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ABSTRACT

The increasing availability of high-quality experimental data and first-principles calculations
creates opportunities for developing more accurate empirical force fields for simulation of
proteins. We developed the AMBER-FBI5 protein force field by building a high-quality
quantum chemical data set consisting of comprehensive potential energy scans and employing
the ForceBalance software package for parameter optimization. The optimized potential surface
allows for more significant thermodynamic fluctuations away from local minima. In validation
studies where simulation results are compared to experimental measurements, AMBER-FB15 in
combination with the updated TIP3P-FB water model predicts equilibrium properties with
equivalent accuracy, and temperature dependent properties with significantly improved accuracy,
in comparison with published models. We also discuss the effect of changing the protein force
field and water model on the simulation results.
INTRODUCTION

Molecular Dynamics (MD) simulations have demonstrated high utility for the functional
study of biomolecular systems. The degree of spatial and temporal resolution afforded by this
technique allows for atomic-scale analysis of structure, dynamics, and function. In order to
achieve time scales relevant to biological processes, a classical interaction potential, or force
field, is typically used. Although approximate, modeling of this variety has proven vital to the

mechanistic, thermodynamic, and kinetic understanding of biological phenomena including but
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not limited to enzyme catalysis!*, protein folding’”, protein-ligand binding,'%-!3
y y p g p g g

and protein
conformational change.'*!” The results of these studies strongly depend on the accuracy of the
underlying force field. While there have been noteworthy simulations on protein dynamics using
a quantum chemical potential energy surface,!82° these are still incapable of realizing dynamics
on the biologically relevant timescales (ns and beyond) for molecules of biologically relevant
size (200 residues and beyond). Therefore, the development of accurate empirical force fields is
of critical importance for computational biomolecular simulation.

The conceptual development of the consistent force field is credited to Lifson who proposed
that the interactions between atoms could be described using an energy function and a small set
of transferable empirical parameters. In 1967, Lifson, Warshel and Levitt successfully derived
and parameterized the first force field.?! In 1969, this idea was implemented by Levitt with the
first computer simulation of a protein.?

Important to the future of condensed phase force fields was the development of the
Optimized Potentials for Liquid Simulations (OPLS) model proposed by Jorgenson.?* Here the
nonbonded interactions were derived by fitting to experimental thermodynamic properties of
organic liquids, a method which inspired parameterization methodologies of the first generation
of all-atom protein force fields.

One of the first force fields capable of all-atom simulations of proteins in water is of the
AMBER type and referred to as f94.2* This model approximates the energy of a system of
molecules as a sum of terms including harmonic bonds, harmonic angles, electrostatic
interactions, Lennard-Jones repulsion and dispersion interactions, and dihedral energy terms for
adjusting the energy profiles of bond rotations. Harmonic bond and angle terms were optimized

to reproduce experimental normal mode frequencies by fitting to structural and vibrational



frequency data on small molecule fragments of amino and nucleic acids. The atom-centered
point charges were fit using Kollman’s RESP method, which aims to reproduce the electrostatic
potential of a target molecule to that calculated at the HF/6-31G* quantum level of theory.?® The
Lennard-Jones parameters were fit in order to reproduce densities and enthalpies of vaporization
in simulations of organic liquids (as was done for OPLS). The dihedral parameters were fit using
relative energies of alanine and glycine dipeptide conformers calculated via quantum mechanical
(QM) methods at the MP2/6-31G* level.

The subsequent widely adopted major iterations of the AMBER type force field have carried
over the functional form and most parameters from the original ff94 model. These more recent
developments focused primarily on improving protein secondary structure representation via the
successive refitting of the ff94 dihedral parameters. The torsions in ff94 applied equally to all
quartets of atoms around a bond between two atom types; the parameters were fit to a set of
experimental small molecule barrier heights. The ff99 force field*® improved upon this approach
by introducing explicit four atom dihedral terms that were fit to a larger set of small molecules,
as well as a reference set of alanine tetrapeptide conformers. The ff99SB force field*’ was
introduced by Hornak and Simmerling to improve conformational preferences for glycine and
address known deficiencies of previous AMBER force fields such as over-stabilization of a-
helices.?® The amino acid backbone dihedrals for glycine and alanine were refit using a grid-
based conformational scan of alanine and glycine tetrapeptides. In ff99 and ff99SB, the other
protein parameter types were left unmodified from ff94. The ff99SB-ILDN? force field of Shaw
and coworkers introduced explicit side chain parameters for four specific residue types
(isoleucine, leucine, asparate, and asparagine). The explicit side chain parameters were fit to

grid-based conformational scans calculated using second-order Megller-Plesset perturbation



theory with the resolution of the identity approximation®® (RI-MP2) and a correlation-consistent

augmented triple zeta basis set’!

(aug-cc-pvTZ), and validated by calculating NMR observables
from simulation trajectories and comparing to experiment. The validation studies showed a
significant improvement in the agreement between side-chain conformational states observed in
simulations and those observed in NMR experiments. Although each successive modifications
of the ff99 force field led to further improvements in secondary structure, the temperature
dependence of partial folding remained a major limitation for these models.?

Today, researchers are looking in the directions of replacing the point charge model carried
over from ff94 with new fixed-charge models and non-additive electrostatic potentials that
include explicit polarization. The implicitly polarized charge model found in the ff15ipq>® force
fields treats the point charges of a target molecule as a sum of the charges calculated in vacuum
and a perturbation of these charges caused by the presence of explicit solvent molecules, and in
this way accounts for electrostatic polarization in a nonpolarizable model. The addition of
polarizability in the form of Drude particles** or induced dipoles®® produces a more physically
realistic model of electrostatic polarization; however, these models incur a significantly greater
computational cost which limits the timescales that are accessible compared with fixed-charge
models. These new electrostatic models show great promise for improving the accuracy of the
protein energy potential. However, protein force fields that incorporate these electrostatic models
require refitting of the other bonded and nonbonded parameter types, and they have yet to be
tested to the same extent as the RESP model. It is likely that fine-tuning of bonded and van der

Waals interactions using high quality ab initio data will continue to be an essential part of

developing future generations of protein force fields.



In this work our goal is to assess the limits of accuracy that can be attained by fitting
intramolecular bond, angle, and dihedral parameters to QM calculations without modifying the
functional form and nonbonded parameters, which we expect will complement efforts currently
being undertaken to improve the nonbonded part. We systematically explore the modification of
bond, angle, and dihedral parameters, taking the ff99SB functional form and parameter set as a
starting point. We introduce a new potential energy scanning method to build an improved data
set of dipeptide conformations and provide unprecedented coverage of the conformational space.
The parameter optimization was done using ForceBalance,*® an open-source software package
designed to enable reproducible and systematic force field development.

The new parameter set is validated by calculating thermodynamic observables from protein
simulations and comparing to experiment. We find that the new parameter set performs equally
well as the previous models for equilibrium properties, where previous models gave good
agreement with experiment, and gives superior performance for temperature dependence, where
previous models perform poorly. Our main finding from the parameter re-optimization is that the
ff99SB, and related similarly derived models, overestimate the steepness of potential energy
basins, which explains why they predict the correct equilibrium structures, but may lead to
problems when simulating conformational changes or deviations from these structures as
observed in our subsequent validation studies.

Our validation testing includes a comparison of protein force fields combined with four water
models: the TIP3P model most widely used in protein simulations, the updated and more
accurate TIP3P-FB model®$, and the four-point TIP4P-Ew?7 and TIP4P-FB3¢ models. TIP4P-Ew
is a four-point water model developed for use with the particle mesh Ewald electrostatics

method?® that is ubiquitous today, and was among the first water models parameterized to



accurately reproduce the temperature dependence of the density.>’” The TIP3P-FB and TIP4P-FB
models, developed ten years later, use the same functional form as TIP3P and TIP4P-Ew
(respectively) and were systematically parameterized to reproduce the temperature and pressure
dependence of a wide range of thermodynamic properties.*® Despite the advances made in water
models over the last two decades, the protein force fields have largely followed historical
precedent in that they are developed and tested for use with the TIP3P model, which raises
interesting questions of how the simulation accuracy may improve if the water model is changed.
Here, our validation studies show that different force field / water model combinations produce
widely varying temperature dependence properties of the protein, and combining AMBER-FB15
with TIP3P-FB produces the best agreement with experiment, despite the fact that the protein
intermolecular parameters were not optimized. We discuss some interesting patterns in how
different water models affect protein stability. We also describe common limitations of all tested
models, which include underestimation of the slopes of protein melting curves and overly
collapsed denatured state ensembles, highlighting the necessity of improved descriptions of
nonbonded interactions.

The force field combination AMBER-FB15/TIP3P-FB is recommended for general-purpose
simulations of proteins, particularly in situations where fluctuations away from equilibrium and
temperature dependence are expected to play an important role. Additionally, the ab initio data
set used to parameterizec AMBER-FB15 has been made publicly available online, and we expect
it to be useful for force field development efforts in the community.

THEORY
AMBER functional form. The AMBER99SB protein force field (abbreviated as A99SB) is the

starting point of the parameterization in this work; it consists of the simple and well-known



functional form put forth in AMBER94 (here referred to as the AMBER functional form), the
AMBER99 parameter set, and the “SB” correction to the protein backbone dihedral parameters.?’
In the AMBER functional form, the total potential energy of the system is written as a sum of

bonded and nonbonded contributions:
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empirical parameters for bonded interactions are denoted as k;, rU‘.), k and depend

on the atom types of the atoms involved. This work focuses on optimizing the bonded parameters,
in some cases defining new atom types to increase the size of the parameter space.

In the nonbonded interactions involving pairs of atoms separated by 3 or more bonds, the

pairwise Lennard-Jones parameters o and €, are derived from those of individual atom types

(0, and €;) via the Lorentz-Berthelot combining rules, and the atomic partial charges g, are

defined for each atom in each amino acid. These parameters are not modified in this work. The

vdW and electrostatic interactions between pairs of atoms separated by exactly three bonds (i.e.



“1-4 pairs”) are reduced by factors of 1.2 and 2.0, respectively; the 1-4 interactions are nominally

considered to be a kind of bonded interaction, but they are also not modified in this work.

Reference Data # Calcs.

Energy, gradients of 26 amino acids over (¢, )
(incl. ASH, CYM, GLH, HIE, HIP, LYN)

Energy, gradients of 21 amino acids over (x1, y2)
(excluding ALA, CYM, GLY, PRO, VAL)

Energy, gradients of CYM, VAL over (¢, x1) 1,151

Vibrational frequencies and eigenvectors for 20
amino acids

14,971

12,093

20

Energy, gradients of MM-optimized structures 1,060

Table 1. Types of parameterization data for AMBER-FB15 force field.

Reference data set. We constructed a database of ab initio calculations consisting of single-point
energies, nuclear gradients, and vibrational modes calculated for the blocked dipeptides ACE-X-
NME containing one amino acid side chain. This database is further supplemented by additional
single-point energies and gradients evaluated at optimized geometries using intermediate force
field parameter sets, described later. All energy and gradient values in the database were
respectively carried out at the RI-MP2/CBS and RI-MP2/aug-cc-pVTZ levels of theory; the
calculations were performed in the gas phase. For each dipeptide, a 24x24 grid of structures was
generated by constraining the backbone dihedral angles ¢ and y at 15-degree increments and
minimizing the energy in the orthogonal degrees of freedom; a second grid for the side chain
dihedral angles y1 and y» was carried out for all amino acids with a side chain, except for valine
and deprotonated cysteine (CYM) where the second grid uses ¢ and yi instead.

Beyond the simplest dipeptides (i.e. glycine and alanine), the potential energy surfaces
contain many local minima that cannot be comprehensively searched using local optimization
methods. Moreover, a sequence of constrained geometry optimizations through a full rotation of

a dihedral angle may not return to the starting structure, analogous to turning a corkscrew



embedded in a cork. This hysteresis is a consequence of the many orthogonal degrees of freedom

that are only locally optimized using the previous structure as the initial guess. Our approach for

scanning the potential surface attempts to find the lowest-energy local minimum in the

orthogonal degrees of freedom, as they are likely to carry a higher thermodynamic weight in the

protein. To this end we developed the following procedure to explore the conformational space

using lower levels of theory:

1.

Obtain a four-dimensional grid of structures using gas-phase simulated annealing simulations
and the AMOEBA13 polarizable force field; the number of grid points was 12, 12, 6, 6 for ¢,
w, x1 and y» respectively, giving a total of 5184 points for each amino acid.

For each structure on the four-dimensional grid, perform a MP2/6-31+G* geometry

optimization with ¢, w, y1 and y> constrained.

. For two chosen dihedral angles (e.g. ¢, y), map the four-dimensional grid of structures to the

two-dimensional grid and record the structure with the lowest energy, denoted by 9, ’EW.
Note that after step 2, only one structure for each (¢, y) grid point is recorded out of a total
of 36.

For each 2-D grid point (¢, y) containing a new lowest energy structure, initialize four

Pty
MP2/6-31+G* geometry optimizations with new dihedral angle constraints 12 12,

. Repeat steps 3 and 4 until no new lowest-energy structures are found. The end result is a

T

24x24 grid of structures with a resolution of 12,

In each iteration of steps 3 and 4, each grid point with a new lowest-energy structure is used to

launch four new geometry optimizations at the neighboring grid points, and the procedure is



carried out recursively until no more lowest-energy structures are found. As a result, each
structure at the end of the procedure is minimized over the initial configurations of its four
neighboring structures, and this condition is satisfied for the entire surface; the end result is a
grid of structures with a continuous energy surface and discontinuities in the geometry.
Following this, each structure is re-optimized at the RI-MP2/aug-cc-pVTZ level with the same
dihedral constraints. A single RI-MP2/aug-cc-pVQZ calculation at the optimized geometry
provides the means to estimate the energy in the MP2/CBS limit using Helgaker’s two-point
extrapolation.>® We also carried out a frequency calculation at the RI-MP2/aug-cc-pVTZ level
for the overall lowest-energy structure and scaled the frequencies using standard scaling factors.

Parameter optimization. The parameters were optimized using the ForceBalance software
package.*6494! ForceBalance provides a framework where the differences between force field
predictions and provided reference data are used to construct a weighted least-squares objective
function and its derivatives. A regularization term (penalty function) is applied to prevent large
parameter deviations where reference data is insufficient or the force field contains linear
dependencies. The calculation is fully specified by:

(1) the functional form of the force field, parameter space (i.e. selection of which parameters
to optimize and their interdependencies) and initial parameter values,

(2) the targets and their weights that contribute to the objective function,

(3) the prior widths that constrain the parameter deviations from their initial values, and

(4) the optimization algorithm that minimizes the objective function.

The main advantage of using ForceBalance is that the calculation is precisely specified and
systematically carried out, ensuring that the results are reproducible and significantly reducing

the effort involved when repeating the calculation with any component added or changed.



We used the functional form and initial parameters from the AMBER99SB force field; the
choice of parameter space was decided by exploring the possible combinations of options in
tuning the bond, angle, and torsional parameters, as described in the results and discussion
section. We also explored defining independent dihedral parameters for amino acid side chains,
which goes beyond the flexibility of the original AMBER99SB model. The extension of
AMBER using side chain specific parameters has previously been explored in models such as
AMBER99SB-ILDN, RSFF2*? and AMBER14SB.#

The objective function is defined as a function of the differences between the force field
predictions and the reference data, plus a regularization term that penalizes large parameter

deviations from the initial values. The three types of targets and penalty term are combined as:
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F,, represent the energies and forces determined using the MM force
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where E FMM and E

MM’ oM’
field and QM reference set, respectively. The MM and QM energies are both referenced to the

structure with the lowest QM energy. Similarly, w, =1.0 and w_ =0.1 are weighting factors for

the energy and force error terms. The angle brackets denote a weighted average over the points,



and the denominators ensure that the objective function has no physical units and the quantities

are expressed as relative errors. The weighted average is given as:

N
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W(E ) is a decreasing function of the reference energy above the minimum, plotted in Figure 1.
D=5 kcal/mol is the energy threshold below which W(E ) is a constant; above the threshold,
W(E ) becomes inversely proportional to the reference energy. U=20 kcal/mol is the upper

energy cutoff above which the weight is set to zero. A|E, —E | depends on the sign of the
MM~ oM g

MM-QM energy difference and heavily penalizes MM energies that are lower than the QM
energies. This reflects our experience that the positive and negative errors in the fit result in
asymmetric effects on the simulations. Configurations with negative E, —E o have a
spuriously large thermodynamic weight and are more likely to appear during MM sampling,
which could shift the peaks of the distribution and lead to severe errors such as incorrect

equilibrium  structures. On the other hand, configurations with positive £, —FE, have a

spuriously small weight in the MM ensemble and underestimate portions of the distribution; this



could result in overestimation of barriers and underestimation of fluctuations, which are (in a

sense) higher-order errors than incorrect equilibrium averages. Thus, enforcing E, —F o 1O be

nonnegative everywhere and using a weight function that decays with E o forces the fitting

errors into the high-energy regions, where we expect the impacts on the thermodynamic

properties to be the smallest.

2
The second term %vib represents the contributions from the vibrational frequencies evaluated

over the 20 standard amino acids:

2

N
1 modes [}/ —-V.
L _LMM oM
modes =1 cm

The QM vibrational modes are ordered by increasing frequency, whereas the corresponding MM
vibrational mode is chosen to have the largest absolute value of the dot product with the QM
vibrational eigenvector. Unlike the energy and gradient calculations, the MM energy is
minimized prior to calculating the vibrational modes.

The third term in the objective function addresses the appearance of spurious energy minima
in the MM force field in parts of configuration space not covered by the grid of structures. This
term consists of energies and gradients evaluated at MM-optimized structures as in Equation (4),
but without energy-dependent weights. We fully optimized each structure on the grid using the
MM force field without constraints and clustered the structures with a heavy-atom root-mean-
square deviation (RMSD) cutoff of 0.1 Angstrom, leading to a small number of cluster centers
for each amino acid (< 50). These structures were used to calculate MP2/CBS energies and

MP2/aTZ gradients that were added to the objective function. Because updating the force field



parameters changes the MM energy surface and the locations of minima, this cycle can be

repeated to eliminate spurious minima that appear for the new parameter set.



Parameter Type Prior Width

Bond length 0.01 nm
Bond force constant 10° kJ mol'! nm
Bond angle 5°

Angle force constant 100 kJ mol! rad

Dihedral phase m rad
Dihedral amplitude 10 kJ mol!

Table 2. Prior width values for each parameter type.

The fourth term in the objective function is the regularization term that penalizes parameter
deviations from their initial values. Since the force field parameters have different physical unit
systems, the parameter deviations must be placed on the same footing by rescaling prior to
computing the penalty function. The penalty function corresponds to a prior distribution in a
Bayesian interpretation, and thus the rescaling factors for parameter deviations are equivalent to
the prior widths. The results of the optimization does depend on the choice of prior widths, but in
a much less sensitive way compared to the force field parameters themselves.

The objective function was minimized using a variation of the Levenberg trust-radius

method***” implemented in ForceBalance. A parameter update (kn+1 - kn) is calculated as:

K, ~k,=[H], +(2-1)'1] G|, (7)

a 2
here G =—y* and H = % are the gradient and Hessian matrix of the objective
W = ok X '~k ok © ) 1S

function in parameter space, and 4 is a parameter that affects the length of the optimization step.
The Hessian is approximated using the Gauss-Newton method. For the calculations in this paper,
the objective function is much less expensive to evaluate than its derivatives — so a line search

over /A is performed rather than taking an optimization step of a fixed length. ForceBalance uses



the Brent method as implemented in SciPy to perform the line search. The quadratic form of the
coefficient (A — 1)2 maps all A values on the real line to nonnegative values and ensures that the

line search is well behaved.
COMPUTATIONAL METHODS

The ab initio reference calculations were carried out in a workflow involving several
software packages. The initial high-dimensional dihedral grid of structures was generated from
restrained simulated annealing simulations using the AMOEBA protein force field as
implemented in TINKER.* The recursive search over the two-dimensional dihedral grids was
performed using a Python program that interfaces with the Q-Chem 4.1 quantum chemistry

4950 and uses the Work Queue distributed computing library>! to manage a large number

package
of Q-Chem calculations running in parallel. The calculations of final optimized structures,
energies and gradients were performed in Psi4.’? Frequencies were obtained in Psi4 via
numerical differentiation of the analytic gradients.

The parameterization calculations were performed using ForceBalance via an interface to
GROMACS 4.6.5, and contained two fundamental types of MM calculations — single-point
energy / gradient evaluations, and frequency calculations. In the frequency calculations, the MM
energy was fully minimized using the L-BFGS algorithm prior to calculating the Hessian.
ForceBalance also uses the Work Queue library to evaluate individual fargets in parallel,
providing a significant speed-up compared to running all of the MM calculations sequentially.

The validation calculations were performed using multiple software packages. The
equilibrium sampling simulations initialized from the crystal structure were carried out using

GROMACS 4.6.5 running on standard Linux HPC hardware. The analyses of the equilibrium

simulations to calculate RMSD from the crystal structure and NMR scalar couplings / chemical



shifts were carried out using the GROMACS analysis tools, the MDTraj trajectory analysis
package,’* and the ShiftX2 chemical shift prediction software®.

The temperature replica exchange simulations were carried out using the GPU-accelerated
version of AMBER14 running on the OLCF Titan supercomputer, and analysis was performed
using the cpptraj>® and MDTraj*’ software packages. The simulations of the denatured state
ensemble were carried out on the Open Science Grid (OSG), a distributed computing network

that utilizes donated idle CPU cycles from research computing facilities.*®



RESULTS AND DISCUSSION

Model Bond Angle | Dihedrals Side N MUE Objective
Chains | (Params) |(kcal/mol)| Function >
Initial Parameters (A99SB) 2.78 38.0
Prelim 1 No No ky No 69 1.69 16.8
Prelim 2 No No ko, 0o No 138 1.65 12.6
Prelim 3 ky ko ky No 210 1.34 11.9
A99SB-V| ks, by ko, 0o ko, @0 No 420 1.00 6.0
AMBER-| ks, bo ko, B0 ko, 9o ko, 9o 1406 0.80 4.1
FBI15

Table 3. Optimized objective function (%) values in a preliminary run of ForceBalance using
only the energies from the first two rows of Table 1. The results indicate that all parameter types
have a significant impact on lowering the objective function. The final two lines are A99SB-V
and AMBER-FB15 respectively.
Choice of optimization parameters. In order to assess the significance of optimizing different
types of parameters on the final result, we tested several combinations of the following binary
choices: (1) including bond and angle parameters, (2) allowing side chain torsions to take on
distinct parameter values, and (3) including equilibrium geometry parameters in addition to the
force constants and amplitudes. We ran several optimizations using a simplified version of the
objective function where only the (¢, y) dihedral scans were included (first row of Table 1); the
results for different choices of parameters are given in Table 3. Our results show that tuning the
backbone dihedral parameters have a significant effect on decreasing the objective function (not
surprising since the target data involves scanning the energy over these degrees of freedom).
Perhaps more surprising is the effect of including bond and angle parameters in the
optimization; comparing the first and third rows of Table 3 show that including the bond and

angle force constants have an effect of lowering the objective function by ~30% compared to

using only the dihedral force constants. Allowing the equilibrium geometry parameters to be




optimized results in a further 50% decrease in the objective function as shown in the fifth row of
Table 3. Based on these results, we decided to allow all parameter types to vary in our
optimizations.

The model named A99SB-V is the optimized result using all of the A99SB bonded
parameters and the data in Table 1. After adding some parameters corresponding to alternative
protonation states of amino acids, the total number of adjustable parameters in A99SB-V was
434, and the mean unsigned error (MUE) of the potential across all of the dihedral scans was
1.90 kcal/mol. We also developed a variant of this force field where the side chain torsion
parameters for different amino acids were all allowed to vary independently; this led to a
decrease of 37% in the objective function, but the number of parameters increased greatly to
1406. Because this force field reproduced experimental results more accurately than A99SB-V
and several other models in the validation calculations, we named it AMBER-FBI15 and

recommend it here for broader use.

20

Potential (kcal/mol)

-1560-120 -90 -60 -30 0 30 60 90 120 150

Phi (degrees)

Figure 1. Plot of the potential energy in alanine dipeptide calculated for energy-minimized
structures at the MP2/aug-cc-pVTZ level with the (¢,y) dihedral angles constrained. Color
indicates the relative potential energy with respect to the minimum.



Optimized parameter values. Figures S1-S3 in the Supporting Information show the original and
optimized parameter values in AMBER-FB15 grouped by parameter type. The optimized
equilibrium bond and angle parameters are all within 5% of their initial values and fall very close
to the straight line. Bond and angle force constants show slightly larger deviations; some force
constants involving the amide bond are reduced by up to 10% from their initial values. The
torsion phases and amplitudes are more widely distributed, largely because the initial guesses for

side-chain parameters are set to zero. With few exceptions, the equilibrium torsion phases fall

within% radians 30 degrees of their initial values, and the torsion amplitudes seldom change by

more than 4 kJ/mol (1.0 kcal/mol). The largest parameter deviations are observed for arginine
and lysine, which possess charged side chains; this is expected due to the especially strong
electrostatic interactions in the gas-phase QM calculations, which contributes large terms to the
objective function. We note in passing that the usage of gas-phase QM data is most likely to fail
for charged systems, but choosing the most appropriate QM method to fit a condensed-phase
fixed charge model remains an important challenge.>’

Quality of fit. Figure 1 shows the potential surface of alanine dipeptide evaluated at the
constrained energy minima. As expected, AMBER-FB15 produces a closer fit to the QM energy
surface relative to A99SB-ILDN (equivalent to A99SB for alanine). Comparison of the QM and
MM surfaces reveals that A99SB-ILDN fits the low-energy regions (in blue) much more
accurately than the high-energy regions (in red), and high-energy regions are systematically
overpredicted. By contrast, AMBER-FBI15 significantly reduces (but does not eliminate) the
overprediction of the energy, and the low-energy basins with energy less than 5 kcal/mol above

the minimum are significantly broadened. We expect that the broader energy basins in low-



energy regions will lead to larger thermodynamic fluctuations at finite temperatures, which may

result in more accurate predictions (as explored in the validation simulations).
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Figure 2. MM vs. QM potential energies for MM-optimized geometries of threonine dipeptide.
Each data point corresponds to a local energy minimum predicted by the force field. The Cycle 1
parameters were fitted to QM data from the torsion scans only. The QM data points at the local
minima of Cycle 1 are added to the optimization of the Cycle 2 parameters. Cycle 3 is the final
parameter set. The spurious MM energy minima (points far below the diagonal line) are
eliminated in later cycles.

Figure 2 shows the comparison of QM and MM energies at the local minima of the optimized
force field for threonine dipeptide. The initial parameter set (red crosses) predicts the relative
energies with a RMS error of 2.16 kcal/mol, and several local minima are within 2 kcal/mol of
the lowest-energy structure; by contrast the QM relative energies are significantly higher,
ranging between 2 and 6 kcal/mol above the minimum. These local minima with spuriously low
relative energies are biased towards higher probability in finite-temperature simulations, which
could adversely perturb the equilibrium structure. These local minima are added to the objective

function (third term in Equation (2)) to obtain a new set of parameters, which predicts a new set



of local minima with relative energies that match the QM calculations much more closely
(yellow crosses). Repeating the addition of local minima to the objective function leads to
smaller improvements in the predicted relative energies (blue crosses), and the resulting
parameter set is kept as the final version.

Equilibrium properties.

In order to assess the ability of AMBER-FBI15 to reproduce equilibrium properties of folded
proteins, we ran simulations of 8 proteins: the third IgG-binding domain from streptococcal
protein G, abbreviated as GB3 (PDB ID: 11GD), acetyltransferase from the COG2388 family
(2EVN), lambda repressor taken from the repressor-operator complex (1LMB), lysozyme from
bacteriophage lambda (1AM?7), N-terminal Domain of Ribosomal Protein L9 or NTL9 (2HBA), a
variant of the Trp-cage miniprotein (2JOF), ubiquitin (1UBQ), and chicken villin subdomain
HP-35 or villin headpiece (2F4K). Each protein was simulated at 298.15 K using 7 force fields
and 4 water models. For each simulation, the RMSD of the protein backbone to the PDB
reference was computed using the residue intervals specified in Table S1, and the RMSD
probability density function estimated via a kernel density estimate (KDE). RMSD of the
averaged structure was also computed from these simulations. This data is illustrated for three
proteins in Figure 3, and the rest are provided in Figure S4. The diamond markers denote the
RMSD of the averaged Cartesian coordinates over the whole trajectory. Two protonation states
of lysozyme were considered — one state is determined using the pKa values of the amino acids,
and the other is determined using the H++ pKa prediction software. Each of the 252 simulations

was performed for at least 300 ns with an average trajectory length of 500 ns.
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structure classification.
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Figure 5. Scatter plots of experimental vs. calculated NMR three-bond scalar couplings. Two
proteins are shown (left: bacteriophage lysozyme, PDB ID 1AM?7, right: GB3, PDB ID 11GD)
and three models (top, AMBER99SB-ildn/TIP3P; middle, AMBER99SB-nmr/TIP3P; bottom,



AMBER-FB15/TIP3P-FB from this work.) Symbols represent the atom pair involved in the
coupling, and colors represent the position of the residue in the protein sequence.

Simulating a protein in water at ambient conditions may not reproduce the crystallographic
structure exactly, due to differences in the environment and thermodynamic ensemble. However,
crystal structures are often the best structural data available, and it is reasonable to assume that
proteins in water stay reasonably close to the crystal structure unless experiments show strong
evidence to the contrary. Thus, the RMSD of the simulation trajectory to the crystal structure is
routinely considered as an important qualitative validation test of a protein force field, and
simulations that deviate significantly from the crystal structure in a short time (i.e. on the sub-
microsecond timescale) are interpreted as evidence of force field errors.

Figure 3 shows the RMSD time series for four proteins simulated using four combinations of
the protein force field and water model. The protein remains folded in all simulations, and the
simulations differ in terms of the overall RMSD to the crystal structure. In the case of ubiquitin,
all models have nearly identical RMSD distributions, except for AMBER-FBI15/TIP3P-FB
which has a small shoulder in the distribution indicating more flexibility in the backbone (also
see Supporting Figure S4). In lysozyme and GB3, AMBER-FB15 predicts an RMSD value in
between that of A99SB-ILDN and A99SB-NMR; when the water model is changed to TIP3P-FB,
the RMSD distribution is shifted to lower values. In all of the simulations except for
acetyltransferase, the averaged backbone Cartesian coordinates of the AMBER-FB15/TIP3P-FB
remains very close to the crystal structure with a RMSD of 1.0 A or less. The RMSD distribution
for lysozyme is significantly broader than ubiquitin and GB3, and the A99SB-ILDN simulation
possesses some bimodal character; this may indicate larger conformational changes on

timescales exceeding microseconds that have not been fully sampled in our calculations.



To enrich our understanding of model dependence on equilibrium stability, Lipari-Szabo S2
order parameters were computed for proteins and compared to the available experimental data.
Previous studies have shown that simulation lengths exceeding 100 ns are required for accurate

% a condition that is satisfied by our calculations. These

estimation of these order parameters,®
simulated observables were determined from the trajectories using the isotropic reorientational
eigenmode dynamics®! (iRED) as implemented in the cpptraj program for windows of length 2, 4,
and 8 ns. The per-residue deviation from the experimental NMR measurements are shown in
Figure 3. These order parameters measure the orientational disorder of the protein backbone N-H
vectors on the sub-nanosecond timescale. For all three proteins simulated, we found AMBER-
FB15 to produce lower S? values by 0.02-0.03 compared to A99SB-ILDN and A99SB-NMR. In
the cases of ubiquitin and GB3, AMBER-FBI15 predicts significantly lower mean signed errors
(MSE), indicating that the increased disorder is consistent with experiment. AMBER-
FB15/TIP3P-FB predicts the smallest root mean squared errors (RMSE) for these two proteins.
In the case of lysozyme, the experimental measurements have many S? values in excess of 0.9,
higher than all of the simulated values; here AMBER-FBI15 predicts the largest MSE although
the RMSE is still very close to those of A99SB-ILDN and A99SB-NMR. An earlier study by
Smith and coworkers applied an upper threshold of 0.9 to the experimental order parameters;®>63
when using this threshold, all of the RMSE values are significantly reduced with AMBER-FB15
producing the lowest error (Figure S5).

The protein structure from equilibrium MD can also be related to NMR experiments using
empirical relations to map the three-dimensional structure to the NMR observable. Three-bond J-

couplings are often used to compare simulated dihedral angles to experiment; this requires the

use of an empirical Karplus relation, which is developed by fitting the crystal structure backbone



and side chain dihedral angles to the NMR observable. The comparison of calculated to
experimental NMR observables is an important validation test, but perfect agreement is not
expected due to the assumptions and residual errors of the empirical model. Furthermore,
because the Karplus relations implicitly include some effects of dynamics in mapping the crystal
structure to the solution NMR experiment, using molecular dynamics snapshots as an input to

this mapping results in double-counting the effects of dynamics®+6

which may lead to additional
errors.

Figure 5 shows the RMS error of the computed NMR three-bond J-couplings compared to
experiments for two proteins, bacteriophage lysozyme and GB3. The recommended model in this
work (AMBER-FB15/TIP3P-FB) is compared to A99SB-ildn and A99SB-nmr, both with the
TIP3P water model. From examining the left column, the AMBER-FB15/TIP3P-FB model
predicts the backbone J-couplings of bacteriophage lysozyme in closer agreement with
experiment. The right column shows that A99SB-ildn and AMBER-FB15 both have improved
results over A99SB-nmr, which could be explained by the explicit parameterization of side chain
torsional potentials. We also calculated J-couplings for two other proteins (ubiquitin and NTL9,
Figure S6), and found small differences between the RMSE values compared to experiment on
the order of 0.1 — 0.2 Hz. Although the J-couplings shown here were calculated using the
Karplus parameters of Ruterjans and coworkers,%-%” we note that the RMSE values change on
the order of 0.1 when using the parameters of Bax and coworkers®®%° and does not affect the
qualitative interpretation of the results.

The NMR chemical shifts on 'H, 1*C and >N can be predicted from MD trajectories using

empirical models such as SHIFTX2,°> which take into account a rather large number of

geometric features and fitting parameters to represent the local chemical environment. Similar to



Karplus relations for J-couplings, the chemical shift models are fitted using structural input from
crystallography. The RMSE of the predicted chemical shifts are plotted in Figures S7 and SS8.
We observed that the prediction quality depends heavily on the protein, in contrast to the case of
three-bond J-couplings. The RMSE is often within the range of the intrinsic error of SHIFTX2
itself; in an extreme case, the RMSE for ubiquitin is smaller than the SHIFTX2 intrinsic error,
which corresponds to y? statistics of less than one and does not reflect the differences between
force fields in a meaningful way. From this, we concluded that the chemical shift predictions
were insufficient to distinguish AMBER-FB15 from the literature models.

The results in this section show that AMBER-FBI15 / TIP3P-FB does not degrade the
accuracy of simulating proteins in their native structure at ambient conditions, which is an
important validation test for any modern protein force field. Our claim is limited to the systems
and time scales studied in this paper, but it lends important credibility to this model for future
simulations of interesting biomolecular problems. Furthermore, equilibrium properties are no
longer a frontier for protein force field development, with temperature dependence and
characterization of the denatured state ensemble being much more important. We will focus our

discussion on these important frontiers in the next section.
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Figure 6. Temperature dependence of secondary structure for two small peptides as a function of
temperature and several force field / water model combinations. The performance of the
AMBER-FB15 / TIP3P-FB model combination is the dark blue trace in the middle row. Left
column: The helical fraction of Ac-(AAQAA);-NHz. Right column: The fraction folded of
CLNO025. Top row: Comparison of multiple protein force fields using TIP3P water model.
Middle row: Same comparison using TIP3P-FB water model. Bottom row: Comparison of four
water models using AMBER-FBI5 protein force field.

Temperature dependence. Several of the most popular protein force fields in the past ten years

have succeeded at reproducing equilibrium structures of folded proteins but failed to predict an



accurate temperature dependence of the structural ensemble. In previous work, Best and
Hummer proposed the A03* and A99SB* models which were directly fitted to reproduce helical
fractions at finite temperature;’® more recently, Wu and coworkers showed improved
performance for temperature dependence adding extra 1-5 and 1-6 Lennard-Jones interaction
terms and fitting the potentials to experimentally derived free energy distributions.*? Here we
consider the predicted temperature dependence of AMBER-FB15 for two model systems; Ac-
(AAQAA)3;-NH, (abbreviated here as AAQAA3), a 15-residue peptide with partial a-helical
character at room temperature, and CLN025, a 10-residue peptide with mostly b-hairpin structure.
These two proteins have a significant temperature dependence of the folded fraction in the range
280 — 370 C as measured by circular dichroism’' and temperature-dependent infrared
spectroscopy experiments.’? The results presented in this section are taken from NVT replica
exchange simulations as implemented in AMBER.”3:74

The left column of Figure 6 shows the temperature dependence of Ac-(AAQAA)3;-NH; for
combinations of protein force fields and water models compared to experiment. Our results for
published models show a high degree of consistency compared with existing protein force field
validation studies of temperature dependence performed by Lindorff-Larsen and coworkers.”
The top left and middle left panels compare seven protein force fields using the TIP3P and
TIP3P-FB models respectively. The data indicates that protein force fields developed to
reproduce equilibrium properties of folded proteins may fail to describe the temperature
dependence of partially folded proteins; the A99SB and A99SB-ildn force fields significantly
underestimate the a-helical fraction whereas A99SB-nmr significantly overestimates it. The two
parameter sets discussed in this paper, A99SB-V and AMBER-FBI1S5, also differ significantly in

their temperature dependence. A99SB-V overestimates the helical fraction and behaves similarly



to A99SB-nmr whereas AMBER-FBI15 has a temperature dependence mostly consistent with the
experiment.

The right column of Figure 6 shows temperature dependence plots for the CLN025 peptide, a
small model of a beta hairpin. Due to the high cost of these simulations, we skipped the older
models (A96, A03 and A99SB) and compared four protein force fields only. The top right and
middle right panels show that A99SB-ildn and A99SB-nmr both overestimate the folded fraction,
in contrast to the results for Ac-(AAQAA)3;-NH> where A99SB-ildn and A99SB-nmr are on
either side of the correct result. AMBER-FB15 again comes closest to reproducing the
experimental result.

The bottom left panel of Figure 6 compares temperature trends of Ac-(AAQAA)3-NH> using
the AMBER-FBI15 protein force field and four different water models. The choice of water
model affects the helical content; the simulations using TIP3P predict the most helical content,
followed by TIP3P-FB; the best agreement with experiment is given by TIP3P below 300K and
TIP3P-FB above 300K. By contrast, the simulations using TIP4P-Ew and TIP4P-FB predict a
much lower helical content. In a similar fashion, the bottom right panel of Figure 6 shows the
temperature trends in the folded fraction of CLNO025 using the AMBER-FBI15 force field and
four water models. The TIP3P simulations predict the highest folded fraction, followed by
TIP3P-FB, then TIP4P-Ew and TIP4P-FB. Figure S9 shows that using the TIP4P-Ew and TIP4P-
FB water models have the effect of decreasing the amount of protein structure for all seven
protein force fields. The best overall agreement with experiment is given by the AMBER-
FB15/TIP3P-FB simulations.

The effect of changing the water model on peptide stability is an interesting feature of the

simulations. Clearly, the accuracy of the protein temperature dependence does not depend



strongly on the accuracy of the water model, as both the TIP4P-Ew and TIP4P-FB models are
highly accurate for computing the properties of water. The ability of protein simulations to
accurately reproduce temperature dependence with TIP4P-Ew has been shown for model
peptides where abundant NMR data is available, requiring changes in only one backbone
dihedral parameter.”® Moreover, the nonbonded protein parameters of the protein were not
optimized, which will certainly have a strong effect on the temperature dependence. We expect
that improved derivations of point charge models from quantum chemistry calculations’” and
accompanying reparameterization of the Lennard-Jones interaction terms’® will produce more
accurate descriptions of temperature dependence for realistic water models. In light of all these
considerations, it is still instructive to search for other trends in the water models that correlate
well with the temperature dependence trends observed here.

When CLNO025 is simulated with AMBER-FB15 (and when AAQAA; is simulated with
A99SB-V), the helical/folded fraction takes on a wide range of values between 0.1 and 0.9; there
is also a clear trend of peptide stability that goes as TIP3P > TIP3P-FB > TIP4P-Ew > TIP4P-FB.
We could not find a significant correlation between the peptide stability and the basic properties
of the water models, such as the internal energy or magnitude of the dipole moment. On the other
hand, the peptide stability was significantly correlated with the average interaction energy

between protein and water (Figure 7).
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Figure 7. Correlation between average protein-water interaction energy and fraction of
secondary structure. Left: AAQAA simulated with A99SB-V (left). Right: CLN025 simulated
with AMBER-FBI5 (right). Each plot contains four simulations with four water models. Error
bars represent one standard error.

We tested the effects of changing the water model “in-place” by replacing the water model in
the simulation trajectory, creating a 4x4 grid where the simulation trajectory using model X was
used to calculate the protein-water interaction using model Y. We found that (1) changing the
water model from TIP3P—TIP3P-FB—TIP4P-EW—TIP4P-FB increased the protein-water
interaction strength independent of which trajectory was used, and (2) the conformational
ensembles from TIP3P—TIP3P-FB—TIP4P-EW—TIP4P-FB had increasingly strong protein-
water interactions independent of which water model was used (Figure S10). Our analysis
indicates that having stronger water-protein interactions causes proteins to become less stable.

While this is an encouraging sign of progress, we also note that all of the potentials
underestimate the slope of the temperature dependence. One possible reason is that the simulated
and experimental ensembles are different; the experiment is performed at constant pressure

whereas the replica exchange simulations could only be done in the NVT ensemble. If the



simulations had been run in the NPT ensemble instead, the density of water would have
decreased at higher temperatures, which may have an effect on the helical fraction. Another
possibility is the pairwise additive approximation from the force field, which neglects many-
body effects such as those arising from explicit electronic polarization. Including the electronic
polarizability may increase the cooperativity of helix formation and lead to a steeper temperature
dependence.” We intend to apply this parameterization strategy and ab initio data set toward the

parameterization of a polarizable force field in forthcoming work.

TIP3P TIP3P-FB | TIP4P-EW | TIP4P-FB
A96 1.80 (0.10) | 1.99 (0.16) | 1.92(0.10) | 1.88(0.08)

A03 1.42 (0.06) | 1.77(0.15) | 1.65(0.08) | 1.79 (0.12)
A99SB 1.69 (0.11) | 1.83(0.14) | 1.75(0.09) | 1.84(0.11)
A99SB-ILDN | 1.70(0.13) | 1.77(0.12) | 1.82(0.11) | 2.01(0.11)
A99SB-NMR | 1.68(0.10) | 1.82(0.10) | 1.75(0.11) | 1.79 (0.08)
A99SB-V 1.64 (0.08) | 1.91(0.13) | 1.80(0.10) | 1.75(0.08)
AMBER-FB15 | 1.47(0.07) | 1.77(0.10) | 1.75(0.08) | 1.88(0.10)

Table 4. Average radius of gyration (R;) of the denatured state ensemble of GB3 simulated using
seven protein models and four water models. Bold entries denote average R, values in excess of
1.9 nm. The experimental measurements are 2.2 nm (FRET) and 2.6 nm (SAXS) from Ref. 79.

Denatured state ensemble. A current frontier in protein simulations is the description of the
denatured state ensemble (DSE), a vast conformational space where protein conformations are
extended relative to the native state.®® The DSE is closely connected with intrinsically disordered

proteins,?!

which do not possess a well-defined native state and may play important roles in
neurological disorders.®> Experimentally, the average radius of gyration of denatured proteins
may be inferred from Forster resonance energy transfer (FRET) and small angle X-ray scattering
(SAXS) data.®?

Here we simulated the DSE of GB3 by first denaturing the protein by running 20 ns

simulations at 600 K for all 28 protein / water model combinations; we then extracted five



snapshots at 1 ns intervals from the end of each trajectory, creating 140 initial structures in total.
We then launched 10 ns simulations for each of the 140 initial conditions for all 28 protein /
water model combinations, a total of 3,960 simulations total. 2,226 of these 3,960 simulations
ran to completion, representing about 800 ns of simulation time for each protein / water model
combination. Our results are summarized in Table 4, which shows that all tested protein models
systematically underestimate the radius of gyration in comparison with experiment. Although the
short simulation time of 10 ns is not enough to fully sample this large ensemble,* the R, values
demonstrate some significant trends with respect to the water model; for example, the TIP3P
simulations predict significantly more compact distributions (on average 0.2 nm smaller than
TIP3P-FB). TIP3P-FB, TIP4P-Ew and TIP4P-FB produce average R, values that are within the
margin of statistical error, but they are all significantly less than the experimental values derived
from FRET or SAXS measurements, which are 2.2 and 2.6 nm respectively. Thus, we conclude
that none of the protein/water model combinations are able to accurately describe the DSE.
Efforts to increase the strength of protein/water interactions by increasing the van der Waals ¢
parameters of water have shown some promising results,3 though more studies are needed to

assess whether this approach applies equally well to the large sequence space of IDPs.%



Conclusion

The AMBER-FBI15 protein force field combines the well-established model of
intermolecular interactions from AMBER94 with a systematic and thorough optimization of the
intramolecular terms. The key difference in the optimized result is a significant lowering of the
potential in regions away from the energy minima, which is expected to yield greater flexibility
in finite temperature simulations. We validated the new model with extensive simulations on
multiple proteins; we found that the predictions of equilibrium thermodynamic properties were
equivalent in accuracy to published models, and the predictions of temperature dependence were
significantly improved. Replacing the TIP3P water model with the updated TIP3P-FB model
resulted in overall improved accuracy of the temperature dependence predictions. Supported by
the evidence in this paper, we are optimistic that the model combination AMBER-FB15/TIP3P-
FB will yield accurate predictions in simulations of proteins, particularly when fluctuations away
from equilibrium, conformational changes and/or temperature dependence are expected to play
important roles. Our work also highlights the limits of reparameterizing the intramolecular part
of the potential, as the predicted properties of the denatured state ensemble are still significantly
different from experimental measurements. Future improvement of intermolecular interactions in
force fields should focus on improving the description of this important aspect of protein
chemistry.
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