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INTRODUCTION 

Polarization, the ability of a molecule’s electron density to deform, respond, and influence its 

environment, is the leading order many-body interaction for advanced electrostatics used in molecular 

simulation.1-4 It has proven to be an important interaction that accurately captures intermolecular 

interactions of ligand bound complexes5, heterogeneity at interfaces6-7, electric field environments of 

heterogeneous systems such as proteins8-9, structure and dynamics of peptide-water solutions10-11, and it 

also has been shown to be more transferable across the phase diagram of liquid water beyond the regions 

where the force field was initially parameterized12.   

Complete convergence of mutual polarization is usually solved using an iterative self-consistent 

field method (SCF) to determine a set of induced electrical dipoles within the system13-14. Self-consistent 

iteration is usually preferred over dynamic methods such as extended Lagrangians (EL)15-16 because of the 

better stability with larger time steps. However, the repeated iteration can be a significant computational 

cost even with the adoption of advanced SCF solvers such as the preconditioned conjugated gradient 

(PCG)13 or direct inversion of the iterative subspace (DIIS)14, 17-18 methods. Recently, several novel 

methods have been introduced with the aim of achieving better energy conservation and/or reducing the 

number of SCF iterations, without sacrificing accuracy. The classical iAMOEBA12 approach chooses to 

only account for direct polarization, i.e. the response of inducible dipoles to the permanent electrostatics 

with no mutual induction, thereby completely avoiding the iterative SCF step altogether. The extrapolated 

perturbation theory (ExPT) is a method that uses a perturbation series for the polarization energy which is 

truncated at low order and then extrapolated to infinite order to recover an approximation of the true, fully 

converged SCF solution19. In both of these cases there are some sacrifices to polarization accuracy that 

must be recovered through either reparameterization of the underlying force field as done for iAMOEBA 

or parameter adjustments of the method in the case of ExPT20 that have led to significant improvements 

through the OPTn methods21. While recent approaches such as OPT419 and the truncated conjugate 

gradient TCG22 have improved polarization solution accuracy compared to ExPT, they have not been able 

to fully eliminate the cost of polarization, i.e. to eliminate the need to perform any SCF iterations. 

Another approach due to Niklasson and colleagues23-27 starts from the broken time-reversal 

symmetry problem in Born Oppenheimer molecular dynamics (BOMD) to derive a time-reversible 

extrapolation scheme for the electronic degrees of freedom. Equivalently, it can be formulated in the form 

of an extended Lagrangian in which an additional set of auxiliary electronic degrees of freedom are 

propagated alongside the nuclei with the purpose of generating either good quality time-reversal guesses 

for the SCF calculations, or as a stand-alone SCF-free extended Lagrangian formulation of BOMD. 

Albaugh et al. extended the time-reversible extrapolation scheme to the solution for classical polarization 
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using an extended Lagrangian solution for an auxiliary set of induced dipoles that serve as an initial guess 

for the SCF solution of real dipoles28. It is known that the numerical error in the SCF solutions (which are 

never exact due to incomplete convergence and/or an approximate numerical algebra) will leak back to 

the auxiliary degrees of freedom and give rise to instabilities in their equations of motion26, 28-29. To 

address this problem Niklasson and co-workers have proposed a dissipative integration scheme for the 

equations of motion of the electronic degrees of freedom using a modified form of the Verlet algorithm 

that controls the numerical instability at the expense of a small amount of broken time-reversibility26. By 

contrast, Albaugh et al. chose to couple the auxiliary velocities to a thermostat to prevent buildup of 

inertia, thus preserving time-reversibility (which we refer to as an inertial extended Lagrangian, 

iEL/SCF), through the use of a time-reversible solution to Nosé-Hoover thermostat variables for the 

auxiliary degrees of freedom28.  

While we have shown that the iEL/SCF methods reduces the number of SCF iterations required by 

half for classical polarization28, and much more for linear scaling density functional theory (DFT) in the 

BOMD code of ONETEP29, it did not eliminate the need for SCF iterations completely. In this work we 

introduce an extension of the iEL/SCF method that eliminates the SCF step altogether in classical 

molecular dynamics simulations with polarizable induced dipoles, which we refer to as the iEL/0-SCF 

method. The iEL/0-SCF scheme presented here is not a straightforward extension of the SCF-less XL-

BOMD scheme27 to polarizable force fields, but differs in significant ways as we show below. We find 

that the iEL/0-SCF approach is as accurate as standard SCF approaches for pure water, dilute to 

concentrated salt solutions, and small peptides and large proteins in water. In the TINKER 

implementation of the iEL/0-SCF approach we show that it also scales better under OpenMP 

parallelization than the standard SCF solvers, such that it is faster and at least as accurate as the default 

SCF scheme using either Verlet or a simple multi-time step technique such as the reversible reference 

system propagator algorithms (RESPA)30 that uses a 2.0 fs outer time step. In summary, the iEL/0-SCF 

approach offers a complete and accurate mutual polarization solution at the cost of direct polarization. 

THEORY 

To achieve a polarization scheme that does not require SCF iterations, we start with a Lagrangian for a 

classical system of N atoms and examine how self-consistently iterated induced dipoles on each atom 

contribute to the potential: 

ℒ 𝒓
𝑵, 𝒓𝑵 =  𝑚 𝒓 − 𝑈 𝒓

𝑵,𝝁      (1) 

In Eq. (1) 𝒓  and 𝒓  are the position and velocity of the i-th atom, respectively, and 𝑈(𝒓𝑵,𝝁 ) is the 

potential energy for the current atomic configuration. Here the potential energy can be broken into both a 
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many-body polarization energy contribution, 𝑈 𝒓
𝑵,𝝁

𝑆𝐶𝐹

𝑁 , and all other contributions, 𝑈 𝒓
𝑵 , 

which can include non-bonded terms such as permanent electrostatic and van der Waals interactions and 

bonded valence terms like bond-stretching, angle-bending, torsionals, and others. 

𝑈 𝒓
𝑵,𝝁 = 𝑈 𝒓

𝑵
+ 𝑈 𝒓

𝑵,𝝁       (2) 

Assuming complete convergence of the induced dipoles to their SCF solutions, 𝝁𝑺𝑪𝑭, the component of 

the potential energy that depends on polarization, 𝑈 𝒓
𝑵,𝝁 , can be given as  

𝑈 𝒓
𝑵,𝝁𝑵 =  − 𝝁

𝑺𝑪𝑭

𝑻
𝑬     (3) 

and where 

𝝁𝑺𝑪𝑭,𝒊 = 𝛼 𝑬 + 𝛼 𝑻 𝝁𝑺𝑪𝑭,𝒋;     (4) 

Here 𝑬  is the electric field contribution at site i due to permanent electrostatics in the system (fixed 

charges, dipoles, quadrupoles, etc.), 𝑻  is the induced dipole interaction matrix between sites i and j, and 

𝛼 , is the atomic polarizability of the i-th atom. We can cast Eq. (4) in terms of a super-matrix 𝑪  

𝝁𝑺𝑪𝑭 = 𝑪
𝟏
𝑬      (5) 

whose blocks are given by 𝑪 = (𝛼 𝛿 − 𝑻 ). While the induced dipoles can be solved exactly 

through matrix inversion, as is done for two and three-body polarization interactions in our recent 3m-

AMOEBA model31, in practice it is prohibitively expensive to perform this calculation for very large 

systems as it involves inverting the 3N by 3N C super matrix.  

Usually Eq. (5) is solved iteratively using standard SCF methods such as PCG due to Wang and 

Skeel13 to some tolerance, usually with a predictor to accelerate the convergence of the SCF problem. 

However, predictors that use information from previous steps break time reversibility in the context of 

molecular dynamics, leading to an inevitable degradation in energy conservation. An alternative to 

solving for the many-body electronic problem that avoids a self-consistent solution was originally 

addressed by Car and Parrinello32. In their seminal work they formulate an extended Lagrangian (EL) to 

evolve the electronic degrees of freedom dynamically by introducing fictitious masses, and the EL 

approach was extended to induced dipole polarization by Wodak and co-workers16. Overall, standard EL 

solutions to both quantum32 and classical15, 33 electronic degrees of freedom are found to be stable and 

conserve energy, but only for reduced and sometimes very small time steps that precludes their practical 

use in molecular simulation28 unless significant numerical error is tolerated.  

Niklasson et al. tackled the problem of broken time-reversibility of the electronic dynamics 

through a distinct formalism23 that can also be expressed in a Lagrangian formulation26-27, which Albaugh 

and co-workers have recently adapted for classical polarization28 as shown in Eq. (6) 
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ℒ
𝒓
𝑵,𝒓𝑵,𝒂𝑵,𝒂𝑵

=  𝑚 𝒓 +  𝑚 , 𝒂 − 𝑈 𝒓
𝑵,𝒂𝑵 −  𝜔 𝑚 , 𝝁 , − 𝒂   (6) 

Here 𝒂  and 𝒂  are the auxiliary induced dipole and corresponding velocity for atom i, each of which has 

a fictitious mass associated with it, 𝑚 , . The additional terms in the Lagrangian are now a kinetic energy 

associated with the auxiliary dipoles and a harmonic potential that aims to keep the auxiliary dipoles close 

to the true SCF dipoles, which in turn is determined by the steepness of this harmonic well and 

characterized by a frequency 𝜔. It has been shown that for a time-reversible Verlet integration algorithm 

with a finite integration time step ∆𝑡, the maximum stable value of 𝜔 is 2 ∆𝑡.27 These auxiliary 

variables then serve as good initial guesses to the SCF solution for the real dipoles to reach the final 

solution, 𝝁 ,  and with notable improvements in energy conservation25, 28. However, in practice the 

iterative solution of the induced dipoles never reaches the exact solution, as the iteration is stopped at 

some convergence threshold. This error couples to the auxiliary degrees of freedom through the potential 

(last term in Eq. (6)), which corrupts the auxiliary dynamics such that they become more and more poor 

initial guesses for the real degrees of freedom, and the number of SCF cycles increases without bound28.  

Niklasson proposed the introduction of dissipation for this numerical error that achieves only a 

small amount of broken time-reversibility since it is introduced at an order commensurate with the 

integration error.26 Unfortunately when the dissipative force is combined with the accurate classical 

polarization force, the dissipation scheme unambiguously exhibits energy drift. An alternative approach 

taken by Albaugh and co-workers was to introduce a simple thermostating scheme, illustrated using both 

Berendsen weak coupling and Nosé-Hoover chain thermostats, applied to the auxiliary dipole velocities.28 

The latter case, i.e. the inertial iEL/SCF method, was shown to provide superior energy conservation with 

less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all 

properties of the classical polarization model in the NVT and NVE ensembles accurately.  

 Now turning to the problem of achieving an iteration-free dynamics for the electronic degrees of 

freedom, given this background, we introduce modifications to the Lagrangian in Eq. (6) in two important 

ways. First we introduce a general form for the polarization potential energy that does not assume 

convergence of the real induced dipoles20 

𝑈 𝒓
𝑵, 𝒂𝑵 =  𝝁𝑻𝑪𝝁− 𝝁𝑻𝑬     (7) 

This means that if the real dipole differs from the exact self-consistent solution by a small amount 𝜹, 

𝝁 = 𝝁 + 𝜹, the polarization potential differs from the exact self-consistent solution by an order of the 

square of the error, 𝜹 . To see this one can substitute 𝝁 = 𝝁 + 𝜹 into Eq. (7),  

𝑈 = 𝝁 + 𝜹 𝑪 𝝁 + 𝜹 − 𝝁 + 𝜹 𝑬 = − 𝝁 𝑻
𝑬+ 𝜹

𝑻
𝑪𝜹         (8) 
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which makes use of the requirement that for completely converged induced dipoles 𝑪𝝁𝑺𝑪𝑭 − 𝑬 = 𝟎. The 

difference between the general potential and the exact solution is  

𝑈 − 𝑈 = 𝜹
𝑻
𝑪𝜹 = 𝑂( 𝜹 𝟐)      (9) 

so that for any small errors in the induced dipoles that result from no iteration, we push the error in the 

potential to second order. The same analysis applies to the gradient of this potential, which affects the 

forces for dynamics and is what is relevant in molecular dynamics. After differentiating Eq. (8)  

𝒓
= 𝝁

𝑪

𝒓
𝝁 − 𝝁

𝑬

𝒓
+ 𝜹

𝑻 𝑪

𝒓
𝜹     (10) 

and recognizing that  

𝒓
= 𝝁

𝑪

𝒓
𝝁 − 𝝁

𝑬

𝒓
      (11a) 

and  

𝑪

𝒓
𝝁 + 𝑪

𝝁

𝒓
−

𝑬

𝒓
= 𝟎     (11b) 

we again confirm that error in the forces are also second order 

𝒓
−

𝒓
= 𝜹

𝑻 𝑪

𝒓
𝜹 = 𝑂( 𝜹 𝟐)   (12) 

The second important ingredient is to control the error quantity 𝜹. Like the iEL/SCF procedure, 

the real induced dipoles will depend explicitly on using the auxiliary dipoles as an initial guess  

𝝁𝒊 = 𝛼 𝑬 + 𝛼 𝑻 𝒂      (13) 

but in this case we perform no SCF cycles. Instead we define 𝝁 ,  from simple linear mixing of the real 

and auxiliary induced dipoles via a local kernel approximation27   

𝝁 ,  ≈  𝛾𝝁 + 1−  𝛾 𝒂      (14) 

where 𝛾 is an adjustable mixing parameter that will need to be tuned. This is similar in spirit to a 

predictor-corrector scheme34 in which Eq. (13) gives a prediction of the converged induced dipoles from 

the auxiliary dipoles, and then Eq. (14) serves as a correction by mixing the time reversible solution 

corresponding to the auxiliary variables with the solution for the real dipoles. While more complicated 

forms of approximating the SCF dipole are possible, such as a non-local kernel method27, we find that this 

simple approximation works well for all cases shown in the Results. To be clear Eq. (14) is not used for 

the calculation of the true polarization energy and forces, but only applies to the derivation of the 

auxiliary equation of motion as we show below.  It is now clear that the real dipoles, 𝝁, are dependent on 

the auxiliary dipoles, 𝒂, so that the potential in Eq. (6) is now dependent on position and auxiliary dipoles, 

𝑈 𝒓
𝑵,𝒂𝑵  instead of 𝑈 𝒓

𝑵,𝝁𝑵  previously in Eq. (1). 
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We now apply the Euler-Lagrange equation to the Lagrangian in Eq. (6) for both the real 

coordinates 𝒓𝑵 and the auxiliary dipoles 𝒂𝑵 to obtain equations of motion for each 

𝑚 𝒓 =  −
(𝒓𝑵,𝒂𝑵)

𝒓
𝒂
𝑵

    (15) 

𝑚𝑎,𝑖𝒂 = 𝜔 𝑚𝑎,𝑖 𝝁 , − 𝒂 +  𝛼 𝛿 − 𝑻 (𝝁 − 𝒂 )  (16) 

Eq. (15) is the familiar statement of Newton’s law for the nuclei where the gradients of the various forms 

of the potential energy on the right hand side remain in their usual forms, except for the polarization 

potential energy, which now depends on the auxiliary dipoles directly as seen in form of Eq. (7).  Eq. (16) 

gives the equation of motion for the auxiliary dipoles, which we note has an extra term proportional to 

(𝝁− 𝒂); it can be formally shown that by assuming 𝑚 ~1/𝜔2, and in the limit that 𝑚 , → 0 and 𝜔 → ∞ 

such that 𝜔𝑚 , =  constant, we recover an adiabatic Born-Oppenheimer-like approximation of the 

auxiliary dipole moment. In practice we will show a posteriori that indeed this term is negligible and can 

(and will be) ignored. When Eq. (14) is substituted into the auxiliary equation of motion in Eq. (16), we 

obtain the final form 

𝒂 = 𝜔 𝛾 𝝁 − 𝒂      (17) 

Of course for dynamics we will also need the forms of the gradient to calculate forces. In this case 

we use the complete polarization gradient 

𝒓
𝑵

𝒓
=

𝒓
𝑵

𝒓
+

𝒓
𝑵

𝝁

𝝁

𝒓
      (18) 

The first term on the right hand side of Eq. (18) is the nuclear term and the second term is the dipole 

response term, which goes to 0 in the limit of perfectly converged induced dipoles19-20. In practice, 

although perfect convergence can never be achieved, the dipole response term is typically not explicitly 

calculated with the understanding that this is a good approximation for a tight level of SCF convergence. 

With the iEL/0-SCF approach, however, we need the dipole response term, since our analytical 

polarization potential requires it, unlike the iterative SCF solvers. Since we have an explicit position 

dependence of our dipoles, defined by Eq. (13), it is straightforward to calculate these dipole response 

terms with no additional algorithmic expense.  Substituting Eq. (7) and (13) into Eq. (18) we obtain the 

final form of the gradient used for dynamics 

𝒓
𝑵

𝒓
=  − 𝝁

𝑻

𝒓
𝝁− [ 𝛼𝑻𝝁 + 𝛼𝑬  −𝝁 ]

𝑻

𝒓
𝒂− [ 𝛼𝑻𝝁 + 𝛼𝑬 ]

𝑻𝑴

𝒓
            (19) 

Finally, the AMOEBA potential has additional features of electrostatic and polarization scaling that are 

further discussed in Appendix A, knowledge required to reproduce the results shown later in Results. 
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METHODS 

The modifications to the polarization potential and gradient and the addition of auxiliary induced dipoles 

were introduced into the TINKER software package35. For pure water systems we used the AMOEBA14 

force field36 which used Force Balance37 to optimize the AMOEBA parameters for better description of 

water properties. For other systems, such as three concentrations of magnesium chloride salt solutions and 

the solvated dihydrofolate reductase (DHFR) protein, we used the AMOEBABIO0938 force field, a 

general purpose biomolecular parameterization of the Amoeba functional form. For the solvated 

zwitterionic glycine peptide (+NH3-CαH-COO–), we use the AMOEBA parameters derived from recent 

work comparing its decomposed THz spectra with ab initio molecular dynamics.39 Further details of the 

simulation protocol are described in the SI material. 

The primary difference investigated in this work is how mutual polarization is treated. The iEL/0-

SCF simulations were initiated with real and auxiliary dipoles that were solved to a very tightly 

converged solution of 10-9 RMS Debye. A velocity Verlet integration scheme40 was then used to 

propagate the auxiliary induced dipoles and dipole velocities with a 0.5 fs time step in the NVE ensemble 

and with a 1.0 fs time step in the NVT ensemble. To determine an optimal 𝛾 for a given system, short 

(~100 ps) NVE trajectories were run over the range of possible 𝛾 values (0 to 1.0) and the 𝛾 of the 

trajectory with the lowest energy drift was selected for production.  

For the NVT ensemble, auxiliary dipoles were thermostated using a 4th-order Nosé-Hoover chain41 

as described in previous work28; the set point of the auxiliary dipole pseudo-temperature was 5.3 e2Å2/ps2, 

which we found to be the natural temperature of well-integrated, stable iEL/0-SCF simulations at small 

time steps. For comparison purposes, simulations performed with a standard preconditioned conjugate 

gradient SCF (PCG-SCF)13 iterative procedure were calculated using an SCF convergence threshold of 

10-6 RMS Debye, which is an order of magnitude tighter than the TINKER default in order to absolutely 

ensure accurate data for comparison purposes. 

RESULTS 

To test whether the iEL/0-SCF approach reproduces all properties of any system when compared to the 

default PCG-SCF method used in TINKER, we have examined four very different physical systems: (1) 

homogeneous bulk water, (2) heterogeneous salt solutions, at three different concentrations of MgCl2 in 

water: 0.30 M, 1.21 M, and 4.66 M, (3) a small solute, a zwitterionic glycine peptide in water, and (4) a 

larger protein, DHFR, in water. As we show in what follows, the iEL/0-SCF method can reproduce all of 

aspects of polarization compared to the standard SCF approach, and thus all energetic, structural, and 

dynamical properties of these four very different cases. 
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NVE and NVT conservation properties. Figure 1a shows the results when optimizing for the one 

free parameter 𝛾 that is needed to estimate the 𝝁 ,  solution using Eq. (14), examined by running the 

iEL/0-SCF method in the NVE ensemble with a range of 𝛾 values from 0 to 1. From this analysis we 

determine that the maximum stable value of 𝛾 is 0.92, with values greater than that yielding unstable 

trajectories, and values of 𝛾 < 0.5 yielding poor energy conservation. The best value of 𝛾 = 0.9 gives 

energy drifts that are commensurate with the standard PCG-SCF method. Figure 1b reports the ‘pseudo-

temperature’ of the auxiliary dipoles in these simulations, defined as 𝑇 = 1/3 𝒂  since these dipoles 

do not have a mass, in which we see increases in inertia throughout the simulation, regardless of 𝛾 value. 

The rate of buildup of the auxiliary inertia degrades the real dipole dynamics through resonances as we 

have shown previously28, therefore in the NVE ensemble we are restricted to time steps ~0.5 fs to realize 

good energy conservation for the real degrees of freedom.  

Figure 1: Energy conservation in the NVE and NVT ensembles for water. (a) Energy along trajectories of 
the iEL/0-SCF method for a range of γ values. (b) The auxiliary pseudo-temperature, T = 1/3 𝐚 , of 
the simulations from (a). In (a) and (b) all NVE simulations used a time step of 0.5 fs. (c) Conserved 
energy of the extended system in the NVT ensemble (blue), along with the energy for the real degrees of 
freedom in the NVT ensemble of 512 water molecules using the iEL/0-SCF approach (red) and standard 
SCF approach (black). For the NVT simulations we used a time step of 1.0 fs, γ was set to 0.9, while the 
SCF solution used a PCG-SCF method with a convergence threshold of 10-6 RMS Debye.  

(a)     (b)    (c) 

  

 

For the NVT ensemble simulations we require a thermostat applied to both real and auxiliary 

degrees of freedom, and thus we have a new conservation law that depends directly on an extended 

system that requires the auxiliary dipoles to be kept at a low effective temperature relative to the real 

degrees of freedom42. Figure 1c shows that this extended system quantity is well conserved (i.e. including 

all the thermostat variables) for water, when fitted using a fictitious mass of the auxiliary dipoles of 

0.0103 g/mol/e2 and which corresponds to a real temperature of 0.0656 K for the auxiliary dipoles, and 

allows for an increased time step of 1.0 fs. The NVT energies and fluctuations for the real nuclear degrees 

of freedom of water for the iEL/0-SCF method is in accord with the standard SCF benchmark over 3 ns 
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(Table 1 and Figure S1), and additional tests run out to tens of nanoseconds show that SCF and iEL/0-

SCF solutions remained in quantitative agreement for all systems. 

Table 1:  Ensemble average total energy and polarization energies for bulk water, salt solutions, and 

glycine dipeptide in water. Average total potential energy, 𝑈 , and average polarization potential energy, 
𝑈 , for both a standard SCF method and the iEL/0-SCF approach. Data is generated from 3.0 ns 

trajectories in the NVT ensemble at 298.0 K; further simulation details are given in the text and SI 
material.   

Bulk Water Method 𝑈   (kcal/mol) 𝑈  (kcal/mol) 

iEL/0-SCF -4610+/-40 -2590+/-50 

SCF -4620+/-40 -2570+/-50 
    

Glycine in 

Water 

iEL/0-SCF -2420+/30 -1290+/-40 

SCF -2430+/-30 -1300+/-30 
    

0.3M MgCl2  iEL/0-SCF -8830+/-50 -4010+/-60 

SCF -8850+/-50 -4040+/-70 
1.21M MgCl2 iEL/0-SCF -15690+/-50 -5100+/-70 

SCF -15710+/-50 -5070+/-70 
4.66M MgCl2 iEL/0-SCF -43220+/-50 -9640+/-100 

SCF -43220+/-50 -9490+/-90 

Polarization properties. For bulk water we find that the average molecular dipole moment for a 

condensed phase water molecule yields a value of 2.81 Debye with both the PCG-SCF and iEL/0-SCF 

methods. The corresponding probability density distribution of real induced dipoles generated from the 

iEL/0-SCF solutions is in excellent agreement with the standard SCF solutions, regardless of system, as 

shown in Figure 2 and Figure S2. 

Figure 2: Comparison of induced dipole probability density distributions using the iEL/0-SCF and 

standard PCG-SCF methods. (a) Hydrogen in bulk water, (b) the glycine carbonyl oxygen, and (c) Mg2+ 
for all MgCl2 salt concentration for a standard SCF method (dashed) and our iEL/0-SCF method (solid).  
For plots (a) and (b) we consider the x, y, and z dipole components. For plot (c) we consider three 
different MgCl2 salt concentrations of 0.30 M (black), 1.21 M (red), and 4.66 M (blue). The induced 
dipole distributions for water and glycine use an internal coordinate frame; see [43] for details on the 
internal coordinates.   
(a)     (b)    (c) 
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Dynamical properties. Using the NVE ensemble simulation, we calculate the self-diffusion 

constant of water to be 1.90 +/- 0.13 using the iEL/0-SCF approach and 2.02 +/- 0.20 for the standard 

SCF procedure. We also report the Mg2+ and Cl– ion diffusion constants for the 4.66M concentration in 

Table S1 that show the two methods are in quantitative agreement. A particularly stringent time-

dependent property in the NVT ensemble, the autocorrelation function for induced dipoles, demonstrates 

that the iEL/0-SCF method does not suffer from any loss of accuracy, regardless of system (Figure 3 and 

Figure S3). We can see that for both hydrogen and oxygen atoms for bulk water, Mg2+ and Cl– for the salt 

solution (shown for 1.21M), and the backbone carbonyl carbon, carbonyl oxygen, nitrogen, and α-carbon 

of glycine dipeptide, that the iEL/0-SCF method reproduces the autocorrelations well, especially at the 

critical short time scale range less than about 0.2 ps over which there can be rapid changes in dipole 

direction (especially for bulk water). 

Figure 3: Comparison of dynamic polarization properties using the iEL/0-SCF and standard PCG-SCF 

methods. Autocorrelation function of real dipole for (a) bulk water, (b) solvated glycine, and (c) Mg2+ and 
Cl- for 1.21M salt concentrations with a standard SCF method (dashed) and our iEL/0-SCF method 
(solid). The induced dipole distributions for water and glycine used an internal coordinate frame; see [43] 
for details on the internal coordinates. All data is based on 30 ps trajectories in the NVT ensemble at 
298.0 K.   
(a)     (b)    (c) 

    

Structural properties. The iEL/0-SCF method also reproduces structural properties for all systems, 

in which Figure 4 and Figure S4 present the radial distribution functions for atom correlations of bulk 

water, the water oxygen and hydrogen correlations with the anion and cation of the salt solutions, and 

finally the water oxygen and hydrogen radial distribution functions with the glycine peptide backbone 

atoms. In summary, we see excellent agreement between the iEL/0-SCF method and the standard SCF 

solver.  
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Figure 4: Comparison of radial distribution functions using the iEL/0-SCF and standard PCG-SCF 

methods for (a) oxygen-hydrogen for bulk water, (b) water oxygen-backbone nitrogen and water 
hydrogen-backbone nitrogen of glycine dipeptide, and (c) water oxygen-Mg2+ and water hydrogen- Mg2+ 

for the 0.30 M salt concentrations for a standard SCF method (dashed) and our iEL/0-SCF method (solid). 
The induced dipole distributions for water and glycine used an internal coordinate frame; see [43] for 
details on the internal coordinates. All data is based on 3.0 ns trajectories in the NVT ensemble at 298.0 
K.   
(a)     (b)    (c) 

   

Timing Comparisons between iEL/0-SCF and PCG-SCF with and without multi-time stepping. 

The iEL/0-SCF method was implemented in the TINKER software package and takes advantage of the 

shared-memory parallelism of that code. While we have shown that the iEL/0-SCF method can reproduce 

the property results for any of the above systems when compared to the standard default convergence 

criteria used for the PCG-SCF solver in the TINKER code, we now examine the computational efficiency 

of the iEL/0-SCF method in the same code and on the same hardware platform using the default TINKER 

settings. Figure 5a shows the OpenMP scaling results in units of ns/day of the SCF and iEL/0-SCF 

methods applied to bulk water in which both use the same Verlet integration scheme with a time step of 

1.0 fs. For 8 cores we see that the iEL/0-SCF method is 40% faster than the standard SCF solution, and 

since the iEL/0-SCF method also scales better to larger numbers of cores it rises to ~70% faster than the 

default polarization solution. In fact, when compared to a multi-time step RESPA30 that uses a 2.0 fs outer 

time step, the iEL/0-SCF method is slightly faster at 16 cores, although it uses Verlet integration with a 

1.0 fs timestep. Figure 5b shows the OpenMP scaling results as system size grows while holding the 

number of cores constant at 16 cores, for the standard SCF polarization result using either a RESPA30 

integration scheme with a 2.0 fs outer timestep, the Verlet integration with a 1.0 fs timestep, and the 

iEL/0-SCF approach that uses the Verlet integration scheme with a time step of 1.0 fs. Again, it is seen 

that the iEL/0-SCF approach is as fast as the RESPA scheme in timings for ns/day.  
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Figure 5:  Timing comparisons between iEL/0-SCF and standard iteration methods. Simulation speed-up 
in nanoseconds per day for (a) OpenMP scaling as a function of the number of cores for a box of 512 
water molecules in the NVT ensemble at 298.0 K and (b) OpenMP scaling for increasing system size with 
the number of cores fixed at 16. The methods that are compared include the iEL/0-SCF method at a time 
step of 1.0 fs (red), a preconditioned conjugate gradient solver integrated with Verlet at a time step of 1.0 
fs (blue), and with a RESPA method using an outer time step of 2.0 fs (black). The real dipoles of the 
standard SCF methods in (b) were converged to 10-5 RMS Debye (solid), the standard default in 
TINKER.  
(a)       (b) 

   

DISCUSSION  

In general, energies, dynamical properties, and polarizability and structural correlations, are quantitatively 

produced by our iEL/0-SCF method when compared to the standard SCF solver for a diverse set of simple 

systems ranging from bulk water, dilute to concentrated salt solutions, and a small peptide in water. We 

also provide an additional stress test for our new iEL/0-SCF solution to the polarization equations by 

simulating a much larger biomolecular system, namely DHFR in water, the so-called Joint Amber-

CHARMM benchmark. Table 2 gives the average potential energy and average polarization energy for 

the aqueous DHFR system when we use a single 𝛾 value for both the protein and the water solvent when 

defining the local kernel approximation for 𝝁 ,  in Eq. (9). For 𝛾 values greater than 0.7 we find that the 

aqueous DHFR simulations became unstable (which also happened for the other water-based systems 

when 𝛾 > 0.92), and ultimately 𝛾 = 0.7 was the best value that we found from numerical testing. In this 

case the differences between the iEL/0-SCF and SCF energy values are on the order of 1.0%, although 

this small difference is nonetheless outside numerical error bars.  
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Table 2: Average total potential energy, 𝑈 , and polarization energy, 𝑈 , for the iEL/0-SCF method 

for a protein in water using different values of γ  𝑎𝑛𝑑 γ  for the local kernel definition for solvent and 

protein. Data is generated from 300 ps trajectories in the NVT ensemble at 298.0 K; further simulation 
details are given in the text and SI material.   

Local Kernel  𝑈  (kcal/mol) 𝑈  (kcal/mol) 

𝛾 = 𝛾 = 0.7 -66060+/-170 -31160+/-150 

𝛾 = 0.9;  𝛾 = 0.1 -66310+/-180 -31440+/-160 

SCF -66670+/-160 -31850+/-150 

 

While this suggests that the iEL/0-SCF method is sensitive to the local kernel definition for 𝛾, we found 

that we can use the same 𝛾 value for water of 0.9 (now referred to as 𝛾  with ‘s’ for solvent) that we 

determined for all previous aqueous systems considered, and allow the protein to independently optimize 

to a new value of 𝛾 = 0.1 (Table 2). It is clear that basic properties of the protein system are reproduced 

with either a single or dual value of 𝛾 since the protein remains stable as measured by its root mean square 

deviation (RMSD) (Figure 6).  

Figure 6: Root mean square deviation calculated for the DHFR protein in water using the iEL/0-SCF and 

standard SCF method. A single value of 𝛾 =  0.7 and dual values of  γ = 0.9 and γ = 0.1  were used 
for the local kernel definition for solvent and protein. The PCG-SCF method (black) uses a Verlet with a 
1.0 fs time step and 10-6 RMS Debye convergence, and the PCG-SCF method with RESPA (dashed gray) 
is PCG with a 2.0 fs outer time step and 10-5 RMS Debye convergence. 
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CONCLUSIONS 

We have developed a new solution to classical polarization for molecular dynamics simulations that does 

not require any SCF iteration. The iEL/0-SCF method we have laid out here builds upon our iEL/SCF 

scheme28, in that it continues to use an auxiliary set of induced dipoles that are dynamically integrated in a 

time-reversible manner, and which again serve as an initial guess for the real induced dipoles, but for the 

iEL/0-SCF method no further SCF cycles are required. Across all relevant systems typically studied in 

molecular simulation: a homogeneous fluid, ionic solutions, and small and large solutes in aqueous media, 

all ensemble averages over polarization properties are in good agreement between the SCF and iEL/0-

SCF methods, and therefore by extension all physical properties of any system examined here are 

reproduced accurately. The iEL/0-SCF approach also realizes significant computational speedups when 

compared to an SCF method that uses a single 1.0 fs time step Verlet integration, and is as fast as that 

obtained by using RESPA with a 2.0 fs outer time step.  

 The iEL/0-SCF method is numerically stable over long simulation times, and we offer a 

qualitative explanation as to why the iEL/0-SCF scheme works as well as it does. First is that the form of 

the polarization energy and forces ensures that any deviations, δ, from the SCF solution only give rise to 

errors on the order of O(δ2) in energy and forces. Second we suggest that, since the autocorrelation 

function for the real dipoles decay on a 100 fs timescale (using water as an example in Figure S3), then 

the repeated application of real dipole and auxiliary dipole updates every 1.0 fs, is effectively doing SCF 

iterations on the fly. In the end the iEL/0-SCF method achieves a correct full mutual polarization solution 

at the cost of direct polarization – a cost that is commensurate with the chosen level of permanent 

electrostatics. 

We have recently applied both the dissipative dXL and iEL/SCF methods to the solution of the 

density in a linear scaling DFT implementation in the ONETEP software package, in which we showed 

that both methods are significant performance enhancements over standard SCF solutions for ab initio 

molecular dynamics29. One of the interesting outcomes in comparing the dissipative XL-BOMD and 

iEL/SCF approaches when applied to classical electric dipoles versus the quantum electron density is that 

while both schemes perform equally well in the latter, only the iEL/SCF method works in the case of 

classical polarization. More specifically, the small amount of broken time reversibility is negligible 

compared to the error in the linear scaling DFT forces, whereas classical polarization forces are close to 

exact so that the undesirable dissipative forces that destroy time reversibility are much in evidence. One 

lesson that is learned is that the classical polarization model provides a more stringent test for new many-

body electronic solutions that may inform the ab initio molecular dynamics, and hence we are optimistic 
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that our iEL/0-SCF integration technique could also be applied to AIMD as an alternative to the modified 

Verlet integration of the equations of motion for the electronic degrees of freedom in the dissipative XL-

BOMD method or for linear scaling DFT in ONETEP.  

Other goals for future work include combining the iEL/0-SCF approach with RESPA30 and /or 

isokinetic44-45 methods to extend the integration time step further, and to examine the benefits in the use 

of non-local kernels for estimating the converged SCF solution. While the local kernel definition has 

proven reliable across a large diversity of systems, and the values of 𝛾  are easy to obtain through short 

NVE simulations, it does motivate a generalization of Eq. (14) to a ‘non-local’ kernel27 to improve the 

iEL/0-SCF method in future work, provided such methods do not add significantly to the computational 

cost.  
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Appendix A: AMOEBA Force Field p- and d-Scaling 
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The AMOEBA force field uses scaling to exclude certain electrostatics based on bond separation, as these 

terms are modeled implicitly in bonded valence terms like bonds, angles, bond-angle, torsion, etc. The 

forms of the electrostatic interactions are scaled differently depending on their form and type. Permanent-

permanent interactions are scaled by a factor known as ‘m-scaling’ and induced-induced interactions are 

scaled by ‘u-scaling’, both of which are determined by the number of bonds separating the species to be 

scaled. Permanent-induced interactions, however, are scaled differently depending on whether the 

calculation is determining the induced dipoles or calculating the polarization energy. The former 

calculation relies on the polarization group the species are in and is referred to as ‘d-scaling’ while the 

latter relies on bond separation and is referred to as ‘p-scaling’. For small species like water and ions there 

is no difference between p-scaling and d-scaling because the entire molecule is a single polarization 

group. When this is the case the equations presented in the body of the text are sufficient, but when larger 

molecules with multiple polarization groups are considered we need to adapt our equations accordingly.  

For a general case with distinct p- and d-scaling we can start with a general definition of the 

polarization energy in Eq. (A1). 

𝑈 𝒓
𝑵
= 𝝁 𝑪𝝁 − 𝝁 𝑬 − 𝝁 𝑬     (A1) 

Here, again, 𝝁 refer to a vector of all of the individual induced dipoles, 𝝁 , and 𝑪 is a super-matrix made 

up of individual matrices 𝑪 = (𝛼 𝛿 − 𝑻 ) where 𝑻  is the dipole-dipole interaction tensor between 

sites 𝑖 and 𝑗 and 𝛼  is the polarizability of site 𝑖. 𝑬 represents a vector of all of electric fields at each site, 

𝑬 , and the superscripts 𝑝 and 𝑑 refer to whether this electric field was calculated with the p-scaled or d-

scaled permanent-induced interaction tensor 𝑻, 𝑬 = 𝑻 𝑴 or 𝑬 = 𝑻 𝑴, respectively.  The two sets of 

induced dipoles, then, correspond to dipoles calculated with the p- or d-scaled permanent fields, 

𝝁 = 𝛼(𝑬 + 𝑻 𝒂 ) or 𝝁 = 𝛼(𝑬 + 𝑻 𝒂
𝒅), respectively.  It should be noted that in the completely 

converged SCF limit 𝝁 = 𝑪 𝑬  and 𝝁 = 𝑪 𝑬  and Eq. (A1) reduces to the familiar 𝑈 =

− 𝝁 𝑬 .  In practice, then, Eq. (A1) is used in place of Eq. (7). 

We also need to evaluate the potential gradient so that we can determine forces. Including both the 

geometric term and dipole response terms yields Eq. (A2). 

𝒓
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𝝁

𝝁

𝒓
  +

𝒓
𝑵,𝒂𝑵

𝝁

𝝁

𝒓
      (A2) 

We can evaluate the full gradient since we know that we are evaluating the real dipoles using only a 

single electrostatic field calculation and the auxiliary dipoles as the initial guess, ie. 𝝁 = 𝛼(𝑬 + 𝑻 𝒂 ) 

and 𝝁 = 𝛼(𝑬 + 𝑻 𝒂
𝒅). Substituting this into Eq. (A2) gives the polarization gradient for the real 

degrees of freedom, Eq. (A3). 
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𝒓
𝑵,𝒂𝑵

𝒓
𝒂

= − [ 𝝁 ]
𝑻

𝒓
𝝁 + [ 𝝁 −𝛼𝑻𝝁 − 𝛼𝑬 ]

𝑻

𝒓
𝒂 − [𝛼𝑻𝝁 + 𝛼𝑬 ]

𝑻
𝒑
𝑴

𝒓
+ [ 𝝁 − 𝛼𝑻𝝁 −

𝛼𝑬 ]
𝑻

𝒓
𝒂 − [𝛼𝑻𝝁 + 𝛼𝑬 ]

𝑻
𝒅
𝑴

𝒓
    (A3) 

 

Again, in the SCF limit, ie. 𝒂 → 𝝁 → 𝝁 , Eq. (A3) reduces to the familiar form from the AMOEBA 

potential and in the limit that p-scaling and d-scaling are identical we recover Eq. (19). 

 

	


