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Abstract—In this work, we analyze the performance of the
downlink of a cell-free massive multiple-input multiple-output
(mMIMO) system considering finite capacity fronthaul links.
We model the locations of the remote radio heads (RRHs)
and the users as two independent binomial point processes
(BPPs). Conditioned on the locations of the RRHs and users,
and considering imperfect channel state information (CSI) and
conjugate beamforming at the RRHs, we derive an achievable
rate for a randomly selected user in the network. Further, based
on the dominant RRH approach, we provide an approximate but
accurate expression to analytically evaluate this rate averaged
over the spatial realizations of RRH and user locations. From our
analysis, we arrive at the following conclusions: (1) the achievable
average system sum-rate is a strictly quasi-concave function of
the number of users in the network, (2) for the same number
of antennas in the system, the optimal number of antennas per
RRH to maximize the average user rate as well as average system
sum-rate depends on the quality of the CSI. While for a high-
quality CSI a more collocated system is preferred, for low-quality
CSI it is better to consider a more distributed RRH deployment.

Index Terms—Cell-free massive MIMO, stochastic geometry,
fronthaul capacity, binomial point process.

I. INTRODUCTION

Massive multiple-input multiple-output (mMIMO) technol-

ogy is poised to revolutionize the communication networks as

it has been proven that under ideal conditions it eliminates the

deleterious effect of channel fading and additive noise while

negating the effect of network interference [1]. Further, having

a large number of antennas at the base stations not only boosts

spectral efficiency but also improves the energy efficiency of

the overall network [2]. Traditionally, network densification

has played a leading role in meeting the demand for higher

network throughput. A similar trend is expected to continue

for future wireless networks as well. This increasing density of

nodes can be leveraged to implement mMIMO in a distributed

manner as is envisioned in the form of cell-free mMIMO [3],

[4]. The fundamental concept of cell-free mMIMO is similar

to that of network MIMO, where a large number of geo-

graphically separated remote radio heads (RRHs) are centrally

controlled by a baseband signal processing unit to serve users

in its service region. Under the ideal assumptions such as

unlimited fronthaul capacity, a fully distributed RRH setup is

known to be better compared to semi-distributed or collocated

setups in terms of user spectral efficiency. However, if one

considers all the elements of a cell-free massive MIMO system

such as the imperfect channel state information (CSI), finite

capacity of fronthaul links, and beamforming based on local
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CSI at the RRHs, it is not clear whether it is better from

the system performance perspective to have fewer RRHs with

more antennas per RRH or vice versa. Motivated by this, in

this work, our goal is to present a comprehensive analysis

of cell-free mMIMO setup considering the finite capacity of

fronthaul links and beamforming based on local imperfect CSI.

Related works: While the understanding of collocated

mMIMO is quite mature, the research on cell-free mMIMO

with realistic system assumptions is still evolving. The perfor-

mance analysis of cell-free massive MIMO with imperfect CSI

and power control is presented in [3], [4] for both downlink

(DL) and uplink (UL). However, these works assume an

unlimited capacity for the fronthaul links. In order to reduce

the load on fronthaul links, a user-centric cell-free mMIMO

approach and a compute-and-forward transmission approach

are proposed in [5] and [6], respectively. However, these works

do not characterize the impact of limited fronthaul capacity on

system performance. The effect of limited fronthaul capacity

for the UL of cell-free mMIMO is studied in [7], where authors

characterize the effect of quantization error on user rate and

propose a max-min power control algorithm so that each user

gets a uniform rate. It is worth mentioning that performance

analyses in these works are based on Monte Carlo simulations.

Another set of relevant prior works focus on devising

compression algorithms while taking into account the limited

fronthaul capacity in problems such as distributed antenna sys-

tems, coordinated multipoint, and cloud radio access networks.

In [8], [9], authors provide information theoretic insights

regarding the capacity of a backhaul-constrained distributed

MIMO system. To make the analysis tractable, usually, a

simplified system model is considered. For example, in [8]

a linear modified Wyner model is considered where only two

neighboring base stations cooperate to serve a user. In [9],

authors have provided useful insights regarding backhaul-

constrained capacity regions for a two transmitter and two

receiver model. Extending the insights obtained from infor-

mation theoretic analyses, in other notable works, authors

use optimization framework to devise compression algorithms

that efficiently utilize the fronthaul capacity constraints while

maximizing a certain performance metric (e.g. sum-rate) (cf.

[10], [11]). A comprehensive overview of such works can

be found in [12]. While these works provide useful signal

processing tools for efficient system design, it is necessary to

have a mathematically tractable model of these systems to get

a comprehensive understanding of the system performance.

From this perspective, analytical evaluations of the downlink

of distributed antenna systems are presented in [13]–[17] and

the references therein. The performance evaluation is usually

done through capacity bounds. Although these works provide

useful insights without resorting to Monte Carlo simulations,



they do not consider the limited fronthaul capacity or imperfect

CSI in their analyses. Further, a few of these works present

system analyses that require the global CSI to be present

at the baseband unit (BBU). Since in cell-free mMIMO the

channel information is likely to be available only at the RRHs,

a distributed beam-forming approach such as sub-optimal

conjugate beamforming (CB) is a more viable option. Hence,

the inferences drawn in these works may not hold for cell-free

mMIMO systems as envisioned.

Contributions of the work: We analyze the DL performance

of a cell-free mMIMO system using tools from stochastic

geometry. We consider a finite service region and model the

locations of the RRHs and users as two independent binomial

point processes (BPPs). We take into account the limited

capacity of the fronthaul links between the BBU and the RRHs

and imperfect CSI at the RRHs. Each RRH performs CB

adhering to an average power constraint. For this system setup,

we derive an achievable rate for a randomly selected user

conditioned on the locations of the RRHs and users. Further,

leveraging relevant distance distributions for a BPP, we also

provide an approximate expression to analytically evaluate

the user rate averaged over RRH and user locations. From

our analyses, we infer that the average system sum-rate is a

strictly quasi-concave function of the number of users and the

optimal number of users to achieve the maximum system sum-

rate increases with increasing fronthaul capacity. Further, in

contrast to the established notion that fully distributed MIMO

is superior to the collocated MIMO, our results suggest that in

presence of high-quality CSI at the RRHs, a less distributed

form of cell-free mMIMO is better, i.e. for an equal number

of antennas in the system, it is better to deploy a fewer RRHs

with more antennas per RRH.

II. SYSTEM MODEL FOR DISTRIBUTED MASSIVE MIMO

We limit our attention to the DL of a cell-free mMIMO sys-

tem. We assume that M RRHs equipped with N antennas each

are uniformly distributed over a finite circular region of radius

Rs centred at origin, i.e. BRs
(o). Let Φr = {r1, r2, . . . , rM}

be the set of the locations of these M RRHs. These RRHs

collectively serve K single antenna users that are uniformly

distributed over BRs
(o). Let Φu = {u1,u2, . . . ,uK} be the

set that contains these locations. Note that by construction,

Φr and Φu form two independent BPPs. Further, the distance

between a user at uk and an RRH at rm is denoted by dmk.

As assumed in the cell-free mMIMO literature, we consider

that M > K . All the RRHs are connected to a BBU through

a fronthaul network, where the capacity of each fronthaul link

is C. Due to this limited capacity, the BBU employs a lossy

compression scheme to forward user symbols to the RRHs.

A. Compression at the BBU

We first discuss the effect of compression on the user

symbols. Let qk be the symbol intended for the k-th user

in the network, and q = [q1, q2, . . . , qK ]T be the signal

vector consisting of all the symbols to be transmitted to the

users. We consider that q is a circularly symmetric complex

Gaussian random vector and q ∼ CN (0K , ρqIK), where

ρq = E
[

|q1|2
]

= E
[

|q2|2
]

= . . . = E
[

|qK |2
]

. Using a lossy

Baseband unit

RRH

User

Fig. 1. A representative network diagram of the system, where RRHs with
possibly multiple antennas are connected to a centralized BBU through limited
capacity fronthaul links.

compression scheme, the BBU transmits q̂ = [q̂1, q̂2, . . . , q̂K ]T

over the fronthaul links to the RRHs. Similar to [8], we

consider q̂ = q + q̃, where q̃ ∼ CN (0K , ρq̃IK) is the

compression error vector and ρq̃ = E
[

|q̃1|2
]

= E
[

|q̃2|2
]

=
. . . = E

[

|q̃K |2
]

. Further, we assume that q and q̃ are

uncorrelated. Since both are Gaussian random vectors, they

are independent as well. From the above exposition, it is clear

that q̂ ∼ CN (0K , (ρq̃ + ρq)IK). If E
[

|q̂k|2
]

is same for all k
and is fixed, then both ρq̃, ρq can be argued to depend on the

fronthaul capacity C, as discussed in the following lemma.

Lemma 1. For a fronthaul capacity C and number of users

K in the network, ρq =
(

1− 2−C/K
)

E
[

|q̂k|2
]

and ρq̃ =
2−C/KE

[

|q̂k|2
]

.

Proof: The amount of information that can be transmitted

from the BBU to each RRH is upper limited by the fronthaul

capacity C. Hence, we write I(q̂;q) ≤ C =⇒

h(q̂)− h(q̂|q) ≤ C =⇒
K
∑

i=1

h(q̂i)−
K
∑

i=1

h(q̂i|qi) ≤ C

=⇒ log2(πe(ρq + ρq̃))− log2(πeρq̃) ≤ C/K,

where I(x; y) denotes the mutual information between two

random variables x and y, h(x) denotes the differential entropy

of a random variable x, and the last step follows from the

fact that q̂is and q̃is are complex Gaussian random variables.

Ideally, the BBU would like to transmit the maximum informa-

tion, which is ensured by introducing minimum error to each

symbol. Hence, the minimum value of ρq̃ while satisfying the

capacity constraint can be obtained by solving the following

equation:

log2 (1 + ρq/ρq̃) = C/K =⇒ ρq/ρq̃ = 2C/K − 1.

The expression in the lemma follows directly using the fact

that ρq + ρq̃ = E
[

|q̂k|2
]

. If we consider that E
[

|q̂k|2
]

= 1,

then ρq =
(

1− 2−C/K
)

and ρq̃ = 2−C/K .

Remark 1. We consider that the BBU equally allocates the

fraction of the fronthaul bandwidth to the symbols of each

user in the network. Moreover, we consider the average effect

of compression error on each symbol. More sophisticated



information scheduling can be used to improve the overall

system capacity, which is a promising direction for future

work.

B. Uplink channel estimation

Let gmk =
√
βmkhmk be the channel gain between the m-

th RRH and the k-th user, where βmk captures the large-scale

channel gain and hmk ∼ CN (0N , IN ) captures the small-scale

channel fluctuation. We consider that the large-scale channel

gain βmk is only due to the distance dependent pathloss, i.e.

βmk = l(dmk)
−1, where dmk is the distance between the m-th

RRH and the k-th user, and l(·) is a non-decreasing pathloss

function presented in Section IV.

In order to obtain the channel estimates, we consider that

each user uses a pilot from a set of K orthogonal pilot

sequences of length τp symbol duration, which is assumed to

be less than the coherence interval. Further, the transmit signal-

to-noise ratio (SNR) of each symbol in a pilot is ρp. Since we

assume that these K sequences are orthogonal to each other,

τp > K and ψH
i ψj = 1(i = j), where 1(·) denotes the

indicator function. The general case where number of users is

more than the number of orthogonal pilots will be considered

in the extended version of this work. Let the pilot used by

the k-th user be ψk. During the pilot transmission phase, the

received signal matrix at the m-th RRH is

rm =
√
τpρp

K
∑

k=1

gmkψ
T
k +Wm ∈ C

N×τp ,

where each element of Wm is CN (0, 1). Let ĝm be the

channel vector obtained after performing minimum-mean-

squared-error (MMSE) channel estimation. In this case, the

error g̃mk = gmk−ĝmk is uncorrelated to the estimated vector.

Further, the estimate and the error vectors are [4]

ĝmk ∼ CN (0N , γmkIN ) ,

g̃mk ∼ CN (0N , (βmk − γmk) IN ) , (1)

where γmk =
τpρpβ

2

mk

1+τpρpβmk
.

C. Downlink data transmission

Since the BBU does not have the channel information, CB

becomes the natural candidate for beamforming as it can be

implemented in a distributed manner. Hence, the precoded

symbol transmitted by the m-th RRH is given as

xm =
K
∑

k=1

√
ρdηmkĝ

∗
mk q̂k,

where ρd is the DL transmit SNR, ηmk is normalization

coefficient used by the m-th RRH for the k-th user to satisfy

the average power constraint

Tr(E
[

xmxH
m

]

) ≤ Nρd.

We observe that by setting ηmk = 1/(γmkK) above constraint

is satisfied with equality. The symbol received at a randomly

selected user o ∈ {1, 2, . . . ,K} is given as ro =

M
∑

m=1

gT
moxm + wo =

M
∑

m=1

gT
mo

K
∑

k=1

√
ρdηmkĝ

∗
mk q̂k + wo

=

M
∑

m=1

gT
moĝ

∗
moq̂o

√
ρdηmo +

K,M
∑

k=1,k 6=o
m=1

√
ρdηmkg

T
moĝ

∗
mkq̂k + wo

=

M
∑

m=1

‖ĝmo‖2
√
ρdηmoqo +

M
∑

m=1

‖ĝmo‖2
√
ρdηmoq̃o

+

M
∑

m=1

√
ρdηmog̃

T
moĝ

∗
moq̂0

+

K
∑

k=1
k 6=o

√
ρd

(

M
∑

m=1

√
ηmkg

T
moĝ

∗
mk

)

q̂k + wo, (2)

where the last step follows from replacing gmk = ĝmk + g̃mk

and qk = q̂k + q̃k. In the following lemma, we provide

an expression for an achievable rate (a lower bound on

capacity). Note that in favor of simpler exposition, we ignore

the constant pre-log factors such as bandwidth, and fraction

of DL transmission duration in a time division duplex setup.

Lemma 2. An average achievable rate of a randomly selected

user is given by

Ro = EΦr ,Φu
[log2 (1 + SINRo)] , (3)

where SINRo =

ρd
N2

K

(

M
∑

m=1

√
γmo

)2

E
[

|q0|2
]

ρd
N2

K

(

M
∑

m=1

√
γmo

)2
E [|q̃0|2] + ρdN

M
∑

m=1
βmo + 1

. (4)

The corresponding system sum-rate is KRo.

Proof: Please refer to Appendix A.

In the cell-free mMIMO literature, the usual approach to

evaluate the above expression is through numerical simu-

lations. However, in this work, using the properties of the

BPP, we present an analytical approach to evaluating this

expression.
III. AVERAGE RATE EVALUATION

The exact analytical evaluation of (3) is challenging as it

requires an (M + 1)-fold integration to average it over the

locations of all RRHs and the o-th user. Notice that each term

in (4) have either of the following terms:

I1 =

M
∑

m=1

√
γmo, I2 =

M
∑

m=1

βmo. (5)

Further, note that γmk is an increasing function of βmk,

which is a decreasing function of dmk. Hence, γmk is

also a decreasing function of dmk and can be expressed as

γmk(dmk) =
τpρpl(dmk)

−2

1+τpρpl(dmk)−1 . Due to pathloss either of the

terms is likely to be dominated by contributions from a few

nearest RRHs. Hence, we approximate I1 and I2 as the sum

of exact contribution from the nearest RRH and the mean

contribution from the rest of the RRHs conditioned on the

distance between the o-th user and its nearest RRH, i.e. for I1
we write

I1 =

M
∑

m=1

√
γmo =

√
γoo + E

[ M
∑

m=1,m 6=o

√
γmo

∣

∣

∣

∣

doo, ro

]

, (6)



where doo is the distance between o-th user and its nearest

RRH, and ro are the distance between the o-th user and

the center of the service region o. Similarly, I2 can also be

expressed as the sum of the dominant term and conditional

expectation of rest of the terms. As we will see in the sequel,

due to this approximation, we are able to evaluate (3) with

maximum four integrals as opposed to the (M + 1)-fold

integration for the exact expression. It is worth mentioning

that this approach has been used for DL coverage probability

analysis in cellular systems (cf. [18]). To derive the final result,

we need a few important distance distributions in a BPP, which

are presented next.

A. Relevant distance distributions in a BPP

Let Ro be the distance of the o-th user from the center of

the circle BRs
(o). The cumulative distribution function (CDF)

and probability density function (PDF) of the distance of o-th

user, which is a randomly and uniformly distributed point in

BRs
(o), from the center o is given as

FRo
(r) =

r2

R2
s

, fRo
(r) =

2r

R2
s

0 ≤ r ≤ Rs. (7)

Now, we present the distance distribution between the o-th

user to a randomly distributed RRH in BRs
(o).

Lemma 3. Conditioned on the distance Ro, the CDF of the

distance between the o-th user and the m-th RRH is given as

FDmo
(d|ro) =

d2

R2
s

1(0 ≤ d < Rs − ro) + 1(Rs − ro ≤ d ≤ Rs + ro)

(

d2

πR2
s

(

θ∗ − sin(2θ∗)

2

)

+
1

π

(

φ∗ − sin(2φ∗)

2

))

,

and corresponding PDF is given as

fDmo
(d|ro) =

2d

R2
s

1(0 ≤ d < Rs − ro)

+ 1(Rs − ro ≤ d ≤ Rs + ro)
2d

πR2
s

θ∗

where θ∗ = arccos
(

d2+r2o−R2

s

2rod

)

, φ∗ = arccos
(

R2

s+r2o−d2

2roRs

)

.

Proof: We provide the sketch of the proof of this lemma.

Please refer to [19, Lemma 1] for the detail proof. With-

out loss of generality, consider that o-th user is located at

uo = (ro, 0). Then, condition on uo (equivalently ro), a

uniformly distributed point in BRs
(o) can lie either in the

circle BRs−ro(uo) or in the region BRs
(o)\BRs−ro(uo). In the

CDF expression of the lemma both this conditions are captured

by the indicator function and corresponding conditional CDFs

are presented. The expression for the PDF is obtained by taking

the derivative of the CDF with respect to d along with some

algebraic manipulation.

Now, using the results from order statistics, we present the

conditional distance distribution between the o-th user and its

nearest RRH.

Lemma 4. Conditioned on the distance Ro, the CDF of the

distance Doo between the o-th user and its nearest RRH is

given as FDoo
(doo|ro) =

P [Doo ≤ doo|ro] = 1− (1 − FDmo
(doo|ro))M ,

and the corresponding PDF is given as

fDoo
(doo|ro) = MfDmo

(doo|ro)(1 − FDmo
(doo|ro))M−1,

where fDmo
, FDmo

are presented in Lemma 3.

Note that conditioned on the distance Doo , rest of the RRHs

in BRs
(o) are uniformly and randomly located in BRs

(o) \
Bdoo

(uo), where doo is a realization of Doo. In the following

lemma, we present the distribution of the distance between a

randomly located RRH in the above region and the o-th user.

Lemma 5. Conditioned Doo and Ro, the PDF of the distance

D̂mo between a randomly located RRH in BRs
(o) \ Bdoo

(uo)
and the o-th user is given as

fD̂mo
(d|doo, ro) =

fDmo
(d|ro)

1− FDmo
(doo|ro)

, doo ≤ d ≤ ro +Rs.

Proof: We provide the sketch of the proof for this lemma.

For the detailed proof, please refer to [19, Lemma 3]. Con-

ditioned on Doo, rest of the RRHs are uniformly distributed

in BRs
(o) \ Bdoo

(uo). Hence, the distribution of the distance

D̂mo follows the lower truncated distribution of Dmo, which

is captured in the above expression.

Next, using the above distance distribution, we present the

approximate expression to evaluate (3).

B. Approximate evaluation of average achievable user rate

In the following lemma, using the fact that conditioned on

Doo, distances between o-th user and rest of the RRHs in

the network are independent and identically distributed, we

present an expression to evaluate the expectation term in (6).

Lemma 6. Conditioned on Ro and the distance Doo to the

nearest RRH, the expectation term in (6) is given as

E

[ M
∑

m=1
m 6=o

√
γmo

∣

∣

∣

∣

doo, ro

]

=

M
∑

m=1
m 6=o

E

[√
γmo

∣

∣

∣

∣

doo, ro

]

=(M − 1)

ro+Rs
∫

r=doo

√
τpρpl(r)

−1

√

1 + τpρpl(r)−1
fD̂mo

(r|doo, ro)dr, (8)

where fD̂mo
(r|doo, ro) is presented in Lemma 5.

Hence, I1 ≈ Î1(doo, ro) =
√
γmo + (M − 1)

×
ro+Rs
∫

r=doo

√
τpρpl(r)

−1

√

1 + τpρpl(r)−1
fD̂mo

(r|doo, ro)dr. (9)

Similarly, for a given realization of Ro and Doo, I2 ≈
Î2(doo, ro) =

βoo + (M − 1)

∫ ro+Rs

r=doo

l(r)−1fD̂mo
(r|doo, ro)dr. (10)

Using the above result, next, we present an approximate

expression to evaluate the achievable average user rate.

Proposition 1. The average achievable rate of a randomly

selected user can be approximately evaluated as

Ro = EΦr ,Φu
[log2 (1 + SINRo)]



≈ EDoo,ro

[

log2
(

1 + SINR
Apx
o (doo, ro)

)]

,

where SINR
Apx
o (doo, ro) is presented in (11) at the top of the

next page, the PDFs of Doo and Ro are presented in Lemma 4

and (7), respectively. The corresponding system sum-rate is

KRo.

This completes the technical part of this paper. Next, using

the above analyses, we provide a few system design insights.

IV. RESULTS AND DISCUSSION

In this section, we study the effect of different system pa-

rameters on the average user rate and the average system sum-

rate. We verify the accuracy of the approximate theoretical

expression for the lower bound on average rate through Monte

Carlo simulations. We have considered Rs = 1000 m. The

pathloss function between any two nodes at a distance r is

l(r) =r3.71(r > 1) + 1(r ≤ 1).

We consider the DL SNR ρd = 100 dB. The reason behind

this high SNR is to ensure that the system is limited by

interference due to inter-user interference, channel estimation

and compression error. Further, we take τp = 168, which

corresponds to the number of resource elements in a resource

block in LTE. The choice of other system parameters are

indicated at necessary places.

1) The effect of fronthaul capacity: In Fig. 2, the average

system sum-rate is presented as a function of the number

of users K for different fronthaul capacities. We have kept

a high pilot transmission SNR ρp = 100 dB corresponding

to an almost perfect CSI scenario to highlight the effect of

fronthaul capacity on the system performance. As evident

from the figure, the average system sum-rate is strictly quasi-

concave function of the number of users. Further, for a given

number of RRHs, the optimum number of users that should

be multiplexed to maximize the average rate increases with

the increasing fronthaul capacity. When C is unlimited, the

maximum average rate is obtained by serving all the users

simultaneously. Hence, it is intuitive that with increasing C,

the optimum number of users that should be served increases.

2) Distributed vs. collocated: In Fig. 3, we present the

average user rate for different number of antennas at each

RRH while keeping the total number of antennas in the service

region fixed, i.e. MN = 128. We consider an ideal fronthaul

of unlimited capacity to study the effect of CSI error on

system performance. We observe that for high ρp (i.e. high-

quality CSI) as we move towards a more collocated setup,

average user rate increases. On the other hand, with low

ρp (i.e. low-quality CSI), the average user SE is a quasi-

concave function of the number of antennas per RRH. We

observe that in case of high-quality CSI, both the mean desired

power and mean interference power increase monotonically

with increasing number of antennas per RRH. However, the

rate of growth of the desired power is higher than that of

interference power. Therefore, the average user SE increases

monotonically. On the other hand, in case of low-quality CSI,

although the received interference power increases monotoni-

cally with increasing number of antennas, the average desired

power shows a concave behaviour. This also gets reflected in

the average user SE curves in case of low-quality CSI.

V. CONCLUSION

In this work, we have analyzed the DL performance of

a cell-free mMIMO system under the assumptions of a fi-

nite fronthaul capacity, distributed CB-based precoding using

local imperfect CSI at each RRH. Using relevant distance

distributions for a BPP, we present an approximate analytical

expression for an achievable user rate averaged over the

realizations of RRHs and user locations. Our results suggest

that under the assumption of finite fronthaul capacity, there

exists an optimal number of users that maximize the average

system sum-rate. Further, in the presence of high-quality CSI,

for the same number of antennas in the system, it is preferable

to have fewer RRHs with more antennas per RRH. A possible

future extension of this work involves the consideration of

more sophisticated compression schemes and extension to an

infinite network where instead of all the RRHs, a few RRHs

are grouped together to serve a user.

APPENDIX

A. Proof of Lemma 2

From (2), we write ro as

ro =
√
ρd

M∑

m=1

√
ηmoE

[
‖ĝmo‖2

]
qo

︸ ︷︷ ︸
T1 : Desired signal

+
√
ρd

M∑

m=1

√
ηmo

(
‖ĝmo‖2 − E

[
‖ĝmo‖2

])
qo

︸ ︷︷ ︸
T2 : Beamforming uncertainity

+
M∑

m=1

‖ĝmo‖2
√
ρdηmoq̃o

︸ ︷︷ ︸
T3 : quantization error

+
M∑

m=1

√
ρdηmog̃

T
moĝ

∗
moq̂o

︸ ︷︷ ︸
T4 : estimation error

+
K∑

k=1

k 6=o

√
ρd

(
M∑

m=1

√
ηmkg

T
moĝ

∗
mk

)
q̂k

︸ ︷︷ ︸
T5 : inter user interference

+wo, (12)

where we consider that the o-th user has the average channel

statistics with respect to each RRH in the network. From (12),

it can be shown that the desired signal term is uncorrelated to

the rest of the terms. An achievable rate (lower bound on the

capacity) is obtained by using the fact that mutual information

is minimized when the uncorrelated signals to the desired

signal is replaced by independent Gaussian noise [20] with

variance equal to the sum of variances of undesired signals,

i.e. T2, T3, T4, T5, and wo. Hence, the SINR corresponding to

this lower bound on capacity is given as

SINRo =
E
[

|T1|2
]

∑5
i=2 E [|Ti|2] + 1

.

In this case, note that E [Ti] = 0 for all i. Further,

E
[
|T1|2

]
= ρd

N2

K

(
M∑

m=1

√
γmo

)
2
E
[
|qo|2

]
,

E
[
|T2|2

]
= ρd

N

K

M∑

m=1

γmoE
[
|qo|2

]
,



SINR
Apx
o (doo, ro) =

ρd
N2

K (Î1(doo, ro))
2E

[

|qo|2
]

ρd
N2

K (Î1(doo, ro))2E [|q̃o|2] + ρdNÎ2(doo, ro) + 1
, (11)

where Î1(doo, ro) and Î2(doo, ro) are given in (9) and (10), respectively.
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Fig. 2. The effect of fronthaul capacity on system sum-rate. The solid lines are
obtained using the analytical expression in Proposition 1, markers are Monte
Carlo simulation results obtained using Lemma 2. The fronthaul capacity is
in bits/s/Hz. M = 16, N = 8, τp = 168, ρp = 100 dB.
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Fig. 3. The effect of number of antennas per RRH on average user rate. Solid
lines and markers represent analytical and simulation results, respectively. We
have considered MN = 128, τp = 168, K = 8.

E
[
|T3|2

]
=

(

ρd
N

K

M∑

m=1

γmo + ρd
N2

K

(
M∑

m=1

√
γmo

)2

)

E
[
|q̃o|2

]
,

E
[
|T4|2

]
= ρd

N

K

M∑

m=1

(
βmo − γmo

)
E
[
|q̂o|2

]
,

E
[
|T5|2

]
= ρd

N(K − 1)

K

M∑

m=1

βmo.

Substituting these values, we obtain the expression presented

in the lemma.
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