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Absolute Stability Analysis
Using the Lienard Equation:
A Study Derived From Control of
Fuel Cell Ultracapacitor Hybrids

Load-following in solid oxide fuel cells (SOFCs), hybridized with an ultracapacitor for
energy storage, refers to an operating mode where the fuel cell’s generated power fol-
lows the variable power demand, delivering the total demanded power at steady-state.
Implementing this operating mode presents a rich set of problems in dynamical systems
and control. This paper focuses on state-of-charge (SOC) control of the ultracapacitor
during load-following, under transient constraints, and in the presence of an unknown
nonlinearity. The problem is generalized to stabilization of a plant containing a cascaded
connection of a driver and a driven dynamics, where the former is nonlinear and largely
unknown. Closed-loop stability of the system is studied as a Lur’e problem and via
energy-based Lyapunov equations, but both impose conservative conditions on the nonli-
nearity. An alternate approach is developed, where the closed-loop dynamics are formu-
lated as a class of Liénard equations. The corresponding analysis, which is based on the
nonlinear characteristics of the Liénard equation, yields more definitive and less conserv-
ative stability criteria. Additional conditions that lead to limit cycles are also derived,
and a bifurcation pattern is revealed. The generality of the proposed approach indicates

applicability to a variety of nonlinear systems. [DOI: 10.1115/1.4032318]

1 Introduction

Solid oxide fuel cells are electrochemical energy conversion
devices that offer advantages such as high efficiency, fuel flexibil-
ity, tolerance to fuel impurities, and internal reforming capability
without the need of precious metal catalysts [1]. However, operat-
ing them in load-following mode while preventing fuel starvation
can pose a number of challenges. The SOFCs are susceptible to ir-
reversible damages caused by fuel starvation, especially at high
efficiency operating points (i.e., at high fuel utilization, between
70% and 90% [2-4]). The starvation problem can be quite effec-
tively alleviated by regulating the fuel cell current on the basis of
actual fuel flow [5,6], which is lagged by the fuel supply system
(FSS) of the SOFC. This approach has the advantage of not rely-
ing on accurate mathematical models which can be cumbersome
and system specific. However, current regulation causes a mis-
match between the demanded and delivered power. To compen-
sate for this mismatch and achieve accurate load-following, the
SOFC is hybridized with an ultracapacitor. The ultracapacitor
serves to either absorb or inject power-bursts during transient sit-
uations. The fuel cell concurrently modulates its own power gen-
eration to maintain the ultracapacitor’s SOC at a healthy level.
Thus, control strategies are needed to stabilize this hybrid fuel cell
ultracapacitor system [6,7].

One challenge of the aforementioned scenario is SOC control
of the ultracapacitor in the presence of unknown and nonlinear dy-
namics of the FSS. Specifically, the FSS dynamics and the SOC
dynamics form a cascaded connection, where the former is the
driver and the latter is driven. The problem is abstracted and
posed in a generalized theoretical form. Thereafter for a given
simple feedback controller, we determine how closed-loop stabil-
ity is impacted by different nonlinearities, which can be
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categorized for instance by sector conditions. While traditional
approaches such as absolute stability or energy-based Lyapunov
functions are applicable [8], the resulting stability conditions are
conservative. To this end, the closed-loop dynamics are expressed
as a class of Liénard equations [9,10], and their nonlinear charac-
teristics are used for stability analysis.

The Liénard equation refers to a category of nonlinear differen-
tial equations where existence of limit cycles is proven under
additional conditions. Following the established analytical foun-
dation of Liénard equations, we prove that our specific equation
transitions from a stable equilibrium to a stable limit cycle, and
the existence of a bifurcation pattern is shown. The stability pre-
dictions made by the proposed method are less conservative and
provide greater resolution into the nature of the equilibrium (i.e.,
stable equilibrium versus stable limit cycle) than those obtained
using absolute stability. The results are also indicative of a greater
flexibility in designing closed-loop control to achieve a stable
equilibrium than that predicted by absolute stability methods.
Finally, the proposed approach is extended to incorporate parame-
ter uncertainties and local stability conditions are derived.

The paper is organized as follows: We first describe the hybrid
SOFC system which is the basis of this work. The feedback struc-
ture consisting of the cascaded configuration is developed and the
stability problem is formally stated. Next, the problem is
addressed using traditional methods such as the Circle Criterion
and conventional Lyapunov analysis. The Liénard system formu-
lation is presented next and a number of new stability results are
proven. Finally, the approach is extended to incorporate parameter
uncertainties and preliminary results are provided. Over the paper,
analysis is accompanied by simulations. Finally, conclusions and
acknowledgments are stated and references are listed.

2 Background and Problem Formulation

2.1 Reformer-Based SOFC and Ultracapacitor System. In
this section, we present a brief background of the hybrid fuel cell
energy system and discuss the associated control problems. A
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schematic of the hybrid SOFC system is shown in Fig. 1 [11]. The
system consists of a fuel cell and an ultracapacitor that are con-
nected in parallel to an electrical bus through direct current (DC)/
DC converters C; and C,, respectively. Details of operation of the
reformer-based SOFC system can be found in Refs. [6] and [11].
In summary, the reformer reforms the fuel, methane with flow rate
of Ny, to a hydrogen rich gas mixture that is used by the SOFC to
deliver the current ir.. The SOFC generates a steam-rich gas mix-
ture as a byproduct of current draw, a fraction (k.) of which is
recirculated to the reformer for providing steam for reforming.
The converter C; provides unidirectional power flow and draws
current ig. from the fuel cell, as commanded by the controller. C,
is a bidirectional DC/DC converter that maintains a constant bus
voltage V;. The efficiencies of the converters C and C, are repre-
sented as #; and 7. It is also assumed that measurements of the
fuel cell voltage Vi, ultracapacitor voltage V., load current iy,
and actual fuel flow N  are available to the controller. The varia-
bles Vi, Vie, and iy, are readily measurable, and the measurement
of Ny is available in the FSS systems consisting of a fuel pump
and/or valve. Hence, it is reasonable to assume availability of
these signals for control implementation. The controller generates
two command signals, namely, the demanded fuel flow Ny, and
ir.. The general electrical power balance equation, as evident from
the system schematic, is expressed as

VLiL - nlvfcifc + nzvuciuc (1)

The fuel cell is operated in a load-following mode. In this
mode, the demanded fuel cell current ig 4 is primarily based on
the net power requirement V. i; with deviations to account for
excess/deficient SOC of the ultracapacitor. The formulation of

l.fc"d is

o
g =~k — kE,, where, E,=S—S, and
M Vie
VUC VUC t
S=—, §= . ()
Vmax ! vmax

where S is the instantaneous SOC of the ultracapacitor, S, and
Ve, are the target SOC and target voltage, respectively, Vi is
the maximum ultracapacitor voltage, and k>0 is a controller
gain. Thus, the first term in Eq. (2) implements load-following
while the latter term provides the perturbations in the fuel cell

steady-state. The first term is always active and it ensures that the
power demand is completely met by the fuel cell at steady-state.

For SOFCs, the dynamic limitations in load-following are man-
ifested in the transient response of fuel utilization U. Fuel utiliza-
tion is defined as the ratio of hydrogen consumption to the net
available hydrogen in the anode [2]. Typically, 80 — 90% is set as
the target range ([2,12]) for optimal efficiency. Constant fuel utili-
zation (U) is a primary mode of operation of SOFCs [13-16]. In
the constant fuel utilization mode, the fuel flow is varied in
conjunction with changes in power demand, to maintain U at a
set-point (~285%). However, SOFCs can be prone to hydrogen
starvation at U values of 80 —90% due to delays in the FSS
(shown in Fig. 1). This is especially true under transients in power
demand. Fuel starvation can be prevented by transient control of
U. However, direct measurement of U is intrusive and expensive,
and observer-based estimation is computation intensive [6,7]. To
achieve this transient control in a practical manner, the controller
in Fig. 1 implements a current regulation strategy, depicted in
Fig. 1. The strategy manipulates ir. based on the actual fuel flow
Ny, while commanding a target fuel flow Ny 4 that is based on the
demanded current g 4. In doing so, a simple method for transient
control of U is achieved, as explained next. The method uses an
analytical equation relating U, fuel flow, and current draw in
steady-state. For the SOFC system of interest, the steady-state
expression of U has the form [6,11]

1— ke
U= - 3
(4nFNf/ichcell) - kz' ( )

where i is the fuel cell current, N s is the fuel flow rate, Neen is
the number of cells in series, F = 96,485.34 Coul/mol is Faraday’s
constant, n =2 is the number of electrons involved in each elec-
trochemical reaction, and k.. is the constant recirculation fraction.
Equation (3) is rearranged such that a demanded fuel flow N td
can be calculated given if. 4 and a target U

ifc‘d-/\/’cell

Npg—
M U

= Nya=0ig @)

[1 - (1 - Uss)kc}
where ¢ = N[l — (1 — Ugs)ke]/4nFUs. 1t is also noted that the
dynamics of the FSS are considered unknown and nonlinear, and
is represented by

power needed to maintain the SOC at the target S,. Specifically, % VIR % . U,
the second term is active only during transients and is zero at dr g(Nf Ny ‘d)’ and dr 0= Ny =Nra ®)
Nonlinearity ” Ci
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Fig. 1
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Schematic diagram of the hybrid SOFC system
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Equation (3) is manipulated to compensate for delays along the
fuel supply path by regulating current drawn from the system,
based on actual fuel flow, i.e.,

4nFUGN 1
Ncell [1 - (1 -

ife = = ie=0'N; (6)

Uss)k]

Next, we develop the equations of the overall feedback system
shown in Fig. 1 by incorporating the dynamic equation of the
ultracapacitor. Thereafter, we generalize the feedback control
structure for further analysis.

2.2 Cascaded Configuration and the Generalized Feed-
back Structure. From Eq. (2) and using the standard capacitor
equation, we get

‘.}uc : 7iuc/C - E iuc
S = vuc/vmax

From Egs. (1) and (7) we have

. 1 Vii Vie \ .
E,=- HEY) (D) g, ®)
CVmaX Mo VUC b3 V'-‘C
From Fig. 1 and Eqgs. (4)—(6), the nonlinear dynamics of the FSS
are expressed as

dis. _ . . ..

di = 0 'g(ite, Gire.a) = f(ite, ifca), and

dige . .

d; =0 =it = ifey )

Thus, from Egs. (8) and (9), we note that the dynamic equations
of Eg and iy, are effectively in a cascaded connection. This con-
nection, along with the load-following control law of Eq. (2), is
shown in Fig. 2. The cascaded system consists of the unknown
FSS dynamics acting as a driver system and the SOC dynamics
acting as the driven system. It can be verified that the closed-loop
system of Fig. 2 has a unique equilibrium at i = ifq
= Vy0ip/(n Vi), Es = 0. This ensures that the closed-loop system
addresses load-following and regulation of the ultracapacitor’s
SOC simultaneously.

Since a generalized treatment is the goal of this paper, the sys-
tem in Fig. 2 is expressed as shown in Fig. 3. The mapping
between the variables of Figs. 3 and 2 is

yEifC7 "Eifc,th xEES7 x:hl_"th?
1 ( Viip > m ( Vie ) (10)
hl =\ /’lz =— |-
’12 CVmﬂXVUC '12 CVm’:lXVUC

In the ensuing analysis, we make the following assumptions:

(1) The unknown nonlinear function f(y, r), similar to Eq. (9),
satisfies

an

y =f(,r), suchthat y - 0=e2(y—r)—0

Driver System

0 +,~Es|control ffed S Nrd | Fss dynamics Nf b
C Eq.2) Eq.(5)

Fig.2 SOFC/UC hybrid as a cascaded system
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The latter condition imposes a zero steady-state error between y
and the reference signal . We assume that this zero steady-state
error simplifies the nonlinearity to

f(y,r)sz(yfr)sz(e), and f(O)ZO

12)

= y=e)

Equation (12) is not restrictive. Commonly occurring characteris-
tics such as ramped, rate-limited, or saturation-based dynamics
fall within this category, as shown in Ref. [7].
(2) In Eq. (10), we treat /; and &, as known constants. Hence,
the control law of Eq. (2) maps to

h
r:——l—kx7

I k>0

(13)

We note that assuming 4, and %, as constants imposes the driven
system to be linear time invariant (LTI) in the generalized analy-
sis. In Sec. 5, the restriction of 4; and /, being known constants
will be relaxed to unknown constants. The validity of assuming /;
and h, as constants for the SOFC system specifically will be dis-
cussed in Sec. 5.3.

This completes the description of the generalized feedback sys-
tem. Next we present the problem statement and summarize the
approach adopted in our earlier works. The discussion motivates
the approach presented in this paper.

2.3 Problem Statement and Prior Approach to Stability
Analysis. The problem statement is as follows:

Problem Statement: Given the feedback system of Fig. 3 with
the unknown nonlinear function f(y,) = —f(e) as given in Eq.
(12), determine conditions on f{e) or category of functions f(e),
which yield a stable or an unstable equilibrium at [x, e]" = [0,0]",
or generate a limit cycle.

In our earlier works, namely [6,7], the aforementioned stability
analysis was conducted under certain assumptions on the time-
domain characteristics of the nonlinear dynamics of Eq. (12), i.e.,
y = —f(e). To outline this approach, we first derive the following
from Egs. (10) and (13):

X=h +hy=h+ 1’12(8 + I') = —hykx + hye (14)
Then, if we assume e to satisfy a general exponential decay
condition

le() <7

e(to)| e ) Vle(ty)| < ro (15)
then it can be proven using Egs. (14) and (15) that the origin of
[xs e]T is also exponentially stable. Details and proof of this result
under additional practical considerations can be found in Ref. [6].
Furthermore, if |e(7)| is assumed to be bounded, then the system
in Eq. (14) with e as the input can be shown to be input-to-state
stable (ISS, Ref. [8]). This is also established in detail in Ref. [6].
Assuming time-domain characteristics is one way to overcome the
issue of unknown nonlinearity. However, this approach has the
following shortcomings:

(1) The time-domain characteristic of y is dependent on the
nonlinear function f{(e). Hence, a more fundamental
approach to stability analysis is to derive conditions on f{e)

Control Driver Driven

r=-hy/hy- kx> y=flyr) —>x = h;+hy

Nonlinearity

Fig. 3 Generalized form of Fig. 2
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directly, and understand the performance limitations of the
controller in Eq. (13) for classes of nonlinearities.

(2) Assuming a time domain characteristic allows us to analyze
stability of x in isolation, treating e as an external input in
Eq. (14). However, our system of interest, i.e., Fig. 3, is
inherently a closed-loop system. Hence, in terms of stabil-
ity analysis, the coupled dynamics of e and x must be con-
sidered as a whole.

Both limitations will be addressed with the stability analysis
approach presented in Sec. 3.

3 Stability Analysis

In this section, we first derive the coupled state equations. Sub-
sequently, we formulate the stability problem as a classical abso-
lute stability problem [8,17], and derive sector conditions on f{e).
Thereafter, we carry out analysis using an energy-based Lyapunov
function. Although both methods yield sufficient stability-
conditions applied to f{e), they are conservative. In Sec. 4, we
show that improved stability predictions can be made by applying
results from nonlinear dynamics.

3.1 Coupled Dynamics With Unknown Nonlinearity. To
derive the coupled closed-loop equation, we observe from
Eqgs. (11), (13), and (14) that

y=eé+r=f(y,r)=—f(e)=é=—f(e) + kit

= —f(e) + kine — hak*x (16)
Thus, the closed-loop dynamic equations are
¥ = —Ikx + e, ¢é=—f(e)+khe—hk’x  (17)
Applying the following coordinate transform:
z=e—kx (18)
Equation (17) can be written as
z=—f(e), é=—f(e)+khoz (19)

Equation (19) represents the coupled dynamics of e and z or
equivalently e and x, since x relates to e and z per Eq. (18). In car-
rying out a stability analysis of this system, the obvious issue is
the lack of knowledge of the function f{e). We first note that the
system in Eq. (19) has equilibria in the state-space at fle) =0
and z=0. The specific equilibrium point of interest is the origin
z = e = 0 since, from Eq. (13), it corresponds to the state where
x =20, which is the objective of our control design. The existence
of this equilibrium point is guaranteed by imposing the condition
7£(0) = 0 in Eq. (12). Our approach will be to consider classes of
nonlinear functions f{e) and to investigate their impact on the sta-
bility of the aforementioned origin of the state-space.

3.2 Lur’e Problem Formulation and Absolute Stability.
Stability of the origin of Eq. (19) can be analyzed as a Lur’e prob-
lem [8,17]. The Lur’e problem considers the stability of an inter-
connection between a LTI system with a memoryless
nonlinearity. In formulating this problem, we express Eq. (19) as

518 S L = o e
(20)

Thus, the resulting transfer function between u and Y =e is
given by

031007-4 / Vol. 138, MARCH 2016

Y(s) s+ khy
— — G(s) = 21
u(s) () 52 @D
A premise of the Lur’e problem is that the matrices
0 0 1
A_{khz 0}, B_M, c=p 11 @

form a controllable pair (A,B) and an observable pair (A, C).
These conditions are satisfied in Eq. (22). Next, it can be verified
that the system of Eq. (19) can be considered as an interconnec-
tion of a linear and a nonlinear component, as shown in Fig. 4.
The structure in Fig. 4 is mathematically equivalent to the system
representation of Fig. 3.

The above formulation conforms to the structure of the Lur’e
problem. Thereby, it allows direct application of the Circle Crite-
rion [8,17] to obtain a sector condition on f{e) that will ensure sta-
bility of the feedback system in Fig. 4. From Theorem 7.1 of Ref.
[8], we observe that the sector condition y € [K,K>], where
K> > K, > 0, will guarantee absolute stability of the origin of the
feedback system, if D(s) = [I + K,G(s)].[l + K1G(s)] " is strictly
positive real (SPR). From Theorem 7.1 of Ref. [18], note that D(s)
is SPR if it is strictly stable and Re(D(jw)) > 0V @ > 0. The
transfer function D(s) takes the form

(s) = [+ K:G(s)] _ §* + Kos + Kokhy
[]—O—K]G(S)] s2 +Ks + Kikhy

(23)

It can be verified that for stability, the necessary and sufficient
conditions are K; >0 and K kh, > 0. This effectively means
Ky > 0 and k>0 must be satisfied. From Eq. (23), the require-
ment Re(D(jw)) > 0 reduces to the inequality condition

o* + (K1Ky — koK) — khoKy) o + KK Ky >0 Vo > 0
(24)

We explore the sector conditions at two extremities, namely,
K; — 0 and K; — oo, while maintaining K, > K; > 0. When
K — 0, Eq. (24) requires (kh,K>) < 0, which is not feasible since
K> > 0, h, > 0 and we must have the controller gain £ > 0 for sta-
bility. When the latter scenario is valid, i.e., K, — oo, Eq. (24)
requires (K| — khy) > 0, which is feasible. Thus, the sector condi-
tion on f{e) for stability is Y € [khy, oo], and it is dependent on the
controller gain k. Intuitively this interdependence is expected
since the nonlinear dynamics should have an impact on the choice
of the gain k. The circle criterion provides a quantitative relation
that can be exploited to guarantee stability. In addition to the con-
dition € [kh,, 00|, other sector conditions may also be derived
from Eq. (24). Using the quadratic form of Eq. (24), it is clear that
the inequality is satisfied for all @ > 0 whenever

(K]Kz — khnK, — khQKz) >0 or

(K]Kz — kho Ky — kthz) < 0 and 25)
(K1K2 — kK| — kh2K2)2 < 4]{2]’1%[(11(2
kh
G(s) = 20 Y
S

A

y=fle)

Fig. 4 A Lur’e problem formulation derived from Fig. 3
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The above sector-based conditions are sufficient conditions for
stability and hence are likely to be conservative. This can be veri-
fied by graphically implementing the circle criterion using the
Nyquist plot of G(s). In addition, the following simulations also
demonstrate the same. In Fig. 5(a), the shaded region represents
the sector where the circle criterion predicts absolute stability for
the feedback system in Fig. 4, with khy = 0.5. The function
fu(e) = 2e satisfies the criterion while f.(e) = 0.2¢ does not.
Although the functions are linear in these simulations, the results
are still relevant for checking the conservative nature of circle cri-
terion. The phase-portraits in Figs. 5(b) and 5(c) were generated
for the feedback system of Eq. (19) with functions f;, and f,,
respectively. Finally, we note that instead of considering different
functions f{e), we could have equivalently considered different
values of the gain « for a fixed f{e) and made similar observations.
Next, we explore a Lyapunov-based stability approach for the
system.

3.3 Stability Analysis With an Energy-Based Lyapunov
Function. In contrast to the absolute stability approach of Sec.
3.2, an energy-based Lyapunov stability analysis gives an alter-
nate criterion of stability, as discussed in this section. In this
regard, eliminating the variable z, the system in Eq. (19) is
expressed as the following second-order differential equation:

é+ ie’ + khyf(e) =0 (26)
de

Equation (26) has the structure of a nonlinear

mass—spring—damper with (df /de)é and khyf(e) representing

damping and spring forces, respectively. Hence, the stored energy

is chosen as a Lyapunov function candidate

v=leg J khof (e)de (27)
2 0

Here, we assume f{e) to be a passive memoryless function (i.e.,
lying in the 1st — 3rd quadrant and £(0) = 0, Ref. [8]). This will
ensure that V is positive definite and radially unbounded. Taking
the derivative of Eq. (27) and substituting for ¢ from Eq. (26)
results in the following:

V=¢ (—Z—’;é - khzf(e)) + khof (e)é
_df Lo df

If (df /de) > 0, then from Eq. (28) V can only be concluded to be
negative semidefinite. Hence, we apply the Barbashin and
Krasovskii theorem (see Corollary 4.2 of Ref. [8]). Considering
Egs. (26) and (28)
V=0=2¢=0=¢=0=f(e)=0=e=0  (29)
Therefore, it can be concluded that the origin e =¢é =0 is
asymptotically stable provided that

(b) With fy(e)

(ﬂ> >0Ve (30)
de

Thus, unlike the sector condition derived in Sec. 3.2, the above
condition is independent of k and %, and has no sector condition.
However, this condition is still conservative since it confirms sta-
bility only for monotonically increasing f(e), a requirement that
was not imposed by the sector condition derived from the circle
criterion.

It is noted here that other concepts such as the small gain theo-
rem or passivity could also be used in analyzing this problem
[8,19], but would result in similarly conservative stability criteria.
The results of both Secs. 3.2 and 3.3 impose the common condition
that f{e) is a passive memoryless function. In Sec. 4, we will retain
this general condition but we will derive a more definitive stability
condition by analyzing Eq. (26) as a class of Liénard systems.

4 Analysis as a Class of Liénard Equations

4.1 Asymptotic Stability. The Liénard system refers to the
following second-order nonlinear differential equation:
fAp()i+q(r) =0 (3D
where p(p) and g () are two continuously differentiable functions
of 1 [9,10]. The Liénard equation has been studied extensively,
especially in the context of oscillating circuits. Under additional
conditions on the functions p(u) and g(u), the Liénard equation
has a unique and stable limit cycle. The result is detailed in the
following theorem:
Tueorem 1 (Liénard’s Theorem). If the functions p(p) and q(u)
in Eq. (31) are continuous and integrable and satisfy the following
additional conditions:

(1) p(w) is an even function, and ¢(u) is an odd function such
that 1q(p) > 0;
(2) The functions

1

q(n)du (32)

P(p) = J:PW)d% Om) = J

0

tend toward oo as u — oo;

(3) P(u) has a single positive zero at u = . In the interval
(0, t9), P(1) is negative, but for > py, P(u) is positive
and increases monotonically.

Then, under these conditions there exists a unique periodic

solution of Eq. (31).

The system in Eq. (26) conforms to the Liénard equation with u
corresponding to e and p(e) = df /de, q(e) = khof (e), P(e)
= [y p(e)de and Q(e) = [} g(e)de. However, it can be verified
that p(e) and ¢(e) do not satisfy all conditions of Theorem 1. In
particular, condition (3) is violated because

Ple) = JO ple)de = J:Z—J;de = (f(e) —£(0)) =f(e)  (33)
(c) With f (e)

/

// /)
Lif
&

/

/

—40

(G

(.

N

)
/ /)] /‘J

—60 —40 —20

0 20 40 60
z

Fig.5 Circle criterion simulations: (b) with f,(e) and (c) with f.(e)
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and since f(e) is a passive memoryless function, it cannot have a
positive root e = ¢y > 0 as required by this condition. Hence,
Theorem 1 does not predict a limit cycle solution of Eq. (26). To
analyze the stability property of this system, we will use the
Liénard variable (/l + P(u)). We note from Eq. (33) that when
applied to Eq. (26), the Liénard variable takes the form

w=¢+Ple)=¢ +rp(e)de =é+f(e)
0

(34)

This variable is used to study the phase-plane behavior of the
Liénard equation in Eq. (31). In Ref. [9], this variable along with
the positive definite function

—_

V=5 (i+Pw)" +0(n) (35)

2
are used to establish the existence of a limit cycle in the Liénard
equation. For the system of interest in Eq. (26), V takes the form

V= %WZ +Q(e) = ! (é +£(e))* + khy J f(e)de  (36)

e
0

N

The function V in Eq. (36) is continuously differentiable, radially
unbounded, and positive definite. Hence, it can be treated as a
Lyapunov function candidate. The derivative of V along the tra-
jectories of the dynamic equation Eq. (26) is

V= (é+f(e)) (e‘ +Z-—’;é> + khof (e)é = —khayf*(e) <0 (37)

The set V = 0 is satisfied identically only by f(e) =0, ie., by
e = ¢ = 0. Since the above conditions are true globally, applying
the Barbashin and Krasovskii theorem (see Corollary 4.2 of Ref.
[8]), we conclude that the origin e = ¢ = 0 is globally asymptoti-
cally stable. In a general sense, we can therefore state the follow-
ing theorem:

THEOREM 2. The class of Liénard equation Eq. (31), where
p(r) = a(dg/du), q(u) is a continuously differentiable odd func-
tion such that pq(w) > 0, and o is a positive constant, has a glob-
ally asymptotically stable equilibrium at the origin p = jt = 0.

Proof. The proof is evident from the discussions between
Theorems 1 and 2 above, and therefore omitted for the sake of

conciseness. |
Based on the observations above, we state the following
corollary:

COROLLARY 1. The feedback system of Fig. 3 with any unknown
nonlinear function f(y,ry = —f(e), which satisfies f(0) = 0, and
ef(e) > 0Ve #0, has a globally asymptotically stable equilib-
rium point at e = é = 0.

The result of Corollary 1 is definitive compared to those in
Secs. 3.2 and 3.3. This is because it establishes stable closed-loop
performance for any passive memoryless function f{e) and for the
generic feedback control of Eq. (13), without any additional sector
or slope requirements on f{e). Finally, we note from Eq. (17) that
the equilibrium e = é = 0 uniquely corresponds to x = x = 0.

4.2 Existence of Limit Cycle and Hopf Bifurcation. In this
section, we generalize the discussion of Sec. 4.1 and derive

Control Driver Driven
ii©_> hyhy—dor sl VIO L gl
N r =fle) |y
Nonlinearity

Fig. 6 Feedback system with driven dynamic equation gener-
alized to Eq. (38)
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conditions on the feedback system of Fig. 3 under which a limit
cycle behavior would emerge. This is a natural step, since the
Liénard’s Theorem, Theorem 1, provides sufficient conditions for
existence of limit cycle. For the generalization, we consider the
same feedback system as in Fig. 3 with one difference. We gener-
alize the dynamic equation of the driven system to the following:

X =hy +ax+ hyy (38)
The modified feedback system with Eq. (38) incorporated is
shown in Fig. 6. Replacing the differential equation of x in Eq.
(10) with that in Eq. (38) and combining with Egs. (11) and (13),
we get

h
,%:111+ax+h2<e——1—kx)
hy

= —(khy — a)x + hye (39)
Noting from Eq. (16) that ¢ = —f(e) + kx, and using Eq. (39)
we can write the following dynamic equation for e:

é+ (% - a)é + (khy — a)f(e) =0 (40)

In the analysis, we consider (khy —a) > 0, i.e., the feedback
gain k is chosen to stabilize the homogeneous dynamics of x. Note
that when a =0, Eq. (40) reduces to Eq. (26), which was estab-
lished by Theorem 2 to have a globally asymptotically stable equi-
librium. For nonzero a, we first state the following result:

THEOREM 3. Consider the feedback system of Fig. 6 where k is
chosen such that (khy — a) > 0. Let the unknown nonlinear func-
tion f(y,r) = —f(e) satisfy £(0) =0, and ef(e) > 0Ve #0 (ie.,
fle) is a passive memoryless function). Then,

e If a <0, the equilibrium point é = e = 0 is globally asymp-
totically stable.

e If >0, the equilibrium point ¢ = ¢ = 0 is globally asymp-
totically stable if f(e) additionally satisfies the sector condi-
tion f(e) € [a, 0]

Proof. Consider the following Lyapunov function candidate:

4

V= % [ +f(e) — ae]* + (khz — a) [ f(e)de
JO

(41)
The function V in Eq. (41) is an extension of the Lyapunov func-
tion candidate of Eq. (36) which was derived based on the Liénard
variable, as discussed in Sec. 4.1. The function V is continuously
differentiable, positive definite and radially unbounded. Taking its
derivative along the trajectories of Eq. (40), we get

V = (é+f(e) —ae) (é + % - aé) + (khy — a)f (e)é

= —(kip — a)f*(e) + a(khy, — a)f (e)e
= —(khy — a)f(e)[_f(e) — ae]

If @ <0 then the term f(e)[f(e) —ae] > 0Ve # 0 and it is 0
only when e=0. Hence, if a <0 then V <0. The set V =0 is
satisfied identically only by e = ¢ = 0. Since the above conditions
are true globally, applying the Barbashin and Krasovskii theorem
[8], we conclude that the origin e = ¢ = 0 is globally asymptoti-
cally stable.

For a >0, the term f(e)[f(e) — ae] > OVf(e) € [a, 0] and it is
0 only when e =0. Hence, if this sector condition is satisfied then
V < 0. Applying the Barbashin and Krasovskii theorem as above,
we therefore conclude that the origin e =é =0 is globally
asymptotically stable under the aforementioned sector
condition. |

42)
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Fig.7 Variation OF 1> with a, indicating Hopf bifurcation

By directly using the Liénard’s theorem, Theorem 1, the fol-
lowing gives sufficient conditions for the existence of a unique
and stable limit cycle for the feedback system of Fig. 6:

THEOREM 4. Consider the feedback system of Fig. 6 where k is
chosen such that (khy — a) > 0. Let the unknown nonlinear func-
tion f(y,r) = —f(e) satisfy £(0) =0, ef(e) > 0V e # 0. Further,
let fle) be a class Ky, odd-function. Then, if a >0, there exists a
unique and stable limit cycle around the equilibrium é = e = 0 if
fle) =ae has a single positive root at e = e.

Proof. We will prove this result by simply applying Theorem 1.
We first note that in Eq. (40), the functions ((df/de) — a) and
(khy — a)f (e) correspond to functions p(u) and g(u), respectively,
in the general Liénard equation of Eq. (31). Since f(e) is an odd
function, ((df /de) — a) is an even function, and (kh, — a)f (e) is
odd. Furthermore, since f{e) lies in the first and third quadrant and
(khy —a) > 0, e(khy — a)f (e) > 0V e # 0. Thus, condition 1 of
Theorem 1 is satisfied. Next we consider the requirements of con-
dition 2. Note that [,~(khy — a)f(e)de — oo as e — oo since
ef (e) > 0V e # 0. Furthermore,

ro <ﬂ — a)de =f(e) —ae — oo since f(e) > aeVe > e
o \de
43)

Thus, condition 2 is satisfied, and condition 3 is also satisfied
since ef (e) > 0Ve # 0, and fle) is a class o odd-function with
a single positive root of f(e) =ae at e =e¢,. Hence, the feedback
system of Fig. 6 has a unique and stable limit-cycle around the or-
iginé =e =0. |

We note that the results of Theorems 3 and 4 refer to the gener-
alized system in Fig. 6. The driver and driven equations of Fig. 6
are generic, since the driven equation is a linear first-order equa-
tion and the driver nonlinearity is a passive memoryless function.
Also, the control law is a simple state-feedback. Hence, the results
of Theorems 3 and 4 are applicable whenever this structure is

(b)

satisfied. We also note that the problem of existence of limit cycle
could potentially be studied using the Describing Function
method [18]. However, Theorem 4 gives a sufficient condition,
which is not guaranteed by describing functions. Finally, noting
the transition from stable equilibrium in Theorem 3 to limit cycle
in Theorem 4, we can infer the presence of Hopf bifurcation gen-
erated by the parameter a in Eq. (40) [10]. This can be verified by
linearizing Eq. (40) about its equilibrium at the origin ¢ = e = 0.
Assuming that the linearized approximation of f{e) around the ori-
ginis f(e) = ¢e, ¢ > 0, the linearized equation would be

where

é+(¢p—a)+ (khy —a)pe =0, (khy —a) >0 (44)

The eigenvalues of this equation are at

~(§—a) £/ (9 — a) — 4l — )¢

5 (45)

Ao =

In Eq. (45), we note that [((f) —a)® — 4(khy — a)qb} <(¢p—a)
since 4(kh, — a)¢ > 0. Hence, if a < ¢, both eigenvalues will be
stable. When a = ¢, the roots will be complex conjugates, located
at 212 = *=j\/(khy — a)¢. When a > ¢, we can similarly see that
both eigenvalues will be unstable. The evolution of 1, with
change in parameter a for different values of ¢, is shown in Fig.
7. The plots are generated with ki, = 10. On each of the contours,
the arrows represent direction of increasing value of a, while satis-
fying (khy — a) > 0. For each value of ¢ in Fig. 7, the transition
of ;5 to the right-half plane occurs at @ = ¢. The transition
causes a supercritical Hopf bifurcation, indicating a limit cycle
around the origin ¢ = e = 0. We end this section by noting that
the existence of a limit cycle, under the conditions of Theorem 4,
can be intuitively predicted. The conditions of Theorem 4, when
valid, produces a damping in Eq. (44) that is negative for e < ¢y
and positive otherwise. This creates an unstable equilibrium at
e = é = 0 but a stable limit cycle around it.

4.3 Simulations. We provide simulations in support of the
results of Theorems 3 and 4. For verifying Theorem 3, we con-
sider in Fig. 6, a=1.5, and kh, = 2.5. The function f(e) is con-
structed as f(e) = sign(e)e? + 2e. The function f(e) is plotted in
Fig. 8(a). We mote that f(0) =0, ef(e) >0Ve#0 and
f(e) € [1.5,00]. Hence, the equilibrium é = ¢ = 0 must be a glob-
ally asymptotically stable equilibrium. This is verified in Fig.
8(b). To verify Theorem 4, we consider @ =4 and choose kh, = 5.
The latter choice is just to ensure (ki —a) > 0 and any other
number greater than four would suffice. Note that f(e) is a class
Ko odd-function, as required in Theorem 4. We also note from
Fig. 8(a) that indeed f(e) = 4e has a single positive root at e =2.
Thus, there must be a unique, stable limit cycle around the equi-
librium é = e = 0. This is verified in Fig. 8(c).

5 Stability Analysis Under Parameter Uncertainty

So far, we have assumed that the controller has accurate knowl-
edge of the values of parameters /; and h,, appearing in the

4 2 0 2 4
[

Fig.8 Simulations to verify Theorems 3 and 4

Journal of Dynamic Systems, Measurement, and Control

MARCH 2016, Vol. 138 / 031007-7

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 08/23/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



dynamic equation of the driven system in Fig. 3. This is evident
also from the control law of Eq. (13). We will now treat /; and 5,
as unknown parameters and modify the control law to incorporate
robustness to parametric uncertainty. We note here that this exten-
sion will only be briefly studied in this paper, as the focus of this
work are the results in Secs. 2—4.

5.1 Robustness Via Integral Action/Parameter Adaptation.
Consider the feedback system of Fig. 3. Since /; and &, will now
be treated as unknowns, the estimate of the combined parameter
(h1/hy) is used in the control law, as shown below

) h
r=—p—kx, k>0, ﬁéh—; (46)

where Zf represents the estimate of . We define the estimation
error

c2(p—p)

We propose the following integral update law for parameter
estimation:

“47)

t

S:—f);:—yxig—foz—yj xd, y>0 @48

0

From Egs. (10), (12), and (46)-(48) and noting that e = (y —r),
we deduce the following:

X=h(E+e—kx) =hyv, vEE+e—kx 49)
and
é = —f(e) +yx+khyv (50)
Combining Eqs. (49) and (50), we obtain
é+%é+kh2f(e) = —h [;f(e)dt (62))

Section 5.2 will analyze the stability of this closed-loop equation.
Note that Eq. (48) is designed to make the resulting homogeneous
equation in x stable. This can be seen from differentiating Eq. (49)
with respect to time and substituting for £ from Eq. (48), which
yields

X+ khyX + yhox = hy é (52)
It is worth mentioning that the parameter estimation law of Eq.
(48) could also be derived using adaptive control [18].

5.2 Stability Analysis. Comparing Eqgs. (26) and (51), we see
the addition of integral action to account for parameter

uncertainty. This causes the closed-loop dynamics to be of third-
order instead of second. By defining the variable z = f(; f(e)dt, Eq.
(51) can be expressed as

af

¢ + ¢ + khof (¢) = —yhaz, with  z(0) =0 (53)
e

2 =f(e),

Since the function f(e) is a passive memoryless function, the
above system has a unique equilibrium at the origin
é =e=z=0. We next analyze local stability of this origin,
using linearization. Assuming that the linearized approximation of
fle) around the origin is f(e) = ¢e, ¢ > 0, we have from Eq. (53)

t

e+ ¢€ +k}’l2¢€ = *"’hzj ¢€dl = ¢ + d)e +kh2¢€ —+ “,'hzd)e =0
0

(54)

Using Routh’s Stability Criterion [20], it can be shown that the
necessary and sufficient condition for stability of the equilibrium
é = ¢ = z = 0 for small perturbations is

kd >y (55)

Further analysis can be conducted to study the performance of
the robust controller discussed in this section. Concepts of abso-
lute stability, describing functions or bifurcations can potentially
be applied. The generalization of Eq. (38) could also lead to inter-
esting results for the robust control scenario, similar to the ones
derived in Sec. 4.2. Furthermore, the third-order dynamics of Eq.
(53) may also admit a strange attractor [10], under additional con-
ditions. However, the focus of this work has been on Liénard sys-
tems, which are second-order, and their applications to stability
analysis under unknown nonlinearities. Hence, the aforemen-
tioned extensions to incorporate parametric, albeit important, is
not covered in this work in further details. In Sec. 5.3, we present
simulations and results from Hardware-In-the-Loop (HIL) tests, to
demonstrate the validity of the results of this section. We end this
section with the following remark:

Remark 1. If hy = 0, then parameter uncertainty of /4, need not
be incorporated since, in that scenario, § = 0. Hence, the integral
control will not be necessary if #; = 0, and all results of Secs. 3
and 4 will be applicable.

5.3 Simulations and Experiments. To confirm the stability
criterion of Eq. (55), simulations are done with a detailed model
of a steam-reformer based SOFC system developed in Ref. [11].
The DC/DC converters C; and C,, see Fig. 1, are modeled as
static power conversion devices with efficiencies #; and 15,
respectively. Equation (1) is always satisfied within the model,
thereby implementing power conservation in the hybrid energy
system. Other important parameters are N o = 50, k. = 0.55,
Vi =24V, Uy =80%, S; = 0.8, C =250F, Vi = 162V, and
n, =1, = 0.85. The simulation uses a constant load current

(a) (b) () (d) (e)
11 7 50 80.8
0.808
6.5
10.5 , 49 80.4
— -~ < & 0.804
< < 2 < 80
o1 255 2 48 S “
5 79.6 0:8
9.5 47
4.5 792 0.796
9 .4 46
200 400 600 800 200 400 600 800 200 400 600 800 200 400 600 800 200 400 600 800
Time (s) Time (s) Time (s) Time (s) Time (s)

Fig.9 Simulation verifying the stability result of Eq. (55)
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Fig. 10 HIL test stand and experimental results

ir=10A. The parameter ff = hy/hy = Vi /(1, V) is given the
initial estimate $(0) = 24 - 10/(0.9 - 48) = 5.56. The FSS is mod-
eled as Ny(s)/Nya(s) = 1/(2s+ 1), which effectively means
div — —0.5(ife — ieq) = ¥ = —0.5¢.  Hence, f(e) =0.5¢, ¢
= 0.5, and the dynamics are treated as unknown by the controller.
Also a value of k=70 was chosen so that the equilibrium is stable
for y < 35 and unstable otherwise.

Figure 9 shows the system response to a constant input of
ir = 10A. The simulation was run with y =46 for + < 450 s and
y =23 for t > 450 s. Use of parameter estimation [ is off initially
and switched on at t=250s. Upon switching on, y =46 produces
an unstable equilibrium and hence the divergence of trajectories
over time is seen. The equilibrium stabilizes for ¢ > 450 s when 7
is switched to a value below the threshold of 35. The two values
of 7 were sufficiently separated from the threshold with the
understanding that the parameters assumed constant are actually
slowly time-varying and hence Eq. (55) should be interpreted
as an estimate. In Fig. 9(e), S represents the SOC and
x=S8—-S=8-0.8. Thus equilibrium corresponds to S=0.8.
Also, note the relatively small deviations of U around Ug = 80%
in Fig. 9(d). This is due to internal current regulation in the fuel
cell. Also, note that i;, = 10A throughout, Fig. 9(a). This confirms
that the instability is not due to external conditions but induced by
the interaction of the controller and FSS under improper choice of
the estimation gain 7.

We next show the experimental results form a HIL setup. The
HIL system is shown in Fig. 10(a). The SOFC model of Ref. [11]
is emulated using a dSSPACE DS1103PPC real-time operating sys-
tem and an SGA series Sorensen DC programmable power supply.
The emulated fuel cell is connected to an electronic load using an
SD-1000L-24 unidirectional DC/DC converter from Mean Well.
A 16.2V series BMODO0250-E016 ultracapacitor from Maxwell
Technologies with a 250 F capacitance is connected in parallel to
the fuel cell. It is interfaced using a DC5050F-SU bidirectional
DC/DC converter from Zahn Electronics, Inc. A Sorensen 1.8 kW
SLH series DC programmable electronic load is used for power
draw. Further details pertaining to this system can be found in
Ref. [6]. The overall connectivity follows the schematic of Fig. 1.

Experiments were conducted on the HIL setup with
VL =24V, Ug, = 80%, target SOC S, = 0.8, ultracapacitor C
=250F and V. = 16.2V. The initial parameter estimates
ii (0) = 5.56, as in the simulation run. The FSS model is also the
same as in the simulations, and is treated as unknown by the

Journal of Dynamic Systems, Measurement, and Control

controller. Also, k=70 for the HIL tests, which implies a
stability-threshold at y = 35. In the plots, = 0 s is the start of pa-
rameter estimation and data capture. Figures 10(b)-10(e) show
results for y =50 when ¢ < 200 s and y =20 when ¢ > 200 s. The
results indicate an unstable equilibrium for r <200 s which
becomes stable when the stability criterion is satisfied, as
expected. The y values are separated enough to provide for a
buffer to the time-varying parameter f in the hardware setup.
Although there is error induced in various stages of the process,
the general result of Eq. (55) provides a relatively good approxi-
mation. We also note that the plots were zoomed-in to show the
transients and hence the noise appears to be considerable. The
noise-to-signal ratio is <5% in all the plots. The control design
and implementation were based on Assumption 2 of Sec. 2.2, i.e.,
hy and h, are constants. The results of this section show that the
stability criterion of Eq. (55), based on this assumption, is valid in
predicting the onset of instability reasonable accuracy. The valid-
ity is because hl and hz are small in magnitude. Using the esti-
mated variations of 7, and 7, from Ref. [7], and the worst case
variations of V. and S from Figs. 9 and 10, we can verify that hl
and h, are both of O(107°). Further, § is 0(1072) and is approxi-
mately an order of magnitude lower than kx in simulations and
experiments. Thus, from data and Eq. (13), we note that 7 is
largely governed by kx.

6 Conclusions

The work presented in this paper originates from the problem
of controlling an ultracapacitor’s SOC in a hybrid SOFC system,
by modulating the fuel cell’s delivered power. The challenge is
the unknown nonlinear-dynamics of the FSS prevent the control-
ler from compensating the ultracapacitor in a deterministic man-
ner. Upon generalization, a theoretical problem is formulated
where the closed-loop stability of a plant is studied for different
classes of nonlinear functions. The unknown nonlinearity is
expressed in a cascaded manner in the plant dynamics, and this
allows application of conventional absolute stability results. How-
ever, we show that more definitive and comprehensive stability
results are possible if the problem is analyzed from the perspec-
tive of nonlinear dynamics. In particular, the generalized problem
is shown to conform to a class of Liénard equations. Liénard equa-
tions are well-studied and by utilizing their established analytical
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background, conditions for asymptotic stability, limit cycles and
conditions for transitioning between them are derived. The analyt-
ical framework can be extended to the scenario where parameter
uncertainty must be incorporated. In this regard, some preliminary
results are also derived. Simulations and some HIL experiments
are provided to demonstrate the efficacy of the theory developed.
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