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Abstract—In this work, we analyze the performance of the
downlink of a cell-free massive multiple-input multiple-output
(mMIMO) system considering finite capacity fronthaul links.
We model the locations of the remote radio heads (RRHs)
and the users as two independent binomial point processes
(BPPs). Conditioned on the locations of the RRHs and users,
and considering imperfect channel state information (CSI) and
conjugate beamforming at the RRHs, we derive an achievable
rate for a randomly selected user in the network. Further, based
on the dominant RRH approach, we provide an approximate but
accurate expression to analytically evaluate this rate averaged
over the spatial realizations of RRH and user locations. From our
analysis, we arrive at the following conclusions: (1) the achievable
average system sum-rate is a strictly quasi-concave function of
the number of users in the network, (2) for the same number
of antennas in the system, the optimal number of antennas per
RRH to maximize the average user rate as well as average system
sum-rate depends on the quality of the CSI. While for a high-
quality CSI a more collocated system is preferred, for low-quality
CSI it is better to consider a more distributed RRH deployment.

Index Terms—Cell-free massive MIMO, stochastic geometry,
fronthaul capacity, binomial point process.

I. INTRODUCTION

Massive multiple-input multiple-output (mMIMO) technol-
ogy is poised to revolutionize the communication networks as
it has been proven that under ideal conditions it eliminates the
deleterious effect of channel fading and additive noise while
negating the effect of network interference [1]. Further, having
a large number of antennas at the base stations not only boosts
spectral efficiency but also improves the energy efficiency of
the overall network [2]. Traditionally, network densification
has played a leading role in meeting the demand for higher
network throughput. A similar trend is expected to continue
for future wireless networks as well. This increasing density of
nodes can be leveraged to implement mMIMO in a distributed
manner as is envisioned in the form of cell-free mMIMO [3],
[4]. The fundamental concept of cell-free mMIMO is similar
to that of network MIMO, where a large number of geo-
graphically separated remote radio heads (RRHs) are centrally
controlled by a baseband signal processing unit to serve users
in its service region. Under the ideal assumptions such as
unlimited fronthaul capacity, a fully distributed RRH setup is
known to be better compared to semi-distributed or collocated
setups in terms of user spectral efficiency. However, if one
considers all the elements of a cell-free massive MIMO system
such as the imperfect channel state information (CSI), finite
capacity of fronthaul links, and beamforming based on local
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CSI at the RRHs, it is not clear whether it is better from
the system performance perspective to have fewer RRHs with
more antennas per RRH or vice versa. Motivated by this, in
this work, our goal is to present a comprehensive analysis
of cell-free mMIMO setup considering the finite capacity of
fronthaul links and beamforming based on local imperfect CSI.

Related works: While the understanding of collocated
mMIMO is quite mature, the research on cell-free mMIMO
with realistic system assumptions is still evolving. The perfor-
mance analysis of cell-free massive MIMO with imperfect CSI
and power control is presented in [3], [4] for both downlink
(DL) and uplink (UL). However, these works assume an
unlimited capacity for the fronthaul links. In order to reduce
the load on fronthaul links, a user-centric cell-free mMIMO
approach and a compute-and-forward transmission approach
are proposed in [5] and [6], respectively. However, these works
do not characterize the impact of limited fronthaul capacity on
system performance. The effect of limited fronthaul capacity
for the UL of cell-free mMIMO is studied in [7], where authors
characterize the effect of quantization error on user rate and
propose a max-min power control algorithm so that each user
gets a uniform rate. It is worth mentioning that performance
analyses in these works are based on Monte Carlo simulations.

Another set of relevant prior works focus on devising
compression algorithms while taking into account the limited
fronthaul capacity in problems such as distributed antenna sys-
tems, coordinated multipoint, and cloud radio access networks.
In [8], [9], authors provide information theoretic insights
regarding the capacity of a backhaul-constrained distributed
MIMO system. To make the analysis tractable, usually, a
simplified system model is considered. For example, in [8]
a linear modified Wyner model is considered where only two
neighboring base stations cooperate to serve a user. In [9],
authors have provided useful insights regarding backhaul-
constrained capacity regions for a two transmitter and two
receiver model. Extending the insights obtained from infor-
mation theoretic analyses, in other notable works, authors
use optimization framework to devise compression algorithms
that efficiently utilize the fronthaul capacity constraints while
maximizing a certain performance metric (e.g. sum-rate) (cf.
[10], [11]). A comprehensive overview of such works can
be found in [12]. While these works provide useful signal
processing tools for efficient system design, it is necessary to
have a mathematically tractable model of these systems to get
a comprehensive understanding of the system performance.
From this perspective, analytical evaluations of the downlink
of distributed antenna systems are presented in [13]-[17] and
the references therein. The performance evaluation is usually
done through capacity bounds. Although these works provide
useful insights without resorting to Monte Carlo simulations,



they do not consider the limited fronthaul capacity or imperfect
CSI in their analyses. Further, a few of these works present
system analyses that require the global CSI to be present
at the baseband unit (BBU). Since in cell-free mMIMO the
channel information is likely to be available only at the RRHs,
a distributed beam-forming approach such as sub-optimal
conjugate beamforming (CB) is a more viable option. Hence,
the inferences drawn in these works may not hold for cell-free
mMIMO systems as envisioned.

Contributions of the work: We analyze the DL performance
of a cell-free mMIMO system using tools from stochastic
geometry. We consider a finite service region and model the
locations of the RRHs and users as two independent binomial
point processes (BPPs). We take into account the limited
capacity of the fronthaul links between the BBU and the RRHs
and imperfect CSI at the RRHs. Each RRH performs CB
adhering to an average power constraint. For this system setup,
we derive an achievable rate for a randomly selected user
conditioned on the locations of the RRHs and users. Further,
leveraging relevant distance distributions for a BPP, we also
provide an approximate expression to analytically evaluate
the user rate averaged over RRH and user locations. From
our analyses, we infer that the average system sum-rate is a
strictly quasi-concave function of the number of users and the
optimal number of users to achieve the maximum system sum-
rate increases with increasing fronthaul capacity. Further, in
contrast to the established notion that fully distributed MIMO
is superior to the collocated MIMO, our results suggest that in
presence of high-quality CSI at the RRHs, a less distributed
form of cell-free mMIMO is better, i.e. for an equal number
of antennas in the system, it is better to deploy a fewer RRHs
with more antennas per RRH.

II. SYSTEM MODEL FOR DISTRIBUTED MASSIVE MIMO

We limit our attention to the DL of a cell-free mMIMO sys-
tem. We assume that M/ RRHs equipped with N antennas each
are uniformly distributed over a finite circular region of radius
R, centred at origin, i.e. Bg_(0). Let ®, = {r1,r2,...,rrr}
be the set of the locations of these M RRHs. These RRHs
collectively serve K single antenna users that are uniformly
distributed over Bg,_ (o). Let &, = {uj,ug,...,ux} be the
set that contains these locations. Note that by construction,
®,. and ¢, form two independent BPPs. Further, the distance
between a user at u; and an RRH at r,, is denoted by d,,x-
As assumed in the cell-free mMIMO literature, we consider
that M > K. All the RRHs are connected to a BBU through
a fronthaul network, where the capacity of each fronthaul link
is C. Due to this limited capacity, the BBU employs a lossy
compression scheme to forward user symbols to the RRHs.

A. Compression at the BBU

We first discuss the effect of compression on the user
symbols. Let g be the symbol intended for the k-th user
in the network, and q = [q1,¢2,...,qx]|’ be the signal
vector consisting of all the symbols to be transmitted to the
users. We consider that q is a circularly symmetric complex
Gaussian random vector and q ~ CN (OK,quK), where
pe =E[|q1]*] =E [|g2/?] = ... =E [|gx|?]. Using a lossy
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Fig. 1. A representative network diagram of the system, where RRHs with
possibly multiple antennas are connected to a centralized BBU through limited
capacity fronthaul links.

compression scheme, the BBU transmits § = [g1, G2, . . . , Gx |
over the fronthaul links to the RRHs. Similar to [8], we
consider § = q + q, where @ ~ CN(0k,p;lk) is the
compression error vector and p; = E [|q1?] = E [|3[*] =
= E [|q~K|2]. Further, we assume that q and q are
uncorrelated. Since both are Gaussian random vectors, they
are independent as well. From the above exposition, it is clear
that q ~ CN'(0k, (pg + pg)Ik). If E [|gx|?] is same for all k
and is fixed, then both pg, p, can be argued to depend on the
fronthaul capacity C, as discussed in the following lemma.

Lemma 1. For a fronthaul capacity C' and number of users
K in the network, p, = (1 —2_C/K)IE [lGe|?] and p; =
2-CY/KE [|Gx|?].

Proof: The amount of information that can be transmitted
from the BBU to each RRH is upper limited by the fronthaul
capacity C. Hence, we write I(q;q) < C =

K K
h(g) —h(dlg) <C = Zh(éi) - Zh(éilqi) <C
= logy(me(pq + pg)) — log, (;epq) <C/ K,

where I(x;y) denotes the mutual information between two
random variables = and y, h(z) denotes the differential entropy
of a random variable z, and the last step follows from the
fact that ¢;s and ¢;s are complex Gaussian random variables.
Ideally, the BBU would like to transmit the maximum informa-
tion, which is ensured by introducing minimum error to each
symbol. Hence, the minimum value of p; while satisfying the
capacity constraint can be obtained by solving the following
equation:

logy (14 pg/pg) = C/K = pg/pg =295 — 1.

The expression in the lemma follows directly using the fact
that pg + pg = E [|Gx|?]. If we consider that E [|g|?] = 1,
then p, = (1 — 27Y/K) and pg = 27C/X. -

Remark 1. We consider that the BBU equally allocates the
fraction of the fronthaul bandwidth to the symbols of each
user in the network. Moreover, we consider the average effect
of compression error on each symbol. More sophisticated



information scheduling can be used to improve the overall
system capacity, which is a promising direction for future
work.

B. Uplink channel estimation

Let gk = v/ Bmihmi be the channel gain between the m-
th RRH and the k-th user, where 3,,; captures the large-scale
channel gain and h,,,;, ~ CN(0x,Iy) captures the small-scale
channel fluctuation. We consider that the large-scale channel
gain [, is only due to the distance dependent pathloss, i.e.
Bk = l(dmk)’l, where d,,,, is the distance between the m-th
RRH and the k-th user, and () is a non-decreasing pathloss
function presented in Section IV.

In order to obtain the channel estimates, we consider that
each user uses a pilot from a set of K orthogonal pilot
sequences of length 7, symbol duration, which is assumed to
be less than the coherence interval. Further, the transmit signal-
to-noise ratio (SNR) of each symbol in a pilot is p,. Since we
assume that these K sequences are orthogonal to each other,
T, > K and 'z,bth,bj = 1(i = j), where 1(-) denotes the
indicator function. The general case where number of users is
more than the number of orthogonal pilots will be considered
in the extended version of this work. Let the pilot used by
the k-th user be 1),,. During the pilot transmission phase, the
received signal matrix at the m-th RRH is

K
m = ngmk"/)f +W,, € (CNXTpa

k=1
where each element of W, is CAN(0,1). Let g, be the
channel vector obtained after performing minimum-mean-
squared-error (MMSE) channel estimation. In this case, the
error .k = Smk—Lmik 18 uncorrelated to the estimated vector.
Further, the estimate and the error vectors are [4]

Emk ~ CN (0N, YmrIn),
gmk ~ CN (On, (Bmk — Ymk) In) (1)

TpPpﬁmk

where Tmk = 1+7pppBmk

C. Downlink data transmission

Since the BBU does not have the channel information, CB
becomes the natural candidate for beamforming as it can be
implemented in a distributed manner. Hence, the precoded
symbol transmitted by the m-th RRH is given as

Xm = Y \/Pallmk i

k=1
where pg is the DL transmit SNR, 7,5 is normalization
coefficient used by the m-th RRH for the k-th user to satisfy
the average power constraint

Tr(E [xmx ) < Npa.

We observe that by setting 7,5 = 1/(vmrK) above constraint
is satisfied with equality. The symbol received at a randomly
selected user o € {1,2,..., K} is given as 7, =

M
Z g%oxm + Wo = Z gmo Z V Pdlmk gmqu + Wo
m=1 m=1 =

K,M

M
= 8 oBinolo/Pallmo + Y /Pl moBimids + Wo

k=1,k#o0
m=1

m=1

M M
:Z ”gmoH2\/ PdNmoqo + Z ”gmoH2\/ pdnm(JCjo

m=1 m=1
M

+ Z V pdnmog;{zogfnoq\o
m=1

K M
ST zxrymkgzwgrnk)qk +un @
k=1 =1

where the last step follows from replacing g,x = &mk + Smk
and qr = qr + qr. In the following lemma, we provide
an expression for an achievable rate (a lower bound on
capacity). Note that in favor of simpler exposition, we ignore
the constant pre-log factors such as bandwidth, and fraction
of DL transmission duration in a time division duplex setup.

Lemma 2. An average achievable rate of a randomly selected
user is given by

R, =Eg, ¢, [log, (1 + SINR,)], 3)
where SINR, =

pade (Z M) [lq0/?]

M M - @
N2 2 ~ 19
pd?( 21 \/Vmo) E[|Q0| ] +PdN 21 Bmo+1
The corresponding system sum-rate is K R,,.
Proof: Please refer to Appendix A. [ ]

In the cell-free mMIMO literature, the usual approach to
evaluate the above expression is through numerical simu-
lations. However, in this work, using the properties of the
BPP, we present an analytical approach to evaluating this
expression.

ITI. AVERAGE RATE EVALUATION

The exact analytical evaluation of (3) is challenging as it
requires an (M + 1)-fold integration to average it over the
locations of all RRHs and the o-th user. Notice that each term
in (4) have either of the following terms:

Z vV Ymos 12 Z ﬁmo (5)

Further, note that ~,,, is an increasing function of [,
which is a decreasing function of d,,;. Hence, i is
also a decreasing function of d,,; and can be expressed as
Yok (dmk) = % Due to pathloss either of the
terms is likely to f)e dominated by contributions from a few
nearest RRHs. Hence, we approximate I; and Is as the sum
of exact contribution from the nearest RRH and the mean
contribution from the rest of the RRHs conditioned on the
distance between the o-th user and its nearest RRH, i.e. for I;
we write

—Z\/m_mw{ S Vi

m=1,m#o

dooa T0:| ) (6)



where d,, is the distance between o-th user and its nearest
RRH, and r, are the distance between the o-th user and
the center of the service region o. Similarly, /5 can also be
expressed as the sum of the dominant term and conditional
expectation of rest of the terms. As we will see in the sequel,
due to this approximation, we are able to evaluate (3) with
maximum four integrals as opposed to the (M + 1)-fold
integration for the exact expression. It is worth mentioning
that this approach has been used for DL coverage probability
analysis in cellular systems (cf. [18]). To derive the final result,
we need a few important distance distributions in a BPP, which
are presented next.

A. Relevant distance distributions in a BPP

Let R, be the distance of the o-th user from the center of
the circle Br_ (o). The cumulative distribution function (CDF)
and probability density function (PDF) of the distance of o-th
user, which is a randomly and uniformly distributed point in
Br, (o), from the center o is given as

r? 2r
= ﬁu f R, (T) = ﬁ
Now, we present the distance distribution between the o-th
user to a randomly distributed RRH in Bg_(0).

Fr, (r) 0<r<R,. (O

Lemma 3. Conditioned on the distance R, the CDF of the
distance between the o-th user and the m-th RRH is given as

Fp,,(dlro) =

d2
72 10<d<Rs—715)+1(Rs — 10 <d < Rs + 1)

(o - =7) 2 - 25

and corresponding PDF is given as

2d
ID,0(dlro) =3 10 < d < Ry 1)

2d

+1(Rs —1ro<d< Ry +r 0"
(Rs =70 y O)ng

42— R? RE+r5—d?
where 0* = arccos (ZZT ,¢* = arccos ( =570 ).

Proof: We provide the sketch of the proof of this lemma.
Please refer to [19, Lemma 1] for the detail proof. With-
out loss of generality, consider that o-th user is located at
u, = (75,0). Then, condition on u, (equivalently r,), a
uniformly distributed point in Bg_ (o) can lie either in the
circle Bg, ., (u,) orin the region Bg_(0)\Bg, —r, (1,). In the
CDF expression of the lemma both this conditions are captured
by the indicator function and corresponding conditional CDFs
are presented. The expression for the PDF is obtained by taking
the derivative of the CDF with respect to d along with some
algebraic manipulation. ]

Now, using the results from order statistics, we present the
conditional distance distribution between the o-th user and its
nearest RRH.

Lemma 4. Conditioned on the distance R,, the CDF of the
distance D,, between the o-th user and its nearest RRH is
given as Fp, (doo|ro) =

g [Doo S doo|ro] =1- (1 - FDmD (d00|7,0))]\4’

and the corresponding PDF is given as

IDoo(doolro) = M fp,,.,(doo|ro)(1 = Fp,, (doo|r0)) ™,
where fp...,Fp,, are presented in Lemma 3.

Note that conditioned on the distance D,,, , rest of the RRHs
in B, (o) are uniformly and randomly located in Bg_ (o) \
Ba,,(u,), where d,, is a realization of D,,. In the following
lemma, we present the distribution of the distance between a
randomly located RRH in the above region and the o-th user.

Lemma 5. Conditioned D,, and R,, the PDF of the distance
Dy between a randomly located RRH in Bg_(0) \ Ba,,(u,)
and the o-th user is given as

[, (d]r0)

fﬁmo (d|d007T0) - 1— FvaO (d00|7’0)

Proof: We provide the sketch of the proof for this lemma.

For the detailed proof, please refer to [19, Lemma 3]. Con-

ditioned on D,,, rest of the RRHs are uniformly distributed

in Br_(0) \ Ba,,(u,). Hence, the distribution of the distance

f)mo follows the lower truncated distribution of D,,,, which

is captured in the above expression. [ ]

Next, using the above distance distribution, we present the
approximate expression to evaluate (3).

7d00§d§TO+RS'

B. Approximate evaluation of average achievable user rate

In the following lemma, using the fact that conditioned on
D,,, distances between o-th user and rest of the RRHs in
the network are independent and identically distributed, we
present an expression to evaluate the expectation term in (6).

Lemma 6. Conditioned on R, and the distance D,, to the
nearest RRH, the expectation term in (6) is given as

M M
]:E { Z V 7777/0 d007 T‘O} - Z E [ \/ ,ymo dOO? TO]
o3 i3
To+Rs l( )71
T, T
—(M - 1) v TpPr (F|doo, 70)dr, (8)

1+ 7pppl(r)—1 fDm"

where fr, (r|doo, 7o) is presented in Lemma 5.

Hence, I = fl(doouro) = /Ymo + (M — 1)

To+Rs
1 —1
X / VToPpl(r) o (rldoo,ro)dr. 9)
T+ o) 1

T=0aoo

r=doo

S}milarly, for a given realization of R, and D,,, I» =
12 (dom To) -

ﬁoo+(M—1)/

r=doo

To+Rs

Z(T)_lfDmo(ﬂdoo,ro)dr. (10)

Using the above result, next, we present an approximate
expression to evaluate the achievable average user rate.

Proposition 1. The average achievable rate of a randomly
selected user can be approximately evaluated as

R, =Eg, ¢, [log, (1 + SINR,)]



~Ep,, ., [logy (1 + SINRYP*(dpo, 70))] ,

where SINRAPX(d,,,7,) is presented in (11) at the top of the
next page, the PDFs of D,, and R, are presented in Lemma 4
and (7), respectively. The corresponding system sum-rate is

KR,.

This completes the technical part of this paper. Next, using
the above analyses, we provide a few system design insights.

IV. RESULTS AND DISCUSSION

In this section, we study the effect of different system pa-
rameters on the average user rate and the average system sum-
rate. We verify the accuracy of the approximate theoretical
expression for the lower bound on average rate through Monte
Carlo simulations. We have considered R, = 1000 m. The
pathloss function between any two nodes at a distance r is

I(r) =r*"1(r > 1) +1(r < 1).

We consider the DL SNR pg; = 100 dB. The reason behind
this high SNR is to ensure that the system is limited by
interference due to inter-user interference, channel estimation
and compression error. Further, we take 7, = 168, which
corresponds to the number of resource elements in a resource
block in LTE. The choice of other system parameters are
indicated at necessary places.

1) The effect of fronthaul capacity: In Fig. 2, the average
system sum-rate is presented as a function of the number
of users K for different fronthaul capacities. We have kept
a high pilot transmission SNR p, = 100 dB corresponding
to an almost perfect CSI scenario to highlight the effect of
fronthaul capacity on the system performance. As evident
from the figure, the average system sum-rate is strictly quasi-
concave function of the number of users. Further, for a given
number of RRHs, the optimum number of users that should
be multiplexed to maximize the average rate increases with
the increasing fronthaul capacity. When C' is unlimited, the
maximum average rate is obtained by serving all the users
simultaneously. Hence, it is intuitive that with increasing C,
the optimum number of users that should be served increases.

2) Distributed vs. collocated: In Fig. 3, we present the
average user rate for different number of antennas at each
RRH while keeping the total number of antennas in the service
region fixed, i.e. M N = 128. We consider an ideal fronthaul
of unlimited capacity to study the effect of CSI error on
system performance. We observe that for high p, (i.e. high-
quality CSI) as we move towards a more collocated setup,
average user rate increases. On the other hand, with low
pp (i.e. low-quality CSI), the average user SE is a quasi-
concave function of the number of antennas per RRH. We
observe that in case of high-quality CSI, both the mean desired
power and mean interference power increase monotonically
with increasing number of antennas per RRH. However, the
rate of growth of the desired power is higher than that of
interference power. Therefore, the average user SE increases
monotonically. On the other hand, in case of low-quality CSI,
although the received interference power increases monotoni-
cally with increasing number of antennas, the average desired
power shows a concave behaviour. This also gets reflected in
the average user SE curves in case of low-quality CSIL.

V. CONCLUSION

In this work, we have analyzed the DL performance of
a cell-free mMIMO system under the assumptions of a fi-
nite fronthaul capacity, distributed CB-based precoding using
local imperfect CSI at each RRH. Using relevant distance
distributions for a BPP, we present an approximate analytical
expression for an achievable user rate averaged over the
realizations of RRHs and user locations. Our results suggest
that under the assumption of finite fronthaul capacity, there
exists an optimal number of users that maximize the average
system sum-rate. Further, in the presence of high-quality CSI,
for the same number of antennas in the system, it is preferable
to have fewer RRHs with more antennas per RRH. A possible
future extension of this work involves the consideration of
more sophisticated compression schemes and extension to an
infinite network where instead of all the RRHs, a few RRHs
are grouped together to serve a user.

APPENDIX

A. Proof of Lemma 2

From (2), we write r, as

M
To :\/p_d Z vV neroE [”gmoHQ} qo

m=1

T : Desired signal

M
+ \/P_d Z VTmo (||gm0||2 —E [||g7n0||2D qo
m=1

T: Beamforming uncertainity

M M
+ Z ||gmo||2 V Pdﬁmoqo + Z \% pdnmogz:wg:noéo

m=1 m=1
T3 quantization error T : estimation error
K M
T A ~
+ E RV, Pd( § V nmkgmogmk)qk +wo, (12)
k=1 m=1
k#o

T’ inter user interference

where we consider that the o-th user has the average channel
statistics with respect to each RRH in the network. From (12),
it can be shown that the desired signal term is uncorrelated to
the rest of the terms. An achievable rate (lower bound on the
capacity) is obtained by using the fact that mutual information
is minimized when the uncorrelated signals to the desired
signal is replaced by independent Gaussian noise [20] with
variance equal to the sum of variances of undesired signals,
ie. Ts, T3, Ty, Ty, and w,. Hence, the SINR corresponding to
this lower bound on capacity is given as

E |11 ]
SINR, = — .
Y BT3P +1

In this case, note that E [T;] = 0 for all . Further,

9 N2, X 2 2
E [|T1| ] = Pd?( Z \/'VMO) E [|q0| ] ’
m=1
N M
E [|T2|2] = de Z Yol [|QO|2] s

m=1



N72(f1 (doos70))°E [|g0|?]

SINRAPX (dyo, 170) =

pdN?Q(IAl (doos 7)) E [|Go|?] + Pde2(d007 ro) + 1

Y

where I; (doo, 7o) and I (doo, 7o) are given in (9) and (10), respectively.
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Fig. 2. The effect of fronthaul capacity on system sum-rate. The solid lines are
obtained using the analytical expression in Proposition 1, markers are Monte
Carlo simulation results obtained using Lemma 2. The fronthaul capacity is
in bits/s/Hz. M = 16, N = 8, 7 = 168, p, = 100 dB.
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Fig. 3. The effect of number of antennas per RRH on average user rate. Solid
lines and markers represent analytical and simulation results, respectively. We
have considered M N = 128, 7, = 168, K = 8.

N = _
E |:|T3|2} = <de Z Ymo + Pd Z rY'mO > E [|q0|2} ;
N M "
E ([ITa*] = pagg 3 (Bro = Ymo)E [1do’]
m=1

NEK - 1) &
E [|T5)7] :Pd% >~ Buno-
m=1

Substituting these values, we obtain the expression presented
in the lemma. [ ]
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