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Summary

Land ecosystems sequester on average about a quarter of anthropogenfic CO2emfissfions. It has

been proposed that nfitrogen (N) avafilabfilfity wfill exert an fincreasfingly lfimfitfing effect on plants’

abfilfity to store addfitfional carbon (C) under rfisfing CO2, but these mechanfisms are not well

understood. Here, we revfiew findfings from elevated CO2experfiments usfing a plant economfics

framework, hfighlfightfing how ecosystem responses to elevated CO2may depend on the costs

and benefits of plant finteractfions wfith mycorrhfizal fungfi and symbfiotfic N-fixfing mficrobes. We

found that N-acqufisfitfion efficfiency fis posfitfively correlated wfith leaf-level photosynthetfic

capacfity and plant growth, and negatfively wfith sofil C storage. Plants that assocfiate wfith

ectomycorrhfizal fungfi and N-fixers may acqufire N at a lower cost than plants assocfiated wfith

arbuscular mycorrhfizal fungfi. However, the addfitfional growth fin ectomycorrhfizal plants fis partly

offset by decreases fin sofil C pools vfia prfimfing. Collectfively, our results findficate that predfictfive

models afimed at quantfifyfing C cycle feedbacks to global change may be fimproved by treatfing N

as a resource that can be acqufired by plants fin exchange for energy, wfith dfifferent costs

dependfing on plant finteractfions wfith mficrobfial symbfionts.

I. Introductfion

The atmospherfic CO2concentratfion has rfisen to>40% above fits
pre-findustrfial level, and fit fis expected to contfinue rfisfing for decades
(Cfiafiset al., 2013) even under the most ambfitfious clfimate-change

mfitfigatfion scenarfios (Smfith et al., 2016). Although fit fis well
establfished that elevated CO2(eCO2) stfimulates photosynthesfis at
the leaf level (Afinsworth & Long, 2005), there fis consfiderable
uncertafinty about the extent to whfich plants wfill sustafin elevated
levels of productfivfity and contfinued carbon (C) storage as CO2
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concentratfions rfise. Thfis uncertafinty reflects fincomplete under-
standfing of how eCO2alters plant C allocatfion, decomposfitfion of
sofil organfic matter (SOM), and plant mortalfity and bfiomass
turnover (Malhfiet al., 2015)–all processes modulated by the
avafilabfilfity of sofil resources.
One of the largest areas of uncertafinty about the magnfitude of

the eCO2 fertfilfizatfion effect concerns the role of nutrfient
avafilabfilfity (Hungateet al., 2003). Relatfively tfight stofichfiometrfic
constrafints fimply that fif the nutrfient requfirements to fincrease plant
growth are not met (Fayet al., 2015), nutrfient avafilabfilfity wfill
finevfitably lfimfit the terrestrfial C sfink (Huanget al., 2015). Nfitrogen
(N) avafilabfilfity, fin partficular, appears to lfimfit plant productfivfity fin
many terrestrfial ecosystems at present (Vfitousek & Howarth, 1991;
LeBauer & Treseder, 2008; Mengeet al., 2012), and fis wfidely
consfidered to be among the most fimportant factors lfimfitfing the
productfivfity response of ecosystems to eCO2(K€orner, 2006; Refich
et al., 2006a; Huanget al., 2015; Terreret al., 2016).
Although numerous experfiments have been conducted over the

past two decades to finvestfigate the role of N fin constrafinfing CO2-
finduced stfimulatfion of photosynthesfis and prfimary productfion,
there fis stfill no general explanatfion for the dfisparfity of responses
observed among dfifferent ecosystems (Bazzaz, 1990; Saxeet al.,
1998; Nowaket al., 2004; K€orner, 2006; Refichet al., 2006b;
Norby & Zak, 2011). In some studfies, low N avafilabfilfity was found
to be the prfimary constrafint responsfible for the transfient, small or
nonexfistent CO2fertfilfizatfion effect (Schnefideret al., 2004; Norby
et al., 2010; Refich & Hobbfie, 2013; Sfigurdssonet al., 2013). In
other studfies, plant productfion was stfimulated by eCO2despfite
apparent N-lfimfitatfion (McCarthyet al., 2010; Hungateet al.,
2013; Talhelmet al., 2014). As such, most revfiews have concluded
that the magnfitude of the CO2effect varfies on a sfite-by-sfite basfis,
leavfing the observed finter-sfite varfiatfion unexplafined.
One hypothesfis predficts that the N-lfimfitatfion on plant responses

to eCO2fis modulated by the type of N-acqufisfitfion strategy, whfich,
fin turn, fis largely determfined by symbfiotfic plant–mficrobfial
finteractfions (Albertonet al., 2005; Drakeet al., 2011; Phfillfips
et al., 2013; Terreret al., 2016). For example, ecosystems where the
domfinant plants can acqufire ‘addfitfional N’ by stfimulatfing
bfiologfical N2-fixatfion (BNF) or acceleratfing SOM decomposfitfion
(e.g. vfia prfimfing effects) are predficted to sustafin hfigh rates of net
prfimary productfivfity (NPP) under elevated CO2. In a recent meta-
analysfis, Terreret al.(2016) found that N avafilabfilfity and the type
of mficrobfial symbfiont assocfiated wfith the plant roots were
fimportant factors explafinfing the observed changes fin standfing
bfiomass across eCO2experfiments, wfith a strong and sfignfificant
finteractfion between these two factors. Plants assocfiated wfith
ectomycorrhfizal (ECM) fungfi showed an eCO2-drfivenc.28%
enhancement fin bfiomass even under low N. By contrast, plants
assocfiated wfith arbuscular mycorrhfizal (AM) fungfi were unre-
sponsfive to eCO2(c.0%) under low N, unless assocfiated wfith
N2-fixers (c.8%). These conclusfions proved consfistent for
aboveground productfivfity as well as bfiomass (Terreret al., 2017).
Although greater numbers of long-term eCO2experfiments wfith

both AM and ECM trees are needed to further test thfis hypothesfis
(Norbyet al., 2017), dfifferences fin the nutrfient economfies of
symbfiotfic typesmay offer a consfistent framework to better

understand and model the finteractfions between the C and N
cycles (Phfillfipset al., 2013; Lfinet al., 2017). By symbfiotfic types we
refer to the capacfity of plant specfies to employ symbfionts fin thefir
N-acqufisfitfion strategy, such as N-uptake medfiated through AM
and ECM fungfi or symbfiotfic BNF. Nevertheless, the conclusfions
of Terreret al.(2016) rafise addfitfional hypotheses: (1) do ECM
plants and N2-fixers take up more N than AM plants fin response to
eCO2? (2) Is the role of N avafilabfilfity fin constrafinfing the eCO2
effect on plant bfiomass caused by lfimfitatfions on leaf-level
photosynthesfis? And (3) how do changes fin N avafilabfilfity under
eCO2affect sofil C stocks and the ecosystem C balance?
Here, we explore these questfions by revfiewfing observatfions from

eCO2experfiments wfith a focus on the C cost of N-acqufisfitfion. We
acknowledge that other factors such as water avafilabfilfity (Morgan
et al., 2004) or phosphorus (P) avafilabfilfity (Ellsworthet al., 2017)
may be equally fimportant fin medfiatfing terrestrfial ecosystem
responses to eCO2. These are, however, beyond the scope of the
current revfiew, whfich focuses on the effects of N avafilabfilfity, the
most commonly lfimfitfing nutrfient globally (LeBauer & Treseder,
2008). Importantly, we do not treat N-lfimfitatfion as an ‘on–off’
property but rather refer to the cost of N-acqufisfitfion–or, fits
finverse, the return on finvestment–as a contfinuum. As such, our
plant economfics approach can be applfied to other sofil resources,
provfided that the necessary data are sufficfiently avafilable. In
Sectfion II we define and apply the return on finvestment approach,
whfich fis used fin Sectfion III as a lfink drfivfing ecosystem-level effects
trfiggered by eCO2. In Sectfion IV we dfiscuss the conclusfions and
propose a conceptual framework, wfith findficatfions of productfive
dfirectfions for model and experfimental fimprovements.

II. The return on finvestment approach

1. Methods

We define thereturn on finvestmentas a ratfio of the margfinal relatfive
fincrease fin N-acqufisfitfion (Nacq) and the margfinal relatfive fincrease
fin belowground C allocatfion (Cbg). We quantfify the return on
finvestment wfith data from eCO2experfiments usfing dfifferences fin
measured Nacqand Cbgunder elevated (‘ele’) and ambfient (‘amb’)
CO2treatments:

Return on finvestment¼

oNacq
Nacq
oCbg
Cbg

NacqðeleÞNacqðambÞ
NacqðambÞ

CbgðeleÞCbgðambÞ
CbgðambÞ

¼w1
N;

Eqn 1

wNcan be finterpreted as the C cost of acqufirfing N, and corresponds
to the finverse of the return on finvestment. It quantfifies how plants’
Nacqrates relate to fincreasfing belowground C allocatfion, and
thereby estfimates the degree to whfich aboveground growth fis
lfimfited by N.
Although Nacqfis often measured fin eCO2experfiments (e.g. Feng

et al., 2015), estfimatfing Cbg(C finvestment fin Nacq) remafins a
conceptual and methodologfical challenge. Cbgfis not confined to
root productfion (Croot), but also fincludes C transferred to root

New Phytologfist(2018)217:507–522 2017 The Authors
New Phytologfist 2017 New Phytologfist Trustwww.newphytologfist.com

Revfiew Tansley revfiew

New
Phytologfist508



exudates, mycorrhfizal fungfi and symbfiotfic N-fixfing bacterfia
(Ctransfer; see Vficcaet al., 2012), and fis therefore findficatfive of
‘finvestments’ for N uptake (or nutrfient uptake fin general):

Cbg¼CrootþCtransfer: Eqn 2

Ctransferfimplfies a cost for the plant by reducfing the C avafilable for
bfiomass productfivfity (BP):

BP¼NPP Ctransfer: Eqn 3

We therefore refer to Ctransferas the component of the C
budget that may be used by plants to acqufire N. Several lfines
of evfidence suggest that fis not allocated to plant bfiomass and,
findeed, plants fincrease allocatfion to Ctransferas sofil resources
decrease fin avafilabfilfity (Treseder, 2004; Hobbfie, 2006;
H€ogberget al., 2010; Drakeet al., 2011; Phfillfipset al., 2011;
Aokfiet al., 2012; Nourfiet al., 2014), and that such fincreases
fin allocatfion to Ctransfercome at the expense of plant bfiomass
productfion (Vficcaet al., 2012) and can reduce net ecosystem
productfivfity (Fernandez-Martınezet al., 2014). Thfis may
explafin why root colonfizatfion by mycorrhfizal fungfi fis often
fincreased by eCO2(fincreased N demand) but decreased by N-
fertfilfizatfion (decreased N demand), findficatfing that plants
fincrease the finvestment fin Ctransferas a means to meet N
requfirements (Treseder, 2004). Moreover, dfifferences fin the C
cost of nutrfient acqufisfitfion may also explafin why the
proportfion of C allocated to Cbg(and by extensfion Ctransfer)
fis finversely related to N avafilabfilfity at global scales (Gfill &
Ffinzfi, 2016), wfith greater belowground finvestment fin boreal
relatfive to tropfical regfions.

Here, we estfimatedw1
N (Ffig. 1; Eqn 1) for as many eCO2studfies

as possfible, that fis, those wfith data on both Nacqand Cbg. Even
though Ctransferrepresents a fractfion of 10–40% of NPP (Chapfin
et al., 2011; Prfitchard, 2011), there have been few measurements of
C allocatfion to fungfi and exudates fin eCO2experfiments (Phfillfips
et al., 2011). We used fine-root productfion, fine-root bfiomass or
root bfiomass as a proxy for Cbg, thus assumfing a constant ratfio of
Ctransferto Crootand therefore:

oCbg

Cbg
¼
oCroot
Croot

: Eqn 4

Eqn 4 fis supported for several ECM specfies (Hobbfie, 2006;
Hobbfie & Hobbfie, 2008), but uncertafintfies regardfing fits valfidfity
remafin for AM and N-fixfing specfies. We fincluded data from
prevfious syntheses on eCO2-drfiven Nacq(Ffinzfiet al., 2007; Feng
et al., 2015), and searched from the Web of Scfience for Cbgdata,
recent addfitfional years and addfitfional field studfies Free-Afir CO2
enrfichment (FACE) and open top chamber (OTC) wfith
avafilable data on both Nacqand Cbg. In total, we used
observatfions from 20 grassland and forest ecosystem experfiments
correspondfing to 12 dfifferent sfites (Table 1). For specfies fin the
Aspen-FACE experfiment (Table 1) we excluded all years before
canopy development was complete, as recommended elsewhere
(Norbyet al., 2005).

2. Results

In the absence of N-fertfilfizatfion, Nacqfincreased sfignfificantly
(+24%,P<0.001) under eCO2fin ECM plants, whereas the effect
was not sfignfificant ( 5.6%,P=0.1056) fin AM plants. In Ffig. 1(a),
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Ffig. 1Plant economfics spectrum of the efficfiency of plants fin acqufirfing addfitfional nfitrogen (N) under elevated CO2. (a) Relatfionshfip between the elevated CO2(eCO2)-
finduced relatfive change (%) fin root carbon (Croot) (‘finvestments’) and aboveground N-acqufisfitfion (‘returns’). (b) Mean, SE, max and mfin return on finvestment (w

1
N ,

Eqn 1). Colours represent four dfifferent N-acqufisfitfion strategfies characterfized by the type of symbfiotfic assocfiatfion, that fis: arbuscular mycorrhfizas (AM),

ectomycorrhfizas (ECM) and N-fixfing specfies (N-fixfing), or hfigh N avafilabfilfity (Hfigh-N). Shapes fin (a) represent the type of root data used to estfimate belowground C

allocatfion (Cbg), that fis: fine-root bfiomass (FRB), fine-root growth(FRG), total-root bfiomass (TRB) or total-root growth (TRG). Black dashed lfine fin (a) represents the 1 : 1
lfine. The slope of the grey lfines fin the background fin (a) representsw1

N , wfith lower returns (hfigher costs) as dark grey. Asterfisks fin (b) arew
1
N estfimates at Duke FACE

(ECM) and BfioCON (AM, N-fixfing, and Hfigh-N) usfing Cbgfinstead of Crootdata (Eqn 2). Nacq, product of total or aboveground bfiomass productfion and N concentratfion.

When sfites finclude data at the specfies-level, the sfite name fis followed by a specfies code (Table 1). Sources of sfite-level data are gfiven fin Table 1.
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the slope represents Nacq-efficfiency (w
1
N), wfith lfighter shadfing

representfing hfigher ‘returns’. Most ECM experfiments plotted close
to the 1 : 1 lfine, suggestfing proportfionalfity between the relatfive
changes fin finvestment and acqufisfitfion (e.g. a 1% fincrease fin C
finvestment belowground translates finto a 1% fincrease fin Nacq).
Systems where N2-fixers were present exhfibfited a sfimfilar relatfion-
shfip between Nacqand Cbgas ECM systems. Thfis findfing fis based
on two experfiments: plots from the BfioCON experfiment wfith
legume specfies only (Refich & Hobbfie, 2013), and all plots from the
New Zealand (NZ) FACE experfiment, wfith a mfix of N2-fixers
Trfifolfium repensL. andTrfifolfium subterraneumL. and other
grassland AM-specfies (Newtonet al., 2014). AM plants achfieved a
much lower enhancement fin Nacqthan ECM plants and N-fixers
for a gfiven amount of C finvested belowground. In some cases, AM
plants acqufired less N under elevated than ambfient CO2despfite
fincreasfing belowground C finvestments (Ffig. 1a). Thfis relates to
results by Fenget al.(2015), who found reduced Nacqunder eCO2.
The sfimultaneous fincrease fin Cbgfindficates a strong reductfion fin
Nacqefficfiency. N-fertfilfizatfion generally fincreasedw

1
N compared

to nonfertfilfized AM systems (e.g. BfioCON, SwfissFACE), but fit dfid
not consfistently help plants achfieve the hfighw1

N-levels of ECM
and N2-fixers fin thfis dataset (Ffig. 1b).
Cbgdata fin Ffig. 1 are lfimfited by the lack of Ctransferdata (Eqn 2).

In order to test the valfidfity of Eqn 4 and the patterns fin Ffig. 1, we
estfimatedw1

N usfing data from four experfiments where Cbg
(Croot+Ctransfer) was finferred from plant C balance (Lfittonet al.,
2007. These data can be used to estfimate the cost of Nacqwfithout
assumfing Eqn 4, fin relatfive (asterfisks fin Ffig. 1b) and absolute terms.
For example, fin the Duke FACE experfiment (ECM), Drakeet al.
(2011) estfimated that plants under eCO2finvested 88 g of Cbgg

1

of Nacq, fincludfing 12 g of Ctransfer. At BfioCON (AM), the
estfimated cost of Nacq under eCO2 and low N was
2033 g Cbgg

1Nacq(Adafiret al., 2009) resultfing from the low
capacfity of plants to acqufire addfitfional N. In N2-fixfing legumes,
however, eCO2stfimulated Nacqat a rate of 97 g Cbgg

1Nacq,
sfimfilar to ECM-trees at Duke. These patterns (asterfisks fin Ffig. 1b)
usfing both Crootand Ctransferdata, findficate that the cost of Nacq
varfies across Nacq-strategfies, supportfing the conclusfions fin Ffig. 1.
Although assessfing the assumptfion of a constant Croot:Ctransfer
ratfio (Eqn 4) fis a key need for thfis field, fits uncertafinty does not
stand fin the way of the exercfise presented here, yet fit does findficate
uncertafinty about the exact slope fin Ffig. 1(a). Regardless of the
slope, margfinal N-gafins fin ECM are larger than fin AM plants
(Sulmanet al., 2017). In order to estfimate the true costs, however,
more data about the finvestment fin symbfiotfic assocfiatfions (Ctransfer)
under eCO2are necessary (see lfist of data lfimfitatfions of the
approach fin Table 2).
In vfiew of these results, the abfilfity of plants to acqufire addfitfional

N under eCO2appears to vary among symbfiotfic types and levels of
N avafilabfilfity. The fimportant role of mycorrhfizal fungfi as factors
determfinfing ecosystem processes (under current clfimate) fis
becomfing fincreasfingly apparent (Wurzburgeret al., 2017), wfith
ECM fungfi generally assocfiated wfith more beneficfial effects on
thefir plant host’s fitness than AM fungfi (Bennettet al., 2017; Teste
et al., 2017). Current evfidence suggests that the role of AM fungfi fin
Nacqdepends on sofil N avafilabfilfity, as the fungfi may have lfimfited

capacfity to take up (or transfer) N when fin low supply (Reynolds
et al., 2005; Johnsonet al., 2015). On the one hand, eCO2dfid not
commonly enhance aboveground Nacqfin AM plants under low N
fin thfis dataset (Ffig. 1a), whereas root finvestment was fincreased,
leadfing to a negatfive meanw1

N (Ffig. 1b). Thfis fis consfistent wfith the
hypothesfis that AM fungfi assocfiate wfith plants along a contfinuum
of finteractfions rangfing from beneficfial to parasfitfic (Johnsonet al.,
1997), wfith negatfive effects for the plant under low N avafilabfilfity
(Reynoldset al., 2005; Johnsonet al., 2015). On the other hand,
AM fungfi are commonly assocfiated wfith enhanced plant Nacqwhen
N avafilabfilfity fis moderate or hfigh (Johnsonet al., 2015; Thfirkell
et al., 2016). The negatfivew1

N fin AM under low N may also reflect
fincreased tfissue C : N ratfios and N-use efficfiency under eCO2.
Whether thfis fis a plant strategy controlled by acclfimatfion of
photosynthesfis or merely a consequence of finsufficfient Nacqfis
unclear. ECM specfies fin thfis dataset could acqufire addfitfional N ‘on
demand’ vfia fincreased C finvestments, whfich may be explafined by
the capacfity of many ECM fungal specfies to produce extracellular
enzymes that break down SOM and transfer organfic and finorganfic
forms of N to the host plant (Lfindahl & Tunlfid, 2015; Shahet al.,
2015).

III. CO2response spectrum

Here we focus on the return on finvestment approach to summarfize
findfings regardfing the role of Nacqfin shapfing leaf-level photosyn-
thesfis (1), plant bfiomass productfion (2) and SOM decomposfitfion
(3)–all factors that finfluence ecosystem responses to eCO2and
ecosystem feedbacks to clfimate change. Thfis approach allows us to
characterfize systems wfithfin a response spectrum spanned by the
return on finvestment.

1. eCO2effects on photosynthetfic capacfity

Background Theoretfical consfideratfions based on optfimal use of
resources predfict a decrease fin the maxfimum rate of carboxylatfion
(Vcmax) under eCO2(Wanget al., 2017). Thfis predfictfion arfises
because the actual rate of assfimfilatfion under average field
condfitfions fis necessarfily lfimfited by avafilable lfight, and because
the response of lfight-lfimfited assfimfilatfion to the leaf-finternal partfial
pressure of CO2(cfi) fis less steep than the response ofVcmax-lfimfited
assfimfilatfion. Therefore, fif lfight avafilabfilfity and the ratfio ofcfito
ambfient CO2partfial pressure (ca) are unchanged, an fincrease finca
means that a lowerVcmaxfis requfired for theVcmax-lfimfited rate to
match the lfight-lfimfited rate. However, exfistfing theorfies do not
explficfitly consfider the costs of achfievfing and mafintafinfing a gfiven
value ofVcmax, related to the cost of Nacqbecause Rubfisco
constfitutes a substantfial proportfion of total folfiar N (Sprefitzer &
Salvuccfi, 2002).

Questfion Is the role of N avafilabfilfity fin constrafinfing the eCO2
effect on bfiomass caused by lfimfitatfions on leaf-level photosynthe-
sfis?

Observatfions The downregulatfion ofVcmaxby eCO2fin nonfer-
tfilfized sofils fis finversely related tow1

N (Ffig. 2a,P<0.01), suggestfing
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that the declfine ofVcmaxunder eCO2fis generally less pronounced
fin plants that can acqufire N more efficfiently. Thfis fis consfistent wfith
meta-analyses that suggest that downregulatfion fis related to low N
supply, wfith a strongerVcmaxdeclfine under low N (22%,
Afinsworth & Long, 2005) than under hfigh N ( 12%, Afinsworth
& Long, 2005), and a stronger reductfion fin grasses (AM, 17%,
Afinsworth & Long, 2005) than fin trees (most of whfich were ECM,
6%, Afinsworth & Long, 2005) and legumes (N2-fixers, 12%,
Afinsworth & Long, 2005) (Nowaket al., 2004; Afinsworth & Long,
2005; Afinsworth & Rogers, 2007).
Despfite downregulatfion ofVcmax, a stfimulatfing effect of eCO2

on leaf-level photosynthesfis (Asat)finC3plants fis observed (Ffig. 2b),
wfith an overall stfimulatfion of 35%, sfimfilar to the 31% effect from
the meta-analysfis by Afinsworth & Long (2005). Followfing the
same pattern as forVcmax, the eCO2effect onAsatfis generally larger
fin ECM than fin AM plants (Ffig. 2b). For example, fin the Duke
FACE experfiment, downregulatfion ofVcmaxwas not sfignfificant,
and eCO2fincreasedAsatfin pfine (ECM) by an average of 67%
despfite moderately low sofil fertfilfity (Ellsworthet al., 2012). At the
AM-forest FACE experfiment fin Oak Rfidge (ORNL), eCO2

reduced folfiar N (due to low N avafilabfilfity), and resulted fin a 21%
stfimulatfion ofAsat(Warrenet al., 2015) (although wfith small
sample sfizes and only occasfional measurements rendered thfis effect
nonsfignfificant).
The effect of eCO2onAsatfin legumes (Afinsworth & Long, 2005;

Wanget al., 2012) and N-fertfilfized plants, however, was not hfigher
than fin AM nonfertfilfized plants (Ffig. 2b), contrary to our
expectatfion. For example, at the Swfiss and BfioCON FACE
experfiments, AM-assocfiated grassland specfies growfing under
eCO2had eCO2effects onAsatof sfimfilar magnfitude for both
low and hfigh N treatments (Rogerset al., 1998; Leeet al., 2011).
We speculate that Asatdfid not fincrease wfith N-fertfilfizatfion at
BfioCON because the downward shfift fin leaf %N wfith eCO2was
larger fin the N-fertfilfized than fin the ambfient treatments (14% vs
9%) (Leeet al., 2011), perhaps because N-fertfilfizatfion was
modest and plants under eCO2and hfigh N fincreased growth (and
thus demand) and remafined both C and N lfimfited (Refich &
Hobbfie, 2013). The lower effect onAsatfin legumes than fin grasses
(Ffig. 2b, Afinsworth & Long, 2005) could have resulted from lfight
lfimfitatfion for legumes fin dense canopy condfitfions or lfimfitatfions
from other sofil resources beyond N; further research wfill be
requfired to elucfidate the mechanfisms.
The ecosystem-level effect on photosynthesfis (gross prfimary

productfivfity, GPP) requfires scalfing the leaf-level response takfing
finto account leaf area findex (LAI). If eCO2decreases LAI, GPP
mfight not fincrease despfite a posfitfive leaf-level effect. Negatfive
effects of eCO2on LAI are not common. Rather, a meta-analysfis
showed that eCO2enhanced LAI by 21% fin trees, wfith no
sfignfificant effect fin grasslands (Afinsworth & Long, 2005). Norby
& Zak (2011) suggested that only trees wfith low LAI
(<3.5 m2leaf m2ground) could fincrease LAI further fin response
to eCO2, although thfis effect mfight dfisappear when nutrfient
avafilabfilfity fis low (Duursmaet al., 2016).
Another fimportant factor to consfider fis the temporal acclfimatfion

of the photosynthetfic response to eCO2. Stomatal densfity has been
shown to decrease wfith hfistorfical CO2concentratfions (Pe~nuelas &
Matamala, 1990; Frankset al., 2013), but a meta-analysfis of eCO2
experfiments dfid not find a sfignfificantly negatfive effect for an
average [CO2] of 571 ppm (Afinsworth & Rogers, 2007). Further-
more, a meta-analysfis found that eCO2fincreased the number of
leaves (Afinsworth & Long, 2005), an effect that mfight compensate
for any potentfial reductfion on stomatal densfity at the ecosystem
level. The experfiments shown fin Ffig. 2(b) dfid not generally find a
decreasfingAsatresponse over tfime, but the long-term acclfimatfion to
eCO2requfires further finvestfigatfion (Frankset al., 2013).

Conclusfions Although the finfluence of N on the eCO2effect on
Vcmaxhas been long known, fit has commonly been lfinked to plant
functfional groups rather than to actual Nacq-strategfies (e.g.
Afinsworth & Long, 2005). We have shown that the strength of
theVcmaxdeclfine under eCO2changes wfith the efficfiency of plants
fin acqufirfing extra N (w1

N), wfith the strongest declfine under low N
fin AM systems where N-acqufisfitfion costs mfight fincrease most
strongly. Thfis affects leaf-level photosynthesfis, wfith a smaller effect
of eCO2fin AM than fin ECM plants. However, the role of
N-fertfilfizatfion and N2-fixatfion on the eCO2effect onAsatneeds

Table 2Lfist of major gaps fin the framework outlfined here concernfing the
finteractfions between the carbon (C) and nutrfient cycles under elevated CO2,

and recommendatfions for experfiments and methods to fill some of these

gaps

Gap Recommendatfions

Quantfificatfion
of the C cost
of N-acqufisfitfion
under eCO2

Improve the quantfificatfion of the plant C finvestment
(fin response to eCO2) fin N-acqufisfitfion (Cbg)by
systematfically measurfing fine-root productfion and
estfimatfing fine-root transfers to exudatfion and
mficrobfial symbfionts. Mycorrhfizal growth can be used
as a proxy for Ctransferto mycorrhfizas
Extend the quantfificatfion and report of measurements
of plant total N-acqufisfitfion
Quantfificatfion of N derfived from N2-fixatfion
eCO2experfiments wfith erficofid mycorrhfizal plants
eCO2experfiments wfith AM and ECM trees fin the same
sfite
Quantfificatfion of the bottom range of N avafilabfilfity for
ECM-mutualfistfic N-acqufisfitfion

Quantfificatfion
of the C cost of
P acqufisfitfion
under eCO2

eCO2experfiments fin tropfical forests are hfighly needed
Study the role of AM and ECM fungfi as above but
under P-lfimfitatfions

Quantfificatfion
of sofil C storage
under eCO2

Quantfificatfion of changes fin sofil C pools
Quantfificatfion of autotrophfic and heterotrophfic sofil
respfiratfion
Analysfis of C stabfilfizatfion pathways for lfitters wfith
dfifferent C : N ratfio

Methodologfical
bfias fin eCO2
experfiments

Mesocosm experfiments are excellent tools to quantfify
allocatfion to exudates and symbfionts
Ffield experfiments should make use of natural and
undfisturbed sofils
Quantfificatfion of sofil parameters pH, %N, %C, P%
and other nutrfients to assess nutrfient avafilabfilfity
Mfinfimfize the effect of expandfing canopfies, prfiorfitfisfing
mature plants fin steady-state
Mfinfimum of 5–10 yr of eCO2fumfigatfion to allow sofil
dynamfics start developfing

C, carbon; N, nfitrogen; Cbg, belowground carbon; eCO2, elevated CO2;P,

phosphorus; AM, arbuscular mycorrhfiza; ECM, ectomycorrhfiza.
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further finvestfigatfion. In any case, despfite partfial downregulatfion of
Vcmax, N avafilabfilfity does not usually preclude an effect of eCO2on
Asat. Hence, the lack of a sfignfificant eCO2effect on plant bfiomass fin
AM communfitfies under low N (Terreret al., 2016) cannot be fully
explafined by downregulatfion of leaf-level photosynthesfis; changes
fin C allocatfion are hence crucfial for understandfing these responses.

2. CO2effects on bfiomass productfion

Background When N avafilabfilfity fis low, a posfitfive growth
enhancement effect of eCO2depends on a plant’s abfilfity to (1)
fincrease fits rate of Nacqfrom the sofil (Orenet al., 2001; Ffinzfiet al.,
2007), and/or (2) use the assfimfilated N more efficfiently. The N-use
efficfiency (NUE) of growth can be defined as bfiomass produced per
unfit of Nacq, and fis reflected fin the overall plant C : N stofichfiometry
and retranslocatfion efficfiency of N upon leaf sheddfing. Zaehleet al.
(2014) found that models’ predficted enhancement of productfivfity
under eCO2fis commonly assocfiated wfith an fincrease fin NUE, fin
conflfict wfith the conclusfions from observatfional studfies that found
the effect drfiven by fincreased Nacq(Ffinzfiet al., 2007; Fenget al.,
2015).

Questfion What are the mechanfisms that drfive the dfifferences
among sfites fin the magnfitude of the CO2fertfilfizatfion effect on
bfiomass productfion?

Observatfions We found a sfignfificantly posfitfive relatfionshfip
betweenw1

N and the eCO2effect on aboveground bfiomass
productfivfity (ANPP) (Ffig. 3,P<0.001), resultfing fin the largest

eCO2-drfiven ANPP enhancement fin ECM>N-fertfilfized>N2-
fixfing>AM strategfies. Thfis suggests that Nacq-efficfiency fis a
prfimary drfiver of the eCO2effect on productfivfity. Note that
although the change fin bfiomass fis part of thew1

N calculatfion,
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Ffig. 2Effects of elevated CO2on leaf-level photosynthesfis and fits modulatfion by nfitrogen (N)-acqufisfitfion efficfiency. (a) Relatfionshfip between the effect of

elevated CO2on maxfimum rate of carboxylatfion (Vcmax) and the N return on finvestment (w
1
N , Eqn 1) under low (left panel) and hfigh (rfight panel) N avafilabfilfity.

(b) Summary of the effect of elevated CO2on lfight saturated photosynthesfis (Asat). The black dots fin (b) are mean effects CI from a meta-analysfis by

Afinsworth & Long (2005) for trees, grasses, N-fertfilfized plants and legumes. Sources of sfite-level data are gfiven fin Table 1.
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bfiomass productfion (ANPP) and the nfitrogen (N) return on finvestment (w1
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Eqn 1). Sources of sfite-level data are gfiven fin Table 1.
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fincreased C finvestment belowground reducesw1
N; thus, the

posfitfive relatfionshfip fin Ffig. 3 fis not necessarfily an artefact of usfing
Crootfin both (see also Fenget al., 2015).
ECM plants consfistently showed the largest fincreases fin ANPP,

and thfis was assocfiated wfith the hfighestw1
N (Ffig. 3). For example,

FACE experfiments wfith ECM-assocfiated loblolly pfine (Duke
FACE) and aspen (Aspen FACE) trees showed a large (22–39%)
and sustafined effect on total bfiomass productfivfity despfite moder-
ate–low N avafilabfilfity (McCarthyet al., 2010; Talhelmet al.,
2014). Furthermore, N-fertfilfizatfion fin the Duke FACE experfi-
ment dfid not fincrease productfivfity further (McCarthyet al., 2010),
consfistent wfith the observatfion of fincreased aboveground growth fin
most AM trees fin response to N-deposfitfion, but not fin ECM trees
(Thomaset al., 2010). Efficfient Nacqstfimulated trees at the Duke
and Aspen FACE experfiments to fincreasfingly allocate more C to
wood (wfith low [N]), enhancfing NUE (Zaehleet al., 2014) as a
consequence of thfis bfiomass allocatfion shfift.
Under hfigh N avafilabfilfity,Populus alba,P. euramerficanaand

P. nfigrafin the POP-FACE experfiment fin Italy, domfinated by both
ECM and AM fungfi, showed a lowerw1

N than other ECM specfies
(Ffigs 1, 3) due to the lack of an eCO2-drfiven Nacqenhancement;
Nacqwas already hfigh fin both CO2treatment plots due to prevfious
agrficultural use and firrfigatfion (Lfiberlooet al., 2006). Instead, trees
at POP-FACE sustafined the eCO2fertfilfizatfion effect by fincreasfing
NUE (Ffinzfiet al., 2007), whfich was lfikely finfluenced by fincreased
allocatfion to wood (low [N]).
AM systems showed a wfider range of responses, presumably

drfiven by thefir varfiable capacfity to acqufire N, efither through
N-fertfilfizatfion or assocfiatfion wfith N2-fixers. For example, AM-
grasslandLolfium perenneat SwfissFACE showed a posfitfive CO2-
finduced aboveground bfiomass enhancement under hfigh N, but not
fin low N plots (Schnefideret al., 2004), consfistent wfith the lower
cost of Nacqassocfiated wfith N-fertfilfizatfion (Ffig. 3).Medficago satfiva
fin thfis same experfiment, however, showed a posfitfive effect on
ANPP and Nacqeven under low N, consfistent wfith fits N2-fixfing
capacfity (L€uscheret al., 2000) (data not fincluded fin Ffig. 3 because
no findficatfion of Cbgwas found). Lfikewfise at BfioCON, the eCO2-
enhancement fin productfivfity was larger fin N2-fixfing legumes than
fin nonlegume AM specfies (Ffig. 3; see Muelleret al., 2013).
AM trees at ORNL FACE apparently showed the opposfite

pattern to that of Aspen and Duke FACE ECM trees. As AM fungfi
may have lfittle effect on plant Nacq, we speculate that these trees
relfied prfimarfily on fincreased allocatfion to fine roots (wfith hfigh [N])
to explore a larger proportfion of the sofil (Norbyet al., 2010; Iversen
et al., 2012), thus allocatfing less C to wood and decreasfing NUE.
Because thfis strategy caused only a slfight, finfitfial stfimulatfion of total
Nacq, and because NUE was already hfigh from the start (Ffinzfiet al.,
2007), the trees at the ORNL sfite could not meet the hfigher N
demand fimposed by hfigher CO2supply–thus lfimfitfing the stand’s
capacfity to fincrease ANPP (Ffig. 3). Interestfingly, the authors
reported an fincreasfing abundance of the N2-fixerElaeagnus
umbellataby the end of the experfiment, wfith evfidence for N2-
fixatfion (Norby & Zak, 2011).
Although N return on finvestment fis a prfimary factor determfin-

fing the ANPP response to eCO2, nutrfients other than N, as well as
water, are requfired for plant growth and may fincrease varfiabfilfity fin

Ffig. 3. For example, the ANPP response of AM specfies fin the
Nevada Desert FACE from 1998 to 2007 (Ffig. 3) showed
pronounced finterannual varfiatfion because growth was lfimfited by
water avafilabfilfity, wfith stronger fincreases fin ANPP under eCO2fin
wet than dry years (Housmanet al., 2006; Smfithet al., 2014; see
also Fatfichfiet al., 2016). However, these perfiodfic fincreases fin
productfivfity dfid not result fin fincreased above- or belowground
bfiomass at the end of the experfiment (Newfinghamet al., 2013).
Opposfite responses have been found for other grassland experfi-
ments fin dry regfions, wfith greater bfiomass responses to eCO2fin dry
than wet years (Morganet al., 2004, 2011). Results from the
TasFACE experfiment, however, suggest that these contrastfing
results mfight have been drfiven by the effects of seasonal
precfipfitatfion on the N cycle (Hovendenet al., 2014), wfith sprfing
rafinfall causfing negatfive effects on N avafilabfilfity, thus lfimfitfing the
eCO2-response.
The eCO2effect on plant growth and fits relatfionshfip wfith

symbfiotfic type may also be prone to envfironmental factors other
than N, fincludfing P avafilabfilfity, clfimatfic condfitfions and dfistur-
bance. The role of symbfiotfic types fin acqufirfing P under eCO2fis
uncertafin, as only few experfiments have been conducted fin low-P
condfitfions. For example, ECM-domfinatedEucalyptustrees fin a
water- and P-lfimfited sofil showed a posfitfive leaf-level photosyn-
thesfis response to eCO2, but no fincrease fin aboveground growth
(Ellsworthet al., 2017) despfite enhanced P and N avafilabfilfity
(Hasegawaet al., 2016; Ochoa-Huesoet al., 2017). More research
fis needed to finvestfigate whether AM plants may acqufire P more
efficfiently and show a stronger eCO2response than ECM plants
under low-P. An findficatfion of the finfluence of weather and
dfisturbance may be provfided by the scrub-oak OTC experfiment fin
Florfida, whfich showed the largest fincrease fin ANPP (Ffig. 2). There,
Nacqfin the ECM specfies may have been addfitfionally stfimulated by
dfisturbance, finfitfially by fire and later by a hurrficane, both
assocfiated by a pulse of belowground resource avafilabfilfity (Hungate
et al., 2013).
Although ECM ecosystems typfically showed a strong eCO2

response of ANPP and a hfighw1
N, thfis pattern may not persfist

under extremely N-scarce condfitfions. For example, a Norway
spruce fin Sweden on morafine sofil and wfith a very thfin sofil organfic
layer dfid not show a sfignfificant eCO2-effect on aboveground
growth except when N-fertfilfized (Sfigurdssonet al., 2013). Fol-
lowfing the mutualfism–parasfitfism contfinuum hypothesfis (Johnson
et al., 1997), and as suggested by some models for boreal N-poor
forests (Franklfinet al., 2014; Baskaranet al., 2017), there may be a
pofint at the lower range of N avafilabfilfity below whfich ECM fungfi
do not transfer enough N to the plant to elficfit and sustafin hfigher
rates of eCO2-growth.

Conclusfion Although several factors lfikely modulate growth
responses to eCO2, N return on finvestment fis a prfimary control
explafinfing the varfiety of responses observed fin eCO2experfiments.
Under low N avafilabfilfity, a sustafined CO2effect requfires a
mechanfism by whfich plants can fincrease Nacq, vfia assocfiatfion wfith
ECM fungfi or N2-fixers. AM plants generally do not fincrease Nacq
under eCO2(Ffig. 1), so fincreases fin productfivfity (Ffig. 3), fif any, are
sustafined through fincreased NUE. In sofils wfith hfigh N avafilabfilfity
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where Nacqfis already hfigh, plants may sustafin enhanced growth
rates through fincreased NUE too. But changes fin NUE also
respond to shfifts fin competfitfion strategfies, wfith greater allocatfion
to leaves (hfigh [N]) durfing stand development, and greater
allocatfion to wood (low [N]) after canopy closure, leadfing to
fincreased NUE as trees age (Gholzet al., 1985). Therefore, there fis
generally lfimfited scope for enhanced NUE as a strategy to sustafin
fincreased demand under eCO2fin the long-term, whfich rather
seems to be a consequence of changes fin allocatfion to the dfifferent
plant bfiomass pools. If enhanced root exploratfion or symbfiotfic
uptake do not result fin efficfient Nacq, the CO2effect dfisappears
when avafilable N fin the rhfizosphere does not meet plant N demand.

3. eCO2effects on prfimfing and sofil C content

Background In prevfious sectfions, we dfiscussed the capacfity of
ECM and N2-fixfing plants to acqufire addfitfional N under eCO2,
whfich feeds back on plant productfivfity. Both N-acqufisfitfion
through SOM decomposfitfion (outputs) and productfivfity (finputs)
affect sofil C storage. Meta-analyses show that, findeed, eCO2
fincreases belowground C finputs through enhanced fine-root
productfion by 44% (Dfielemanet al., 2010) and rhfizodeposfitfion
by 37.9% (Nfieet al., 2013). Although greater finputs of root-
derfived C may fincrease sofil C storage, much of the C that fis released
to the sofil can also stfimulate mficrobes to accelerate SOM decay and
N release vfia ‘prfimfing effects’ (Chenget al., 2014; Ffinzfiet al.,
2015). Indeed, meta-analyses have shown that fincreases fin sofil C
finputs under eCO2are offset by loses (Hungateet al., 2009; van
Groenfigenet al., 2014). These studfies, however, dfid not account
for potentfial dfifferentfial effects among symbfiotfic types. The
quantfificatfion of prfimfing effects has fimportant fimplficatfions on the
magnfitude of the terrestrfial CO2sfink, but these effects are dfifficult
to measure and model (Georgfiouet al., 2015).

Questfion How do changes fin N avafilabfilfity under eCO2affect
sofil C storage?

Observatfions We found a pattern of changes fin sofil C storage
across N-acqufisfitfion strategfies, wfith eCO2generally stfimulatfing
sofil C losses fin ECM, and sofil C storage fin AM systems under low N
avafilabfilfity. The margfinally sfignfificant relatfionshfip between sofil C
storage andw1

N (Ffig. 4;P=0.0503), however, hfighlfights that
other factors beyondw1

N are at play.
Enhanced N-mfinfing actfivfity fin ECM under eCO2finvolves CO2

release through heterotrophfic respfiratfion, mfinfimfizfing net accu-
mulatfion of sofil C wfith eCO2(Ffig. 4). For example, the large CO2
fertfilfizatfion effect on ANPP fin Duke FACE (ECM) (McCarthy
et al., 2010) was lfikely drfiven by fincreased allocatfion to ECM fungfi
(Drakeet al., 2011) and root exudatfion (Phfillfipset al., 2011),
whfich stfimulated mficrobfial actfivfity and SOM decomposfitfion
(prfimfing), fincreasfing N avafilabfilfity to plants (see also Chenget al.,
2014). Thfis, however, was accompanfied by fincreased sofil respfira-
tfion (Ofishfiet al., 2014), reducfing sofil C content (Ffig. 4). In the
Populus tremulofides(ECM) communfity from the Aspen FACE
experfiment, eCO2fincreased lfitter finputs, but also decreased sofil C
content (Ffig. 4), suggestfing strong stfimulatfion fin SOM

decomposfitfion (Talhelmet al., 2014). Lfikewfise fin the Florfida
OTC experfiment, eCO2fincreased plant productfivfity of scrub oaks
(ECM) under low N avafilabfilfity (Ffig. 3) through enhanced
N-mfineralfizatfion (Langleyet al., 2009), but the stfimulatfion of
SOM decomposfitfion yfielded no effect on C storage at the
ecosystem level (Hungateet al., 2013).
By contrast, several AM-ecosystems under low N have shown

lfimfited eCO2-effects on N-mfineralfizatfion and plant productfivfity,
together wfith sfignfificant fincreases fin sofil C content. For example,
the lack of a sfignfificant eCO2effect on bfiomass after 10 yr fin the
Nevada Desert FACE (AM) (Newfingham et al., 2013) was
accompanfied by a sfignfificantly posfitfive effect on sofil C content
(Evanset al., 2014), wfith fincreased fungal actfivfity (Jfin & Evans,
2010), but not fine-root finputs (Ferguson & Nowak, 2011)–
suggestfing Ctransferas the mafin drfiver of thfis effect (Jfin & Evans,
2010). The same pattern of smaller than average bfiomass responses
but sofil C accumulatfion was observed, for example, fin an AM-
forest ecosystem at ORNL (Iversenet al., 2012), an AM-grassland
ecosystem fin Australfia (Pendallet al., 2011) and a shortgrass steppe
fin the US (Pendall & Kfing, 2007), accompanfied by a doublfing fin
rhfizodeposfitfion (Pendallet al., 2004).
Other AM ecosystems, however, do not follow thfis pattern. In

the SwfissFACE experfiment, nefither the AM grassLolfium perenne
nor the N2-fixerTrfifolfium repensshowed an fincrease fin sofil C
storage after 10 yr of eCO2(van Kesselet al., 2006), despfite a
posfitfive effect on photosynthesfis (Afinsworthet al., 2003) and a lack
of N-mfineralfizatfion and ANPP response under low N avafilabfilfity
(Schnefideret al., 2004). eCO2dfid not fincrease sofil C content at
GfiFACE efither (Lenhartet al., 2016), but the presence of legumes
may have contrfibuted to an fincrease fin the allocatfion of Ctransferto
N2-fixatfion, rather than sofil C stabfilfizatfion, whfich would explafin
the strong fincrease fin abundance of legume specfies fromc.1% at the
begfinnfing of the experfiment to 10% fin later years, together wfith an
fincreasfingly posfitfive overall effect on plant bfiomass (Andresen
et al., 2017). A certafin degree of CO2-drfiven enhancement of
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Ffig. 4Relatfionshfip between the effect of elevated CO2on sofil carbon (C)
content (%) and the nfitrogen (N) return on finvestment (w1
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of sfite-level data are gfiven fin Table 1.
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N-mfineralfizatfion fin grasslands mfight also follow from fincreased
sofil water (e.g. Pendallet al., 2003).
Although there have been reports of AM plants acceleratfing lfitter

decomposfitfion under eCO2(Chenget al., 2012), there fis lfittle
evfidence that AM plants can fincrease the decay of SOM under
eCO2, partficularly fin low N sofils. Thus, CO2-finduced prfimfing
effects fin AM systems are lfikely to be more short-lfived relatfive to
those occurrfing fin ECM-domfinated ecosystems (Sulmanet al.,
2017).
An fintermedfiate sfituatfion mfight be found for N2-fixers (Ffig. 4),

whfich can obtafin (addfitfional) N from the atmosphere. eCO2
generally fincreases growth fin legumes (Ffig. 3; Afinsworth & Long,
2005), and thus lfikely also enhances sofil C finputs, but whether
SOM decomposfitfion offsets addfitfional finputs fis uncertafin. For
example, eCO2fincreased C finputs through bfiomass and produc-
tfivfity (Ffig. 3) fin a grassland FACE experfiment wfith N2-fixers fin
New Zealand. But eCO2also fincreased N-mfineralfizatfion (R€uttfing
et al., 2010) and N avafilabfilfity (Newtonet al., 2010), yfieldfing a
modest fincrease fin sofil C storage (Rosset al., 2013; Ffig. 4). Varfious
factors are probably at play to determfine the balance between finputs
and outputs, fincludfing specfies composfitfion, lfitter qualfity, clfimate
and nutrfient and water avafilabfilfity.
The eCO2effects on sofil C under hfigh N avafilabfilfity do not

appear to follow a clear pattern fin thfis dataset (Ffig. 4). Meta-
analyses show that N-fertfilfizatfion may fincrease the posfitfive effects
of eCO2on sofil respfiratfion further (Zhouet al., 2016), but the
effect of N has been shown to be negatfive fin trees (Janssenset al.,
2010), and posfitfive fin grasslands and croplands (Zhouet al., 2014).
Whether thfis varfiabfilfity findficate dfifferent effects of N-fertfilfizatfion
among N-acqufisfitfion strategfies or plant functfional types remafins to
be dfisentangled.
These dfifferences fin the sfign and magnfitude of the effects of

eCO2on N-mfineralfizatfion, prfimfing and sofil C storage across
symbfiotfic types mfight explafin the large varfiabfilfity and non-
sfignfificance of these effects found fin several meta-analyses (de
Graaffet al., 2006; Hungateet al., 2009; van Groenfigenet al.,
2014). The reasons for these dfifferent patterns among symbfiotfic
types, however, remafin elusfive. Recent empfirfical observatfions
and model analyses suggest that labfile lfitter (low C : N) fis qufickly
assfimfilated by mficrobes, and thfis mficrobfial necromass con-
trfibutes to the formatfion of stable SOM fin greater proportfion
than recalcfitrant lfitter (hfigh C : N), whfich decomposes slowly
(Knficker, 2011; Castellanoet al., 2015; Cotrufoet al., 2015).
On the other hand, the stabfilfizatfion of labfile lfitter fin SOM
should protect plant materfial, constrafinfing the eCO2-drfiven
prfimfing effect (Sulmanet al., 2014, 2017). Thus, recalcfitrant
lfitter should be more easfily prfimed provfided that fit fis
‘unprotected’. A recent meta-analysfis showed that, overall, AM
trees produce lfitter that fis sfignfificantly more labfile than ECM
trees (Lfinet al., 2017). Therefore, AM lfitter may be more easfily
stabfilfized by mficrobes, protectfing new C from prfimfing, whereas
recalcfitrant ECM lfitter may be more susceptfible to prfimfing,
stfimulatfing N-mfineralfizatfion and N avafilabfilfity. Thfis would
explafin the lfimfited CO2-drfiven prfimfing observed fin some AM
experfiments, together wfith fincreased sofil C content fin AM-low
N systems.

Conclusfions Evfidence from eCO2experfiments suggests that
mycorrhfizal status plays a key role fin determfinfing the sfign of the
eCO2effect on sofil C storage.Under low N avafilabfilfity, some
AM- and ECM-domfinated ecosystems show opposfite patterns. In
some AM-domfinated ecosystems, eCO2-drfiven prfimfing fis more
lfimfited than fin ECM-domfinated ecosystems, whfich results fin
lower C losses fin the former. By contrast, many ECM systems show
strong prfimfing effect and N-acqufisfitfion fin response to eCO2. Thfis
mechanfism, however, enhances SOM decomposfitfion and may thus
partfially offset the fincrease fin bfiomass storage and lfimfit CO2
sequestratfion at the ecosystem level. The result fis a C-allocatfion
shfift fin AM vs ECM ecosystems, whfich may result fin enhanced sofil-
C gafins fin AM and enhanced bfiomass-C gafins fin ECM. It fis,
however, the final balance between the (changes fin) C finputs and
outputs that eventually determfines whether sofil C storage fincreases,
decreases or remafins unaltered.

IV. Dfiscussfion

We used a plant economfics approach to quantfify the C cost of
N-acqufisfitfion and explore how thfis relates to the eCO2-
response fin dfifferent measured varfiables. Under eCO2, plants
fin nutrfient-lfimfited ecosystems may allocate part of the
addfitfional assfimfilatfion permfitted by eCO2 fin ways that
fincrease Nacq: (1) allocatfion to fine roots (Iversen, 2010), (2)
allocatfion to mycorrhfizal fungfi (Drakeet al., 2011) and (3)
allocatfion to root exudates to fincrease sofil prfimfing (Phfillfips
et al., 2012). Therefore, Nacqfis a process that requfires C
resources that could otherwfise be allocated to growth. Gfiven
the dfiversfity of Nacqstrategfies of finvestfigated plants, sofil
condfitfions, and N-fertfilfizatfion treatments, we expected dfiffer-
ent costs assocfiated wfith Nacqfin plants exposed to eCO2.
These costs mfight help explafin dfiscrepant responses fin
processes that requfire or are affected by N, such as leaf-level
photosynthetfic capacfity, plant-level growth and sofil C storage,
and place dfifferent systems wfithfin a contfinuous spectrum of
ecosystem responses to eCO2.
We show that the type of plant mycorrhfizal assocfiatfion and

N-fixfing capabfilfity determfines thefir posfitfion wfithfin thfis spectrum.
ECM plants can acqufire N more efficfiently than AM plants under
eCO2, although Nacqby AM plants can be enhanced when grown
wfith N2-fixfing plants or when N-fertfilfized. Thfis efficfiency fin Nacq
partly explafins the magnfitude of the eCO2effects on leaf-level
photosynthesfis, aboveground productfivfity and sofil C storage.
eCO2generally fincreases the amount of assfimfilates that plants
produce per unfit leaf area, even fin plants wfith hfigh costs assocfiated
wfith Nacq. However, the eCO2stfimulatfion of aboveground growth
tends to be smaller when the cost of Nacqfis hfigh, and vfice versa.
Contrarfily to aboveground growth responses, the eCO2effect on
sofil C storage tends to decrease wfith decreasfing costs.
Elevated CO2generally fincreases leaf-level photosynthesfis

regardless of Nacq-costs, but the cost of Nacqstrongly affects the
C allocatfion patterns. When costs are low (ECM fin Ffig. 5), plants
can efficfiently acqufire N and sustafin a growth response, whfich, on
the other hand, can reduce SOM. We hypothesfized that plants that
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assocfiate wfith ECM fungfi acqufire N more efficfiently than those
wfith AM for two reasons: (1) many ECM fungfi have the enzymes
necessary to mfine organfic N (Shahet al., 2015), and (2) lfitter
produced by ECM plants has a hfigh C : N ratfio (Lfinet al., 2017)
that promotes slow decomposfitfion (Cotrufoet al., 2015) and
facfilfitates prfimfing (Sulmanet al., 2014, 2017). A sfimfilar effect can
be achfieved by AM plants when N avafilabfilfity fis hfigh or fin the
presence of N2-fixers (Ffig. 5). The effects of eCO2on lfitter

productfion, root exudatfion and allocatfion to ECM, as well as
potentfially fincreasfing lfitter C : N ratfios, may amplfify these effects.
When costs are hfigh (AM fin Ffig. 5), a posfitfive growth

response to eCO2cannot be sustafined as a consequence of
finsufficfient N uptake. Thfis fis because (1) AM fungfi do not
produce the enzymes requfired to fincrease prfimfing fin response to
eCO2(Hodge & Storer, 2015), and (2) lfitter produced by AM
plants has a lower C : N ratfio (Lfinet al., 2017), promotfing
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greater stabfilfizatfion of SOM (Sulmanet al., 2014, 2017).
Thereby, AM plants have lfimfited abfilfity to prfime the labfile
SOM that they lfive on. If sofil C finputs finto the sofil are hfigher
than C losses, however, eCO2may result fin an fincrease fin sofil C
storage. These allocatfion patterns of eCO2-drfiven extra C fin AM
and ECM plants result fis a spectrum of ecosystem responses to
eCO2, drfiven prfimarfily by the cost of Nacq.
It has been observed fin several studfies that an eCO2-drfiven

fincrease fin photosynthesfis dfid not translate finto an fincrease fin plant
bfiomass productfion (Baderet al., 2013; Newfinghamet al., 2013;
Sfigurdssonet al., 2013; Ellsworthet al., 2017). Thfis has rafised the
questfion: ‘Where does the carbon go?’ Potentfial candfidates are
autotrophfic respfiratfion (Ra) and Ctransfer. The majorfity of exper-
fiments do not show a posfitfive effect of eCO2onRa(Smfith, 2017),
and there fis no evfidence that theRa: GPP ratfio consfistently
fincreases under eCO2(van Ofijenet al., 2010; Smfith & Dukes,
2013). Thfis fimplfies that any fincrease fin GPP wfithout an fincrease fin
bfiomass productfion most lfikely fincreases the proportfion of GPP
allocated to Ctransfer(GPP=BP+Ctransfer+Ra). Indeed, root
exudatfion and mycorrhfizal abundance have been observed to
fincrease under eCO2(Treseder, 2004; Albertonet al., 2005;
Phfillfipset al., 2011; Nfieet al., 2013), pofintfing at Ctransferas an
fimportant flux of the ‘mfissfing’ C.
A large part of the framework outlfined here (see Ffig. 5) fis not

represented fin the current generatfion of Dynamfic Global Vege-
tatfion Models (Sfitchet al., 2015). Although these models may
produce eCO2-finduced fincreases fin growth that are consfistent fin
magnfitude wfith observatfions (but see De Kauweet al., 2017), the
fimportance of underlyfing mechanfisms governfing N constrafints are
finapproprfiately represented (Zaehleet al., 2014). Common to
most modellfing approaches fis to account for the lfimfitfing effects of
N by reducfing the ratfio of NPP to GPP, hence fincreasfingRa, and to
fincrease the C : N ratfio of new tfissue productfion to match the plant
C and N budgets undera prfiorfidefined stofichfiometrfic constrafints
(Zaehleet al., 2014; Thomaset al., 2015). Models do not generally
consfider Ctransferas a separate component of the plant C budget
(Medlynet al., 2015), and ‘spfill-over’Rahas no effects on modelled
Nacq. Furthermore, lfittle or no adjustment of above- vs below-
ground C allocatfion fis sfimulated fin response to shfifts fin the
avafilabfilfity of above- and belowground resources (De Kauweet al.,
2014; Zaehleet al., 2014). Indeed, Zaehleet al.(2014) found that
the eCO2-finduced fincrease fin sfimulated Nacqwas strongly
underestfimated fin the Duke FACE experfiment.
In order to better represent the effects of eCO2dfiscussed here, a

next generatfion of models for the coupled C and nutrfient cycles fin
land ecosystems should be centred around nutrfient cost consfider-
atfions to sfimulate flexfible C allocatfion fin response to changfing
above- and belowground resource avafilabfilfitfies. Key mechanfisms
that determfine these relatfionshfips are the capacfity for BNF,
mycorrhfizal type-specfific plant–sofil finteractfions, rhfizosphere
Ctransferand fits effects on SOM decomposfitfion rates. In Table 2
we suggest some examples of types of observatfional data requfired to
further explore some of the gaps detected here.
Our results suggest that the N-lfimfitatfion on ecosystem responses

to eCO2are most lfikely dfisplayed fin a contfinuum, fin whfich the
abfilfity of the plants to acqufire addfitfional N fin exchange for energy

(carbon) plays a key role. Many ecosystems wfith ECM-assocfiated
plants and N2-fixers have the capacfity to enhance Nacqunder
fincreasfing demand, hfighlfightfing the fimportance of plant-medfiated
control on N avafilabfilfity, as opposed to the tradfitfional vfiew of a
rfigfid N-lfimfitatfion. Due to the lfimfited temporal coverage of
avafilable experfiments, the persfistence of enhanced plant growth
rates under eCO2remafins uncertafin. Our findfings underlfine the
fimportance of the cost of N-acqufisfitfion, an avenue that fif explored
by experfimentalfists and modellers workfing together may provfide a
way forward to better understand the finteractfions between the C
and N cycles under rfisfing CO2.
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