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Effect of Integral Feedback
on a Class of Uncertain
Nonlinear Systems: Stability
and Induced Limit Cycles
The theoretical problem addressed in the present work involves the effect of integral feed-
back on a class of uncertain nonlinear systems. The intriguing aspects of the problem
arise as a result of transient constraints combined with the presence of parametric uncer-
tainty and an unknown nonlinearity. The motivational problem was the state-of-charge
(SOC) control strategy for load-following in solid oxide fuel cells (SOFCs) hybridized
with an ultracapacitor. In the absence of parametric uncertainty, our prior work estab-
lished asymptotic stability of the equilibrium if the unknown nonlinearity is a passive
memoryless function. In contrast, this paper addresses the realistic scenario with para-
metric uncertainty. Here, an integral feedback/parameter adaption approach is taken to
incorporate robustness. The integral action, which results in a higher-order system,
imposes further restriction on the nonlinearity for guaranteeing asymptotic stability. Fur-
thermore, it induces a limit cycle behavior under additional conditions. The system is
studied as a Lure problem, which yields a stability criterion. Subsequently, the describing
function method yields a necessary condition for half-wave symmetric periodic solution
(induced limit cycle). [DOI: 10.1115/1.4037837]

1 Introduction

In the present work, we have analyzed the closed-loop stability
of a plant with an unknown nonlinearity. The effects of integral
action to compensate for parametric uncertainty and the resulting
third-order system are the main focus. The motivating problem to
this theoretical development was operating solid oxide fuel cells
(SOFCs) in load-following mode while preventing irreversible
damages caused by fuel starvation [1–4]. This problem can be
handled by regulating the fuel cell current on the basis of actual
fuel flow [5,6], which is lagged by the fuel supply system (FSS) of
the SOFC. However, for current regulation in the SOFC system, it
has to be hybridized with an ultracapacitor. This necessitates con-
trol strategies to stabilize the hybrid fuel cell ultracapacitor
system.

This problem was abstracted and posed in a generalized form in
Ref. [7]. Analysis of the abstracted closed-loop system using
Li�enard equation proved asymptotic stability of the origin for all
first-third quadrant (passive) nonlinearities [7–10]. However, in
this prior work [7], an idealized system with no parametric uncer-
tainty was considered. In this paper, we now consider a more real-
istic scenario with parametric uncertainty. A proportional-integral
compensator is introduced by the addition of an integral feedback/
parameter adaptation to the aforementioned abstracted system.
The analysis is done on the arising third-order dynamics. Condi-
tions for stability are derived by utilizing the absolute stability
framework of the Popov criterion. Addition of the integral action
is shown to impose further sector restriction on passive nonlinear-
ities. Furthermore, in contrast to Ref. [7], which shows no possi-
bility of limit cycle behavior for passive nonlinearities, the
addition of an integral action is seen to induce limit cycle behav-
ior. Consequently, we have explored the emergence of self-

induced stable limit cycles using the Describing function tech-
nique [8], for passive odd nonlinearities. Similar studies on self-
excited limit cycles, which consider known nonlinearities such as
hysteretic systems, have been reported in Refs. [11–13].

This paper is organized as follows: First, a summary of the pre-
vious work on the state-of-charge (SOC) control strategy for load-
following in SOFCs, hybridized with an ultracapacitor is provided
[7]. Then, the problem of handling parametric uncertainty in the
driven component of the driver-driven system is addressed
through integral feedback. Subsequently, we analyze the emerging
system and its stability using Popov Criterion by transforming the
closed-loop system to a Lure problem. We also explore the emer-
gence and necessary conditions for self-induced limit cycles.
Finally, simulations are provided to justify and further explore the
analysis performed.

2 Background

The issue of parametric uncertainty in the plant was recognized
in Ref. [7]. However, the corresponding stability investigation
was limited to a linearized analysis. Further research on paramet-
ric uncertainty based on nonlinear systems analysis is the focus of
the present paper. Nevertheless, for the sake of refreshing knowl-
edge, we present a summary of the previous work on the system.

2.1 Motivating Example: Reformer-Based Solid Oxide
Fuel Cells and Ultracapacitor System. In this section, a brief
background of the hybrid fuel cell energy system and the associated
control problems is presented. A schematic of the hybrid SOFC sys-
tem is shown in Fig. 1 [14]. The system consists of a fuel cell and
an ultracapacitor that are connected in parallel to an electrical bus
through direct current/direct current converters C1 and C2, respec-
tively. Details of operation of the reformer-based SOFC system are
available in Refs. [6] and [14]. The reformer reforms the fuel, meth-

ane with flow rate of _Nf , to a hydrogen-rich gas mixture that is
used to deliver the current ifc. The SOFC generates a steam-rich gas
mixture as a by-product of current draw, of which a fraction (kc) is
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recirculated to the reformer for providing steam for reforming. The
converter C1 provides unidirectional power flow and draws current
ifc from the fuel cell, as commanded by the controller. C2 is a bidir-
ectional direct current/direct current converter that maintains a con-
stant bus voltage VL. The efficiencies of the converters C1 and C2

are represented as g1 and g2. It is also assumed that measurements
of the fuel cell voltage Vfc, ultracapacitor voltage Vuc, load current

iL, and actual fuel flow _Nf are available to the controller. The varia-
bles Vfc, Vuc, and iL are readily measurable, and the measurement

of _Nf is available in FSS systems consisting of a fuel pump and/or
valve. The controller generates two command signals, namely the

demanded fuel flow _Nf ;d and ifc. The general electrical power bal-
ance equation is expressed as

VLiL ¼ g1Vfcifc þ g2Vuciuc (1)

The fuel cell is operated in a load-following mode. In this
mode, the formulation of demanded fuel cell current ifc;d is given
by:

ifc;d ¼
VLiL
g1Vfc

� kEs; where Es ¼ S� St and

S ¼ Vuc

Vmax

; St ¼
Vuc;t

Vmax

(2)

where S is the instantaneous SOC of the ultracapacitor; St and
Vuc;t are the target SOC and target voltage, respectively; Vmax is
the maximum ultracapacitor voltage; and k> 0 is a controller
gain. Note that the efficiencies g1 and g2 are not readily measura-
ble and although considered to be constant, may also slowly vary
with time introducing a certain amount of uncertainty to Eq. (2).
Counteracting this parametric uncertainty and its resulting effects
on the system will be the central focus of the present paper.

For SOFCs, the dynamic limitations in load-following are man-
ifested in the transient response of fuel utilization U. Fuel utiliza-
tion is defined as the ratio of hydrogen consumption to the net
available hydrogen in the anode [2]. Typically, 80–90% is set as
the target range for optimal efficiency [2,3]. Constant fuel utiliza-
tion (U) is a primary mode of operation of SOFCs [15–18], where
the fuel flow is varied in conjunction with changes in power
demand, to maintain U at a set point (�85%). However, SOFCs
can be prone to hydrogen starvation at U values of 80–90% due to
delays in the FSS. The control strategy used to prevent fuel starva-
tion by transient control of U is summarized below. At steady-
state U has the form [6,14]

U ¼ 1 � kc

4nF _Nf =ifc N cell

� �
� kc

(3)

where ifc is the fuel cell current, _Nf is the fuel flow rate, N cell is
the number of cells in series, F is Faraday’s constant, n¼ 2 is the
number of electrons involved in each electrochemical reaction,
and kc is the constant recirculation fraction. Rearranging Eq. (3),
we obtain

_Nf ;d ¼
ifc;dN cell

4nFUss

1 � 1 � Ussð Þkc½ � ) _Nf ;d ¼ rifc;d (4)

where r ¼ N cell½1 � ð1 � UssÞkc�=4nFUss. It is also noted that the
dynamics of the FSS is considered unknown and nonlinear, and is
represented by

d _Nf

dt
¼ g _Nf ; _Nf ;d

� �
and

d _Nf

dt
¼ 0 ) _Nf ¼ _Nf ;d (5)

To compensate for delays along the fuel supply path, the
current drawn from the fuel cell is regulated based on actual fuel
flow _Nf , i.e.,

ifc ¼
4nFUss

_Nf

N cell

1

1 � 1 � Ussð Þkc½ � ) ifc ¼ r�1 _Nf (6)

Next, we develop the equations of the overall feedback system
shown in Fig. 1.

2.2 Cascaded Configuration and the Generalized Feedback
Structure. In this section, we extract a cascaded feedback struc-
ture of the SOFC/UC hybrid system. The generic feedback struc-
ture we have used for our theoretical analysis relates to the
practical example in the following manner. The driver part of the
cascaded system, which includes the FSS dynamics, represents
the unknown nonlinearity and the driven part represents the ES

dynamics. The dynamic equations of Es and ifc are effectively in a
cascaded connection [7], and the dynamics of Es is given by

_Es ¼ � 1

CVmax

� �
VLiL
g2Vuc

� �
� g1Vfc

g2Vuc

� �
ifc

� �
(7)

This connection, along with the load-following control law of
Eq. (2), is shown in Fig. 2. The cascaded system consists of the

Fig. 1 Schematic diagram of the hybrid SOFC system [5]
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unknown FSS dynamics acting as a driver system and the SOC
dynamics acting as the driven system. It can be verified that the
closed-loop system of Fig. 2 has a unique equilibrium at
ifc ¼ ifc;d ¼ VLiL=ðg1VfcÞ; Es ¼ 0. This ensures that the closed-
loop system addresses load-following and regulation of the ultra-
capacitor’s SOC simultaneously.

For a generalized treatment, the system in Fig. 2 is expressed as
shown in Fig. 3. The mapping between the variables of Figs. 3
and 2 is

y � ifc; r � ifc;d; x � Es; _x ¼ h1 þ h2y;

h1 � � 1

g2

VLiL
CVmaxVuc

� �
; h2 � g1

g2

Vfc

CVmaxVuc

� �
(8)

The following assumptions were made in Ref. [7]:

(1) We assumed e¢ðy� rÞ ! 0 at steady-state and the nonli-
nearity satisfies:

�f ðy; rÞ ¼ �f ðy� rÞ � �f ðeÞ; ) _y ¼ �f ðeÞ and f ð0Þ ¼ 0

(9)

This is not a restrictive assumption, as commonly occurring
characteristics such as rate-limited, or saturation-based
dynamics fall within this category, as shown in Ref. [19].

(2) In Ref. [7], h1 and h2 were treated as known constants,
making the control law of Eq. (2)

r ¼ � h1

h2

� kx; k > 0 (10)

In Sec. 3, the restriction of h1 and h2 being known constants
will be relaxed to a single unknown constant. The effect of
this uncertainty, coupled with the unknown nonlinearity, is
the main focus of the present paper.

Next, we summarize the approach adopted in Ref. [7] where
parametric uncertainty was not considered. This motivates the
work presented in the present paper.

2.3 Prior Approach to Stability Analysis. The problem
statement of prior work in Ref. [7] is: Given the feedback system

of Fig. 3 with the unknown nonlinear function �f ðy; rÞ ¼ �f ðeÞ as
given in Eq. (9), determine conditions on f(e), or category of
functions f(e), that yield a stable or an unstable equilibrium at

½x; e�T ¼ ½0; 0�T.

2.3.1 Absolute Stability. From Ref. [7], the closed-loop
dynamic equations are

_x ¼ �h2kxþ h2e; _e ¼ �f ðeÞ þ kh2e� h2k
2x (11)

Applying the following coordinate transform, Eq. (11) can be
written as:

z ¼ e� kx; _z ¼ �f ðeÞ; _e ¼ �f ðeÞ þ kh2z (12)

Eliminating the variable z, the system in Eq. (12) is expressed by

€e þ df

de
_e þ kh2f eð Þ ¼ 0 (13)

Equation (12) represents the coupled dynamics of e and z or
equivalently e and x. In carrying out a stability analysis of this
system, the obvious issue is the lack of knowledge of the function
f(e). The approach was to consider classes of nonlinear functions
f(e) and to investigate their impact on the stability of the origin of
the state space [7].

Stability of the origin of Eq. (12) was analyzed as a Lure
problem [8,20]. The Lure problem considers the stability of an
interconnection between a linear time invariant system with a
memoryless nonlinearity. In formulating this problem, we
expressed the dynamics of Eq. (12) by the structure in Fig. 4, which
is mathematically equivalent to the system represented in Fig. 3.

The above formulation conforms to the structure of the Lure
problem. It was observed that the sector condition w 2 ½kh2;1�
guarantees absolute stability of the origin [7]. However, this suffi-
cient condition is conservative and is evident from analysis using
Li�enard equations summarized next.

2.4 Analysis as a Class of Li�enard Equations. The Li�enard
system refers to the following second-order nonlinear differential
equation:

€l þ pðlÞ _l þ qðlÞ ¼ 0 (14)

where pðlÞ and qðlÞ are two continuously differentiable functions
of l [9,10]. Under additional conditions on the functions pðlÞ and
qðlÞ, the Li�enard equation has a unique and stable limit cycle, as
described in detail in Refs. [7] and [9]. The following theorems
were given to predict stability of Eq. (13), being a special case of
Eq. (14) and Ref. [7].

THEOREM 1. The class of Li�enard equation Eq. (14), where
pðlÞ ¼ aðdq=dlÞ; qðlÞ is a continuously differentiable function
such that l qðlÞ > 0, and a is a positive constant, has a globally
asymptotically stable equilibrium at the origin l ¼ _l ¼ 0.

Fig. 2 SOFC/UC hybrid as a cascaded system [5]

Fig. 3 Generalized form of Fig. 2 [5] Fig. 4 A Lure problem formulation derived from Fig. 3
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COROLLARY 1. The feedback system of Fig. 3 with any unknown
nonlinear function �f ðy; rÞ ¼ �f ðeÞ that satisfies f ð0Þ ¼ 0, and
ef ðeÞ > 0 8 e 6¼ 0, has a globally asymptotically stable equilib-
rium point at e ¼ _e ¼ 0.

The result of Corollary 1 is definitive compared to that in
Sec. 2.3.1, as it establishes stable closed-loop performance for any
passive memoryless function f(e). A similar statement can be made
for the generic feedback control of Eq. (10), without any additional
sector or slope requirements on f(e). It is noted from Eq. (11) that
the equilibrium e ¼ _e ¼ 0 uniquely corresponds to x ¼ _x ¼ 0.

3 Parametric Uncertainty

3.1 Problem Statement. Given the feedback system of Fig. 3
with the unknown nonlinear function �f ðy; rÞ ¼ �f ðeÞ as given in
Eq. (9), the work in Ref. [7] assumed that the controller has accu-
rate knowledge of the values of parameters h1 and h2, appearing
in the dynamic equation of the driven system. This is evident also
from the control law of Eq. (10). Now, treating h1 and h2 as
unknown parameters, we modify the control law to incorporate
robustness to parametric uncertainty. Therefore, we investigate
the impact of this change on the stability of the closed-loop sys-
tem for the general class of passive memoryless nonlinearities.

3.2 Robustness Via Integral Action/Parameter Adaptation.
Consider the feedback system of Fig. 3. Since h1 and h2 will now
be treated as unknowns, the estimate of the combined parameter
ðh1=h2Þ is used in the control law, as shown below:

r ¼ �b̂ � kx; k > 0; b¢
h1

h2

(15)

where b̂ represents the estimate of b. We define the estimation
error

E¢ðb� b̂Þ (16)

We propose the following integral update law for parameter
estimation:

_E ¼ � _̂b ¼ �cx ) E � E0 ¼ �c
ðt

0

x dt; c > 0 (17)

Treatment of b as slowly varying is adequate for SOFCs subject
to gradual changes in power demand. From Eqs. (8), (9), and
(15)–(17) and noting that e ¼ ðy� rÞ, we deduce the following:

_x ¼ h2ðE þ e� kxÞ ¼ h2v; v¢E þ e� kx (18)

and

_e ¼ �f ðeÞ þ cxþ kh2v (19)

Combining Eqs. (18) and (19), we obtain

€e þ df

de
_e þ kh2f eð Þ ¼ �ch2

ðt
0

f eð Þ dt (20)

The system representation is shown in Fig. 5 with integral action
applied for parametric uncertainty. This effectively changes the
prior control law in Fig. 3 to a PI compensator. Equation (17) is
designed to make the resulting homogeneous equation in x stable.
This can be seen from differentiating Eq. (18) with respect to time
and substituting for _E from Eq. (17), which yields

€x þ kh2 _x þ ch2x ¼ h2 _e (21)

Comparing Eqs. (13) and (20), we see the addition of integral
action to account for parameter uncertainty. However, it causes the

closed-loop dynamics to be of third-order instead of second. By
defining the variable z ¼

Ð t
0
f ðeÞdt, Eq. (20) can be expressed as

€e þ df

de
_e þ kh2f eð Þ ¼ �ch2z; _z ¼ f eð Þ; with z 0ð Þ ¼ 0 (22)

Since the function f(e) is a passive memoryless function, the
above system has a unique equilibrium at the origin
_e ¼ e ¼ z ¼ 0. Local stability of this origin can be analyzed using
linearization. Since the linearization of f(e) around the origin is
f ðeÞ ¼ /e; / > 0, from Eq. (22), we have

€e þ / _e þ kh2/e ¼ �ch2

ðt
0

/edt

) &e þ /€e þ kh2/ _e þ ch2/e ¼ 0 (23)

Using Routh’s Stability Criterion [21], it can be shown that the
necessary and sufficient condition for stability of the equilibrium
_e ¼ e ¼ z ¼ 0 for small perturbations is

k/ > c (24)

The above analysis shows how the feedback gain k and adaptive
parameter gain c can be designed for the linear system represented by
Eq. (23), and demonstrates that the adaptive approach taken
to incorporate robustness has merit. However, further analysis must
be conducted to study the performance of the robust controller in con-
text of the nonlinear system. This analysis is presented next.

4 Nonlinear System Analysis

The discussion in Sec. 3.2 was focused on the linearized Eq.
(23). For further analysis, we can pose Eq. (20) in its nonlinear
form as

&e þ df

de
€e þ d2f

de2
_eð Þ2 þ kh2

df

de
_e þ ch2f eð Þ ¼ 0; with f 0ð Þ ¼ 0

(25)

giving a third-order nonlinear equation of the closed-loop dynam-
ics with robustness for parametric uncertainty. This follows reason
as the addition of an integral action to the system for adaptive pur-
poses would indeed increase the order of the system. The analysis
of the dynamics of this third-order nonlinear equation, Eq. (25),
gives more insight into the behavior of the closed-loop system.

4.1 Absolute Stability. We first look at the stability of the ori-
gin of Eq. (25) when analyzing the behavior of the closed-loop
dynamics. Since the second-order case represented by Eq. (12) was
mathematically equivalent to the structure of the Lure problem and
f(e) is still a passive memoryless nonlinearity, we can see that the
third-order equation is also mathematically equivalent to the Lure
problem [8,20]. We pose the closed-loop dynamics of Eq. (25) as

_z1

_z2

_z3

2
64

3
75 ¼

0 0 0

1 0 0

kh2 ch2 0

2
64

3
75

z1

z2

z3

2
64

3
75þ

1

0

1

2
64

3
75u; y ¼ 0 0 1½ �

z1

z2

z3

2
64

3
75

u ¼ �f ðz3Þ;
z3 ¼ e (26)

Fig. 5 Generalized form of Fig. 3 with parametric uncertainty
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Similar to Sec. 2.3.1, the resulting transfer function between u and
y¼ e is given by

Y sð Þ
U sð Þ

¼ G sð Þ ¼
s2 þ kh2sþ ch2

s3
(27)

A premise of the Lure problem is that the matrices

A ¼
0 0 0

1 0 0

kh2 ch2 0

2
4

3
5; B ¼

1

0

1

2
4

3
5; C ¼ 0 0 1½ � (28)

form a controllable pair ðA;BÞ and an observable pair ðA;CÞ.
These conditions are satisfied in Eq. (28). Next, the system of
Eq. (25) can be considered an interconnection of a linear and a
nonlinear component, as shown in Fig. 6. The structure in Fig. 6
is mathematically equivalent to the system representation of
Fig. 5.

The above formulation conforms to the structure of the Lure
problem. Thereby, it allows direct application of the Popov Crite-
rion, [8], to obtain a sector condition on f(e) that will ensure sta-
bility of the feedback system in Fig. 6. From Theorem 7.3 of
Ref. [8], we observe that the sector condition, w 2 ½0;K1�, where
0 < K1 � 1, will guarantee absolute stability of the origin of the
feedback system if ZðsÞ ¼ ð1=K1Þ þ ð1 þ sc1ÞGðsÞ is strictly posi-
tive real (SPR). Here, c1 is a constant such that ð1 þ kkc1 6¼ 0Þ for
every eigenvalue kk of A. By Lemma 6.1 of Ref. [8], we know
that Z(s) is strictly positive real if G(s) is Hurwitz and

1

K1

þ Re G jxð Þ½ � � c1xIm G jxð Þ½ � > 0; 8x 2 �1;1½ � (29)

By inspection, it is clear that the matrix A does not lead to a
Hurwitz transfer function G(s). Therefore, to compensate for this
shortcoming and the required condition, we add and subtract the

term az3, where a > 0 and define �wðz3Þ ¼ f ðz3Þ � az3. This
results in the Lure problem presented in Eqs. (26) and (27) being
modified to

_z1

_z2

_z3

2
64

3
75 ¼

0 0 �a

1 0 0

kh2 ch2 �a

2
64

3
75

z1

z2

z3

2
64

3
75þ

1

0

1

2
64

3
75u;

y ¼ 0 0 1½ �
z1

z2

z3

2
64

3
75; u ¼ ��wðz3Þ; z3 ¼ e

(30)

It is noted that the linear component in Eq. (30) retains controll-
ability and observability. The modified transfer function between
u and y¼ e is given by

Y sð Þ
U sð Þ

¼ G sð Þ ¼ s2 þ kh2sþ ch2

s3 þ as2 þ akh2sþ ach2

(31)

The condition for G(s) being Hurwitz can be obtained by using
the Routh–Hurwitz Criterion and is found to be

a >
c
k

Now we go on to check the condition of the new G(s) being SPR,
which are the requirements to satisfy the condition given in
Eq. (29). Since

G jxð Þ ¼ ch2 � x2
� �

þ jkh2x
a ch2 � x2ð Þ þ jx kh2a� x2ð Þ

we can define

P xð Þ ¼ 1

K1

þ Re G jxð Þ½ � � c1xIm G jxð Þ½ �; 8x 2 �1;1½ �

P xð Þ ¼ 1

K1

þ a ch2 � x2
� �2 þ kh2x2 kh2a� x2ð Þ � kh2c1ax

2 ch2 � x2
� �

þ c1x
2 ch2 � x2
� �

kh2a� x2ð Þ
a2 ch2 � x2ð Þ2 þ x2 kh2a� x2ð Þ2

(32)

In the above equation, K1 > 0 and the denominator of PðxÞ > 0.
Now if the numerator of PðxÞ > 0, the condition of Eq. (29) will
be satisfied and Z(s) can be said to be SPR. Defining the numera-
tor of PðxÞ to be NðxÞ, we have

NðxÞ ¼ aðch2 � x2Þ2 þ ðk2h2
2ax

2 � kh2x
4 � kh2

2c1cax
2

þ kh2c1ax
4 þ c1x

2ðkh2
2ca� ðch2 þ kh2aÞx2 þ x4ÞÞ

NðxÞ ¼ aðch2 � x2Þ2 þ x2ðc1x
4 � h2ðk þ cc1Þx2 þ k2h2

2aÞ
(33)

from the terms of NðxÞ in Eq. (33), it can be seen that
NðxÞ > 0; 8x can be guaranteed if the discriminant (D) of the
quadratic function of x2; c1x

4 � h2ðk þ cc1Þx2 þ k2h2
2a is nega-

tive. This gives us

D ¼ h2
2ðk þ cc1Þ2 � 4k2h2

2c1a

¼ c2c2
1 þ ð2kc� 4k2aÞc1 þ k2 (34)

Equation (34) gives another quadratic function of c1. The
requirements of this quadratic function to have negative values
for positive real values of c1 can be extracted from the value of
the function at c1 ¼ 0 and the value of its derivative at c1 ¼ 0
as

2a >
c
k

(35)

Now, if the discriminant of this function (D1) is positive, NðxÞ
can be guaranteed to be positive for a range of real positive values
of c1. Therefore

Fig. 6 A lure problem formulation of third-order closed-loop
dynamics
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D1 ¼ 2kc� 4k2a
� �2 � 4c2k2 > 0

) a >
c
k

(36)

By satisfying the condition in Eq. (36), the condition in Eq. (35) is
also satisfied. Therefore, if a > ðc=kÞ, by invoking Popov crite-
rion, the nonlinear third-order system represented by Eq. (25) is
absolutely stable if w 2 ½0;1� implying f 2 ½a;1�, where a can
be arbitrarily small. This implication of the arbitrarily small a is
that the condition f ðeÞ ! 1 as e ! 1 is imposed upon f(e),
making f(e) a K1 function. As a result of the earlier discussion,
we state the following theorem.

THEOREM 2. A system represented by Eq. (25) is absolutely sta-
ble if the nonlinear function f(e):

� Is a passive memoryless function f ð0Þ ¼ 0, ef(e)> 0,
� belongs to the sector f 2 ½a;1�, where a > ðc=kÞ > 0, and
� is a class K1 function.

If f(e) is not a K1 function and only satisfies f 2 ½a;1� on a set
Y � R, then the foregoing conditions ensure that the system is
absolutely stable with a finite domain.

Now, as the sufficient condition for absolute stability of the
third-order system arising from parametric uncertainty of the
driver-driven system has been established, the next step is to
investigate the behavior of the same system when unstable. The
objective is to investigate the possibility of limit cycles induced
by the introduction of an integral action to the compensator.

4.2 Necessary Condition for Limit Cycle Behavior. In this
section, we analyze the system represented by Eq. (25) for the
possibility of the existence of limit cycles when the system is
unstable. Using the Lure problem formulation from Eq. (30), the
possibility of a periodic solution of the output of the system y¼ e
is sought by representing the mentioned periodic solution by a
Fourier series at a frequency x and a set of Fourier coefficients
that satisfy the system equation. The initial premise of describing
function method leads to the solution of the first-order harmonic
balance equation [8], obtained from

GðjxÞWðaÞ þ 1 ¼ 0 (37)

where WðaÞ is the describing function of the nonlinearity
w ¼ f ðeÞ of the Lure’s problem. It is obtained by applying a sinu-
soidal signal “a sinxt” at the input of the nonlinearity and by cal-
culating the ratio of the Fourier coefficients of the first harmonic
at the output to a, the amplitude of the sinusoidal input to the non-
linearity. When dealing with describing functions of odd, time-
invariant, memoryless nonlinearities, WðaÞ is a real value that is
only dependent on a. Consequently, the imaginary part of Eq. (37)
can be solved as the real equation

Im½GðjxÞ� ¼ 0

kh2axðch2 � x2Þ � xðch2 � x2Þðkh2a� x2Þ ¼ 0

) ðch2 � x2Þðkh2ax� kh2axþ x3Þ ¼ 0

) x ¼ 0 or x ¼
ffiffiffiffiffiffiffi
ch2

p
(38)

Considering the case of oscillations and ignoring x¼ 0, we are
left with the probable frequency of oscillation as x ¼

ffiffiffiffiffiffiffi
ch2

p
.

Using this frequency, we can solve the real part of Eq. (37) as

1 þWðaÞRe½GðjxÞ� ¼ 0

determining the value of WðaÞ at x ¼
ffiffiffiffiffiffiffi
ch2

p

) 1 þ kh2 kh2a� ch2ð ÞW að Þ
kh2 � ch2ð Þ2

¼ 0

) W að Þ ¼ c
k
� a

� �

Therefore, since the describing function ðWðaÞÞ should be real
and positive, for oscillations, a necessary condition would be

W að Þ > 0

) c
k
> a

(39)

Note that this condition complements the condition for stability
given in Eq. (36). While the condition given by Eq. (39) is only
necessary but not sufficient, the satisfaction of this condition gives
a probability of the unstable system exhibiting a limit cycle
behavior at a frequency close to x ¼

ffiffiffiffiffiffiffi
ch2

p
. The next step to deter-

mine a sufficient condition to move from a probable periodic solu-
tion to the certainty of a periodic solution for the system is to use
the procedural method to determine the band of uncertainty in the
exact version of the harmonic balance equation in consonance
with Theorem 7.4 of Ref. [8]. While the criterion established in
Eq. (39) is a property of the linear transfer function of the system
represented by the Lure problem structure in Fig. 6, the band of
uncertainty involves the specific properties of the nonlinearity.
Thus, the mentioned procedure should be instigated on a system-
by-system basis.

5 Simulations

To confirm the stability criterion presented in Theorem 2 and
observe the behavior of the system when unstable, simulations are
provided for the system represented by Eq. (25). Simulations and
experimental results directly related to the SOFC/UC application
showing the onset of instability and recovery therefrom can be
found in Ref. [7]. For conciseness and generality, in this paper, we

Fig. 7 Nonlinear functions f(e): (a) correspond to Fig. 8(b) correspond to Figs. 9 and 10
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have considered a generalized example. The nonlinear functions

f(e) used are, first f ðeÞ ¼ signðeÞe2 þ 2e, a class K1 odd function
plotted in Fig. 7(a). We note that f ð0Þ ¼ 0; ef ðeÞ > 0 8 e 6¼ 0
and f ðeÞ 2 ½1:5;1�. The second function f ðeÞ ¼ tanh ðeÞ is
plotted in Fig. 7(b). It should be noted that although f ð0Þ ¼ 0;
ef ðeÞ > 0 8 e 6¼ 0 but f ðeÞ ¼ tanh ðeÞ is not a class K1 function.

We consider in Fig. 8 the largest allowable a ¼ 1:5, and
c=k ¼ 1 (by setting both c¼ 1 and k¼ 1). Hence, the equilibrium
_e ¼ e ¼ 0 must be a globally asymptotically stable equilibrium,
as predicted by Theorem 2. This is verified through the solid line
plots for t< 7 in Figs. 8(a) and 8(b).

For t 	 7, c is set to ten making c=k > a. As a result, the
asymptotically stable behavior of the system becomes unstable,
yet showing a limit cycle response indicated by the blue plot of
Fig. 8(a). The accompanying blue plot of figure Fig. 8(b), shows

the plot of all three states of the system (½z1; z2; z3�T) first being
asymptotically stable for t< 7 and diverging toward a limit cycle
behavior when t 	 7. The red plots in Figs. 8(a) and 8(b) represent

a case where c=k > a and the initial conditions (½z1; z2; z3�T) are
set in such a way that the system converges to the unique limit
cycle shown above from the outside, instead of the inside as repre-
sented by the blue plots. It should be mentioned that the unique
limit cycle to which the system converges in both cases is not
planar but three-dimensional. Thus we, note that when the nonli-
nearity used is a K1 class function, the unstable system can result
in a limit cycle behavior.

Next, we use f ðeÞ ¼ tanh ðeÞ as the nonlinearity in Eq. (25) and
set c=k ¼ 0:1. While the nonlinearity not being a class K1 func-
tion, the condition in Eq. (36) is still satisfied within a finite
domain. Setting the initial conditions to be within the mentioned

finite domain as ½z1; z2; z3�T ¼ ½1; 1;�1�T, the system still shows
stable behavior as shown by Figs. 9(a) and 9(b). This shows the
behavior of the same variables of the system as the corresponding
plots in Fig. 8. Subsequently, we again set c¼ 10 causing the ini-

tial conditions of ð½1; 1;�1�TÞ to be outside the region where the
function f ðeÞ ¼ tanh ðeÞ satisfies the condition in Eq. (36), effec-
tively violating the stability condition provided in Theorem 2. The
resulting plot is shown in Fig. 10, where the response is unstable
and unbounded. Again, it should be noted that when f(e) is not a

Fig. 8 Effect of relative gains in inducing stable equilibrium or limit cycles

Fig. 9 A nonK‘ nonlinearity yielding a locally stable equilibrium

Fig. 10 A non K‘ nonlinearity yielding an unbounded
response outside the region of attraction
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class K1 function, the unstable response is unbounded and does
not show a limit cycle behavior, although the linear transfer func-
tion of the Lure problem structure satisfies the condition for prob-
able limit cycle behavior given by Eq. (39).

6 Conclusion

The work presented in this paper extends from the theoretical
work done on analyzing the closed-loop stability of a plant
with an unknown nonlinearity. The motivating example behind
the theoretical analysis was controlling an ultracapacitor’s SOC in
a hybrid SOFC system, by modulating the fuel cell’s delivered
power. The unknown nonlinearity is expressed in cascaded config-
uration in the plant dynamics. In previous work, analysis was
done considering the generic system dynamics as a class of
Li�enard equations in the absence of parametric uncertainty.
That analysis gave a definitive stability criterion and showed
asymptotic stability of the origin for any passive memoryless non-
linearity. In the present work, the analysis has been extended to
study the effects of parametric uncertainty on the closed-loop
dynamics. The effects of robustness via integral feedback/parame-
ter adaptation are explored through nonlinear dynamics of the
resulting third-order system. In particular, sufficient conditions for
stability, necessary conditions for the occurrence of induced limit
cycles, or unbounded responses of the system are derived. These
results show that integral action introduces restrictions on stability
and induces limit cycles. Simulations are provided to demonstrate
the efficacy of the developed theory.
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