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Iterative energy minimisation with the aim of achieving self-consistency is a common feature of
Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force
fields. In the former the electronic degrees of freedom are optimized, while the latter often involves an iter-
ative determination of induced point dipoles. The computational effort of the self-consistency procedure can
be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as
not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes
based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated
as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integra-
tion schemes with the same underlying extended Lagrangian structure, which we both employ in two radically
distinct regimes — in classical molecular dynamics simulations with the AMOEBA polarizable force field, and
in BOMD simulations with the ONETEP linear-scaling density functional theory (LS-DFT) approach. Both
integration schemes are found to offer significant improvements over the standard (unpropagated) molecular

dynamics formulation in both the classical and LS-DFT regime.

I. INTRODUCTION AND MOTIVATION

Since the first classical molecular dynamics (MD) cal-
culations in the late 1950s, a plethora of schemes em-
ploying a hierarchy of approximations for the descrip-
tion of interatomic interactions have emerged, ranging
from classical fixed charge models to fully ab initio treat-
ments. While molecular dynamics has proved to be an
invaluable tool for elucidating many chemical, biologi-
cal and physical processes involving a large number of
atomic degrees of freedom,' 3 challenges remain in find-
ing models and methods that are able to adequately
describe complex environments and show a favorable
accuracy-efficiency tradeoff. In this regard, promising
approaches include linear-scaling density functional the-
ory (LS-DFT),%5 classical polarizable force fields,%" self-
consistent field (SCF) tight-binding,® and semi-empirical
quantum mechanical (SQM) approaches.’

The last two decades have witnessed significant devel-
opments in the sophistication of classical force fields, 011
motivated by the need to overcome the deficiencies iden-
tified in earlier fixed point charge models. In the ab-
sence of explicit treatment of polarization, the dynamic
response of a molecular system to a given environment,
e.g. an organic solvent, or metallic ions in solution be-
comes difficult to capture.” Moreover, for conditions far

from the ones used to parametrize the potential and
charges, such as at extreme pressures or temperatures,
for different physical phases, or at interfaces, fixed point
charge models can perform quite poorly.!! Inclusion of
polarization effects is hence crucial for obtaining an ad-
equate description of complex systems, and improving
the transferability of classical models. As a consequence,
a gamut of polarization models has emerged, employ-
ing: Drude oscillators'?!'3 fluctuating charges,'*15 and
induced point dipoles'®~22 or higher multipoles.?3 In most
cases, a physically coherent treatment of polarization in-
volves a relatively costly variational self-consistent deter-
mination of the induction response, although alternate
schemes have recently been proposed.?4?®> See Refs. 11,
7 and 6 for a review.

Ab initio molecular dynamics (AIMD) techniques ap-
proach the transferability problem from the opposite di-
rection, by directly (Born-Oppenheimer MD, BOMD)
or indirectly (Car-Parrinello MD, CPMD) modeling the
electronic degrees of freedom on a quantum-mechanical
(QM) footing, while treating atomic nuclei classically.
The underlying ab initio scheme is selected depending on
the desired tradeoff between accuracy and computational
efficiency — starting from inexpensive, qualitative meth-
ods like tight binding (TB), through density-functional-
based tight binding (DFTB),26:27 density functional the-



ory (DFT), to correlated wavefunction methods. The
majority of these approaches are self-consistent, requiring
an iterative procedure to arrive at the converged energy
and associated electronic orbitals, at each MD step.

The existence of a self-consistency loop is a common
feature of classical MD calculations with polarizable force
fields and BOMD calculations, leading to important con-
sequences for energy conservation in both approaches.
Energy conservation is known to be sensitive to how close
to convergence the self-consistency loop gets. In polar-
izable MD with induced dipoles this is a consequence of
a non-Hellmann-Feynman-like force term that is propor-
tional to the energy gradient residual 2Z.25 This term
vanishes in schemes where induced dipoles are not deter-
mined self-consistently (e.g. iAMOEBA?*), and in self-
consistent schemes it can only be neglected when the it-
erative dipole equations are tightly converged. In DFT
BOMD the error in the forces is first order with respect
to the error in the incompletely converged wavefunc-
tion, even though the error in the Kohn-Sham energy
is second order.? This means it is significantly more dif-
ficult to calculate accurate DFT forces for driving the
ions than it is to calculate energies. Furthermore, many
DFT approaches have to contend with additional (be-
yond Hellmann-Feynman) contributions to the forces,
known as Pulay forces,?® that arise as a result of the
dependence of the basis set on ionic positions. Although
the magnitude of the Pulay forces is, in principle, inde-
pendent of how close the electronic configuration is to
the ground state,? errors in approzimate treatments of
Pulay forces can be larger when the system is insuffi-
ciently converged.?? Finally, in LS-DFT approaches addi-
tional difficulties arise due to the use of localized orbitals,
where further non-Hellmann-Feynman contributions to
the forces can be expected to arise as a consequence of lo-
calization constraints®® or of the incomplete convergence
of localized orbitals,??:3% or, to a lesser extent, the density
matrix.2?

For polarizable classical MD and BOMD calculations
alike, tight SCF convergence is thus a necessary condi-
tion for maintaining adequate energy conservation. The
large number of SCF steps mandated by this requirement
leads to an undesired increase of calculation walltimes. It
is tempting to try to speed up convergence by not start-
ing the SCF procedure from the same fixed initial guess
at each MD time step, re-using instead the converged
solutions obtained in preceding time steps. Although,
the dangers of such intuitive extrapolation schemes have
been known since early nineties,3"3? adequate solutions
have been proposed only recently.?>3% Simply put, the
self-consistent solution is only independent of the initial
guess under exact SCF optimization. In practice, the
SCF optimization is always incomplete, leading to mem-
ory effects and the breaking of time-reversal symmetry,>>
and, in consequence, to systematic errors in energy gradi-
ents that manifest as a drift in microcanonical energy.34
Such undesired memory effects can be elegantly dealt
with through extended Lagrangian BOMD (XL-BOMD,

EL/SCF) formulations, where the initial guesses are not
extrapolated, but rather propagated as extended degrees
of freedom, allowing time-reversibility to be recovered.

In this paper we focus our attention on two integration
schemes proposed recently — a dissipative formulation by
Niklasson et al.?® and an inertial formulation by Albaugh
et al.36 These improvements to the original scheme by
Niklasson et al.>” use different strategies to mitigate the
problem of error accumulation that causes two extended
potential energy surfaces — that of the real degrees of free-
dom, and that of the initial guesses — to diverge for longer
simulation times. In this work we study the properties
and performance of the two schemes in MD simulations
of liquid water, which we carry out in two notably differ-
ent regimes — using the polarizable, classical force field
AMOEBA, and using the ONETEP LS-DFT formulation.
Our comparison employs similar systems, but tests how
the schemes operate under distinct conditions (long sim-
ulation times with inherently accurate forces and classi-
cal potential energy surfaces wvs. short simulation times
with inherently noisy forces and quantum-mechanical po-
tential energy surfaces). This allows us to highlight the
differences between the two schemes, and their strengths
and weaknesses in each of the two regimes.

We begin with a short presentation of the classical and
quantum-mechanical approaches used in our study (Sec-
tion II), followed by a presentation of the original ex-
tended Lagrangian scheme (Section IIT), and the dissi-
pative (Section IV) and inertial (Section V) integration
scheme variants, pausing briefly to comment on issues
specific to linear-scaling BOMD and its non-orthogonal
orbital variants in particular. Sections VI and VII de-
scribe our computational set-up and the results obtained
in the simulations, respectively. We finish with conclu-
sions (Section VIII), where we summarize our observa-
tions and lay out directions for promising future research.

Il. METHODS
A. Classical polarizable force-field molecular dynamics

For our analysis of classical molecular dynamics, we
have adopted the polarizable force field AMOEBA,20-38
as implemented in the TINKER'!® program. AMOEBA
belongs to a newer generation of force fields that go be-
yond the time-honored model using pairwise-additive in-
teractions of fixed point charges. In AMOEBA, elec-
trostatic interactions are computed from interactions be-
tween point multipoles, where each atomic site I is host
to a set of permanent multipoles, M; = {qr, pu;, Qr},
representing a charge, dipole and quadrupole respec-
tively. Permanent multipoles are parametrized from ab
initio calculations.?? 4! Alongside permanent multipoles,
each atomic site is host to an induced dipole u}nd, allow-
ing polarization effects to be explicitly captured. Scal-
ing of electrostatic interactions based on interatomic
connectivity,'® and Thole damping*? are used to ensure a



smooth transition between the electrostatic and bonded
(valence) descriptions of interactions and to avoid the
polarization catastrophe.

The polarization effect in AMOEBA is modeled by in-
duced dipoles, u}nd, placed on each atomic site, whose
magnitude is determined by the site-specific isotropic po-

larizability a; and the total external electric field exerted:

it =ar(E; + EY), (1)

where E; is the electric field owing to the permanent mul-
tipoles on other fragments, and E’ is the field generated
by the induced dipoles on all the other atomic sites:

E; =Y T;M{ (2)
J
T= Z TIJHiJndv (3)
J£I

where T,I ; now refers to appropriate powers of 1/rr; ac-
cording to the dipole induction and the superscript (d)
refers to special scaling factors used for electrostatic in-
teractions in AMOEBA.'® Since the RHS of Eq. (1) re-
lies on the induced dipoles, a procedure for guarantee-
ing self-consistency of induced dipoles is required. This
is usually achieved through iterative techniques, such as
successive over-relaxation (SOR)!®43 or the more recent
use of a precondition conjugate gradient self-consistent
field (CG-SCF) approach.** With converged {u'*d}, the
polarization energy is determined by

in 1 in
Ueled = 75 § 1234 d -Er. (4>
I

A detailed discussion of the AMOEBA electrostatics
model is beyond the scope of this paper, and the inter-
ested Reader is referred to Refs. 45, 46 for a more in-
depth discussion, and a description of bonded and van
der Waals interactions used in the AMOEBA model.

B. Linear scaling ab initio molecular dynamics

In contrast to classical molecular dynamics, in AIMD
calculations the electronic degrees of freedom are not in-
tegrated out but treated explicitly by finding approx-
imate solutions to QM equations. Nuclei are treated
as classical particles, and the forces acting on them are
obtained from electronic structure calculations. In this
work, we made use of Kohn-Sham (KS) density func-
tional theory*” to solve the electronic problem. In par-
ticular, all AIMD calculations in this work have been
carried out in ONETEP.4849

In the ONETEP framework, the electronic degrees of
freedom are described through the KS reduced (spinless)
single-particle density matrix operator p, which in posi-

tion representation reads

Noce

P(I‘, rl) = Z fﬂ/&(r)i/}f(rl)a (5)

where the ¢(r) are eigenstates of the KS Hamiltonian, or
molecular orbitals. In ONETEP the molecular orbitals are
expanded in terms of generalized non-orthogonal Wan-
nier functions ¢(r), hereafter termed NGWFs, through a
non-unitary transformation M:

i (I‘) = ¢a (r)Mai ’ (6)

where we have made use of Einstein’s convention for re-
peated indices. Greek indices are used to label non-or-
thogonal objects, while Latin indices label orthogonal
quantities.

The NGWFs are atom-centered real functions (reflect-
ing the I'-point approximation) which are strictly local-
ized, that is to say they are non-zero only within a lo-
calization region (LR) centered around the atom they
belong to. The use of non-orthogonal functions allows to
impose a tighter LR than for orthogonal functions.% 2
The disadvantage is having to explicitly take tenso-
rial correctness into account. As a consequence, the
(0,2) metric tensor, also known as the overlap matrix
Sap = (0a|@p), is not the identity matrix. In this frame-
work the density matrix can be cast as

p(r,x') = ga(r) K27 g5 (x"), (7)

where K is the density kernel matrix, a (2,0)-tensor,
which is a generalization of the occupation number ma-
trix in a non-orthogonal basis: K% = S, M1 fM,.
The KS electron density function n(r) is simply given by
the diagonal part of the density matrix:

n(r) = 2p(r,x')|,_, = 2p(r,x), ®)

where the factor of 2 accounts for spin degeneracy (which
we assume throughout this work).

Linear scaling in ONETEP is achieved by exploiting the
principle of “nearsightedness” of electronic matter.?3%*
According to this principle, for systems with a non-zero
band gap, i.e. insulators and semiconductors, the density
matrix (5) decays exponentially as a function of distance
between two points in space:

p(r,r') ~ exp (—ylr —r']). 9)

In practical calulations it is therefore possible to truncate
the density matrix by imposing a radial cutoff:

p(r,r’) =0 for [r — 1’| > Reut, (10)

where Ryt is an assumed cutoff distance. Density ma-
trix truncation and strictly localized orbitals are the two
main ingredients of electronic structure algorithms whose
computational effort increases linearly with the system
size IN.

Within ONETEP two minimization strategies are avail-
able for solving the electronic problem in a self-consistent
way:



1. The total energy can be minimized by optimizing
both the elements of the density kernel K, and the
expansion coefficients of the NGWF's in terms of an
underlying periodic cardinal sinc (psinc) function
basis?? (in situ optimisation).

2. Alternatively, only the elements of the density ker-
nel can be optimized, for a fixed set of NGWF's that
have been suitably initialized e.g. to pseudoatomic
orbitals (PAQs), or to orbitals that have been pre-
optimized in advance.

When NGWFs are optimized in situ, a minimal set of
NGWTFs is sufficient for obtaining high accuracy and sys-
tematic convergence of total energies to those of a plane-
wave approach with KS orbitals. When total energy is
minimized with respect to the density kernel elements
only, a non-minimal basis size is typically necessary to
achieve accurate energies and forces, increasing the mem-
ory requirements of this strategy, even if it is generally
faster.

In both approaches a modified Li-Nunes-Vanderbilt
(LNV) algorithm®®55 is employed to minimize the en-
ergy. The density kernel K is expressed in terms of an
auxiliary matrix L as

K = 3LSL — 2LSLSL. (11)

Energy is then minimized with respect to the elements
L®P which allows the following crucial constraints to be
satisfied to first order during the minimization:

Tr [KS] = N. Constant number of electrons (linear),
KSK = KS Idempotency (non-linear),

where N, is the total number of electrons in the system.

In this paper we have adopted the second strategy,
where the NGWF's are not optimized and we used a non-
minimal PAOs basis. Convergence is deemed achieved
when the RMS of the energy gradient ¢®° falls below a
specified threshold:

1
N ’<ga5\9ag>’ < ELNV- (12)

For a comprehensive description of the energy min-
imization algorithm and linear-scaling calculations the
Reader is referred to Refs. 48, 49, 56, and 57.

I1l. EXTENDED LAGRANGIAN FORMALISM

Extended Lagrangian methods were originally intro-
duced to perform MD simulations of systems in statis-
tical ensembles other than the microcanonical.’® °For
example, the action of a thermostat (barostat) can be de-
scribed through the interaction of the system with a heat
bath (piston). By postulating operational expressions for
the kinetic and potential energy of the extra dynamical
variables one can write an extended Lagrangian which

intrinsically takes into account the new variables. Simi-
larly, Car-Parrinello MD (CPMD) defines the electronic
states as extended classical dynamical variables (classi-
cal fields), with a fictitious kinetic energy and a fictitious
mass, with the idea of avoiding the expensive electronic
self-consistency procedure altogether. Recently, several
authors have proposed schemes based on the CP La-
grangian, using the density matrix (DM) elements as the
extra degrees of freedom,%1:%2 where the orthonormality
constraints are replaced with idempotency constraint of
the DM.

Starting from the broken time-reversal symmetry
problem in BOMD,?? Niklasson et al. introduced
a time-reversible extrapolation scheme for the elec-
tronic degrees of freedom.%® It is now recognized, that
the original scheme can be derived from an extended
Lagrangian,®”-%4 in which an additional set of degrees of
freedom is propagated alongside the nuclei with the pur-
pose of generating good quality time-reversal guesses for
the SCF calculations. Since the extra degrees of freedom
are only a computational device to reduce the number
of iterations in the SCF step, we will refer to them as
auxiliary degrees of freedom hereafter. In its most re-
cent refinement it has been shown it can be formulated
to completely avoid the SCF problem.%*

Quite generally, a system of classical interacting nuclei
moving in an external potential field U, which contains a
SCF-derived component, has the following Lagrangian:

LR VY = 5 3 MVE - U(R 67D,
I

(13)
where {R;} and {V;} represent the sets of the nuclear
positions and velocities respectively, My is the mass of
atom I, and {x3°"} is the set of converged degrees of
freedom that generate the SCF-derived part of the ex-
ternal field. The subscript “a” represents a generic The
detailed form of the potential energy U depends on the
model employed, but in general can be cast as a sum of
an SCF-independent part, such as the permanent elec-
trostatics or dispersion interactions, and a potential en-
ergy component obtained through an SCF procedure, for
example, solution of inducible dipoles in the case of a
classical polarizable force fields.

Following Niklasson,3” we can introduce generalized
auxiliary degrees of freedom {(,} into the Lagrangian
(13), provided we have a definition for their kinetic and
potential energies. We want {(,} to closely follow the dy-
namics of {x3°F}, so that they can serve as initial guesses
for {xa} in the SCF calculations. To keep the energy ex-
pression simple, a harmonic potential centered around
the converged solution {x3°*} can be employed, with a
single parameter k = mw? to control the steepness of the
well, yielding:

1 k,
Lot = [SCF | §mzﬂ_§_z§(X;CF _

a

)%, (14)

where 7, = Ca represent the generalized velocities of the



auxiliary degrees of freedom and m represents their mass.
The extended Lagrangian (14) can now be used to derive
a new set of equations of motion (Euler-Lagrange equa-
tions):

U Ca

» SCF

- - 1
MIRI 3R1 + k(Xa Ca) 8R1 ( 53)
mCa = k(2™ — Ga)- (15b)

In the limit m — 0 (k — 0,k/m — w?) we obtain:

MR, = -2 1
1R 3R, (16a)
Ca = w2 (a™ — Ca)- (16b)

It is worth pointing out that (16a) is exactly the same
equation we would have obtained were there no auxil-
iary variables introduced, i.e. when using (13) instead of
(14). This is a consequence of taking the limit m — 0
only after having derived the Euler-Lagrange equations.
In so doing, we recover the correct potential energy sur-
face, provided the SCF procedure is converged exactly.
Integration of (16b) gives {(a(t)} which in turn provide
the initial guesses for the SCF calculations.

A. Adaptation to classical polarizable force-field methods

In order to extend Niklasson’s extended Lagragian
methods to classical polarization, we introduce a set of
auxiliary atomic dipoles as extra variables.?® More specif-
ically, the real self-consistent induced dipoles { 3"} take
the role of {x3°"}, and the auxiliary dipoles {u;} replace
{C¢a} in (14). The nuclear centers R are propagated in
the usual way, i.e. according to (17a), while the real self-
consistent induced dipoles are solved for using an SCF
solver initiated by an initial guess that is propagated
through the auxiliary dipoles according to (17b):

oU ({Rl}a {I’I’SCF,I})

MR =— R,

(17a)
{pr}
lj'I =w? (lu’SCF,I - /1'1) ) (17b)
where U ({Rr}, {#scp r}) is the total potential energy
from the AMOEBA force field.

B. Adaptation to linear-scaling DFT

In the case of linear-scaling DFT the density matrix
elements K% would take the role of the real degrees of
freedom x4 in (14). Analogously to the classical case, we
would proceed by introducing matrix elements of an aux-
iliary matrix X®? as the auxiliary degrees of freedom (.
However, simply substituting quantities in (16b) leads
to equations that are geometrically inconsistent due to
the tensorial nature of K and X and the fact that the
underlying metric also changes with time. It is worth

stressing here that the metric tensor S is not propagated
(as the NGWFs are not treated as dynamical variables),
but rather it is generated at every MD step from the
current NGWFs. Arita et al. have proposed an alterna-
tive scheme®® based on propagating the matrix elements
(KS)“; as dynamical variables in (14), with associated
X5 as auxiliary degrees of freedom. This approach has
the advantage of propagating a representation of the den-
sity matrix which mantains the correct metric. At a given
MD step n, the initial guess K™ for the SCF procedure
is computed from the auxiliary matrix X as

K™ = X8, (18)

where S™! is the inverse overlap matrix at step n, ap-
proximated through an iterative Hotelling algorithm®®
(to maintain a linear scaling behavior).

The disadvantage of the above approach is that it does
not preserve the symmetry of the density kernel matrix,
ie. Kt #£ K, since at a given step X and S™' do not
commute in general. One possible solution is to instead
employ the symmetrized version of (18). In our experi-
ence this quickly leads to instabilities for larger systems,
particularly with a velocity-Verlet integrator (to be out-
lined in Section V).

Here, we propose a different approach, based on a dif-
ferent, orthogonal representation of the density kernel
matrix K+ = S%KS%7 where S? is computed through a
modified Newton-Schulz linear-scaling alogrithm.%” The
initial guess for the SCF procedure at a given step n is
given by

K"t = 8§~ 2XS 7, (19)

which ensures K is symmetric at all times.
The Euler-Lagrange equations in our framework read

OE[Kscr, {¢scr }; {R1}]
OR; K. {9}

—X], (20b)

MR, = —

(20a)

X = wz[KsLCF
where E[Kgcr, {¢scr}; {Rs}] is the potential energy in
ONETEP

E[KSCF) {¢SCF}; {RI}] = Felec [KSCF7 {¢SCF}§ {RIH

Eiwaa({R1}) + Eaisp({R1}),
(21)

given by a sum of three terms: 1) the electronic poten-
tial energy Felec; 2) the Ewald Coulombic interaction en-
ergy of the atomic cores; 3) an empirical dispersion en-
ergy correction for dealing with a well-known deficiency
of generalized gradient approximation (GGA) functionals
in describing dispersion interactions.%®

Within KS theory the potential energy FEe. can be
cast as a functional of the single-particle density matrix,



hence the dependence on K and {¢,(r)}, as

1
EeleC[KSCF) {¢SCF}§ {RI}] = _5 /dI’ [Vg’p(ra I'/)] r'=r

+ % // drdr’ W
n / dr vext ({Rr})n(r)

+ Exc[n(r)],
(22)

where the terms on the RHS represent, respectively, the
kinetic energy of the non-interacting KS states, the clas-
sical interaction between charged densities, the poten-
tial interaction energy of electrons and clamped nuclei,
and the exchange-correlation energy. Equations (20a)-
(20b) are the AIMD counterparts to the classical equa-
tions (17a)-(17b).

IV. EXTENDED LAGRANGIAN WITH DISSIPATIVE
VERLET INTEGRATOR (dXL)

It is now recognized3%:37 that the above simple formu-
lation suffers from numerical instabilities in the evolution
of the auxiliary degrees of freedom. In fact, the veloci-
ties of the auxiliary degrees of freedom increase in an un-
bounded fashion, ultimately resulting in initial guesses
that are unacceptably far from the converged values,
negating the efficiency gains of the scheme.?® The origin
of this phenomenon lies in the fact that exact conver-
gence is never achieved in practical calculations, which
couples (16a) and (16b) through a “memory effect”.35
or kinetic resonances.”® Energy can therefore flow from
the real degrees of freedom to the (massless) auxiliary
ones, producing a runaway increase in the velocities of
the latter. This is demonstrated in Fig. 1.

Recognizing this issue, Niklasson et al. proposed a
modified Verlet integrator,3® which breaks the time-
reversal symmetry of the equations of motion of the aux-
iliary variables to a small degree through the addition
of a dissipative-like term in the integration. Since this
effect is introduced through the integration, rather than
a physical term in the Lagrangian, it does not yield new
equations of motion for the auxiliary degrees of freedom.
Instead, the approach can be thought as being similar to
Langevin-like dynamics for the degrees of freedom {x;}
with internal numerical error fluctuations and external,
approximately energy conserving, dissipative forces 415,

In order to minimize the breaking of time-reversal sym-
metry, dissipative forces proportional to (41 are avoided
so that the time-reversal symmetry can be maintained to
a chosen higher order. Furthermore, the modified inte-
grator has to be optimized to compensate for the intrinsic
numerical noise without significantly perturbing the mi-
crocanonical trajectories of the nuclei. This is achieved
by expanding ¢ in terms of a linear combination of ((t)

103 ‘ ‘ ,
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XLreald.of. —— /
g0t} MV .
> A phs
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FIG. 1. Illustration of the runaway accumulation of kinetic
energy in the auxiliary degrees of freedom in the original XL
scheme. The arrow at 0.27 ps indicates the point where the
initial guesses obtained from propagation become worse than
the default initialization, negating the efficiency gains of the
scheme. The arrow at 0.53 ps indicates the point where the
guesses become so far from the converged values as to make
the QM calculation unstable. The temperature of the auxil-
iary degrees of freedom was computed as Tr[X?]/N and the
temperature associated with the real degrees of freedom was
calculated as Tr[K?]/N (cf. comment following (31)). Test-
case: 64 H2O molecules, AIMD, LNV convergence threshold

of 107° Haay */>.

at previous time-steps:

L
diss _ ~ _ . m _
PO =m) = g5 > ecte -0, (29

where §t is the time-step chosen to integrate the equa-
tions of motion, and the coefficients dy, and ¢; are ob-
tained in such a way that for a given L all the odd-order
terms in 8t cancel out®® up to order §t2L—3.

Hence, the modified Verlet algorithm to integrate (16b)
for the dXL scheme is given by

L
P =2 = G ROGTT = ) Yl (24)
=0

where we have made the substitution ~/d;, — ~ and
Kk = 6t?w?. Fig. 2 illustrates the behavior of the dXL
scheme, where the auxiliary degrees of freedom closely
follow their real counterparts and the instability is re-
moved.

Equation (24) is readily adapted to the classical frame-
work with the usual substitution {; — p;

pitt =2pt —

SCF

(g

L
Y e (29)
=0

_Nl)n
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FIG. 2. Tllustration of the stability of the dXL (L = 7) scheme
— the temperature of the auxiliary degrees of freedom closely
follows the temperature of the real degrees of freedom. Test-
case and the approach to calculation of temperatures: as in
Fig. 1. In the interest of clarity, averages over 10 fs are shown.

Here the dissipative force is given as a linear combination
of previous values of the auxiliary dipoles up to some
order L, with the optimal expansion coefficients ¢;, and
overall scaling parameter v given in Ref. 35.

The dXL can be analogously introduced for the linear-
scaling DFT framework through a linear combination of
previous auxiliary degrees of freedom:

X =2X" — X" 4 k(Kap, — X)"
L
+y Yy X (26)
=0

where the coefficients v and ¢; are the same as the ones
used for the classical approach.?®

V. EXTENDED LAGRANGIAN WITH
THERMOSTAT-CONTROL (iXL)

The success of the dissipative scheme for a number of
QM models has been reported in the literature.?>37 Since
the role of the dissipation is to counteract the numer-
ical instabilities generated by the propagation scheme,
for short timescales a bona fide microcanonical dynamics
can be generated. On the other hand, the main draw-
back of the scheme lies in the fact that it breaks time-
reversibility (though to a high order), and therefore in-
troduces a small, but measurable drift in the total energy.
This can be ameliorated by carefully optimizing the coef-
ficients of the expansion, but it cannot be removed com-
pletely. For long time scales, the steady drift of total
energy is unavoidable, as first demonstrated in Ref. 36,
which is consistent with our results obtained with classi-
cal polarizable force-field MD (Section VII A).

An alternative approach for overcoming the problem
of breaking time-reversal symmetry has been proposed
by Albaugh et al.3® The main idea is to apply a simple
thermostat to the velocities of the auxiliary variables,
resulting in an inertial extended Lagrangian SCF formu-
lation (iXL) in lieu of dissipation. Here the scheme will
be illustrated using a general thermostat, v, applied to
the time-reversible velocity-Verlet integrator (16b):

ErALZ — et 26m 4 19510 (27)
T = et (28)
{¢r™ ™ — SCF — {xj°"}"*! — ENERGY AND FORCES
~?-+1 U2 g g it (20)
G = g, (30)

where v"+1/2 and 4™*! are the velocity scaling factors

generated by a general thermostating procedure at the
half and full time-step updates, respectively. For exam-
ple, in the case of Berendsen velocity rescaling, v"+1/2=1
and 7! is given by

ot T+
n+1 __ i _
~y _\/1+T (Tnﬂ 1), (31)

where 77! is the temperature of the auxiliary degrees of
freedom at MD step n+1, T* is the target (desired) value
of this temperature, and 7 is the characteristic time of
the thermostat. T* and 7 are parameters of the scheme.

Although strictly speaking in the limit m — 0 one can
no longer define a kinetic energy, and therefore a temper-
ature, for the auxiliary degrees of freedom (7, Albaugh et
al.3% have suggested the ensemble average of the squared
auxiliary velocities, i.e. T' = ((?) as an operational defini-
tion for the pseudo-temperature 7. In this paper we fol-
low this convention, referring to the quantity in question
simply as “temperature”. The characteristic time 7 is
chosen similarly as in typical applications of thermostats
— on the one hand we want the decay rate of the tem-
perature towards T to be much shorter than the length
of the simulation tgj: 7 < tsim; on the other hand we
want to avoid a strong damping of instantaneous jumps
in the temperature, and so 7 > dt. Provided 7 satisfies
the above constrains, the exact choice is expected to be
inconsequential to the dynamics.

The desired auxiliary temperature T* is chosen to ap-
proximately conform to the equipartition of energy con-
sistent with a classical harmonic oscillator.36 One possi-
ble way of obtaining T is by approximating the auxiliary
velocity with the maximum displacement of the distribu-
tion of the real degrees of freedom.® One can also run a
brief dXL calculation beforehand, and subsequently set
T* to the time average of T" obtained from that run.
Another option is to simply compute the temperature of
the real degrees of freedom, i.e. (X5°F) over a brief ini-
tialization period, and use a value slightly larger than
that (since the real degrees of freedom are the minimum




around which auxiliary degrees of freedom are meant to
harmonically oscillate). A typical behaviour of the iXL
scheme is illustrated in Fig. 3.
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FIG. 3. Illustration of the behavior of the iXL scheme — the
temperature of the auxiliary degrees of freedom quickly de-
cays to the preset desired temperature 7" (shown as a dashed
line). The two peaks correspond to instants where the number
of SCF steps briefly flipped from 7 to 6, causing a temporary
increase in the auxiliary temperature. Here T* = 10~7 and
7 = 30 fs. Testcase and the approach to calculation of tem-
peratures: as in Fig. 1. In the interest of clarity, averages over
10 fs are shown.

The equations for the iXL approach for a polarizable
force field are obtained from (27)-(30), with the substi-

tutions p — ¢ and & — ¢. The coupling constant 4" is

given by
ot [ T+
7”2\/14‘(.271—1) (32)
T\ (7))

For the sake of clarity, a simple Berendsen thermostat
has been used to illustrate the iXL approach. However,
any other (more efficient) thermostat can be used in prin-
ciple, since the scope of a thermostat in this scheme, is
only to remove heat (numerical noise) from the auxiliary
degrees of freedom. In fact, in all results reported later
we use 4th order Nosé-Hoover chains for thermostatting
the auxiliary velocities, which we found to be marginally
better than Berendsen thermostat.

Analogously, for a linear-scaling DFT approach, we ap-
ply the following substitutions in (27)-(30): K+ — ¢
and K28 — (. The coupling constant is given by

yn:\/u‘f(ﬂ;;]nq). (33)

VI. COMPUTATIONAL DETAILS

We studied the three extended Lagrangian schemes de-
scribed in the previous sections — the original extended
Lagrangian scheme (extended Lagrangian), and its dis-
sipative (dXL) and inertial (iXL) variants. Calculations
not employing any propagation (starting the SCF pro-
cedure from scratch at every MD iteration) were used
as baseline comparisons. We tested the extended La-
grangian schemes in two regimes — in classical MD cal-
culations with the AMOEBA polarizable force field, and
in AIMD calculations with linear-scaling DF'T. The for-
mer calculations were carried out using the TINKER'®
program, and the latter — using ONETEP.*8:49

As test systems we chose pure water-box systems with
increasing numbers of water molecules: 16, 32, 64, 128
(and 512 with classical calculations), although all meth-
ods described should be generalizable to any molecular
system. Liquid water is ubiquitous in biological systems
and, as it is well-known, is a prototypical system for
hydrogen bonding that influences its anomalous behav-
ior throughout its phase diagram. Standard DFT GGA
models struggle to correctly describe the structure and
dynamics of water, with the non-locality of dispersion
interactions, deficiencies of local and semilocal exchange,
presence of self-interaction error, and the neglect of quan-
tum nuclear effects often cited as culprits.59 7! At the
same time, many successes and failures of both classical
and quantum approaches for bulk water systems have
been reported.'®2469-7 Consequently, bulk water sys-
tems provide an appropriate and stringent test for the
extended Lagrangian methods where many-body effects
are paramount.

For all classical polarizable force-field simulations we
used the water parameters of the AMOEBA14 water
model.”™ The equations of motion for the nuclear de-
grees of freedom were integrated using the velocity Ver-
let integrator’ with a time step of ¢t = 1.0 fs. Each
system started with the water molecules arranged on
a lattice in an equilibrium geometry with a cubic cell,
whose volume corresponded to the reported density for
the force field p = 1.0003 gem™3. The Particle-mesh
Ewald method”®77 with a 9 A real-space cutoff for long-
range electrostatics was employed. Equilibration simula-
tions were carried out in the NVT ensemble at 298 K for
0.5 ns, with temperature controlled using a Nose-Hoover
thermostat™ with a fourth-order chain and a character-
istic time of 7 = 0.1 ps.

Following equilibration, we ran NV E production cal-
culations for 1 ns with each of the above extended
Lagrangian schemes, along with a baseline calculation
where initial guesses were not propagated using the de-
fault conjugate gradient (CG) SCF method in TINKER,
with a threshold of 107D . For production calculations,
we integrated the equation of motion (17b) using the
time-reversible velocity Verlet integration for the original
extended Lagrangian scheme and iXL, whereas a modi-
fied Verlet scheme was used for dXL as described in sec-



tion (IV). For the original extended Lagrangian scheme
and for the iXL scheme we set w = \/i/ &t according to
the criterion in Ref. 37. The target temperature T for
the auxiliary degrees of freedom in the iXL scheme was
estimated by approximating the square of the auxiliary
dipole velocity (f#?) with the maximum displacement of
the distribution of the real dipoles.?¢ For these systems
this gave a value of T* ~ 10° ¢2A2?/ps? , which is the
value used in this work. The Nose-Hoover thermostat™
with a fourth-order chain and a characteristic time of
7 = 0.1 ps was used for the auxiliary degrees of freedom.
For all the extended Lagrangian schemes and for all the
system sizes IV, we ran our simulations with three differ-
ent thresholds for the SCF optimization: 107! D (loose),
10~* D (moderate) and 10=% D (tight).

For linear-scaling DFT calculations we used the pre-
equilibrated systems obtained from the classical calcula-
tion to avoid lengthy equilibration in AIMD. These were
subsequently further equilibrated with ONETEP for 1 ps
with conventional BOMD (i.e. in the absence of a prop-
agation scheme) in order for the systems to adjust to the
switch from a classical to an ab initio Hamiltonian. The
NVT ensemble was used, with temperature controlled
via a Nosé-Hoover chain thermostat. No adjustments
were made to the densities of the systems. The LNV
convergence threshold was set to an RMS gradient of

1079 Ha aa3/27 which generally required 19-20 SCF steps
to converge.

For both equilibration and production calculations, we
used the BLYP exchange-correlation functional”®® with
Grimme D2 dispersion correction®! in order to improve
the DFT description of water.”® The kinetic energy cutoff
was set to 900 eV, and norm-conserving pseudopotentials
were employed. We used 8 ag as the localization radii of
the NGWFs throughout, except for the 16 HoO molecule
system, where the small size of the periodic box (14.78 ap)
forced us to use a slightly smaller localization radius of
7.35ag. Since we used fixed (non-in situ-optimized local-
ized orbitals), we chose a non-minimal double-zeta with
polarization (DZ+P) basis set to improve the description.
A velocity-Verlet scheme was employed, with a timestep
of 6t = 0.5 fs to integrate the nuclear degrees of freedom.

Production calculations were carried out with all
of the extended Lagrangian schemes, and calculations
with no propagation as baseline, using a selection of
LNV convergence thresholds: 107% Haa, 8/2 (loose),
10=° Haag >/ (moderate) and 106 Haag®/* (tight).
These sampled the NV E ensemble and were carried out
for 10 ps. While a longer sampling would certainly be de-
sired, the large computational cost of AIMD simulations
precluded that. Analogously to the classical calculations,
we employed a velocity Verlet scheme for the auxiliary
degrees of freedom both for the original extended La-
grangian scheme and the iXL scheme, with a timestep
of 0.5 fs . For the dissipative dXL scheme we used a
modified Verlet scheme as explained in sec. (IV). The
target temperature T* for the iXL was set by running

a brief dXL calculation, taking the time average of the
auxiliary temperature, and using a slightly larger (more
conservative) value for iXL, as otherwise the scheme’s
thermostat struggled to keep the desired temperature,
leading to excessive drift. This more heuristic approach
has the advantage of avoiding a long simulation to com-
pute the distribution of the displacements of real elec-
tronic degrees of freedom, which can be quite computa-
tionally demanding for AIMD. The value we settled for
was T* = 1077 e2/fs? for all thresholds, except for the
128-H5O system at the loose threshold, where a larger
value of T* = 107 ¢% /fs? was necessary to maintain sta-
bility. Due to the short time scale of our AIMD simula-
tions, we set 7 = 0.03 ps for the thermostat characterstic
time, forcing the thermostat to work six times faster than
its classical counterpart.

VIl. RESULTS
A. Polarizable force fields

We will use the largest (512 water molecule) system
as the main testcase for classical calculations, and all re-
sults will refer to this system, unless indicated otherwise.
We begin by confirming the problems of the original ex-
tended Lagrangian scheme due to its quickly deteriorat-
ing quality of the propagated guesses. We laid out the
origin of this undesired behavior in Sec. III. Fig. 4 shows
how the number of SCF iterations increases over time,
regardless of the assumed convergence threshold. Given
sufficient time, the quality of the propagated guesses be-
comes worse than in the absence of propagation, negating
the efficiency gains of the scheme, even if, in principle,
this formulation is expected not to introduce a drift in
the energy.
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FIG. 4. Decaying quality of the initial guesses propagated

through the original extended Lagrangian scheme, evidenced
by the number of SCF steps needed to converge the induced
dipoles (solid lines).
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TABLE I. Comparison of the energy drift (K/ps) between calculations with no propagation, and calculations using the dXL
(L=6) and iXL schemes — for four different system sizes (16, 32, 64 and 128 H>O molecules) and three different CG-SCF
convergence thresholds. The reasons for large uncertainties in the drifts, even given a long simulation time, are as follows.
For the loose threshold, the drift is so severe that over 1000 ps the system heats up (cools down) so much that the drift is
no longer linear due to the massive increase (decrease) in kinetic energy. For the moderate and tight thresholds, the large
uncertainty reflects the difficulty of accurately estimating extremely small (sub-mK/ps) drifts. * Ngcr is the average number
of SCF steps for a combination of method and threshold (detailed breakdown in Tab. II).

System size
CG-SCF | Propagation 16 H,O [ 32 H.O [ 64 H,O [ 128 H,O Nscr
threshold [D]| scheme drift [K/ps (x107*)]
10! no prop. |48752.2 £ 5969.3149642.4 + 8490.7|40048.8 £+ 5110.5|38739.4 £ 3827.8| 1.0
dXL 23959 £ 685.21-3371.2 £ 663.7[-6003.1 £ 3986.1-5613.2 + 4632.9| 1.0
(loose) iXL —7.9 £ 154.9| 158.4 £ 104.7 84.8 £ 93.8 749 £ 18.7| 3.0
10-4 no prop. 5.0 £ 7.4 —6.7 = 9.4 -3.7 + 1.7 1.6 + 2.1| 5.6
dXL —20.8 £+ 9.2| —234 £ 4.6| —20.0 £+ 1.7 =229 £+ 3.2| 3.7
(moderate) iXL —-09 £ 8.0 04 £ 2.6 —-0.8 £ 1.0 —-0.5 £ 29.6] 6.9
10-6 no prop. 59 + 7.9 —0.8 £ 2.7 —-04 £ 1.5 —-0.6 £ 1.7 87
dXL 14 £ 5.3 0.3 + 4.0 0.0 £ 1.8 —-0.6 £ 14| 6.9
(tight) iXL 3.5 £ 6.8 2.3 + 2.1 0.8 £ 5.0 —-0.7 £ 1.5 9.1

2 The drifts and their uncertainties were calculated as follows. We assume the drift to be approximately linear. In a simulation with a
length of ¢ (t = 1000 ps), we can use a subset of data, viz. the interval [0, ¢o] to evaluate the linear coefficient in the drift, a (to), over
this interval. The final drift estimate is a (t). The uncertainty is taken as the largest difference between a (t9) and a (¢) calculated over

to > t/2.

TABLE II. A comparison of the number of CG-SCF iterations
between calculations with no propagation, and calculations
using the dXL and iXL schemes — for four different system
sizes (16, 32, 64 and 128 HO molecules) and three different
CG-SCF thresholds.

CG-SCF | Propagation System size
threshold [D]| scheme 16 32 64 128
101 no prop. 1.00 | 1.00 | 1.00 | 1.00
dXL 1.00 | 1.00 | 1.00 | 1.00
(loose) iXL 3.00 | 3.00 | 3.00 | 3.00
104 no prop. 5.42 | 5.51 | 5.65 | 5.77
dXL 3.62 | 3.65 | 3.83 | 3.79
(moderate) iXL 6.89 | 6.72 | 6.84 | 6.99
10-6 no prop. 8.38 | 8.70 | 892 | 8.99
dXL 6.68 | 6.85 | 6.96 | 6.99
(tight) iXL 9.02 | 9.07 | 9.17 | 9.16

The dissipative scheme addresses the deficiency of the
original formulation, at the price of weaker (finite-order)
time-reversibility as outlined in Sec. IV. We will now es-
timate the typical energy drift that manifests as a con-
sequence. Fig. 5 shows the change in energy per atom
in an NV FE simulation with the dXL scheme, for sev-
eral selected values of the order parameter L (cf. (23))
and for calculations with a loose, moderate and tight
SCF threshold. For all three SCF convergence thresh-
olds the drift is substantial, with the loose threshold be-
ing the most severe case, corresponding to a drift rate
of ~ 2 x 107! K/ps. While the energy drift rate gets
smaller as the SCF tolerance increases, the drift is sys-
tematic and will become non-negligible in calculations
spanning hundreds of nanoseconds.

The iXL scheme adopts yet another approach to over-

come the issues of the original extended Lagrangian
scheme. A thermostat is introduced to control the tem-
perature of the auxiliary dipoles in order to avoid the
accumulation of noise in the propagation, as described in
Sec. V. Fig. 6 shows the change in energy per atom in
a NV E simulation for this case. Energy conservation is
maintained even at loose thresholds, with a drift rate of
~ 3% 1072 K/ps and requiring only three SCF iterations
at the 107! D threshold (see inset in Fig. 6), making
this scheme very competitive and suitable for perform-
ing long (us-scale) NV E simulations. A modest price to
pay for the iXL method, apart from the need to choose
suitable parameters T* and 7 (cf. Sec. V), is its depen-
dence on a definition of “pseudo-temperature” through
the kinetic energy of the system, which may become less
valid as the number of degrees of freedom in the system
decreases. It is thus prudent to examine the behavior of
the method for smaller systems to assess its portability
to other systems. Table I and Table II summarize our
findings for the smaller systems. In particular, in Tab. I
we compare the drift in the total energy for the unprop-
agated (conventional SCF-MD) scheme, which serves as
reference, the dXL scheme and the iXL scheme for four
system sizes each with three SCF-CG thresholds. Drifts
were estimated by a simple linear fit. Tab. II presents
an analogous analysis to Tab. I, with the number of CG-
SCF iterations replacing the energy drift. Tab. I and
Fig. 7 demonstrate that for loose and moderate CG-SCF
thresholds the iXL scheme outperforms all orders of the
dXL scheme in terms of energy conservation, even for
very small system sizes. In the tight threshold regime
the two schemes are equivalent. However, as shown in
Tab. II, the trend is inverted when considering the aver-
age number of CG-SCF iterations. In fact, Ngcp for iXL
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thresholds: loose, moderate and tight. The dashed lines are
meant as a guide to the eye and correspond to energy drifts
expressed as system cooling/heating rates in K/ps. In the
interest of clarity, only points 20 ps apart are shown.
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is always larger than the corresponding Ngcr for dXL,
regardless of the CG-SCF threshold. Notably, at moder-
ate convergence thresholds the dXL scheme shows energy
drifts of the same order of magnitude (1072 K/ps ) of
iXL with a loose threshold, and also comparable average
number of CG-SCF iterations (Nscr = 3.7). Therefore,
dXL and iXL display similar performance in the different
regimes: moderate threshold regime for dXL and loose
threshold regime for iXL.

To assess how these integration schemes affect the ac-
tual dynamics, the oxygen-oxygen pair correlation func-
tion goo (r) has been computed, see Fig. 8. Clearly, the
red curve and cyan curve in Fig. 8, corresponding to dXL
with a moderate threshold and iXL with a loose thresh-
old respectively, lie on top of each other and they are
indistinguishable from the reference curve (solid grey).
The latter has been obtained with the conventional (un-
propagated) scheme and a tight threshold to provide a
robust baseline. No artifacts are hence introduced in the
dynamics by these two integration schemes, and they es-
sentially provide the “correct” result as obtained from
the reference calculation.
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FIG. 6. Total energy conservation of iXL for different con-
vergence thresholds (solid lines): loose, moderate, and tight.
The dashed line is meant as a guide to the eye and corre-
sponds to energy drift expressed as system heating rates in
K/ps. In the interest of clarity, averages over 10 fs are shown.
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FIG. 8. Oxygen-oxygen pair correlation function goo () ob-
tained in the absence of a propagation scheme, and with the
dXL and iXL schemes with different thresholds. Testcase:
512 H20 molecule system. The reference unpropagatedx cal-
culationv uses a tight RMS threshold of 107¢ D. The SCF
convergence threshold was set to RMS 10~ D (loose) for
the iXL scheme (solid cyan). The SCF convergence threshold
was set to RMS 10™* D (moderate) for the dXL scheme (solid
red). The differences between the predictions obtained with
dXL and iXL and in the absence of propagation are seen to
be minor as also highlighted in the inset.

B. Linear-scaling DFT

As the main testcase for linear-scaling DFT calcula-
tions we will use the 64-H2O system, unless indicated
otherwise. As we have done for the classical calculations,
we begin by confirming the impracticality of the origi-
nal extended Lagrangian scheme. Fig. 9 shows that for
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linear-scaling DF'T calculations the quality of the prop-
agated guesses decays even more rapidly than for the
classical calculations. Indeed, for the loose SCF conver-
gence threshold the original extended Lagrangian scheme
becomes less efficient than the unpropagated scheme as
early as after 0.04 ps (80 MD steps), probably reflect-
ing the good quality of ONETEP’s (unpropagated) initial
guesses for the simpler scenario of fixed NGWF's.

o j ,,,,,,

Number of SCF steps

Loose QM convg. thresh. (10 Haa 3/2) e
O.3/2

Moderate QM convg. thresh. (10 5 Ha agt) ——
0 Tlght QM convg. thresh (10 ®Haq 3/2) E—
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FIG. 9. Decaying quality of the initial guesses propagated
through the original extended Lagrangian scheme, evidenced
by the number of SCF steps needed to converge the induced
dipoles (solid lines). Dashed lines denote corresponding num-
ber of SCF steps in the absence of propagation. Crosses at
0.04 ps, 0.27 ps and 1.33 ps denote points where the efficiency
gain of extended Lagrangian over the unpropagated scheme
is lost.

A significant difference between classical MD calcula-
tions and their linear-scaling DFT counterparts is the
much higher "noise floor” of ab initio-derived forces. This
is a consequence of more intricate numerical machin-
ery involved in DFT calculations (commonplace use of
grid-based operations, such as Fast Fourier Transforms
(FFTs), numerical integration of quantities on a variety
of grids with up- and downsampling between grids, in-
exact translational and rotational invariance (“egg-box
effect”), use of polynomial interpolations in the handling
of pseudopotentials, etc.), and the fact that the error in
Kohn-Sham DFT forces is first order with respect to the
error in the incompletely converged wavefunction, even
though the error in the energy is second order.? While
tighter SCF convergence can be imposed for dynamical
calculations, this can quickly become impractical, as to
reach those stricter convergence thresholds grids must
be made finer, and other approximations need to be well-
controlled. In practice, the resultant noise in DFT forces,
even though perfectly acceptable e.g. for geometry opti-
mization, leads to energy drifts in the order of 1071 K /ps,
while in classical MD, even when iterative schemes are
involved, drifts are not expected to exceed 1073 K/ps
(cf. Tab. I).



Linear-scaling formulations of DFT necessarily add
further approximations to conventional DFT, even if in
robust approaches these approximations are controllable.
For example, the use of finite-box FFTs leads to a slight
delocalization of gradients beyond the localization re-
gions of local orbitals, exchange-correlation energy is typ-
ically evaluated on a coarse Cartesian grid, and Pulay-
like corrections to forces are often not numerically ex-
act for reasons of efficiency. The consequence of these
approximation is a further increase in the inaccuracy
of forces, with residual errors typically in the order of
0.1%82 — this can be estimated from the magnitude of
the net force, which, in the absence of noise, should be
zero by Newton’s 3rd law of motion. While approaches
for correcting some of the more glaring approximations
have recently been proposed,??:3% the current state of the
art necessitates using mild thermostatting to control for
energy drifts in LS-DFT, as these typically result in tem-
perature increase/decrease rates of several K/ps.
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FIG. 10. Drift in the total energy for linear-scaling DFT
for unpropagated BOMD (testcase: 64 H2O molecules),
for a selection of SCF convergence thresholds. Excessively
loose thresholds lead to extreme drift, but inherent drift at
~ 5 K/ps is apparent regardless of how tight SCF convergence
is. The dashed lines are meant as a guide to the eye and cor-
respond to energy drifts expressed as system cooling/heating
rates in K/ps.

To wit, in Fig. 10 we show drifts obtained for the
64 HO system in the absence of any propagation
scheme. While the drift in excess of 100 K/ps obtained

for the LNV convergence threshold of 1073 Haa, 82 i
clearly due to an excessively loose threshold, there is lit-
tle improvement when the threshold is tightened from

10~* Ha aag/Q

whatsoever with 1076 Ha agy 3/ 2, which indicates the pres-
ence of an inherent drift that cannot be mitigated by im-
proving the degree of SCF convergence. The magnitude
of this drift is in the order of 5 K/ps, which leads us
to expect that the drift due to time-reversal symmetry
breaking in dXL (estimated at ~ 4 x 10~% K/ps in the

to 1079 Haaag/Q, and no further gain
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classical case, cf. Fig. 5, panel a) will be entirely obscured
by the intrinsic drift due to forces.

Fig. 11 compares the energy drift of the unpropagated
calculation, and the two extended Lagrangian approaches
for a loose SCF threshold (10=%). The drift in the ab-
sence of propagation is 8.5+0.9 K/ps, with dXL and iXL
performing better: at —1.5+0.3 K/ps and 2.8+2.1 K/ps,
respectively. The fact that the drifts are comparable be-
tween dXL and iXL is in line with our expectations — the
drift that makes dXL less desirable for long classical MD
simulations does not play an appreciable role in LS-DFT
MD, since it is dwarfed by inherent drift due to the noise
in LS-DFT forces.

0.25 T T
No propagation (7 steps)

dXL (3 steps) A
0.20 iXL (3 steps)

0.15

0.10

Drift in total energy per atom (kcal/mol)

Time (ps)

FIG. 11. Comparison of drifts in total energy between cal-
culations with no propagation and dXL and iXL (testcase:
64 H20O molecules). SCF convergence threshold was set to
10~ (loose), as this is what would be used in practical sim-
ulations.

To add more weight to this argument, we examine the
drifts for the remaining systems and for tighter SCF
thresholds. The results are summarised in Table III.
For all system sizes, regardless of how and if the ini-
tial guesses are propagated, we observe drifts of several
K/ps. No correlation is apparent between the magnitude
of the drift and the SCF convergence threshold, which
indicates that the threshold is not excessively loose, and
that no accuracy gains can be achieved by using tighter
thresholds. Neither of the extended Lagrangian meth-
ods is seen to discernibly outperform the other, and the
drifts are comparable to the case with no propagation.
This confirms that the observed drifts are a result of in-
herent noise in LS-DFT forces, and are hardly affected
by the properties of an extended Lagrangian scheme.

Of course, the use of an extended Lagrangian approach
is expected to yield a performance improvement by re-
ducing the number of SCF steps needed to converge to
a given threshold. We report that number in Table IV
for all systems and methods under study. Both dXL and
iXL offer a performance gain of 30%-60%, depending on
the convergence thresholds, with looser thresholds offer-
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TABLE III. Comparison of the energy drift (K/ps) between calculations with no propagation, and calculations using the dXL
and iXL schemes — for four different system sizes (16, 32, 64 and 128 H2O molecules) and three different LNV convergence
thresholds. Large uncertainties of computed drifts reflect necessarily short simulation times.* Npyv is the average number of
LNV steps for a combination of method and threshold (detailed breakdown in Tab. 1V).

LNV Propagation System size
threshold |  scheme 16 H,O [ 32 H,O [ 64 H,O [ 128 H,O |Ninv
[Haag?’/ﬂ drift (K/ps [x10°])

10-4 no prop. 48+04| 424+19| 85+£09| 33+1.1| 7.8
dXL 3.5£18] 66£05|/-1.5+0.3| 02+0.2| 3.3

(loose) iXL 1.56£08|-39+21 28+£21|-24+0.4| 4.0
10-5 no prop. | 38+53| 23+21| 5.6+3.2] 3.0L05| 135
dXL 29+£08| 02£3.0] 1.94+29| 3.44+0.2| 5.7

(moderate) iXL 48+0.7| 3.8+1.5] 09+£0.8| 26+0.3| 7.7
10-6 no prop. 32+£27| 57£16| 58+22| 25+0.9| 19.3
dXL 22+14| 46+19| 1.5+04] 3.1+0.7] 10.2

(tight) iXL 28+£25| 71£15| 54+0.7| 28+0.4| 13.5

2 The drifts and their uncertainties were calculated as follows. We assume the drift to be approximately linear. In a simulation with a
length of ¢ (¢t = 10 ps), we can use a subset of data, viz. the interval [0, to] to evaluate the linear coefficient in the drift, a (to), over this
interval. The final drift estimate is a (¢). The uncertainty is taken as the largest difference between a (to) and a (t) calculated over

to > t/2.

TABLE IV. A comparison of the number of LNV iterations
between calculations with no propagation, and calculations
using the dXL and iXL schemes — for four different system
sizes (16, 32, 64 and 128 H20O molecules) and three different
LNV thresholds.

LNV threshold | Propagation System size
[Haa,™?] | scheme | 16 | 32 [ 64 | 128
10-4 no prop. 9.0 8.0 7.1 7.0
dXL 3.8 34 3.1 3.0
(loose) iXL 4.0 4.0 3.0 5.0
10-° no prop. 14.0 | 14.0 | 13.0 | 13.0
dXL 6.3 6.0 5.5 5.0
(moderate) iXL 9.0 8.0 7.0 7.0
10-6 no prop. 20.0 | 20.0 | 19.1 | 18.0
dXL 11.0 | 10.8 | 10.0 9.0
(tight) iXL 14.4 | 13.9 | 13.7 | 12.0

ing larger gains. Except for an isolated case (64 HoO
molecules, loose convergence threshold), the use of the
dissipative scheme leads to slightly faster convergence
compared to the inertial scheme. This is a consequence
of manually setting the auxiliary temperature for iXL to
a slightly more conservative value than the exact average
auxiliary temperature of dXL (cf. Sec. VI). With more
aggressive settings we would expect the performance of
iXL to be indistinguishable from that of dXL, but with
the caveat that iXL immediately starts to drift appre-
ciably when T is set to an excessively low value, neces-
sitating care in the choice this parameter. The drift in
this case is a consequence of the thermostat’s persistent
scaling of velocities, with the time average of ¥" (eq. 33)
being excessively lower than 1.

Apart from not impairing energy conservation and im-
proving performance, a natural requirement for a prop-
agation scheme is for it not to visibly affect the calcu-

lated properties of the system. In this study we ex-
amine the basic structural characteristic of water, the
oxygen-oxygen pair correlation function goo (r), shown
in Fig. 12. The reference (unpropagated) calculation was
run with a tight threshold, to provide a robust baseline
that we assume is the correct result. The calculations
with dXL and iXL were performed with a loose threshold,
as this is what would be used in practice. The differences
between the predictions of the two integration schemes
are miniscule, and the differences between the propa-
gated calculations and the reference are also very modest
— the first peak is described practically identically, and
for larger distances the introduction of propagation ap-
pears to introduce a very slight over-structuring, which
we find perfectly acceptable. We do not include experi-
mental results in the comparison, knowing full well that
the DFT model of water significantly over-structures for
reasons that we do not expect the propagation schemes
to compensate for.
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FIG. 12. Oxygen-oxygen pair correlation function goo ()
obtained in the absence of a propagation scheme, and with
the dXL and iXL schemes. Testcase: 64 H>O molecule
system. For calculations with propagation, the SCF con-
vergence threshold was set to 107* Haaa?’/2 (loose), as
this is what would be used in practical simulations. The
reference (unpropagated) calculation uses a tight threshold
(107° Ha a53/2). The differences between the predictions ob-
tained with dXL and iXL and in the absence of propagation
are seen to be minor.

VIIl. CONCLUSIONS

In this work we assessed the performance of two in-
tegrators for the extended Lagrangian introduced by
Niklasson et al.3® — a dissipative formulation (dXL),3°
and an inertial formulation (iXL),6 in two distinct
regimes, by employing them in classical and in LS-
DFT NV E MD calculations on condensed water systems.
We confirmed the previously reported3®-37-65 necessity of
counteracting the unbounded increase in the kinetic en-
ergy of the auxiliary degrees of freedom through some
form of energy leaching, to which the two schemes take
different approaches.

In the classical polarizable force field regime we re-
produced the observations of Albaugh et al.,% showing
that over long (~ns) timescales, for maximally loose SCF
thresholds, where an unpropagated scheme drifts catas-
trophically, iXL offers better energy conservation com-
pared to dXL. This advantage is a consequence of a dif-
ferent approach to “energy leaching” taken by the iXL
method, which strictly preserves time reversibility. How-
ever, at this loose SCF threshold dXL has the advantage
of needing substantially fewer SCF steps (1 vs. 3) to con-
verge, and thus offers an efficiency gain over iXL. As the
SCF threshold is made progressively tighter, the perfor-
mance of the two schemes begins to converge, with the
drift of dXL improving considerably, and the almost con-
stant absolute efficiency advantage of 2-3 SCF steps for
dXL maintains over iXL becoming relatively less impor-
tant.
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In the LS-DFT MD regime the picture is substantially
different due to the high intrinsic noise of LS-DFT forces,
which leads to energy drifts that are much larger than the
additional drift due to energy leaching from the extended
Lagrangian approach. As such the dXL and iXL propa-
gation schemes can be used with the loosest of LNV-SCF

threshold investigated (10~ Haa, 3/2 ) beyond which an
additional drift of an extended Lagrangian scheme starts
to become apparent. Although there is no discernible
difference in practice between the dXL and iXL schemes
at the loose convergence threshold, the dXL would cur-
rently be the mildly preferred choice for LS-DFT MD
calculations due to its parameter-free nature.

As it is now, we believe that in practical and suffi-
ciently long (many-ps) LS-DFT MD calculations a gentle
thermostatting would currently be necessary to counter-
act the excessive increase/decrease in temperature that
is a consequence of intrinsic drift, and which is as large
as several K/ps. Further work is desirable in the area
of linear-scaling DFT to improve the accuracy of forces
in the presence of artefacts that result from localization
constraints and the approximate treatment of Pulay-like
terms in the forces. We feel obliged to point out that the
energy drifts in LS-DFT would likely change noticeably
were the localized orbitals to be optimized (not studied
in this work). This is because on the one hand the in
situ optimization significantly reduces the magnitude of
Pulay-like terms, while on the other hand it introduces a
further approximation into their calculation.®? It is pos-
sible that the change that the optimization of localized
orbitals would introduce to the “noise background” of
LS-DFT forces, and the ensuing change in intrinsic en-
ergy drift, would uncover differences in the behavior of
the two extended Lagrangian integration schemes that
are currently obscured in ab initio MD. We intend to
study this behavior in the future.

We highlighted the non-triviality of correctly evolving
the auxiliary degrees of freedom over a curved manifold
in ab initio calculations, a fact that is not always ap-
preciated in the literature. We presented and tested a
viable scheme for propagating the density kernel in this
scenario, using a fixed, non-orthogonal generalized Wan-
nier function basis. Further work is necessary to develop
a scheme where the localized orbitals could be similarly
propagated.

Finally, we showed that both dXL and iXL consistently
enable significant, and usually similar, increases in per-
formance over calculations not employing propagation,
both for classical MD and LS-DFT MD. Thus, both of
these schemes constitute important algorithmic improve-
ments that markedly extend the timescales accessible to
classical and LS-DFT MD simulations alike.
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