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I. Introduction

The atmospheric CO, concentration has risen to > 40% above its
pre-industrial level, and it is expected to continue rising for decades
(Ciais et al.,, 2013) even under the most ambitious climate-change
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Summary

Land ecosystems sequester on average about a quarter of anthropogenic CO, emissions. It has
been proposed that nitrogen (N) availability will exert an increasingly limiting effect on plants’
ability to store additional carbon (C) under rising CO,, but these mechanisms are not well
understood. Here, we review findings from elevated CO- experiments using a plant economics
framework, highlighting how ecosystem responses to elevated CO, may depend on the costs
and benefits of plant interactions with mycorrhizal fungi and symbiotic N-fixing microbes. We
found that N-acquisition efficiency is positively correlated with leaf-level photosynthetic
capacity and plant growth, and negatively with soil C storage. Plants that associate with
ectomycorrhizal fungi and N-fixers may acquire N at a lower cost than plants associated with
arbuscular mycorrhizal fungi. However, the additional growth in ectomycorrhizal plantsis partly
offset by decreases in soil C pools via priming. Collectively, our results indicate that predictive
models aimed at quantifying C cycle feedbacks to global change may be improved by treating N
as a resource that can be acquired by plants in exchange for energy, with different costs
depending on plant interactions with microbial symbionts.

mitigation scenarios (Smith eral, 2016). Although it is well
established that elevated CO; (eCO,) stimulates photosynthesis at
the leaf level (Ainsworth & Long, 2005), there is considerable
uncertainty about the extent to which plants will sustain elevated
levels of productivity and continued carbon (C) storage as CO,
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concentrations rise. This uncertainty reflects incomplete under-
standing of how eCO5 alters plant C allocation, decomposition of
soil organic matter (SOM), and plant mortality and biomass
turnover (Malhi ezal, 2015) — all processes modulated by the
availability of soil resources.

One of the largest areas of uncertainty about the magnitude of
the eCO, fertilization effect concerns the role of nutrient
availability (Hungate ez 4/, 2003). Relatively tight stoichiometric
constraints imply that if the nutrient requirements to increase plant
growth are not met (Fay eral, 2015), nutrient availability will
inevitably limit the terrestrial C sink (Huang ez 4/, 2015). Nitrogen
(N) availability, in particular, appears to limit plant productivity in
many terrestrial ecosystems at present (Vitousek & Howarth, 1991;
LeBauer & Treseder, 2008; Menge etal, 2012), and is widely
considered to be among the most important factors limiting the
productivity response of ecosystems to eCO, (Ko mer, 2006; Reich
etal., 2006a; Huang ez al,, 2015; Terrer ez al, 2016).

Although numerous experiments have been conducted over the
past two decades to investigate the role of N in constraining CO,-
induced stimulation of photosynthesis and primary production,
there is still no general explanation for the disparity of responses
observed among different ecosystems (Bazzaz, 1990; Saxe ezal,
1998; Nowak eral, 2004; Komer, 2006; Reich eral, 2006b;
Norby & Zak,2011). In some studies, low N availability was found
to be the primary constraint responsible for the transient, small or
nonexistent CO, fertilization effect (Schneider ez al., 2004; Norby
etal, 2010; Reich & Hobbie, 2013; Sigurdsson ezal, 2013). In
other studies, plant production was stimulated by eCO, despite
apparent N-limitation (McCarthy ezal, 2010; Hungate ezal,
2013; Talhelm ez al., 2014). As such, most reviews have concluded
that the magnitude of the CO; effect varies on a site-by-site basis,
leaving the observed inter-site variation unexplained.

One hypothesis predicts that the N-limitation on plant responses
toeCO, is modulated by the type of N-acquisition strategy, which,
in turn, is largely determined by symbiotic plant—microbial
interactions (Alberton etal, 2005; Drake eral, 2011; Phillips
etal., 2013; Terrer et al., 2016). For example, ecosystems where the
dominant plants can acquire ‘additional N’ by stimulating
biological N;-fixation (BNF) or accelerating SOM decomposition
(e.g. via priming effects) are predicted to sustain high rates of net
primary productivity (NPP) under elevated CO,. In a recent meta-
analysis, Terrer ez al. (2016) found that N availability and the type
of microbial symbiont associated with the plant roots were
important factors explaining the observed changes in standing
biomass across eCO, experiments, with a strong and significant
interaction between these two factors. Plants associated with
ectomycorrhizal (ECM) fungi showed an eCO,-driven ¢. 28%
enhancement in biomass even under low N. By contrast, plants
associated with arbuscular mycorrhizal (AM) fungi were unre-
sponsive to eCO; (c. 0%) under low N, unless associated with
No-fixers (c. 8%). These conclusions proved consistent for
aboveground productivity as well as biomass (Terrer ez al., 2017).

Although greater numbers of long-term eCO, experiments with
both AM and ECM trees are needed to further test this hypothesis
(Norby etal, 2017), differences in the nutrient economies of
symbiotic types may offer a consistent framework to better

New Phytologist (2018) 217: 507-522
www.newphytologist.com

New
Phytologist

understand and model the interactions between the C and N
cycles (Phillips ez al.,, 2013; Lin ez al., 2017). By symbiotic types we
refer to the capacity of plant species to employ symbionts in their
N-acquisition strategy, such as N-uptake mediated through AM
and ECM fungi or symbiotic BNF. Nevertheless, the conclusions
of Terrer etal. (2016) raise additional hypotheses: (1) do ECM
plants and N,-fixers take up more N than AM plants in response to
eCO,? (2) Is the role of N availability in constraining the eCO,
effect on plant biomass caused by limitations on leaf-level
photosynthesis? And (3) how do changes in N availability under
eCO; affect soil C stocks and the ecosystem C balance?

Here, we explore these questions by reviewing observations from
eCO, experiments with a focus on the C cost of N-acquisition. We
acknowledge that other factors such as water availability (Morgan
et al., 2004) or phosphorus (P) availability (Ellsworth ez al, 2017)
may be equally important in mediating terrestrial ecosystem
responses to eCO,. These are, however, beyond the scope of the
current review, which focuses on the effects of N availability, the
most commonly limiting nutrient globally (LeBauer & Treseder,
2008). Importantly, we do not treat N-limitation as an ‘on—off
property but rather refer to the cost of N-acquisition — or, its
inverse, the return on investment — as a continuum. As such, our
plant economics approach can be applied to other soil resources,
provided that the necessary data are sufficiently available. In
Section IT we define and apply the return on investment approach,
which is used in Section III as a link driving ecosystem-level effects
triggered by eCO,. In Section IV we discuss the conclusions and
propose a conceptual framework, with indications of productive
directions for model and experimental improvements.

Il. The return on investment approach

1. Methods

We define the rezurn on investmentas a ratio of the marginal relative
increase in N-acquisition (N,,) and the marginal relative increase
in belowground C allocation (Cyg). We quantify the return on
investment with data from eCO, experiments using differences in
measured N, and Gy, under elevated (‘ele’) and ambient ('amb’)
CO; treatments:

eN., N(ele)-N, (amb)
. Ny N,.,.,(amb) -1
Return on investment = Co N (ele)Co(amb) — Vs
Ci G (amb)
Eqgn 1

N can be interpreted as the C cost of acquiring N, and corresponds
to the inverse of the return on investment. It quantifies how plants’
N,q rates relate to increasing belowground C allocation, and
thereby estimates the degree to which aboveground growth is
limited by N.

Although N4 is often measured ineCO, experiments (e.g. Feng
etal, 2015), estimating Cpg (C investment in N,,) remains a
conceptual and methodological challenge. Cy, is not confined to
root production (C,,,,), but also includes C transferred to root

© 2017 The Authors
New Phytologist © 2017 New Phyrologist Trust



New
Phytologist

exudates, mycorrhizal fungi and symbiotic N-fixing bacteria
(Cuanser; see Vicca eral, 2012), and is therefore indicative of
‘investments’ for N uptake (or nutrient uptake in general):

Chg = Croot T Curansfr- Eqn 2

Cransfer implies a cost for the plant by reducing the C available for
biomass productivity (BP):
BP = NPP — Cander- Eqgn 3

We therefore refer to Cg, e, as the component of the C
budget that may be used by plants to acquire N. Several lines
of evidence suggest that is not allocated to plant biomass and,
indeed, plants increase allocation to Cianser as soil resources
decrease in availability (Treseder, 2004; Hobbie, 2006;
Hogberg eral., 2010; Drake eral, 2011; Phillips eral, 2011;
Aoki eral, 2012; Nouri etal, 2014), and that such increases
in allocation to Cyunsfer come at the expense of plant biomass
production (Vicca etal., 2012) and can reduce net ecosystem
productivity (Fernindez-Martinez eral, 2014). This may
explain why root colonization by mycorrhizal fungi is often
increased by eCQO, (increased N demand) but decreased by N-
fertlization (decreased N demand), indicating that plants
increase the investment in Cganfer a8 a means to meet N
requirements (Treseder, 2004). Moreover, differences in the C
cost of nutrient acquisition may also explain why the
proportion of C allocated to Cyg (and by extension Ceansfer)
is inversely related to N availability at global scales (Gill &
Finzi, 2016), with greater belowground investment in boreal
relative to tropical regions.

-

Here, we estimated \IJ;I] (Fig. 1; Eqn 1) for as many eCO, studies
as possible, that is, those with data on both N,q and Cs,. Even
though Ciansfer represents a fraction of 10-40% of NPP (Chapin
et al., 2011; Pritchard, 2011), there have been few measurements of
C allocation to fungi and exudates in eCO; experiments (Phillips
etal., 2011). We used fine-root production, fine-root biomass or
root biomass as a proxy for Cy,, thus assuming a constant ratio of
Cransfer 10 Cioor and therefore:

0Chg  0Co0¢
Cog =< Eqn 4

Eqn4 is supported for several ECM species (Hobbie, 2006;
Hobbie & Hobbie, 2008), but uncertainties regarding its validity
remain for AM and N-fixing species. We included data from
previous syntheses on eCO,-driven N,.q (Finzi ezal., 2007; Feng
etal., 2015), and searched from the Web of Science for C,,, dara,
recent additional years and additional field studies Free-Air CO,
enrichment (FACE) and open top chamber (OTC) with
available data on both N, and G, In total, we used
observations from 20 grassland and forest ecosystem experiments
corresponding to 12 different sites (Table 1). For species in the
Aspen-FACE experiment (Table 1) we excluded all years before
canopy development was complete, as recommended elsewhere
(Norby etal., 2005).

2. Results

In the absence of N-fertilization, N, increased significantly
(+24%, P<0.001) under eCO; in ECM plants, whereas the effect
was notsignificant (—5.6%, P=0.1056) in AM plants. In Fig. 1(a),
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Fig.1 Planteconomicsspectrum of the efficiency of plantsin acquiring additional nitrogen (N) under elevated CO,. (a) Relationship between the elevated CO, (eCO,)-
induced relative change (%) in root carbon (C,oe) ('investments') and aboveground N-acquisition (‘returns). (b) Mean, SE, max and min retum on investment (Ur,",
Egn 1). Colours represent four different N-acquisition strategies characterized by the type of symbiotic association, that is: arbuscular mycorrhizas (AM),
ectomycorrhizas (ECM) and N-fixing species (N-fixing), or high N availability (High-N). Shapes in (a) represent the type of root data used to estimate belowground C
allocation (Cy,g), thatis: fine-root biomass (FRB), fine-root growth (FRG), total-root biomass (TRB) ortotal-root growth (TRG). Black dashed line in (a) representsthe 1 : 1
line. The slope of the grey lines in the background in (a) represents i, with lower returns (higher costs) as dark grey. Asterisks in (b) are ;" estimates at Duke FACE
(ECM) and BioCON (AM, N-fixing, and High-N) using Cpginstead of Crootdata (Eqn 2). Nacq, product of total or aboveground biomass production and N concentration.
When sites include data at the species-level, the site name is followed by a species code (Table 1). Sources of site-level data are given in Table 1.
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the slope represents N,q-efficiency {\IJ;I] ), with lighter shading
representing higher ‘returns’. Most ECM experiments plotted close
to the 1:1 line, suggesting proportionality between the relative
changes in investment and acquisition (e.g. a 1% increase in C
investment belowground translates into a 1% increase in N,g).
Systems where N,-fixers were present exhibited a similar relation-
ship between N, and C,, as ECM systems. This finding is based
on two experiments: plots from the BioCON experiment with
legume species only (Reich & Hobbie, 2013), and all plots from the
New Zealand (NZ) FACE experiment, with a mix of N-fixers
Trifolium repens L. and Trifolium subterranewm L. and other
grassland AM-species (Newton et al., 2014). AM plants achieved a
much lower enhancement in N, than ECM plants and N-fixers
for a given amount of C invested belowground. In some cases, AM
plants acquired less N under elevated than ambient CO, despite
increasing belowground C investments (Fig. 1a). This relates to
results by Feng ez al. (2015), who found reduced N, under eCO.,.
The simultaneous increase in Cy,, indicates a strong reduction in
N, efficiency. N-fertilization generally increased ;' compared
to nonfertilized AM systems (e.g. BloCON, SwissFACE), butitdid
not consistently help plants achieve the high J;'-levels of ECM
and N-fixers in this dataset (Fig. 1b).

Ciyg data in Fig. 1 are limited by the lack of Cyansfer data (Eqn 2).
In order to test the validity of Eqn 4 and the patterns in Fig. 1, we
estimated ;' using data from four experiments where Chg
(Croor T Crranser) Was inferred from plant C balance (Litton et 4/,
2007. These data can be used to estimate the cost of N, without
assuming Eqn 4, in relative (asterisks in Fig. 1b) and absolute terms.
For example, in the Duke FACE experiment (ECM), Drake et al.
(2011) estimated that plants under eCO, invested 88 g of Cpgg ™"
of N.g, including 12g of Cuanster- At BioCON (AM), the
estimated cost of N,q under eCO, and low N was
20338 Ceg ' Nuoq (Adair eral, 2009) resulting from the low
capacity of plants to acquire additional N. In N,-fixing legumes,
however, eCO, stimulated N, at a rate of 97 gChy g™ Ny,
similar to ECM-trees at Duke. These patterns (asterisks in Fig. 1b)
using both C,o, and Cyqnsfer data, indicate that the cost of N,
varies across N, g-strategies, supporting the conclusions in Fig. 1.
Although assessing the assumption of a constant Croor: Crransfer
ratio (Eqn 4) is a key need for this field, its uncertainty does not
stand in the way of the exercise presented here, yet it does indicate
uncertainty about the exact slope in Fig. 1(a). Regardless of the
slope, marginal N-gains in ECM are larger than in AM plants
(Sulman eral, 2017). In order to estimate the true costs, however,
more data about the investment in symbiotic associations (C ., neger)
under eCO, are necessary (see list of data limitations of the
approach in Table 2).

In view of these results, the ability of plants to acquire additional
N undereCO; appears to vary among symbiotic types and levels of
N availability. The important role of mycorrhizal fungi as factors
determining ecosystem processes (under current climate) is
becoming increasingly apparent (Wurzburger etal, 2017), with
ECM fungi generally associated with more beneficial effects on
their plant host’s fitness than AM fungi (Bennett et al., 2017; Teste
et al., 2017). Current evidence suggests that the role of AM fungi in
N, depends on soil N availability, as the fungi may have limited
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capacity to take up (or transfer) N when in low supply (Reynolds
et al, 2005; Johnson ez al., 2015). On the one hand, eCO; did not
commonly enhance aboveground N,.q in AM plants under low N
in this dataset (Fig. 1a), whereas root investment was increased,
leading to a negative mean ;' (Fig. 1b). This is consistentwith the
hypothesis that AM fungi associate with plants along a continuum
of interactions ranging from beneficial to parasitic (Johnson ez al,
1997), with negative effects for the plant under low N availability
(Reynolds ez al., 2005; Johnson etal, 2015). On the other hand,
AM fungi are commonly associated with enhanced plant N, when
N availability is moderate or high (Johnson ez al, 2015; Thirkell
et al., 2016). The negative ;' in AM under low N may also reflect
increased tissue C: N ratios and N-use efficiency under eCOs.
Whether this is a plant strategy controlled by acclimation of
photosynthesis or merely a consequence of insufficient N, is
unclear. ECM species in this dataset could acquire additional N ‘on
demand’ via increased C investments, which may be explained by
the capacity of many ECM fungal species to produce extracellular
enzymes that break down SOM and transfer organic and inorganic
forms of N to the host plant (Lindahl & Tunlid, 2015; Shah ez 4/,
2015).

lll. CO, response spectrum

Here we focus on the return on investment approach to summarize
findings regarding the role of N, in shaping leaf-level photosyn-
thesis (1), plant biomass production (2) and SOM decomposition
(3) — all factors that influence ecosystem responses to eCO, and
ecosystem feedbacks to climate change. This approach allows us to
characterize systems within a response spectrum spanned by the
return on investment.

1. eCO, effects on photosynthetic capacity

Background Theoretical considerations based on optimal use of
resources predict a decrease in the maximum rate of catboxylation
(Vimay) under eCO, (Wang ezal, 2017). This prediction arises
because the actual rate of assimilation under average field
conditions is necessarily limited by available light, and because
the response of light-limited assimilation to the leaf-internal partial
pressure of CO; (¢;) is less steep than the response of Vipa-limited
assimilation. Therefore, if light availability and the ratio of ¢; to
ambient CO, partial pressure (c,) are unchanged, an increase in ¢,
means that a lower V. is required for the V,,.,-limited rate to
match the light-limited rate. However, existing theories do not
explicitly consider the costs of achieving and maintaining a given
value of Vo related to the cost of N, because Rubisco
constitutes a substantial proportion of total foliar N (Spreitzer &
Salvucci, 2002).

Question Is the role of N availability in constraining the eCO;
effect on biomass caused by limitations on leaf-level photosynthe-
sis?

Observations The downregulation of V., by eCO, in nonfer-
tilized soilsis inversely related to ll!ﬁl (Fig. 2a, P<0.01), suggesting
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Table2 List of major gaps in the framework outlined here conceming the
interactions between the carbon (C) and nutrient cycles under elevated CO,,
and recommendations for experiments and methods to fill some of these

gaps

Gap Recommendations
Quantification Improve the quantification of the plant C investment
of the C cost (in response to eCO2) in N-acquisition (Cpg) by
of N-acquisition systematically measuring fine-root production and
undereCO; estimating fine-root transfers to exudation and
microbial symbionts. Mycorrhizal growth can be used
as a proxy for Ciranster to mycorrhizas
Extend the quantification and report of measurements
of plant total N-acquisition
Quantification of N derived from N»-fixation
eCO, experiments with ericoid mycorrhizal plants
eCO, experiments with AM and ECM treesin the same
site
Quantification of the bottom range of N availability for
ECM-mutualistic N-acquisition
Quantification eCO, experiments in tropical forests are highly needed
of the C cost of Study the role of AM and ECM fungi as above but
P acquisition under P-limitations
under eCO,
Quantification Quantification of changes in soil C pools
of soil Cstorage  Quantification of autotrophic and heterotrophic soil
undereCO; respiration
Analysis of C stabilization pathways for litters with
different C : N ratio
Methodological Mesocosm experiments are excellent tools to quantify
bias in eCO, allocation to exudates and symbionts
experiments Field experiments should make use of natural and

undisturbed soils

Quantification of soil parameters pH, %N, %C, P%
and other nutrients to assess nutrient availability

Minimize the effect of expanding canopies, prioritising
mature plants in steady-state

Minimum of 5-10 yr of eCO, fumigation to allow soil
dynamics start developing

C, carbon; N, nitrogen; C,, belowground carbon; eCO,, elevated CO,; P,
phosphorus; AM, arbuscular mycorrhiza; ECM, ectomycorrhiza.

that the decline of Voo under eCOs is generally less pronounced
in plants that can acquire N more efficiently. This is consistent with
meta-analyses that suggest that downregulation is related to low N
supply, with a stronger V. decline under low N (—22%,
Ainsworth & Long, 2005) than under high N (—12%, Ainsworth
& Long, 2005), and a stronger reduction in grasses (AM, —17%,
Ainsworth & Long, 2005) than in trees (most of which were ECM,
—6%, Ainsworth & Long, 2005) and legumes (N>-fixers, —12%,
Ainsworth & Long, 2005) (Nowak ez 4/, 2004; Ainsworth & Long,
2005; Ainsworth & Rogers, 2007).

Despite downregulation of V., a stimulating effect of eCO;
on leaf-level photosynthesis (4,,,) in C; plants isobserved (Fig. 2b),
with an overall stimulation of 35%, similar to the 31% effect from
the meta-analysis by Ainsworth & Long (2005). Following the
same patternas for V., the eCO, effect on A, is generally larger
in ECM than in AM plants (Fig. 2b). For example, in the Duke
FACE experiment, downregulation of V. was not significant,
and eCO; increased A, in pine (ECM) by an average of 67%
despite moderately low soil fertility (Ellsworth ez 4L, 2012). At the
AM-forest FACE experiment in Oak Ridge (ORNL), eCO,
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reduced foliar N (due to low N availability), and resulted ina 21%
stimulation of Ay, (Warren ezal, 2015) (although with small
sample sizes and only occasional measurements rendered this effect
nonsignificant).

Theeffect of €CO; on A, in legumes (Ainsworth & Long, 2005;
Wang et al., 2012) and N-fertilized plants, however, was nothigher
than in AM nonfertilized plants (Fig. 2b), contrary to our
expectation. For example, at the Swiss and BioCON FACE
experiments, AM-associated grassland species growing under
eCO, had eCO; effects on Ay, of similar magnitude for both
low and high N treatments (Rogers ez al,, 1998; Lee ez al, 2011).
We speculate that A, did not increase with N-fertilization at
BioCON because the downward shift in leaf %N with eCO; was
larger in the N-fertilized than in the ambient treatments (—14% vs
—9%) (Lee eral, 2011), perhaps because N-fertilization was
modest and plants under eCO, and high N increased growth (and
thus demand) and remained both C and N limited (Reich &
Hobbie, 2013). The lower effect on A, in legumes than in grasses
(Fig. 2b, Ainsworth & Long, 2005) could have resulted from light
limitation for legumes in dense canopy conditions or limitations
from other soil resources beyond Nj; further research will be
required to elucidate the mechanisms.

The ecosystem-level effect on photosynthesis (gross primary
productivity, GPP) requires scaling the leaf-level response taking
into account leaf area index (LAI). If eCO, decreases LAI, GPP
might not increase despite a positive leaf-level effect. Negative
effects of eCO; on LAI are not common. Rather, a meta-analysis
showed that eCO, enhanced LAI by 21% in trees, with no
significant effect in grasslands (Ainsworth & Long, 2005). Norby
& Zak (2011) suggested that only trees with low LAI
(<3.5 m? leafm—2 ground) could increase LAI further in response
to eCO,, although this effect might disappear when nutrient
availability is low (Duursma ez al., 2016).

Another importantfactor to consider is the temporal acclimation
of the photosynthetic response to e€CO,. Stomatal density has been
shown to decrease with historical CO, concentrations (Penuelas &
Matamala, 1990; Franks ez al., 2013), but a meta-analysis of eCO,
experiments did not find a significantly negative effect for an
average [CO3] of 571 ppm (Ainsworth & Rogers, 2007). Further-
more, a meta-analysis found that eCO, increased the number of
leaves (Ainsworth & Long, 2005), an effect that might compensate
for any potential reduction on stomatal density at the ecosystem
level. The experiments shown in Fig. 2(b) did not generally find a
decreasing A, response over time, but the long-term acclimation to
eCO, requires further investigation (Franks ez 2/, 2013).

Conclusions Although the influence of N on the eCO, effect on
Vimax has been long known, it has commonly been linked to plant
functional groups rather than to actual N, g-strategies (e.g.
Ainsworth & Long, 2005). We have shown that the strength of
the Vmax decline under eCO, changes with the efficiency of plants
inacquiring extra N {\IJ;I] ), with the strongest decline under low N
in AM systems where N-acquisition costs might increase most
strongly. This affects leaf-level photosynthesis, with a smaller effect
of eCO, in AM than in ECM plants. However, the role of
N-fertilization and N,-fixation on the eCO, effect on A, needs
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Fig.2 Effects of elevated CO, on leaf-level photosynthesis and its modulation by nitrogen (N)-acquisition efficiency. (a) Relationship between the effect of
elevated CO, on maximum rate of carboxylation (V,ma,) and the N return oninvestment (r,", Eqn 1) under low (left panel) and high (right panel) N availability.
(b) Summary of the effect of elevated CO- on light saturated photosynthesis (Asat). The black dots in (b) are mean effects & CI from a meta-analysis by
Ainsworth & Long (2005) for trees, grasses, N-fertilized plants and legumes. Sources of site-level data are given in Table 1.

further investigation. In any case, despite partial downregulation of
Vimaxs N availability does not usually preclude an effectof eCO, on
Agse. Hence, the lack of a significanteCO; effect on plant biomassin
AM communities under low N (Terrer ez al., 2016) cannot be fully
explained by downregulation of leaf-level photosynthesis; changes
in C allocation are hence crucial for understanding these responses.

2. CO, effects on biomass production

Background When N availability is low, a positive growth
enhancement effect of eCO; depends on a plant’s ability to (1)
increase its rate of N,q from the soil (Oren e 4/, 2001; Finzi ez al.,
2007),and/or (2) use the assimilated N more efficiently. The N-use
efficiency (NUE) of growth can be defined as biomass produced per
unitof N, , and is reflected in the overall plant C : N stoichiometry
and retranslocation efficiency of N upon leaf shedding. Zaehle ez al.
(2014) found that models’ predicted enhancement of productivity
under eCO, is commonly associated with an increase in NUE, in
conflict with the conclusions from observational studies that found
the effect driven by increased N,oq (Finzi et al, 2007; Feng ez al.,
2015).

Question What are the mechanisms that drive the differences
among sites in the magnitude of the CO, fertilization effect on
biomass production?

Observations We found a significantly positive relationship
between ;' and the eCO, effect on aboveground biomass
productivity (ANPP) (Fig. 3, P<0.001), resulting in the largest
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Fig. 3 Relationship between the effect of elevated CO, on aboveground
biomass production (ANPP) and the nitrogen (N) return on investment (U, !,
Eqn 1). Sources of site-level data are given in Table 1.

eCO;-driven ANPP enhancement in ECM > N-fertilized > N,-
fixing> AM strategies. This suggests that N,q-efficiency is a
primary driver of the eCO, effect on productivity. Note that
although the change in biomass is part of the ' calculation,

New Phytologist (2018) 217: 507-522
www.newphytologist.com



-

increased C investment belowground reduces y'; thus, the
positive relationship in Fig. 3 is not necessarily an artefact of using
Croor in both (see also Feng ez al, 2015).

ECM plants consistently showed the largest increases in ANPP,
and this was associated with the highest V' (Fig. 3). For example,
FACE experiments with ECM-associated loblolly pine (Duke
FACE) and aspen (Aspen FACE) trees showed a large (22-39%)
and sustained effect on total biomass productivity despite moder-
ate-low N availability (McCarthy efal, 2010; Talhelm ezal,
2014). Furthermore, N-fertilization in the Duke FACE experi-
mentdid not increase productivity further (McCarthy ez al., 2010),
consistent with the observation of increased aboveground growthin
most AM trees in response to N-deposition, but not in ECM trees
(Thomas ez al., 2010). Efficient N,q stimulated trees at the Duke
and Aspen FACE experiments to increasingly allocate more C to
wood (with low [N]), enhancing NUE (Zaehle ezal, 2014) as a
consequence of this biomass allocation shift.

Under high N availability, Populus alba, P. euramericana and
P. nigra in the POP-FACE experiment in Italy, dominated by both
ECM and AM fungj, showed alower Jy;' than other ECM species
(Figs 1, 3) due to the lack of an eCO,-driven N,q enhancement;
N,cq was already high in both CO, treatment plots due to previous
agricultural use and irrigation (Liberloo ez 2/, 2006). Instead, trees
at POP-FACE sustained the eCO» fertilization effect by increasing
NUE (Finzi et al., 2007), which was likely influenced by increased
allocation to wood (low [N]).

AM systems showed a wider range of responses, presumably
driven by their variable capacity to acquire N, either through
N-fertilization or association with N-fixers. For example, AM-
grassland Lolium perenne at SwissFACE showed a positive CO»-
induced aboveground biomass enhancement under high N, butnot
in low N plots (Schneider ez al.,, 2004), consistent with the lower
cost of N,q associated with N-fertilization (Fig. 3). Medicago sativa
in this same experiment, however, showed a positive effect on
ANPP and N, even under low N, consistent with its N,-fixing
capacity (Liischer ez 2/, 2000) (data not included in Fig. 3 because
no indication of Cy,, was found). Likewise at BioCON, the eCO,-
enhancement in productivity was larger in N,-fixing legumes than
in nonlegume AM species (Fig. 3; see Mueller ez al., 2013).

AM trees at ORNL FACE apparently showed the opposite
pattern to that of Aspen and Duke FACE ECM trees. As AM fungi
may have little effect on plant No.q, we speculate that these trees
relied primarily on increased allocation to fine roots (with high [N])
to explorea larger proportion of the soil (Norby ez 4l., 2010; Iversen
etal., 2012), thus allocating less C to wood and decreasing NUE.
Because this strategy caused only a slight, initial stimulation of total
N.cq> and because NUE was already high from the start (Finzi ez al,
2007), the trees at the ORNL site could not meet the higher N
demand imposed by higher CO; supply — thus limiting the stand’s
capacity to increase ANPP (Fig. 3). Interestingly, the authors
reported an increasing abundance of the Ny-fixer Elaeagnus
umbellata by the end of the experiment, with evidence for N»-
fixation (Norby & Zak, 2011).

Although N return on investment is a primary factor determin-
ing the ANPP response to eCO,, nutrients other than N, as well as
water, are required for plant growth and may increase variability in
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Fig. 3. For example, the ANPP response of AM species in the
Nevada Desert FACE from 1998 to 2007 (Fig.3) showed
pronounced interannual variation because growth was limited by
water availability, with stronger increases in ANPP under eCO; in
wet than dry years (Housman et al., 2006; Smith et al., 2014; see
also Fatichi etal, 2016). However, these periodic increases in
productivity did not result in increased above- or belowground
biomass at the end of the experiment (Newingham ez al.,, 2013).
Opposite responses have been found for other grassland experi-
ments in dry regions, with greater biomass responses to eCO, in dry
than wet years (Morgan ezal, 2004, 2011). Results from the
TasFACE experiment, however, suggest that these contrasting
results might have been driven by the effects of seasonal
precipitation on the N cycle (Hovenden ez al, 2014), with spring
rainfall causing negative effects on N availability, thus limiting the
eCO,-response.

The eCO, effect on plant growth and its relationship with
symbiotic type may also be prone to environmental factors other
than N, including P availability, climatic conditions and distur-
bance. The role of symbiotic types in acquiring P under eCO5 is
uncertain, as only few experiments have been conducted in low-P
conditions. For example, ECM-dominated Eucalyptus trees in a
water- and P-limited soil showed a positive leaf-level photosyn-
thesis response to eCO,, but no increase in aboveground growth
(Ellsworth eral., 2017) despite enhanced P and N availability
(Hasegawa ez al., 2016; Ochoa-Hueso ez al., 2017). More research
is needed to investigate whether AM plants may acquire P more
efficiently and show a stronger eCO, response than ECM plants
under low-P. An indication of the influence of weather and
disturbance may be provided by the scrub-oak OTC experiment in
Florida, which showed the largest increase in ANPP (Fig. 2). There,
N_qq in the ECM species may have been additionally stimulated by
disturbance, initially by fire and later by a hurricane, both
associated by a pulse of belowground resource availability (Hungate
etal., 2013).

Although ECM ecosystems typically showed a strong eCO,
response of ANPP and a high i, this pattern may not persist
under extremely N-scarce conditions. For example, a Norway
spruce in Sweden on moraine soil and with a very thin soil organic
layer did not show a significant eCO,-effect on aboveground
growth except when N-fertlized (Sigurdsson ezal, 2013). Fol-
lowing the mutualism—parasitism continuum hypothesis (Johnson
etal., 1997), and as suggested by some models for boreal N-poor
forests (Franklin et al., 2014; Baskaran et al., 2017), there may bea
point at the lower range of N availability below which ECM fungi
do not transfer enough N to the plant to elicit and sustain higher
rates of eCO,-growth.

Conclusion Although several factors likely modulate growth
responses to eCO,, N return on investment is a primary control
explaining the variety of responses observed in eCO, experiments.
Under low N availability, a sustained CO, effect requires a
mechanism by which plants can increase N, , via association with
ECM fungi or Np-fixers. AM plants generally do not increase N, .o
under eCO), (Fig. 1), so increases in productivity (Fig. 3), ifany, are
sustained through increased NUE. In soils with high N availability
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where N, is already high, plants may sustain enhanced growth
rates through increased NUE too. But changes in NUE also
respond to shifts in competition strategies, with greater allocation
to leaves (high [N]) during stand development, and greater
allocation to wood (low [N]) after canopy closure, leading to
increased NUE as trees age (Gholz ez al., 1985). Therefore, there is
generally limited scope for enhanced NUE as a strategy to sustain
increased demand under eCO, in the long-term, which rather
seems to be a consequence of changes in allocation to the different
plant biomass pools. If enhanced root exploration or symbiotic
uptake do not result in efficient N,q, the CO; effect disappears
when available N in the rhizosphere does not meet plant N demand.

3. eCO, effects on priming and soil C content

Background In previous sections, we discussed the capacity of
ECM and N,-fixing plants to acquire additional N under eCO,,
which feeds back on plant productivity. Both N-acquisition
through SOM decomposition (outputs) and productivity (inputs)
affect soil C storage. Meta-analyses show that, indeed, eCO,
increases belowground C inputs through enhanced fine-root
production by 44% (Dieleman ez 4/, 2010) and rhizodeposition
by 37.9% (Nie etal, 2013). Although greater inputs of root-
derived C may increase soil C storage, much of the C that is released
to the soil can also stimulate microbes to accelerate SOM decay and
N release via ‘priming effects’ (Cheng eral, 2014; Finz eral,
2015). Indeed, meta-analyses have shown that increases in soil C
inputs under eCO, are offset by loses (Hungate ez 4/, 2009; van
Groenigen ez al., 2014). These studies, however, did not account
for potential differential effects among symbiotic types. The
quantification of primingeffects has important implications on the
magnitude of the terrestrial CO; sink, but these effects are difficult
to measure and model (Georgiou ez al., 2015).

Question How do changes in N availability under eCO, affect
soil C storage?

Observations We found a pattern of changes in soil C storage
across N-acquisition strategies, with eCO; generally stimulating
soil Closses in ECM, and soil Cstorage in AM systems under low N
availability. The marginally significant relationship between soil C
storage and ! (Fig. 4; P=0.0503), however, highlights that
other factors beyond ' are at play.

Enhanced N-mining activity in ECM under eCO, involves CO,
release through heterotrophic respiration, minimizing net accu-
mulation of soil C with eCO), (Fig. 4). For example, the large CO,
fertilization effect on ANPP in Duke FACE (ECM) (McCarthy
et al., 2010) was likely driven by increased allocation to ECM fungi
(Drake eral., 2011) and root exudation (Phillips eral, 2011),
which stimulated microbial activity and SOM decomposition
(priming), increasing N availability to plants (see also Cheng ez 4/,
2014). This, however, was accompanied by increased soil respira-
tion (Oishi ez al, 2014), reducing soil C content (Fig. 4). In the
Populus tremuloides (ECM) community from the Aspen FACE
experiment, eCO, increased litter inputs, but also decreased soil C
content (Fig.4), suggesting strong stimulation in SOM
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decomposition (Talhelm eral., 2014). Likewise in the Florida
OTC experiment, eCO; increased plant productivity of scrub oaks
(ECM) under low N availability (Fig.3) through enhanced
N-mineralization (Langley ezal, 2009), but the stimulation of
SOM decomposition yielded no effect on C storage at the
ecosystem level (Hungate ez al, 2013).

By contrast, several AM-ecosystems under low N have shown
limited eCO,-effects on N-mineralization and plant productivity,
together with significant increases in soil C content. For example,
the lack of a significant eCO; effect on biomass after 10 yr in the
Nevada Desert FACE (AM) (Newingham eral, 2013) was
accompanied by a significantly positive effect on soil C content
(Evans eral, 2014), with increased fungal activity (Jin & Evans,
2010), but not fine-root inputs (Ferguson & Nowak, 2011) —
suggesting Ceranster a8 the main driver of this effect (Jin & Evans,
2010). The same pattern of smaller than average biomass responses
but soil C accumulation was observed, for example, in an AM-
forest ecosystem at ORNL (Iversen ez al., 2012), an AM-grassland
ecosystem in Australia (Pendall ez 2/, 2011) and a shortgrass steppe
in the US (Pendall & King, 2007), accompanied by a doubling in
rhizodeposition (Pendall ez 2/, 2004).

Other AM ecosystems, however, do not follow this pattern. In
the SwissFACE experiment, neither the AM grass Lolium perenne
nor the No-fixer Trifolium repens showed an increase in soil C
storage after 10 yr of eCO, (van Kessel eral, 2006), despite a
positive effect on photosynthesis (Ainsworth ez 4/., 2003) and a lack
of N-mineralization and ANPP response under low N availability
(Schneider eral, 2004). eCO, did not increase soil C content at
GiFACE either (Lenhart ez al., 2016), but the presence of legumes
may have contributed to an increase in the allocation of Cypanser to
N-fixation, rather than soil C stabilization, which would explain
thestrongincrease in abundance of legume species from ¢. 1% at the
beginning of the experiment to 10% in later years, together withan
increasingly positive overall effect on plant biomass (Andresen
etal, 2017). A certain degree of CO,-driven enhancement of
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Fig. 4 Relationship between the effect of elevated CO, on soil carbon (C)
content (%) and the nitrogen (N) return oninvestment (", Eqn 1). Sources
of site-level data are given in Table 1.
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N-mineralization in grasslands might also follow from increased
soil water (e.g. Pendall ez 4/, 2003).

Although there have been reports of AM plants accelerating litter
decomposition under eCO, (Cheng eral., 2012), there is little
evidence that AM plants can increase the decay of SOM under
eCO,, particularly in low N soils. Thus, CO,-induced priming
effects in AM systems are likely to be more short-lived relative to
those occurring in ECM-dominated ecosystems (Sulman et 4L,
2017).

An intermediate situation might be found for N-fixers (Fig. 4),
which can obtain (additional) N from the atmosphere. eCO,
generally increases growth in legumes (Fig. 3; Ainsworth & Long,
2005), and thus likely also enhances soil C inputs, but whether
SOM decomposition offsets additional inputs is uncertain. For
example, eCO, increased C inputs through biomass and produc-
tivity (Fig. 3) in a grassland FACE experiment with N-fixers in
New Zealand. ButeCO, also increased N-mineralization (Riitting
etal, 2010) and N availability (Newton ez al, 2010), yielding a
modest increase in soil C storage (Ross ez al., 2013; Fig. 4). Various
factorsare probably at play to determine the balance between inputs
and outputs, including species composition, litter quality, climate
and nutrient and water availability.

The eCO; effects on soil C under high N availability do not
appear to follow a clear pattern in this dataset (Fig. 4). Meta-
analyses show that N-fertilization may increase the positive effects
of eCO, on soil respiration further (Zhou ez al, 2016), but the
effect of N has been shown to be negative in trees (Janssens ez al,
2010), and positive in grasslands and croplands (Zhou ez al.,, 20 14).
Whether this variability indicate different effects of N-fertilization
among N-acquisition strategies or plant functional types remains to
be disentangled.

These differences in the sign and magnitude of the effects of
eCO; on N-mineralization, priming and soil C storage across
symbiotic types might explain the large variability and non-
significance of these effects found in several meta-analyses (de
Graaff ezal, 2006; Hungate etal, 2009; van Groenigen ezal.,
2014). The reasons for these different patterns among symbiotic
types, however, remain elusive. Recent empirical observations
and model analyses suggest that labile litter (low C: N) is quickly
assimilated by microbes, and this microbial necromass con-
tributes to the formation of stable SOM in greater proportion
than recalcitrant litter (high C:N), which decomposes slowly
(Knicker, 2011; Castellano eral, 2015; Cotrufo etal, 2015).
On the other hand, the stabilization of labile litter in SOM
should protect plant material, constraining the eCO,-driven
priming effect (Sulman eral, 2014, 2017). Thus, recalcitrant
litter should be more easily primed provided that it is
‘unprotected’. A recent meta-analysis showed that, overall, AM
trees produce litter that is significantly more labile than ECM
trees (Lin ez al, 2017). Therefore, AM litter may be more easily
stabilized by microbes, protecting new C from priming, whereas
recalcitrant ECM litter may be more susceptible to priming,
stimulating N-mineralization and N availability. This would
explain the limited CO,-driven priming observed in some AM
experiments, together with increased soil C content in AM-low
N systems.
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Conclusions Evidence from e¢CO, experiments suggests that
mycorrhizal status plays a key role in determining the sign of the
eCO; effect on soil C storage. Under low N availability, some
AM- and ECM-dominated ecosystems show opposite patterns. In
some AM-dominated ecosystems, eCO,-driven priming is more
limited than in ECM-dominated ecosystems, which results in
lower C losses in the former. By contrast, many ECM systems show
strong priming effect and N-acquisition in response to e€CO,. This
mechanism, however, enhances SOM decompositionand may thus
partially offset the increase in biomass storage and limit CO,
sequestration at the ecosystem level. The result is a C-allocation
shift in AM vs ECM ecosystems, which may result in enhanced soil-
C gains in AM and enhanced biomass-C gains in ECM. It is,
however, the final balance between the (changes in) C inputs and
outputs thateventually determines whether soil Cstorage increases,
decreases or remains unaltered.

IV. Discussion

We used a plant economics approach to quantify the C cost of
N-acquisition and explore how this relates to the eCO,-
response in different measured variables. Under eCO», plants
in nutrient-limited ecosystems may allocate part of the
additional assimilation permitted by eCO, in ways that
increase N,cg: (1) allocation to fine roots (Iversen, 2010), (2)
allocation to mycorrhizal fungi (Drake eral, 2011) and (3)
allocation to root exudates to increase soil priming (Phillips
etal, 2012). Therefore, N,y is a process that requires C
resources that could otherwise be allocated to growth. Given
the diversity of N, strategies of investigated plants, soil
conditions, and N-fertilization treatments, we expected differ-
ent costs associated with N, in plants exposed to eCOs.
These costs might help explain discrepant responses in
processes that require or are affected by N, such as leaf-level
photosynthetic capacity, plant-level growth and soil C storage,
and place different systems within a continuous spectrum of
ecosystem responses to eCO-,

We show that the type of plant mycorrhizal association and
N-fixing capability determines their position within this spectrum.
ECM plants can acquire N more efficiently than AM plants under
eCO, although N4 by AM plants can be enhanced when grown
with N,-fixing plants or when N-fertilized. This efficiency in N,.q
partly explains the magnitude of the eCO, effects on leaf-level
photosynthesis, aboveground productivity and soil C storage.
eCO, generally increases the amount of assimilates that plants
produce per unit leaf area, even in plants with high costs associated
with N,q. However, the eCO; stimulation of aboveground growth
tends to be smaller when the cost of Ny is high, and vice versa.
Contrarily to aboveground growth responses, the eCO; effect on
soil C storage tends to decrease with decreasing costs.

Elevated CO, generally increases leaf-level photosynthesis
regardless of N o-costs, but the cost of N, strongly affects the
C allocation patterns. When costs are low (ECM in Fig. 5), plants
can efficiently acquire N and sustain a growth response, which, on
the other hand, can reduce SOM. We hypothesized that plants that
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associate with ECM fungi acquire N more efficiently than those
with AM for two reasons: (1) many ECM fungi have the enzymes
necessary to mine organic N (Shah ezal, 2015), and (2) litter
produced by ECM plants has a high C: N ratio (Lin ez al., 2017)
that promotes slow decomposition (Cotrufo ezal, 2015) and
facilitates priming (Sulman ez al,, 2014, 2017). A similar effect can
be achieved by AM plants when N availability is high or in the
presence of N-fixers (Fig.5). The effects of eCO, on litter

-

production, root exudation and allocation to ECM, as well as
potentially increasing litter C : N ratios, may amplify these effects.

When costs are high (AM in Fig.5), a positive growth
response to eCO, cannot be sustained as a consequence of
insufficient N uptake. This is because (1) AM fungi do not
produce the enzymes required to increase priming in response to
eCO, (Hodge & Storer, 2015), and (2) litter produced by AM
plants has a lower C:N ratio (Lin ezal, 2017), promoting
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Fig.5 Conceptual framework, representing the effects of elevated CO- under low nitrogen (N)-acquisition costs in ectomycorrhizal (ECM) systems (left) and
high costs in arbuscular mycorrhizal (AM) systems (right). The area within dashed lines represents plant N-acquisition through N,-fixation and external N-

fertilization. Ninputs through N,-fixation and N-fertilization are relevantin ECM systems as well, but not drawn here. Tabulated values represent theinverse of
the carbon (C) cost of N-acquisition (", Eqn 1) and mean CO,-effects (%) on N-acquisition (N,c,), leaf-level photosynthesis (A), aboveground biomass
production (ANPP) and soil organic matter (SOM) for ECM, AM, AM with No-fixing capacity and N-fertilized systems derived from Figs 2-4. The CO- effecton
A for AM + N,-fixers corresponds to the value reported in the meta-analysis by Ainsworth & Long (2005) for legumes. Cyranster, C exported to mycorrhizas,
root exudation and symbiotic N-fixation; ECMF, ectomycorrhizal fungi; AMF, arbuscular mycorrhizal fungi; FLM, free-living microbes; DOC, dissolved organic
carbon; DON, dissolved organic nitrogen; R;, soil respiration; N,, atmospheric N; NFB, N,-fixing bacteria; FERT, N-fertilization. Differencesin box-size between
AM and ECM systems represent differentiated changes in pool or flux size by elevated CO,, and arrows inside boxes represent the sign of the CO, effect.
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greater stabilizaton of SOM (Sulman eral, 2014, 2017).
Thereby, AM plants have limited ability to prime the labile
SOM that they live on. If soil C inputs into the soil are higher
than C losses, however, eCO, may result in an increase in soil C
storage. These allocation patterns of e€CO,-driven extra C in AM
and ECM plants result is a spectrum of ecosystem responses to
eCO,, driven primarily by the cost of N g

It has been observed in several studies that an eCO,-driven
increase in photosynthesis did not translate into an increase in plant
biomass production (Bader ezal., 2013; Newingham et al., 2013;
Sigurdsson ez al, 2013; Ellsworth ez al, 2017). This has raised the
question: “Where does the carbon go?” Potential candidates are
autotrophic respiration (R,) and Cuansfer- The majority of exper-
iments do notshow a positive effect of e€CO; on R, (Smith, 2017),
and there is no evidence that the R,:GPP ratio consistently
increases under eCO, (van Oijen etal, 2010; Smith & Dukes,
2013). This implies thatany increase in GPP withoutan increasein
biomass production most likely increases the proportion of GPP
allocated to Cuuper (GPP=BP+C, ., + R). Indeed, root
exudation and mycorrhizal abundance have been observed to
increase under eCQ, (Treseder, 2004; Alberton eral, 2005;
Phillips ezal, 2011; Nie ezal, 2013), pointing at Cyansfer as an
important flux of the ‘missing’ C.

A large part of the framework outlined here (see Fig. 5) is not
represented in the current generation of Dynamic Global Vege-
tation Models (Sitch ezal, 2015). Although these models may
produce eCO,-induced increases in growth that are consistent in
magnitude with observations (but see De Kauwe ez al, 2017), the
importance of underlying mechanisms governing N constraints are
inappropriately represented (Zaehle eral, 2014). Common to
most modelling approaches is to account for the limiting effects of
N by reducing the ratio of NPP to GPP, hence increasing R,, and to
increase the C: N ratio of new tissue production to match the plant
C and N budgets under 4 priori defined stoichiometric constraints
(Zaehle ez al., 2014; Thomas et al., 2015). Models do not generally
consider C, i, as a separate component of the plant C budget
(Medlyn e al., 2015), and ‘spill-over’ R, has no effects on modelled
N.qq- Furthermore, little or no adjustment of above- vs below-
ground C allocation is simulated in response to shifts in the
availability of above- and belowground resources (De Kauwe ez al,
2014; Zaehle et al., 2014). Indeed, Zaehle et al. (2014) found that
the eCOy-induced increase in simulated N, was strongly
underestimated in the Duke FACE experiment.

In order to better represent the effects of eCO, discussed here, a
next generation of models for the coupled C and nutrient cycles in
land ecosystems should be centred around nutrient cost consider-
ations to simulate flexible C allocation in response to changing
above- and belowground resource availabilities. Key mechanisms
that determine these relationships are the capacity for BNF,
mycorrhizal type-specific plant—soil interactions, rhizosphere
Crransfer and its effects on SOM decomposition rates. In Table 2
we suggest some examples of types of observational data required to
further explore some of the gaps detected here.

Ovur results suggest that the N-limitation on ecosystem responses
to eCO, are most likely displayed in a continuum, in which the
ability of the plants to acquire additional N in exchange for energy
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(carbon) plays a key role. Many ecosystems with ECM-associated
plants and N-fixers have the capacity to enhance N, under
increasing demand, highlighting the importance of plant-mediated
control on N availability, as opposed to the traditional view of a
rigid N-limitation. Due to the limited temporal coverage of
available experiments, the persistence of enhanced plant growth
rates under eCO, remains uncertain. Our findings underline the
importance of the cost of N-acquisition, an avenue that if explored
by experimentalists and modellers working together may provide a
way forward to better understand the interactions between the C
and N cycles under rising CO,.
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