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Abstract—

As more critical applications move to the cloud, there is
a pressing need to provide privacy guarantees for data and
computation. While cloud infrastructures are vulnerable to a
variety of attacks, in this work, we focus on an attack model
where an untrusted cloud operator has physical access to the
server and can monitor the signals emerging from the processor
socket. Even if data packets are encrypted, the sequence of
addresses touched by the program serves as an information
side channel. To eliminate this side channel, Oblivious RAM
constructs have been investigated for decades, but continue
to pose large overheads. In this work, we make the case that
ORAM overheads can be significantly reduced by moving some
ORAM functionality into the memory system. We first design
a secure DIMM (or SDIMM) that uses commodity low-cost
memory and an ASIC as a secure buffer chip. We then design
two new ORAM protocols that leverage SDIMMs to reduce
bandwidth, latency, and energy per ORAM access. In both
protocols, each SDIMM is responsible for part of the ORAM
tree. Each SDIMM performs a number of ORAM operations
that are not visible to the main memory channel. By having
many SDIMMs in the system, we are able to achieve highly
parallel ORAM operations. The main memory channel uses
its bandwidth primarily to service blocks requested by the
CPU, and to perform a small subset of the many shuffle
operations required by conventional ORAM. The new protocols
guarantee the same obliviousness properties as Path ORAM.
On a set of memory-intensive workloads, our two new ORAM
protocols — Independent ORAM and Split ORAM - are able to
improve performance by 1.9x and energy by 2.55x, compared
to Freecursive ORAM.
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I. INTRODUCTION

Many applications execute in datacenters or on smart
handheld devices. This makes a hardware attack more
feasible, especially on a passive memory system where
adversaries can observe both data and addresses emerging
from the processor socket. While data can be protected
using encryption, hiding the address pattern is not trivial.
This is because a passive memory device does not have
encryption/decryption logic and must receive the address in
plaintext. The addresses touched by a program can therefore
be observed by an attacker that has physical access to the
hardware.

To close this side channel, researchers have proposed
different Oblivious RAMs that make two different access
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patterns indistinguishable. In spite of decades of progress,
state-of-the-art ORAM proposals continue to suffer from
very high overheads. An ORAM converts a single memory
access into more than a hundred memory accesses, so its
performance is very much dictated by the memory band-
width available to the system. Modern processors have only
a handful of memory channels that are quickly saturated by
the bandwidth demands of ORAM.

In this work, we try to boost the bandwidth available to
ORAM by creating a number of memory access channels
that do not burden the processor’s limited pin budget.
These memory access channels are on the DIMM and are
controlled by a custom buffer chip on the DIMM. The
buffer chip is part of the trusted computing base (TCB).
We shift most of the ORAM controller functionality from
the secure CPU to the secure buffer chip on each DIMM.
Thus, most of the data movement required for an ORAM
access now happens locally on the DIMMs. We refer to this
new DIMM architecture as a secure DIMM or SDIMM. It
has the following advantages:

1. Memory Capacity and Cost: By relying on commodity
DDR-compatible products and a DIMM interface, SDIMMs
are able to provide higher memory capacity and lower cost
than currently available active memory architectures (e.g.,
Micron HMC [1]). High memory capacity at low cost is
critical for many cloud applications [2], [3].

2. Performance: The ORAM protocol now has as many
memory channels at its disposal as the number of DIMM:s.
This improves the memory parallelism that can be achieved
for ORAM accesses. Additionally, it clears ORAM traffic
from the shared main memory channels, which improves
the latency for non-secure accesses.

3. Energy: By localizing most ORAM traffic within a
DIMM, the energy cost of ORAM data movement is sig-
nificantly lowered.

4. Privacy: The CPU vendor does not have to trust the
DRAM chip vendor or the manufacturer of an active mem-
ory device. The CPU vendor can design its own trusted
buffer chip and SDIMM, while using non-trusted commodity
DRAM chips. As we show later, our new ORAM protocols
offer the same privacy guarantees as state-of-the-art ORAM.

Next, we design ORAM protocols that can be efficiently



distributed across multiple SDIMMs in different ways. We
first create an Independent ORAM per SDIMM, where each
SDIMM is responsible for a subtree of the full ORAM.
One can consider this memory model as a queuing system
with multiple servers. The more SDIMMs in the system,
the more parallelism that is available to service ORAM
requests. While this Independent model reduces bandwidth
pressure on the memory bus, it achieves a service time on
an SDIMM that is almost the same as a regular single
channel ORAM. For applications with low memory level
parallelism, a regular Path ORAM might outperform an
SDIMM-based memory system, as Path ORAM can use
all channels to reduce ORAM service time. We therefore
propose a second distributed protocol, a Split ORAM where
each bucket in one ORAM tree is decomposed into multiple
equal parts and distributed across multiple SDIMMs. The
Split ORAM protocol only moves metadata to the CPU,
and most data block shuffling is performed locally within
each SDIMM. The collective internal memory bandwidth
of multiple SDIMMs can be harnessed for a single ORAM
request, thus lowering latency per access. Finally, we show
a memory layout that localizes ORAM data accesses to one
rank for each ORAM request. As a result, we can keep most
of the memory ranks in low power mode.

In short, this work offers the following contributions:
1. We propose an SDIMM that shifts the ORAM controller
to the DIMM buffer and increases memory parallelism.
We discuss the architectural requirement for SDIMMs to
guarantee secure address obfuscation.
2. We show how an ORAM protocol can be decomposed
across multiple SDIMMs using two different approaches.
The first approach, Independent ORAM, achieves a dramatic
reduction in main memory channel bandwidth. The second
approach, Split ORAM, consumes a moderate amount of
main memory channel bandwidth, but reduces latency by
spreading every ORAM request across multiple SDIMMs.
3. We show a low power scheme for SDIMMs that keeps
most of the ranks in low power mode and localizes all
accesses per ORAM request to one rank.
4. Finally, we evaluate our approach and compare it against
the state-of-the-art Freecursive ORAM [4]. Our results show
that SDIMM-based systems can improve system perfor-
mance by 1.9x and energy by 2.5x for a 32 GB memory
system.

II. BACKGROUND
A. DRAM Basics

A commodity DRAM-based memory system consists of
one or more channels that each have a data bus and a
command/address bus. Each channel can have up to three
dual inline memory modules (DIMMs). Every DIMM has
multiple ranks consisting of multiple DRAM chips. Every
cache block is scattered across chips in a rank. All the
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Figure 1. A baseline LRDIMM.

chips receive the same commands through a shared com-
mand/address bus, while they send to and receive from their
own part of the data bus. Each rank also consists of multiple
banks that can be accessed nearly independently to increase
memory parallelism. To fetch a cache line, the memory
controller sends a RAS signal to open a row, followed by a
CAS signal to send the selected part of the row to the CPU.
While there are different types of DIMMs, in this work
we focus on load reduced DIMM (LRDIMM [5]), which
supports high bandwidth and high capacity, and is popular
in server machines. In an LRDIMM, the data bus and the
command/address bus between DRAM chips and the CPU
are relayed through the LRDIMM buffer, which is a chip
on the DIMM that currently has no processing capabilities.
The buffer chip improves signal quality and the maximum
frequency of the memory channel (see Figure 1).

B. Threat Model

In this work, we assume that the CPU is secure and the
adversary cannot tamper with it. However, they can deploy
physical attacks on the memory system. Such attacks may
involve a logic analyzer that can monitor visible signals
on printed circuit boards (including the motherboard and
DIMMs). The attacker can thus passively observe the data
and addresses of the memory access stream that emerges
in/out of the processor and memory chips. As a result, they
may deduce crucial information about the running programs
and their inputs. Prior work [6] has shown that sensitive
information can be deduced even if the data is encrypted.
This information can be later used to also actively tamper
with data (an active attack). To withstand such physical
attacks, the memory system must be augmented to not
only provide confidentiality (encryption support), but also
data integrity (e.g., with Merkle Trees) and access pattern
indistinguishability.

C. Path-Oblivious RAM

For decades, many have pursued Oblivious RAM [7],
[8], [9], [10], [11], [12], [13], [4], [14] implementations
to guarantee indistinguishable access patterns. The key idea
behind ORAM is to randomly change the address of each
memory block, whenever it is accessed. One of the recent
proposals for ORAM, with the least bandwidth and storage
overhead, is Path ORAM [11]. In this type of ORAM, data



blocks in memory are logically organized as a balanced
binary tree with root at level 0 and leaves at level L. Each
node in the tree is called a bucket and contains Z encrypted
blocks (typically Z = 4 [4]). Some of these blocks may be
dummy blocks.

In addition to the tree organization, ORAM has two other
key components: PosMap and stash. PosMap is a lookup
table that associates a leaf ID, from 0 to 2% — 1, to each data
block. The stash is a small (typically 200 entries [4]) storage
buffer in the memory controller that temporarily holds data
blocks that are read from the tree. ORAM guarantees that
at any moment, the block with leaf ID [ is either kept in
the stash or in a node on the path from the root node to
the leaf node [. In every access to the ORAM, the leaf ID
associated with the accessed block is updated to a random
value. In order to hide the access type (i.e., read or write)
and to randomly change the leaf ID, ORAM is accessed
through an accessORAM (a, op, d’) interface, where a, op,
and d’' are the block’s physical address, the operation type,
and the new value for the block (for write operation),
respectively [4]. In every call to accessORAM (a,op,d’),
the memory controller performs the following steps:

1. It looks up the PosMap and finds the leaf ID [ associated
with a. It also updates the PosMap entry for address a with
a randomly generated value [’.

2. It fetches and decrypts all the cache lines along the path
from the root node to the leaf node [, and adds them to the
stash.

3. In the case of a read operation, it finds the block a,
and sends a copy of it to the last level cache. For write
operations, it updates the block’s content with d’.

4. Finally, it stores back as many blocks as possible from
the stash to the path from the root node to the leaf node [.

To facilitate these steps, each node in the tree has some
additional fields. More precisely, each block is augmented
with a field for its physical address and a field for its leaf
ID. The memory controller uses these fields to identify
the requested block and to store the blocks from the stash
back in to the memory. In addition to these two fields, a
counter is maintained for the entire bucket, which is used
for encryption and decryption.

D. Freecursive Path Oblivious RAM

The PosMap in Path ORAM imposes a significant storage
overhead on the secure CPU. This is because the PosMap
capacity grows linearly with the size of the tree. To alleviate
this overhead, the PosMap is also stored in the memory [4].
The memory space for PosMap is also treated as a separate
smaller ORAM to avoid information leakage. To distinguish
between these different ORAMs, we call the data ORAM
as ORAM and the PosMap ORAM as O RAM;. Note that
the PosMap for O RAM; might not fit in the secure CPU as
well; hence it will be kept in the memory in ORAM,. In
general, ORAMj, keeps the PosMap for ORAMj,_1. The

algorithm recursively stores these PosMaps in the memory,
until it becomes small enough to fit on the chip. To find a
cache line, the memory controller starts with the on-chip
PosMap, say ORAM,,, and finds an address to perform
accessORAM in ORAM,, ;. This process continues until
the accessORAM is called for ORAM,.

The recursive process of calling accessORAM imposes
a severe overhead for each data request. A recent pa-
per addressed this problem and proposed Freecursive Path
ORAM [4]. The key idea in this approach is to cache entries
from ORAM; (i > 0) in an on-chip space called PosMap
Lookaside Buffer (PLB). Upon receiving a new request, the
memory controller checks the PLB iteratively for the entries
in ORAM; to ORAM,, associated with this request. The
procedure stops if there is no hit in the PLB or for the first
ORAM leading to a hit. Fletcher et al. [4] advocate that all
the ORAM, to ORAM,, be stored in the same ORAM tree
in memory to avoid information leakage.

The Freecursive architecture has two parts, backend and
frontend. The backend has the stash and the memory con-
troller, and takes care of performing the accessORAM
function. The frontend, on the other hand, queues up LLC
requests and has the PLB cache to determine how many
accessORAM s are needed per LLC request. The service
time of the backend depends on the available resources,
especially memory bandwidth.

E. Active Memory Solution

It is worth highlighting that recent work [15], [16] is
considering the use of active memory devices to eliminate
the leakage of the address stream. These works rely on logic
capabilities (primarily, encryption and decryption) within
the memory package, as may be possible with devices like
the Micron HMC [1]. Placing active components within
the memory package can have significant implications on
cost. This cost is incurred by all applications running on
this server, regardless of whether they are sensitive or not.
Instead, a server with low cost-per-bit DIMMs can benefit
all applications that run on this server, while the overheads
of an ORAM protocol are experienced only when executing
sensitive phases in applications.

The use of active memory devices can impact cost and
performance in many ways. First, commodity DRAM chips
keep costs down by avoiding extraneous logic and catering
to high-volume markets. Second, while capabilities can be
added to a separate logic die in a 3D package, such 3D
packages are inherently more expensive because of their
use of through-silicon vias (TSVs). Third, devices like the
HMC support a limited capacity of 4 GB per package. When
supporting large memory capacities in servers, it is unlikely
that the entire memory system will be constructed with a
large network of HMCs that can impact board layout and
introduce long network latencies. It is more likely that 3D-
stacked active memory packages will be used to construct an



off-chip cache that is backed up with a traditional low-cost
and passive memory system. This larger memory system will
still need support for ORAM to guarantee privacy. Such an
ORAM will also suffer from long latencies since part of the
processor pin budget is allocated to the HMC cache and not
available to boost ORAM bandwidth.

DRAM CHIP DRAM CHIP
cPu cPU cPU
DIMM DIMM
Traditional Memory/ORAM HMC-based Memory Secure-DIMM
Performance: Low High Medium
Cost: Low High Low
Attack surface: interconnects interconnects interconnects
DRAM chips DRAM chips
Figure 2. Landscape of solutions: baseline ORAM (left), active memory

(center), SDIMM (right).

To some extent, our proposals here are creating an “ac-
tive” memory system, but are doing so in a cost-aware
manner that enables large memory capacities. We are con-
tinuing to use low-cost commodity memory chips that are
connected to an active logic unit on the DIMM. Since these
connections do not rely on exotic packaging and are visible
to the attacker, ORAM semantics are required to eliminate
side channels. While the use of an active memory unit like
the HMC requires the system vendor to trust the memory
vendor, in our proposed architecture, the system vendor can
create their own active logic unit, thus exercising full control
over the trusted computing base.

The design space is depicted in Figure 2. The attack
surface (shown by black components) in our model (right)
is the same as in traditional ORAM solutions (left). Our so-
lution expands the trusted computing base (shown by yellow
components) — by offloading some ORAM functionality to
buffers on the SDIMM, we can increase performance at low
cost. The active memory solution (center) lowers the attack
surface and improves performance, but pays a steep penalty
in memory cost-per-bit.

III. SECURE DIMMS AND NEwW ORAM PROTOCOLS
A. Secure DIMM

In this work, we propose a novel Secure-DIMM or
SDIMM that is used to distribute the ORAM tree and reduce
its bandwidth impact. In an SDIMM, the central LRDIMM
buffer is replaced with a secure buffer that can perform an
accessORAM operation (see Section II-C) on the DIMM
and in close proximity to DRAM chips. Figure 3a depicts
the high-level architecture of an SDIMM. As shown, the
TCB includes both the CPU and the secure buffer, and
the communication between them is encrypted. However,
DRAM chips and the on-DIMM bus between the secure
buffer and these DRAM chips are not trusted. A secure
buffer has two main components:

1) It has an ORAM memory controller that guarantees
obliviousness on the DIMM. Therefore, each SDIMM
can be considered as a single-channel ORAM.

2) It has an interface logic that enables secure encrypted
communication between the secure buffer on the
DIMM and the secure CPU. The encryption applies
for both data and command/address buses.

SDIMMs can be used to create a distributed implemen-
tation of a Freecursive ORAM backend with the same
encryption and integrity verification mechanism (PMMAC).
Informally speaking, in an SDIMM-based architecture, the
CPU sends an encrypted request to an SDIMM, the SDIMM
performs an accessORAM operation to fetch the requested
block, and the SDIMM finally encrypts and sends the block
back to the CPU. We try to abide by the DDR protocol as
much as possible, i.e., we do not introduce any new pins on
the memory channel. As described later, we do introduce
new commands that can be placed on the DDR bus. Since
an ORAM protocol requires a custom-designed controller
anyway, this does not introduce significant additional design
effort.

In brief, SDIMM has the following primary advantages:

1) In an ORAM, system throughput is almost directly
proportional to the effective memory bandwidth avail-
able to the processor. Each SDIMM can be viewed as
an independent channel that performs ORAM accesses
in parallel, without burdening the shared memory
channels. Therefore, the effective available memory
bandwidth scales up linearly by deploying multiple
SDIMMs.

2) An SDIMM has the same DRAM chips as an
LRDIMM, and its secure buffer has almost the same
pins as the LRDIMM buffer!. Therefore, an SDIMM
does not require significant changes to the design and
wiring of the DIMM. This has favorable implications
for DIMM manufacturing at scale.

3) An SDIMM uses a DIMM form factor. The CPU-
side memory controller can be modified to enable
SDIMMs and LRDIMMSs to co-reside on the same
memory channel. This allows virtual machines (VMs)
with different levels of security requirements to run on
the same CPU. Since an SDIMM handles most data
movement locally, it does not negatively impact the
bandwidth available to a co-resident VM.

4) In contrast to active memory, such as the Hybrid
Memory Cube [1], SDIMMs can offer both address
obfuscation and high capacity. As a result, an SDIMM
is a suitable choice for in-memory applications (e.g.,

'In this work, we assumed a DDR3 topology for the SDIMM. The
SDIMM buffer has the same pins as the LRDIMM buffer, so adapting
a DDR3 LRDIMM into an SDIMM is straightforward. However, in a
DDR4 topology, the LRDIMM data buffer is decomposed into multiple
small buffers. Adapting the DDR4 LRDIMM to an SDIMM would require
a few additional pins to each buffer chip.



ORAM Controller

SDIMM-1

Untrusted
N

—
v < // Unencrypted
Secure El
femmp Buffer & 7
—— e ——
O I O

Trusted

Encrypted
CPU

(a)
Figure 3.

Oracle TimesTen database) that requires high capac-
ity. In addition, an SDIMM-based system can easily
morph between a secure and non-secure memory.

5) An SDIMM gives the system or DIMM manufacturer
control over the security of the memory system, and
eliminates reliance on the memory vendor or on an
active memory device. The system manufacturer must
create an SDIMM with commodity DRAM chips
and their own trusted secure buffer’. This server can
then be placed in the cloud and an authentication
mechanism can confirm that the hardware has not been
tampered with.

To realize the benefits of a secure DIMM, we will answer
the following questions in the upcoming sub-sections: (i)
When using multiple SDIMMs, how can the ORAM tree be
distributed across SDIMMs such that the memory latency
is minimized? (ii) How is a secure link between the CPU
and an SDIMM initialized? (iii) How can data be transferred
between an SDIMM and the secure CPU without leaking any
information? (iv) How do we design an SDIMM interface
without requiring changes to a DDR channel?

B. CPU-SDIMM Communication

For secure communication, the CPU should authenticate
and initialize the connections to the SDIMMs. At boot-up
time, the secure CPU has to confirm that it is communi-
cating with a trusted secure buffer on the SDIMM. This
authentication of the device can be done in one of many
possible ways, using industry best practices. For example,
when the system boots up, the CPU can communicate with
its secure buffers to obtain their IDs; the CPU then contacts
a third-party authenticator, similar to Verisign, to obtain a
public key. Once the CPU has a public key for its secure
buffer, it goes through the standard practices to establish a
secure connection, typically involving multiple messages to
agree on upstream/downstream session keys and counters.
To ensure secure and low-latency data transfer between the
CPU and an SDIMM, we use counter-mode AES, which
XORs the plaintext message with a frequently-changing pad
that is a function of the key and counter.

21t is not uncommon for CPU vendors to design custom DIMMs [17].
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(a) SDIMM overall design. (b) The Independent ORAM protocol.

C. A Distributed Independent ORAM

In an optimized baseline ORAM memory system, the
ORAM binary tree is re-organized as a tree of smaller
subtrees. The buckets in each subtree are placed in adjacent
memory locations to increase row buffer hit rate. In addition,
the cache lines of a bucket are also scattered between
multiple channels to utilize channel parallelism [10]. Based
on this arrangement and memory address mapping, buckets
are distributed over different banks, ranks, DIMMs, and
channels.

In the proposed ORAM implementation, as shown in Fig-
ure 3b, the address space is partitioned across all SDIMMs
based on the most significant bits of the leaf ID. Each
SDIMM is only aware of the ORAM sub-tree that it
manages. A requested data block will likely transfer from
one SDIMM to another, although most data movements
are within an SDIMM. The CPU maintains a PLB and on
a memory access, it generates the necessary accessORAM
operations. These are sent to the relevant SDIMM. In other
words, the CPU manages the frontend of ORAM while
SDIMMs accelerate the backend. The steps are explained
in more detail below.

1. The memory controller checks the PLB and determines
which request must be issued next. Based on the leaf ID of
that request, it is sent to one of the SDIMMs (SDIMM-0
in our example in Figure 3). The request is encrypted and
sent to the secure buffer on SDIMM-0 with an ACCESS
command (we will later explain how these commands are
set up in a DDR compatible manner). To obfuscate the
operation type (read or write), an ACCESS command is
always followed by one block of data; in case of a read
operation, this block is a dummy that is discarded by the
receiving SDIMM.

2. The secure buffer on SDIMM-O0 receives the request and
decrypts the message. It then fetches all the buckets in the
path from its root to the associated leaf ID, decrypts them,
and puts them into the local stash, located in the secure
buffer of SDIMM-O0.

3. In case of a write, the relevant block is updated with
its new value. Regardless of the operation (read or write),
SDIMM-O0 then generates a random new leaf ID for the block
requested by the CPU. If the leaf ID belongs to the current
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SDIMM, the block remains in the local stash. Otherwise,
the block is removed from the stash in SDIMM-O0.

4. The secure buffer then moves as many blocks as possible
from its local stash to buckets on the path from the root to
the old leaf ID.

5. In case of a write operation where the new leaf ID is
in SDIMM-0, the secure buffer sends a dummy block to
the CPU-side memory controller. In all other cases (read
or write), the secure buffer encrypts the pertinent cache
block, and sends it to the CPU-side memory controller. The
block is augmented with its new leaf ID (mapped to say
SDIMM-1). Note that in a DDR channel, only the CPU-
side memory controller can control the memory channel.
Therefore, SDIMM-0 cannot initiate a data transfer. The
CPU-side memory controller has to periodically send a
PROBE command to SDIMM-0 to determine if a response
is ready. When the command’s response is positive, it issues
a FETCH_RESULT command to fetch the requested data
block.

6. Upon receiving the data block, the CPU-side memory
controller may have to move this data block to its new
SDIMM. If the CPU does this with a single write to
the destination SDIMM, it is evident where the block has
moved. This can disrupt the indistinguishability guarantee
in ORAM. If the access pattern has high temporal locality,
i.e., a single block A is touched repeatedly, the sequence of
touched SDIMMs would take the form: read from SDIMM-¢,
write to SDIMM-, read from SDIMM-j, write to SDIMM-
k, read from SDIMM-k, and so on. Therefore, to obfuscate
the new destination of this block and preserve indistinguisha-
bility of access patterns, the CPU sends one block to every
SDIMM using the APPEND command. The command sent
to SDIMM-1 in our example contains the pertinent block
while the ones destined to other SDIMMs carry dummy
blocks. The APPEND command simply adds the block to
the destination’s local stash, if it is not a dummy.

DIMM 1

2

R

(b)

(a) Split ORAM memory layout. (b) Split ORAM protocol steps.

Since block addresses are random, the number of blocks
removed and appended to each SDIMM local stash averages
close to zero. However, the proposed protocol can cause
overflows in local stashes. If a local stash overflows, it can
initiate local reads and writes to drain its stash, similar to
conventional stash overflow strategies such as background
eviction [10]. We later quantify the probability of stash
overflow when transferring data between SDIMMs and show
a simple solution to make it almost zero (see Section IV-C).

We refer to this design as the Independent architecture
because most ORAM operations, including the assignment
of new leaf IDs to fetched blocks, are in the hands of each
SDIMM. The CPU is largely hands-off; it only manages
the PLB, issues accessORAM requests, and issues APPEND
commands to move the requested block to a new SDIMM.
This design places a much smaller bandwidth demand on
the memory channel than the baseline ORAM because only
blocks requested by the CPU (and occasional dummies) are
transmitted on the memory channel. The memory channel
escapes dealing with the many blocks on an ORAM tree
path that are shuffled on every ORAM access.

D. The Split Architecture

In the Independent architecture, a single SDIMM is
responsible for most of the data shuffling required by an
accessORAM operation. Given the SDIMM’s limited buffer
chip pin bandwidth, the latency for this operation is similar
to that of a baseline ORAM operating with a single memory
channel. Thus, even though the Independent architecture
can efficiently process multiple accessORAM operations in
parallel on different SDIMMs, the latency for each operation
is relatively high.

Therefore, to further reduce latency for an ORAM access,
we must spread a single ORAM access across multiple
SDIMMs to leverage the collective memory bandwidth in
multiple SDIMMs. This is especially useful if the workload
has limited memory level parallelism and multiple SDIMMSs



are sitting idle while a few SDIMMs are performing accesses
in the Independent ORAM architecture.

The Split Architecture tries to mitigate the accessORAM
latency by relying on a different data layout in the memory.
Informally speaking, one ORAM tree is decomposed into
multiple trees of the same height, but each of them has less
capacity per bucket. Here, without loss of generality, we will
explain splitting for two SDIMM s (or 2-way splitting). Each
bucket in the original ORAM tree has four cache blocks,
and corresponding metadata (four tags, four leaf IDs, four
MAC:s, one shared counter). In 2-way splitting, each bucket
has one half of each data block, one half of each tag, one
half of each leaf ID, half the counter, and its own MAC.
Similar to PMMAC [4], MACs are generated based on the
compact counters and the data portions available in each
bucket. Therefore, in n-way splitting, the MAC overhead is
n times that in Freecursive ORAM. However, this overhead
is small, relative to the high overhead of dummy blocks in
the baseline ORAM. Figure 4a shows the data layout due
to 2-way splitting. Note that we are not assigning half the
blocks (and corresponding metadata) to one SDIMM; we are
assigning half of every block/metadata to each SDIMM.

An accessORAM operation now entails the following
steps (shown in Figure 4b):

1. The CPU-side memory controller looks up the PLB to find
the appropriate leaf ID for the next accessORAM operation.
For all buckets on the path from the leaf to the root, the CPU-
side ORAM controller sends two types of fetch commands
to both SDIMMs. First, it sends a FETCH _DATA command
that reads the data part of each bucket on the path from
the leaf to the root. This data is not transmitted back to the
CPU, but is stored in each SDIMM’s local stash, i.e., it is a
largely local operation. Note that each SDIMM only handles
half the bits for each data block.

2. Next, the CPU-side memory controller sends regular read
commands, i.e., conventional RAS and CAS signals, and
retrieves the metadata (tags, leaf IDs, and counters) for the
entire path in both SDIMMs. Note that each SDIMM is
responsible for providing half the bits of each metadata block
back to the CPU.

3. On the CPU side, the ORAM controller re-assembles
all the metadata received from different SDIMMs for the
same bucket position and reconstructs tags, leaf IDs, and
the counter. Having all the tags, the ORAM controller can
find the requested block. The CPU stash is also designed to
shadow the local stash in each SDIMM; the key difference
is that the CPU stash only has tags and the local SDIMM
stashes have data blocks.

4. The CPU knows the exact location of the requested block
in the SDIMM stashes. It issues FETCH STASH commands
to fetch the pieces of the requested data block from the
SDIMMs. This command sends the local stash index to
identify the block that must be returned. Having all the
leaf IDs, the CPU-side ORAM controller also determines

how to write back from the stash. Unlike the Independent
architecture, most ORAM decisions in the Split architecture
are made by the CPU. The CPU sends this write-back order
to all SDIMMs. Note that instead of using the full address to
refer to data in the stash, the CPU-side ORAM controllers
use the position in the stash. Additionally, the CPU-side
ORAM controller sends the re-assembled counters to all
the SDIMMs. This is needed as these counters are used for
encryption and decryption of the contents of buckets, as well
as for MAC verification. All of this information is packaged
as two RECEIVE_LIST commands to the SDIMMs.

5. The SDIMMs receive the lists of the blocks that should be
evicted from their stash into their trees as well as the entire
counter bits, through two RECEIVE_LIST commands. Using
the counters, the SDIMMs re-encrypt the blocks, re-calculate
MAGCs, and update the tree according to the list sent by the
CPU.

In these steps, most of the data block shuffling move-

ment happens within the SDIMMs. The memory channel
to the CPU is primarily used to send/receive metadata and
the specifically requested data blocks. Thus, compared to
conventional ORAM, we see lower traffic on the memory
channel and lower latency. Compared to the Independent
SDIMM architecture, the Split architecture places more
traffic on the memory channel, but incurs a lower latency per
request by leveraging the collective bandwidth on multiple
SDIMMs. In addition, splitting increases the MAC overhead
as each split piece requires its own MAC.
Indep-Split Protocol: The Split and Independent protocols
can be combined. For example, in a 4-SDIMM design, 2
SDIMMs can be responsible for half the ORAM. This half
is managed with the Split protocol, i.e., most of the data
shuffle is performed within the half ORAM. The CPU can
consider moving the requested block to either half, similar
to how the Independent protocol moves the requested block
between different SDIMMs. This jump across ORAM halves
is performed within the CPU by moving the requested
block from one stash to the next. This combined Indep-Split
protocol balances parallelism and latency.

E. Low Power ORAM Access

The performance of the ORAM-based memory system
depends on available bandwidth. One way to improve band-
width is to increase memory channel clock frequency. How-
ever, DRAM chips consume more background power when
frequency is increased. To reduce the power, we propose
to re-organize SDIMM’s ORAM tree placement in such a
way that each rank contains one whole subtree, as shown in
Figure 5. Note that the new layout still keeps the buckets
in a small subtree close to each other as proposed in [10].
This layout applies to the Independent and Split protocols.

As a result of this new organization, during an
accessORAM, the SDIMM engages one rank and the other
ranks in the SDIMM can be placed in low power mode. Note



Figure 5.

Memory layout for the low power technique.

that wakeup latency (24ns for DDR3 [18]) is much shorter
than accessORAM latency. In addition, an SDIMM can
turn on the rank required for the next request early enough
to hide the wakeup latency. In a quad-rank SDIMM, we can
accommodate four large subtrees and place three of them in
low power mode. In this case, the first two levels of the tree
that are shared by these subtrees are stored in the secure
buffer.

F. Extending DDR Commands

In our discussions so far, we have introduced a few
new commands that the CPU’s memory controller uses to
communicate with the secure buffer and orchestrate acces-
SORAM operations. Unfortunately, there is no free pin on
an LRDIMM to use for these commands. To retain DDR
compatibility, we shoehorn our new commands into the
existing DDR interface.

There are two types of commands that the CPU sends to
an SDIMM: short and long commands. For short commands,
the command/address bus is enough to send a request. For
long commands, the data bus is also needed. In order to
support new commands that can be received by a secure
buffer, we use address bits as well to encode commands. To
this end, we reserve the first blocks of the SDIMM for com-
mands. This means that the first blocks cannot contain any
data. RAS and CAS commands to these reserved addresses
are interpreted by the SDIMM as special commands. Since
a CAS command can work at the granularity of an 8-byte
word, each reserved memory block can be used to construct
8 different commands. Therefore, we use the addresses in
Block 0, in the read mode, to express our short commands.
For long commands, we use the write mode with address
0. In this case, the data written to this address contains
the message. Table I summarizes the formats for these new
commands. The first two commands are used during the
authentication process to exchange keys.

G. Privacy Analysis

The Freecursive protocol is composed of a frontend
and backend. For the Independent protocol, we keep the
two components intact, but the frontend executes on the
CPU, while the backend executes on the SDIMM. The

l Command | Type [ RD vs. WR | cmd/addr Bus ||

SEND_PKEY short RD RAS(0x0)
CAS(0x0)

RECEIVE_SECRET | long WR RAS(0x0)
CAS(0x0)

ACCESS long WR RAS(0x0)
CAS(0x0)

PROBE short RD RAS(0x0)
CAS(0x8)

FETCH_RESULT short RD RAS(0x0)
CAS(0x10)

APPEND long WR RAS(0x0))
CAS(0x0)

FETCH_DATA short RD RAS(0x0)
CAS(0x18)

FETCH_STASH long WR RAS(0x0)
CAS(0x18)

CAS(idx)

RECEIVE_LIST long WR RAS(0x0)
CAS(0x0)

Table 1

DETAILS OF COMMANDS USED BY SDIMM.

communication between these two components is protected
with counter-mode encryption and does not leak any infor-
mation. The nature of communication between these two
components is also fixed, i.e., it always involves (i) sending
an accessORAM operation and a data block to a random
SDIMM, (ii) receiving a data block from that SDIMM, and
(iii) sending blocks to all SDIMMSs. The deterministic nature
of these additional messages ensures that there is no new
information leakage and the indistinguishability properties
of the baseline Freecursive ORAM are preserved.

The Split protocol mirrors the Freecursive baseline, but
only exchanges the bare minimum number of data blocks
between frontend and backend (with counter-mode encryp-
tion). Again, the nature of this communication (number of
blocks, source, and destination) is deterministic and does not
introduce new leakage. On exposed unencrypted buses, the
traffic observed is identical to the traffic that would have
been observed with Freecursive.

IV. METHODOLOGY AND RESULTS
A. Methodology

For our evaluation, we use USIMM, a trace-based cycle
accurate memory simulator [20]. We modified USIMM to
support a last level cache and also implemented Freecursive
ORAM [4]. For the backend of ORAM, we used an FR-
FCFS memory scheduler [21]. Read requests are prioritized
until the write queue size exceeds 40. In our simulator,
we fast-forward 1M accesses to warm up the LLC and
then measure cycle-accurate performance for the next 1M
accesses. For traces, we captured L1 cache misses, for 10
SPEC2006 benchmarks using full system simulator Sim-
ics [22]. We did our evaluation for both single channel
and 2-channel memory configurations with two DIMMs per
channel. For our energy evaluation we relied on Micron



( Trace Capturing I

Processor
ISA UltraSPARC III ISA
CMP size and Core Freq. 1-core, 1.6 GHz
in-order
Re-Order-Buffer 128 entry

Cache Hierarchy

L1 I-cache 32KB/2-way
private, 1-cycle
L1 D-cache 32KB/2-way

private, 1-cycle

Cycle-Accurate Simulation
Cache Hierarchy

L2 Cache 2MB/64B/8-way
shared, 10-cycle
DRAM Parameters
DRAM Device Parameters Micron MT41J256M8
DDR3-800 Timing parameters [19]
8 ranks per channel, 8 banks/chip
32768 rows/bank, x8 part
DIMM Configuration 72 bit channel, 9 devices/rank
Row-Buffer Size 8KB
DRAM Bus Frequency 1600 MHz

DRAM Write Queue Size 64 entries
( Freecursive Parameters I

PLB Size 64KB
Blocks per Bucket (Z) 4
Data Block Size 64B
Encryption/Decryption Latency 21 cycles
Number of recursive PosMaps 5
Table II
SIMULATOR PARAMETERS.

Power Calculator [23] and CACTI 7 [24] to calculate DRAM
chip and memory channel power consumption. Table II
summarizes the parameters we use in our evaluation.

B. Results

Evaluating the Baseline: Figure 6 shows the slowdown
of the state-of-the-art Freecursive ORAM compared to a
non-secure baseline for single channel and 2-channel mem-
ory systems, respectively. According to this figure, even
with caching 7 levels of ORAM in the memory controller,
ORAM, on average, causes 8.8x and 5.2x performance
loss for a single and double channel memory, respectively.
Additionally, we observe that each LLC miss translates into
1.4 accessORAM operations on average because of recursive
PosMap look-ups.
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Figure 6. Average slowdown of Freecursive with respect to a non-secure
configuration.

SDIMM models: For each memory configuration, there

are multiple options for an SDIMM-based design. These
different organizations are summarized in Figure 7. For
a single channel configuration, we consider two SDIMM-
based designs: INDEP-2 and SPLIT-2, respectively repre-
senting the Independent and Split protocols on 2 SDIMMs
each. For 2-channel memory systems, we consider three
SDIMM-based designs: INDEP-4, SPLIT-4, and INDEP-
SPLIT: all use 4 SDIMMs, with the Independent protocol,
Split protocol, and a combination of the Independent and
Split protocols, respectively. We report our results for these
designs with and without a 64KB cache that stores the first
few levels of ORAM.

Impact on Performance: Figure 8 and Figure 9 show
the normalized execution time with respect to Freecursive
ORAM for single and double channel systems, respectively.
For the single-channel memory, with caching the first few
layers of ORAM, these approaches reduce execution time
by 32% and 33.5%, with INDEP-2 slightly out-performing
SPLIT-2 on average. Without the help of ORAM caching
(baseline and proposed), SIDMM-based systems reduce ex-
ecution time by around 35.7%.
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Figure 8. Normalized execution time of single-channel SDIMM-based
designs.
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Figure 9. Normalized execution time of double-channel SDIMM-based
designs.

For the double channel memory, INDEP-4, SPLIT-4, and
INDEP-SPLIT improve performance by 20.3%, 20.4%, and
47.4% on average, respectively. Thus, the 5.2x slowdown
(Figure 6) in the Freecursive protocol, relative to a non-
secure baseline, has been halved to 2.7 x with the INDEP-
SPLIT protocol, while using low-cost commodity DRAM
chips and not requiring trust in the memory vendor. Applica-
tions (gromacs, omnetpp) that have high levels of memory-



Figure 7.

level parallelism do better with the Indep-4 protocol because
they can keep all 4 SDIMMs busy. Other applications
(GemsFDTD) benefit more from low latency and the SPLIT-
4 protocol. We observe that the combined INDEP-SPLIT
protocol finds the best balance of latency and parallelism in
every benchmark and achieves the best performance.

In Freecursive ORAM, for each accessORAM operation,
the CPU deals with 2 x (Z+1) x L memory accesses, where
Z is the bucket size and L is the number of ORAM tree lev-
els in memory. Meanwhile, in an Independent ORAM proto-
col, the CPU only deals with 1 read and 5 writes (assuming 4
SDIMMs). In the Split protocol, the CPU requires multiple
memory accesses to read and update metadata. For a 28-
layer ORAM system with 7-layer ORAM caching, INDEP-2
and INDEP-4 reduce the number of off-DIMM accesses to
4.2% and 7.8% of the baseline ORAM, including PROBE
access overheads, respectively. These overheads drop to less
than 3.2% when ORAM caching is not used. For the Split
and Indep-Split designs, the off-DIMM accesses are reduced
to 12% of the baseline ORAM. For the 2-channel case, the
Split and Indep-Split models reduce memory latency, relative
to Freecursive, by 41% and 63% respectively. In turn, the
low ORAM-specific traffic on the main DDR bus can lead
to lower latency for memory accesses by other non-secure
threads (not evaluated here).

Impact on Energy: SDIMM-based designs reduce en-
ergy by keeping most of the memory accesses local to an
SDIMM (I/O energy saving), as well as by taking advantage
of the low power technique introduced in Section III-E
(background energy saving).

We also evaluate our low power technique (Section III-E)
and observe no more than 4% performance drop as a result
of higher bank conflicts. It is worth noting that localizing
accesses to one rank also eliminates the 2-cycle rank-to-
rank switching time (T'rrrs). Figure 10 shows the memory
energy overhead of our best performing organizations (i.e.,
SPLIT-2 and INDEP-SPLIT) and Freecursive for single and
double channel configurations. Compared to Freecursive,
SPLIT-2 and INDEP-SPLIT improve memory energy effi-
ciency by 2.4x and 2.5x, respectively.

Different SDIMM-based designs (a) INDEP-2 (b) SPLIT-2 (c¢) INDEP-4 (d) SPLIT-4 and (e) INDEP-SPLIT.
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Figure 10. Memory energy overhead normalized to a non-secure baseline
for (a) single channel and (b) double channels.

Sensitivity Analysis: We investigate the impact of the
number of ORAM layers on the speedup achieved by the
best of our SDIMM-based designs (i.e., SPLIT-2 in single
channel and INDEP-SPLIT in the double channel memory).
Figure 11 shows the average normalized execution time for
different numbers of layers. As expected, adding more layers
increases the improvements of our designs. Similarly, our
designs show slightly higher improvements when ORAM
caches are not used. In short, the improvement ranges from
33% to 35% for the single channel memory and 47% to 49%
for the double channel memory, respectively.

Area Overhead: The SDIMM buffer chip’s main com-
ponents are an ORAM controller and an 8KB buffer to
avoid overflow. Fletcher et al. report 0.47 mm? area for the
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layers in ORAM. Lx refers to an x-level ORAM.

ORAM controller in 32nm. Using CACTI 6.5, we measure
the 8KB buffer area to be less than 0.42 mm? in the same
technology [25]. Therefore, we estimate that the overall area
overhead of an SDIMM buffer chip is less than 1 mm?.

C. Modeling Overflow Rates

In this section, we investigate the impact of transferring
blocks between independent SDIMMSs on the stash size and
stash overflow. Based on our findings, we propose a simple
technique to further reduce the stash overflow rate. In our
model, we divide the secure buffer into two parts: normal
stash and transfer queue (see Figure 12). The normal stash
is the part involved in an accessORAM, while the transfer
queue keeps the block arriving from other DIMMs. We
model the size of the transfer queue and show how the
probability of transfer queue overflow can be made very
small.

Normal

" Transfer
Queue Stash

T [ |

from other
SDIMMs

. Replace a Block leaving
for other SDIMMs in the
stash

2. Inserting to stash through
an accessORAM

Figure 12. Transfer queue considered in our model.

The transfer queue receives blocks from other SDIMMs.
The transfer queue services one block by sending it to
the normal stash. The normal stash accepts a block from
the transfer queue using two approaches: (1) the transfer
queue decides to perform an accessORAM operation to
service a block, and (2) one block leaves the normal stash
for another SDIMM and creates a vacancy. In the latter
approach, servicing a block in the transfer queue does not
impact the size of the normal stash. In the former approach,
the normal stash might overflow due to the accessORAM
operation. However, prior work has already shown that the
probability of this event is extremely small for Z > 4.

The probability of block arrival is % in a dual SDIMM
system. If we do not use the first approach, the probability
of block servicing is also %. To see the rate of overflow,
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Figure 13. (a) Probability moving more than k steps away from origin in

a random walk for different number of steps. (b) The probability of transfer
queue overflow when draining it with an accessORAM with probability p,
for different values of p and different buffer sizes.

we model the size of the transfer queue as a random walk
process on a one-dimensional space. Informally speaking,
with probability %, we walk one step to the right, with
probability 5, we walk one step left, and with probability 3,
we do not walk. To quantify it, let’s assume F'(s, k) is the
probability that, starting from position 0, we are at position
k after s steps. Then, F'(s, k) is expressed with the following
recursive equations.

F(s,k)=05xF(s—1,k)+025x F(s—1,k—1)

+025x F(s—1,k+1)

F(s,k) =0 if(s<k)&F(0,0)=1 initial condition
Using the above formula, we plotted the chances of piling
up more than 16/64/256/1024 blocks in the stash for up
to 800K steps. As shown in Figure 13a, the small buffer
reaches a 97% chance of overflowing after 100K steps. For
800K steps, the chances of passing the buffer limits are 91%,
70%,and 10% for buffer capacities of 64, 256, and 1024,
respectively.

To solve this problem, we must increase service rate so
that queue utilization (i.e., ratio of the arrival rate to the
service rate) goes under 1 and avoids steady state saturation.
We achieve this by leveraging the first approach mentioned
above. With a probability p, we insert a block into the
ORAM through an extra accessORAM operation. In this
case, we have utilization p = 0.25/(0.25 + p).

If we consider each transfer queue as m/m/1/K queue
model, i.e., poisson arrival/service probability model with



1 server and K slots in the queue, then the probability of
the queue being full is P, = p x (1 — p)/(1 — p&+1).
Figure 13b shows the chance of overflow for different sizes
of transfer queue and different values of probability p. We
see that even a small queue has a very small overflow
rate if we occasionally service an incoming block with an
accessORAM operation [26].

V. RELATED WORK

The concept of ORAM was first introduced by Goldreich
and Ostrovsky to aviod software piracy [7]. Since then, nu-
merous theoretical works have proposed a variety of ORAMs
to reduce bandwidth and capacity overheads [27]. One
notable proposal is Path ORAM which organizes the ORAM
as a binary tree and assumes a small capacity overhead for
the client [11]. This approach has been implemented and
optimized in Phantom and Ascend hardware prototypes [28],
[13]. Recently Nayak et al. introduced HOP which is a
hardware prototype with provable security [29]. Fletcher et
al. implemented Tiny ORAM on an FPGA that supports
variable size data blocks [4].

Besides these implementations, there are multiple propos-
als to improve the performance of ORAM. Ren et al. [10]
explore the design space of ORAM and suggest background
eviction and optimized data layout of data in the memory.
Yu et al. [30] take advantage of spatial locality in data and
use prefetching to get data more efficiently. Fork Path per-
forms multiple ORAM accesses in parallel to avoid reading
redundant data. Freecursive ORAM suggests an approach
to avoid most of the recursive accesses to ORAM [31].
Fletcher et al. [32] proposed a solution to throttle down
the side channel on ORAM-based systems and trade-off
performance for security. Ghostrider is a compiler assisted
hardware implementation for ORAM [33]. Cooperative Path
ORAM optimizes the memory scheduler to mitigate the
traffic impact of ORAM access on non-secure threads [34].

Our work is orthogonal to these hardware works and can
be applied in conjunction with these works. The major dif-
ference between our work and the above approaches is that
we create partially active memory components and distribute
ORAM functionality across multiple memory modules. Ac-
tive memory components such as HMC [35] can provide
address obfuscation if they have encryption/decryption logic
in their logic layer [15], [16]. However, leveraging active
memory components requires trusting the memory vendor.
Additionally, to support medium to high capacity, many
HMCs are needed (at high cost). For example, while one
SDIMM can support 64GB, we need 16 4GB HMCs to
realize this capacity. HMC-based space-constrained servers
will therefore have more challenges supporting the high
memory capacity required by cloud applications, e.g., ge-
nomic workloads [36], [37].

VI. CONCLUSIONS

ORAM constructs impose very high bandwidth penalties.
In this work, we make the case that ORAM shuffling
should be off-loaded to smart and secure DIMMs so that
the processor’s progress is not impeded. We introduce two
new distributed ORAM protocols that can leverage these
SDIMMs to reduce bandwidth and access latency, while
not introducing other side channels and while not causing
buffer overflows. The Independent protocol has high latency,
high parallelism, and low bandwidth penalty, so it favors
workloads that exhibit high memory level parallelism. The
Split protocol has low latency, low parallelism, and medium
bandwidth penalty, so it favors workloads that exhibit low
memory level parallelism. Furthermore, we introduce a new
low power technique to reduce background power. Our best
technique reduces execution time by 47%, CPU-memory
bandwidth demand by 8x, and memory energy by 2.5x,
relative to the state-of-the-art Freecursive baseline. Relative
to a non-secure baseline, our contributions have lowered
ORAM overheads to 2.7 in terms of performance and 35 x
in terms of CPU-memory bandwidth demands.
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