMOEBA parameters for better description of
water properties. For other systems, such as three concentrations of magnesium chloride salt solutions and
the solvated dihydrofolate reductase (DHFR) protein, we used the AMOEBABIO09*® force field, a
general purpose biomolecular parameterization of the Amoeba functional form. For the solvated
zwitterionic glycine peptide (+NH3-C H-COO-), we use the AMOEBA parameters derived from recent
work comparing its decomposed THz spectra with ab initio molecular dynamics.* Further details of the
simulation protocol are described in the SI material.

The primary difference investigated in this work is how mutual polarization is treated. The iEL/0-
SCF simulations were initiated with real and auxiliary dipoles that were solved to a very tightly
converged solution of 10° RMS Debye. A velocity Verlet integration scheme® was then used to
propagate the auxiliary induced dipoles and dipole velocities with a 0.5 fs time step in the NVE ensemble
and with a 1.0 fs time step in the NVT ensemble. To determine an optimal y for a given system, short
(~100 ps) NVE trajectories were run over the range of possible y values (0 to 1.0) and the y of the
trajectory with the lowest energy drift was selected for production.

For the NVT ensemble, auxiliary dipoles were thermostated using a 4™-order Nosé-Hoover chain®!
as described in previous work®®; the set point of the auxiliary dipole pseudo-temperature was 5.3 e?’A*/ps’,
which we found to be the natural temperature of well-integrated, stable iEL/0-SCF simulations at small
time steps. For comparison purposes, simulations performed with a standard preconditioned conjugate
gradient SCF (PCG-SCF)" iterative procedure were calculated using an SCF convergence threshold of
10° RMS Debye, which is an order of magnitude tighter than the TINKER default in order to absolutely

ensure accurate data for comparison purposes.

RESULTS

To test whether the iEL/0-SCF approach reproduces all properties of any system when compared to the
default PCG-SCF method used in TINKER, we have examined four very different physical systems: (1)
homogeneous bulk water, (2) heterogeneous salt solutions, at three different concentrations of MgCl, in
water: 0.30 M, 1.21 M, and 4.66 M, (3) a small solute, a zwitterionic glycine peptide in water, and (4) a
larger protein, DHFR, in water. As we show in what follows, the iEL/0-SCF method can reproduce all of
aspects of polarization compared to the standard SCF approach, and thus all energetic, structural, and

dynamical properties of these four very different cases.
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NVE and NVT conservation properties. Figure la shows the results when optimizing for the one
free parameter y that is needed to estimate the pscr; solution using Eq. (14), examined by running the
iEL/0-SCF method in the NVE ensemble with a range of y values from 0 to 1. From this analysis we
determine that the maximum stable value of y is 0.92, with values greater than that yielding unstable
trajectories, and values of y < 0.5 yielding poor energy conservation. The best value of y = 0.9 gives
energy drifts that are commensurate with the standard PCG-SCF method. Figure 1b reports the ‘pseudo-
temperature’ of the auxiliary dipoles in these simulations, defined as T, = 1/3(a?) since these dipoles
do not have a mass, in which we see increases in inertia throughout the simulation, regardless of y value.
The rate of buildup of the auxiliary inertia degrades the real dipole dynamics through resonances as we
have shown previously®®, therefore in the NVE ensemble we are restricted to time steps ~0.5 fs to realize

good energy conservation for the real degrees of freedom.

Figure 1: Energy conservation in the NVE and NVT ensembles for water. (a) Energy along trajectories of
the iEL/0-SCF method for a range of y values. (b) The auxiliary pseudo-temperature, T,y = 1/3(a?), of
the simulations from (a). In (a) and (b) all NVE simulations used a time step of 0.5 fs. (¢) Conserved
energy of the extended system in the NVT ensemble (blue), along with the energy for the real degrees of
freedom in the NVT ensemble of 512 water molecules using the iEL/0-SCF approach (red) and standard
SCF approach (black). For the NVT simulations we used a time step of 1.0 fs, y was set to 0.9, while the
SCF solution used a PCG-SCF method with a convergence threshold of 10® RMS Debye.
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For the NVT ensemble simulations we require a thermostat applied to both real and auxiliary
degrees of freedom, and thus we have a new conservation law that depends directly on an extended
system that requires the auxiliary dipoles to be kept at a low effective temperature relative to the real
degrees of freedom™. Figure 1c shows that this extended system quantity is well conserved (i.e. including
all the thermostat variables) for water, when fitted using a fictitious mass of the auxiliary dipoles of
0.0103 g/mol/e* and which corresponds to a real temperature of 0.0656 K for the auxiliary dipoles, and
allows for an increased time step of 1.0 fs. The NVT energies and fluctuations for the real nuclear degrees

of freedom of water for the iEL/0-SCF method is in accord with the standard SCF benchmark over 3 ns
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(Table 1 and Figure S1), and additional tests run out to tens of nanoseconds show that SCF and iEL/0-

SCF solutions remained in quantitative agreement for all systems.

Table 1: Ensemble average total energy and polarization energies for bulk water, salt solutions, and
glycine dipeptide in water. Average total potential energy, (U), and average polarization potential energy,
(Upor), for both a standard SCF method and the iEL/0-SCF approach. Data is generated from 3.0 ns
trajectories in the NVT ensemble at 298.0 K; further simulation details are given in the text and SI
material.

Bulk Water Method (U) (kcal/mol) (Upo1) (keal/mol)
1EL/0-SCF -4610+/-40 -2590+/-50
SCF -4620+/-40 -2570+/-50
Glycine in 1EL/0-SCF -2420+/30 -1290+/-40
Water SCF -2430+/-30 -1300+/-30
0.3M MgCl, |iEL/0-SCF -8830+/-50 -4010+/-60
SCF -8850+/-50 -4040+/-70
1.21M MgCl, | iEL/0-SCF -15690+/-50 -5100+/-70
SCF -15710+/-50 -5070+/-70
4.66M MgCl, |iEL/0-SCF -43220+/-50 -9640+/-100
SCF -43220+/-50 -9490+/-90

Polarization properties. For bulk water we find that the average molecular dipole moment for a
condensed phase water molecule yields a value of 2.81 Debye with both the PCG-SCF and iEL/0-SCF
methods. The corresponding probability density distribution of real induced dipoles generated from the
iEL/0-SCF solutions is in excellent agreement with the standard SCF solutions, regardless of system, as

shown in Figure 2 and Figure S2.

Figure 2: Comparison of induced dipole probability density distributions using the iEL/0-SCF and
standard PCG-SCF methods. (a) Hydrogen in bulk water, (b) the glycine carbonyl oxygen, and (c) Mg**
for all MgCl, salt concentration for a standard SCF method (dashed) and our iEL/0-SCF method (solid).
For plots (a) and (b) we consider the x, y, and z dipole components. For plot (c) we consider three
different MgCl, salt concentrations of 0.30 M (black), 1.21 M (red), and 4.66 M (blue). The induced
dipole distributions for water and glycine use an internal coordinate frame; see [**] for details on the
internal coordinates.
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Dynamical properties. Using the NVE ensemble simulation, we calculate the self-diffusion
constant of water to be 1.90 +/- 0.13 using the iEL/0-SCF approach and 2.02 +/- 0.20 for the standard
SCF procedure. We also report the Mg*" and CI ion diffusion constants for the 4.66M concentration in
Table S1 that show the two methods are in quantitative agreement. A particularly stringent time-
dependent property in the NVT ensemble, the autocorrelation function for induced dipoles, demonstrates
that the iEL/0-SCF method does not suffer from any loss of accuracy, regardless of system (Figure 3 and
Figure S3). We can see that for both hydrogen and oxygen atoms for bulk water, Mg>" and CI™ for the salt
solution (shown for 1.21M), and the backbone carbonyl carbon, carbonyl oxygen, nitrogen, and o-carbon
of glycine dipeptide, that the iEL/0-SCF method reproduces the autocorrelations well, especially at the
critical short time scale range less than about 0.2 ps over which there can be rapid changes in dipole
direction (especially for bulk water).

Figure 3: Comparison of dynamic polarization properties using the iEL/0-SCF and standard PCG-SCF
methods. Autocorrelation function of real dipole for (a) bulk water, (b) solvated glycine, and (c) Mg*" and
CI" for 1.21M salt concentrations with a standard SCF method (dashed) and our iEL/0-SCF method
(solid). The induced dipole distributions for water and glycine used an internal coordinate frame; see [*]

for details on the internal coordinates. All data is based on 30 ps trajectories in the NVT ensemble at
298.0 K.
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Structural properties. The iEL/0-SCF method also reproduces structural properties for all systems,
in which Figure 4 and Figure S4 present the radial distribution functions for atom correlations of bulk
water, the water oxygen and hydrogen correlations with the anion and cation of the salt solutions, and
finally the water oxygen and hydrogen radial distribution functions with the glycine peptide backbone
atoms. In summary, we see excellent agreement between the iEL/0-SCF method and the standard SCF

solver.
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Figure 4: Comparison of radial distribution functions using the iEL/0-SCF and standard PCG-SCF
methods for (a) oxygen-hydrogen for bulk water, (b) water oxygen-backbone nitrogen and water
hydrogen-backbone nitrogen of glycine dipeptide, and (c) water oxygen-Mg”" and water hydrogen- Mg*"
for the 0.30 M salt concentrations for a standard SCF method (dashed) and our iEL/0-SCF method (solid).
The induced dipole distributions for water and glycine used an internal coordinate frame; see [**] for
details on the internal coordinates. All data is based on 3.0 ns trajectories in the NVT ensemble at 298.0
K.
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Timing Comparisons between iEL/0-SCF and PCG-SCF with and without multi-time stepping.
The iEL/0-SCF method was implemented in the TINKER software package and takes advantage of the
shared-memory parallelism of that code. While we have shown that the iEL/0-SCF method can reproduce
the property results for any of the above systems when compared to the standard default convergence
criteria used for the PCG-SCF solver in the TINKER code, we now examine the computational efficiency
of the iEL/0-SCF method in the same code and on the same hardware platform using the default TINKER
settings. Figure 5a shows the OpenMP scaling results in units of ns/day of the SCF and iEL/0-SCF
methods applied to bulk water in which both use the same Verlet integration scheme with a time step of
1.0 fs. For 8 cores we see that the iEL/0-SCF method is 40% faster than the standard SCF solution, and
since the iEL/0-SCF method also scales better to larger numbers of cores it rises to ~70% faster than the
default polarization solution. In fact, when compared to a multi-time step RESPA™ that uses a 2.0 fs outer
time step, the iEL/0-SCF method is slightly faster at 16 cores, although it uses Verlet integration with a
1.0 fs timestep. Figure 5b shows the OpenMP scaling results as system size grows while holding the
number of cores constant at 16 cores, for the standard SCF polarization result using either a RESPA*
integration scheme with a 2.0 fs outer timestep, the Verlet integration with a 1.0 fs timestep, and the
iEL/0-SCF approach that uses the Verlet integration scheme with a time step of 1.0 fs. Again, it is seen
that the iEL/0-SCF approach is as fast as the RESPA scheme in timings for ns/day.
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Figure 5: Timing comparisons between iEL/0-SCF and standard iteration methods. Simulation speed-up
in nanoseconds per day for (a) OpenMP scaling as a function of the number of cores for a box of 512
water molecules in the NVT ensemble at 298.0 K and (b) OpenMP scaling for increasing system size with
the number of cores fixed at 16. The methods that are compared include the iEL/0-SCF method at a time
step of 1.0 fs (red), a preconditioned conjugate gradient solver integrated with Verlet at a time step of 1.0
fs (blue), and with a RESPA method using an outer time step of 2.0 fs (black). The real dipoles of the
standard SCF methods in (b) were converged to 10° RMS Debye (solid), the standard default in
TINKER.
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DISCUSSION

In general, energies, dynamical properties, and polarizability and structural correlations, are quantitatively
produced by our iEL/0-SCF method when compared to the standard SCF solver for a diverse set of simple
systems ranging from bulk water, dilute to concentrated salt solutions, and a small peptide in water. We
also provide an additional stress test for our new iEL/0-SCF solution to the polarization equations by
simulating a much larger biomolecular system, namely DHFR in water, the so-called Joint Amber-
CHARMM benchmark. Table 2 gives the average potential energy and average polarization energy for
the aqueous DHFR system when we use a single y value for both the protein and the water solvent when
defining the local kernel approximation for pgcr ; in Eq. (9). For y values greater than 0.7 we find that the
aqueous DHFR simulations became unstable (which also happened for the other water-based systems
when y > 0.92), and ultimately y = 0.7 was the best value that we found from numerical testing. In this
case the differences between the iEL/0-SCF and SCF energy values are on the order of 1.0%, although

this small difference is nonetheless outside numerical error bars.
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Table 2: Average total potential energy, (U), and polarization energy, (Uyo), for the iEL/O-SCF method
for a protein in water using different values of Ys and yp for the local kernel definition for solvent and
protein. Data is generated from 300 ps trajectories in the NVT ensemble at 298.0 K; further simulation
details are given in the text and SI material.

Local Kernel (U) (kcal/mol) (Upo1) (keal/mol)

Ys =vp = 0.7 -66060+/-170 -31160+/-150
¥s =0.9; yp =0.1 -66310+/-180 -31440+/-160
SCF -66670+/-160 -31850+/-150

While this suggests that the iEL/0-SCF method is sensitive to the local kernel definition for y, we found
that we can use the same y value for water of 0.9 (now referred to as y; with ‘s’ for solvent) that we
determined for all previous aqueous systems considered, and allow the protein to independently optimize
to a new value of yp = 0.1 (Table 2). It is clear that basic properties of the protein system are reproduced

with either a single or dual value of y since the protein remains stable as measured by its root mean square

deviation (RMSD) (Figure 6).

Figure 6: Root mean square deviation calculated for the DHFR protein in water using the iEL/0-SCF and
standard SCF method. A single value of y = 0.7 and dual values of yg = 0.9 and yp = 0.1 were used
for the local kernel definition for solvent and protein. The PCG-SCF method (black) uses a Verlet with a
1.0 fs time step and 10"® RMS Debye convergence, and the PCG-SCF method with RESPA (dashed gray)
is PCG with a 2.0 fs outer time step and 10 RMS Debye convergence.
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CONCLUSIONS

We have developed a new solution to classical polarization for molecular dynamics simulations that does
not require any SCF iteration. The iEL/0-SCF method we have laid out here builds upon our iEL/SCF
scheme®, in that it continues to use an auxiliary set of induced dipoles that are dynamically integrated in a
time-reversible manner, and which again serve as an initial guess for the real induced dipoles, but for the
iEL/0-SCF method no further SCF cycles are required. Across all relevant systems typically studied in
molecular simulation: a homogeneous fluid, ionic solutions, and small and large solutes in aqueous media,
all ensemble averages over polarization properties are in good agreement between the SCF and iEL/0-
SCF methods, and therefore by extension all physical properties of any system examined here are
reproduced accurately. The iEL/0-SCF approach also realizes significant computational speedups when
compared to an SCF method that uses a single 1.0 fs time step Verlet integration, and is as fast as that
obtained by using RESPA with a 2.0 fs outer time step.

The iEL/O-SCF method is numerically stable over long simulation times, and we offer a
qualitative explanation as to why the iEL/0-SCF scheme works as well as it does. First is that the form of
the polarization energy and forces ensures that any deviations, 0, from the SCF solution only give rise to
errors on the order of O(8%) in energy and forces. Second we suggest that, since the autocorrelation
function for the real dipoles decay on a 100 fs timescale (using water as an example in Figure S3), then
the repeated application of real dipole and auxiliary dipole updates every 1.0 fs, is effectively doing SCF
iterations on the fly. In the end the iEL/0-SCF method achieves a correct full mutual polarization solution
at the cost of direct polarization — a cost that is commensurate with the chosen level of permanent
electrostatics.

We have recently applied both the dissipative dXL and iEL/SCF methods to the solution of the
density in a linear scaling DFT implementation in the ONETEP software package, in which we showed
that both methods are significant performance enhancements over standard SCF solutions for ab initio
molecular dynamics®. One of the interesting outcomes in comparing the dissipative XL-BOMD and
iEL/SCF approaches when applied to classical electric dipoles versus the quantum electron density is that
while both schemes perform equally well in the latter, only the iEL/SCF method works in the case of
classical polarization. More specifically, the small amount of broken time reversibility is negligible
compared to the error in the linear scaling DFT forces, whereas classical polarization forces are close to
exact so that the undesirable dissipative forces that destroy time reversibility are much in evidence. One
lesson that is learned is that the classical polarization model provides a more stringent test for new many-

body electronic solutions that may inform the ab initio molecular dynamics, and hence we are optimistic
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that our iEL/0-SCF integration technique could also be applied to AIMD as an alternative to the modified
Verlet integration of the equations of motion for the electronic degrees of freedom in the dissipative XL-
BOMD method or for linear scaling DFT in ONETEP.

Other goals for future work include combining the iEL/0-SCF approach with RESPA* and /or

44-45

isokinetic methods to extend the integration time step further, and to examine the benefits in the use

of non-local kernels for estimating the converged SCF solution. While the local kernel definition has
proven reliable across a large diversity of systems, and the values of y are easy to obtain through short
NVE simulations, it does motivate a generalization of Eq. (14) to a ‘non-local’ kernel’’ to improve the
iEL/0-SCF method in future work, provided such methods do not add significantly to the computational

cost.
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Appendix A: AMOEBA Force Field p- and d-Scaling
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The AMOEBA force field uses scaling to exclude certain electrostatics based on bond separation, as these
terms are modeled implicitly in bonded valence terms like bonds, angles, bond-angle, torsion, etc. The
forms of the electrostatic interactions are scaled differently depending on their form and type. Permanent-
permanent interactions are scaled by a factor known as ‘m-scaling’ and induced-induced interactions are
scaled by ‘u-scaling’, both of which are determined by the number of bonds separating the species to be
scaled. Permanent-induced interactions, however, are scaled differently depending on whether the
calculation is determining the induced dipoles or calculating the polarization energy. The former
calculation relies on the polarization group the species are in and is referred to as ‘d-scaling” while the
latter relies on bond separation and is referred to as ‘p-scaling’. For small species like water and ions there
is no difference between p-scaling and d-scaling because the entire molecule is a single polarization
group. When this is the case the equations presented in the body of the text are sufficient, but when larger
molecules with multiple polarization groups are considered we need to adapt our equations accordingly.

For a general case with distinct p- and d-scaling we can start with a general definition of the
polarization energy in Eq. (Al).

UPetrN) = - pdCp? — S plEP — - pPE (A1)

Here, again, p refer to a vector of all of the individual induced dipoles, u;, and C is a super-matrix made
up of individual matrices C;; = (a; '8;; — T};) where T}; is the dipole-dipole interaction tensor between
sites i and j and «; is the polarizability of site i. E represents a vector of all of electric fields at each site,
E;, and the superscripts p and d refer to whether this electric field was calculated with the p-scaled or d-
scaled permanent-induced interaction tensor T, EP = TP M or E¢ = T%M, respectively. The two sets of
induced dipoles, then, correspond to dipoles calculated with the p- or d-scaled permanent fields,
p? = a(E? + T'aP) or u = a(E* + T'a%), respectively. It should be noted that in the completely
converged SCF limit u¢ = C"*E% and pu? = C"'EP and Eq. (Al) reduces to the familiar UP°! =
— % U®EP . In practice, then, Eq. (A1) is used in place of Eq. (7).

We also need to evaluate the potential gradient so that we can determine forces. Including both the

geometric term and dipole response terms yields Eq. (A2).

dUp"l(rN,aN)l _ auPoL(rN V) i GUPOI(TN,aN)M n 6Up°l(rN,aN)6_ﬂd

dr |a or ouP or oud ar

(A2)

We can evaluate the full gradient since we know that we are evaluating the real dipoles using only a
single electrostatic field calculation and the auxiliary dipoles as the initial guess, ie. u? = a(EP + T'aP)
and u¢ = a(E% + T'a?). Substituting this into Eq. (A2) gives the polarization gradient for the real
degrees of freedom, Eq. (A3).
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Again, in the SCF limit, ie. @ - u = pscr, Eq. (A3) reduces to the familiar form from the AMOEBA

potential and in the limit that p-scaling and d-scaling are identical we recover Eq. (19).
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