
Assessing Bootstrap:Algebra Students on
Scaffolded and Unscaffolded Word Problems

Emmanuel Schanzer
Bootstrap/Brown University

schanzer@bootstrapworld.org

Kathi Fisler
Brown University/WPI/Bootstrap

kfisler@cs.brown.edu

Shriram Krishnamurthi
Brown University/Bootstrap

sk@cs.brown.edu

ABSTRACT

Bootstrap:Algebra is a curricular module designed to integrate in-

troductory computing into an algebra class; the module aims to help

students improve on various essential learning outcomes from state

and national algebra standards. In prior work, we published initial

findings about student performance gains on algebra problems after

taking Bootstrap. While the results were promising, the dataset was

not large, and had students working on algebra problems that had

been scaffolded with Bootstrap’s pedagogy. This paper reports on

a more detailed study with (a) data from more than three times as

many students, (b) analysis of performance changes in incorrect

answers, (c) some problems in which the Bootstrap scaffolds have

been removed, and (d) an IRT analysis across the elements of Boot-

strap’s program-design pedagogy. Our results confirm that students

improve on algebraic word problems after completing the module,

even on unscaffolded problems. The nature of incorrect answers to

symbolic-form questions also appears to improve after Bootstrap.

ACM Reference Format:

Emmanuel Schanzer, Kathi Fisler, and Shriram Krishnamurthi. 2018. As-

sessing Bootstrap:Algebra Students on Scaffolded and Unscaffolded Word

Problems. In SIGCSE ’18: SIGCSE ’18: The 49th ACM Technical Symposium

on Computer Science Education, February 21ś24, 2018, Baltimore , MD, USA.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3159450.3159498

1 INTRODUCTION

Integrating CS education with existing disciplines is appealing for

both intellectual and logistical reasons (the latter particularly in K-

12 contexts). Effective integration helps advance student learning in

both computing and the host discipline. However, given the known

challenges of transferring skills between disciplines [2, 5], claims

that computing curricula foster learning in other disciplines require

validation through research.

Bootstrap:Algebra (henceforth BS:A) is a curriculum that has

been designed to integrate introductory computing intomath classes.

Roughly, the curriculum has students build a videogame, where

each game feature requires both a newmathematics concept (which

already needs to be taught in the (pre)-algebra class) and a corre-

sponding programming construct. Given that math is a high-stakes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’18, February 21ś24, 2018, Baltimore , MD, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159498

subject (which is heavily tested in the USA), math teachers are un-

der pressure to use curricula that positively impact students’ math

scores. Understanding the impact of programs like BS:A on student

performance is essential for their long-term adoption.

In 2015, we published a preliminary study showing statistically-

significant impacts of BS:A on student performance on function

composition and word problems [7]. This paper confirms and ex-

tends those results in several ways: we remove some of the problem

scaffolds (while retaining performance gains), show that students of-

ten make progress even while getting wrong answers, demonstrate

performance gains in BS:A skills beyond symbolic form questions,

and apply IRT-based analysis to get a richer picture of what is going

on across the different elements of the BS:A pedagogy.

2 RELATEDWORK

Our work attempts to confirm and extend our initial assessment of

student performance gains from BS:A [7]. Our original paper looked

at both function-composition and word problems, using paired t-

tests to compare performance deltas from pre- to post-tests. The

current paper focuses on word problems, adding unscaffolded ver-

sions of these questions. Our analyses are now also more nuanced:

we explore deltas in students’ incorrect answers, compare perfor-

mance across different parts of the BS:A pedagogy, and include

an IRT analysis. Wright, Rich, and Lee [8] studied the impact of

BS:A on students’ understanding of variables, finding some positive

effects. Variables are beyond the scope of this study.

BS:A’s curricular design builds on theories about how to achieve

transfer of skills from one discipline to another. Both explicit in-

struction and alignment of problem-solving processes are currently

believed to be essential for transfer [2, 5, 6]. BS:A embraces both of

these issues, as described in section 3. NCTM (the USA’s National

Council of Teachers of Mathematics) has raised concerns about

casual claims that learning CS enhances learning of math [4]. Our

studies leverage questions from state math exams to ground our

analysis in performance measures designed for mathematics.

While other projects use computing or software tools to teach

algebra concepts, we are not aware of ones that deeply align the

problem-solving process across math and computing as Bootstrap

does (see section 3). Space precludes a review of these other projects.

3 AN OVERVIEW OF BS:A

BS:A is a 20ś25 hour curricular module designed to integrate in-

troductory computing and specific learning objective from middle-

and high-school algebra [1]. The module is designed to embed into

a pre-algebra or algebra 1 class; such courses tend to be offered

within the age range 12ś15 (in the USA). The module has students

design and build a video-game featuring three characters, each

of which moves in a single dimension. There is a user-controlled

Paper Session: Automated Support for Education SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

8

player moving in the y-axis (in response to key-presses), a target

that the player is trying to catch, and a danger that the player is

trying to avoid. Both the target and the danger move left-to-right

across the screen (in the x-axis, at a fixed y coordinate that changes

each time the character wraps around to restart from the left edge

of the game). Students customize their games by selecting images

for the three characters as well as a background image. This leads

to wide variety in the game themes, from chasing credit cards in

the mall to avoiding spiders in the desert.

BS:A views animations and games as filmstrips consisting of a

sequence of frames. Each frame captures one instant of the ani-

mation, just as in the filmstrips used to create movies. For each

character in a game, students write a function describing how that

character’s position changes from one frame to the next. A function

such as f (x) = x + 5, for example, captures moving a character 5

pixels to the right in each successive frame. Unlike in many popular

early programming platforms (such as Scratch or Alice), students

do not write loops to generate movement: they focus on the al-

gebraic functions that describe how movement changes between

frames. BS:A has students solve a series of word problems, each

corresponding to some game feature (moving different characters,

wrapping characters around after they leave the screen, responding

to key presses, and detecting collisions to compute scores). This

alignment in style of problems is a key component underlying the

integration of computing and algebra in BS:A.

Why Might BS:A Impact Algebra? Reducing game programming

to developing algebraic functions is only one aspect of how BS:A

integrates computing and algebra. The algebra connection also lies

in a step-by-step process for solving word problems that leverages

multiple representations of functions. Both topics feature in state

mathematics standards, the NCTM’s (National Council of Teach-

ers of Mathematics) guidelines for math outcomes, and the (USA)

Common Core. Algebra standards typically emphasize four repre-

sentations of functions: symbolic form (like f (x) = x + 2), domain

and range, input/output tables, and graphs; the standards ask stu-

dents to relate all four representations across the same conceptual

function. BS:A exercises the first three (presently omitting graphs).

OurDesign Recipt Worksheet (fig. 1) embodies how BS:A connects

these representations. Given a word problem, students are taught

to first articulate the domain and range of the problem, to write at

least two examples of the input/output relationship described in

the problem, and only then to write the symbolic form of a function

to solve the word problem. The curricular materials explain how to

leverage each step when attempting the next step, thus modeling

ways in which the different representations depend on one another.

The curriculum teaches a specific way to approach input/output

tables, which is designed to help students abstract over examples

to derive the symbolic form. Consider the word problem in fig. 1,

which asks students to produce a function that computes a new x-

coordinate 50 pixels to the right of the input x-coordinate. Students

could either write the expected output of examples as the final

result of the function or as an expression that computes the final

result. The difference is illustrated in the table below:

10 60 final result only

5 5 + 50 expression that computes result

8 8 + 50 another expression that computes result

Figure 1: A design-recipe worksheet, showing the process

for solving word problems.

The second two examples show the computation that would result

in the answer. To create a function that solves the word problem,

the student needs to abstract over the two expressions, replacing

the varying (input) value by a parameter name. The curriculum

explicitly teaches this practice: students circle differences between

expressions, label the circles with names, then use the names when

writing the symbolic form:

update_tarдet (xpos) = xpos + 50

This practice of writing output expressions and labeling their dif-

ferences is not part of conventional mathematics instruction for

developing symbolic forms of functions.

The curricular materials provide teachers with several design-

recipe worksheets for conventional algebra word problems, in addi-

tion to those for the word problems that yield code for creating the

videogame. Thus, students are explicitly taught how to transfer the

design process from computing to algebra. The transfer literature

(section 2) establishes that explicit instruction is generally required

before students will transfer skills from one domain to another.

4 STUDY DESIGN

In our original study [7], students solved both function composition

and word problems. This new study focuses on word problems

alone, with an intent to study them more deeply. (We also lacked a

control group; see section 6 for more discussion on this.)

All of the word problems in the original study were scaffolded by

the design recipe. This meant that students were asked to explicitly

give the domain/range, examples of use, and symbolic form for

each word problem. This scaffolding is useful for testing whether

students are able to apply the BS:A design steps to algebra prob-

lems (rather than game-design problems). It also provides insight

into where students might have gone wrong if their symbolic form

answer is incorrect. However, typical standardized mathematics

Paper Session: Automated Support for Education SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

9

(β drops from 1.005 and 1.085 to -0.032 and 0.048), indicating that

the relative proportion of the students who were able to correctly

answer these questions increased from pre to post. α also decreases

from pre- to post-test (from 3.976 and 6.173 to 2.139 and 1.619), sug-

gesting that domain and range play a smaller role in discriminating

students’ level of θ in the post-test than they do in the pre-test.

Interestingly, the α values on the examples curves increase rela-

tive to the pre-test (from 4.938 on both to 5.85 and 40.690), suggest-

ing that having students provide examples improved as an indicator

of their understanding of functions on the post-test. The sharp dif-

ference in α between the two post-test example curves may indicate

that asking for a second example is a more useful measurement of θ

than asking for just one, a question worthy of future study.

This effect was even more pronounced for the distribution of

correct answers to the symbolic form question. The measure of

difficulty dropped from pre (β=0.704) to post (β=0.101), meaning

that the likelihood of a correct response required that students be

only 0.101 SD above the mean in the post-test, compared to nearly

seven times that amount above the mean in the pre-test. The shift

in difficulty implies that the portion of students who possessed

sufficient θ also increased relative to the pre-test. Meanwhile, the

usefulness of this type of question as a discriminator also improved

from α=2.732 to α=5.909.

The trends from these particular two problems are similar to

what we see across other problems on the pre- and post-tests.

6 THREATS TO VALIDITY

In general, we do not have information on what courses or lessons

students were taking in parallel with BS:A. It is possible, for example,

that some students were taking another math class in parallel to

their BS:A course, and that some of the content tested on our post-

test had been covered in the math class. We guard against this in

part through having a large number of teachers participating in

data collection. In addition, many (though not all) of the teachers

who provided data are math teachers who were using BS:A in a

math class, so students would not have been taking a math class in

parallel. However, teachers use BS:A in different models: some do

the curriculum in a concentrated chunk, some spread it over several

weeks, and so on. Thus, there are almost certainly variations across

the math teachers in how their BS:A curriculum interacted with

other aspects of their courses. This paper again relies on a larger

teacher population to ameliorate this issue in our analysis.

Unlike in our initial study, we did not have control groups. Our

ideal control group would be another section of the same math

course taught by a participating BS:A teacher. None of the teachers

who provided data were able to provide a control group (for varying

reasons). The lack of control groups mainly affects comparisons

between pre- and post-test performance. It is not relevant, however,

to comparisons of performance on scaffolded versus unscaffolded

problems by the same student, or for the IRT analysis. Thus, key

parts of our study are not affected by the lack of controls.

7 CONCLUSION AND FUTURE WORK

Our analysis goes beyond our initial paper in several ways. We

confirm their findings that students improve significantly on alge-

bra word problems after BS:A, but also go farther: based on the

wrong answers to symbolic-form questions, we find students make

certain (arguably more serious) errors less often on the post-test.

This suggests that the impact of BS:A goes beyond what simply

grading indicates, while also pointing to underlying skills that BS:A

teachers and curriculum designers should drill more explicitly.

Our study also removes design-recipe scaffolds from half of the

post-test questions. Students perform just as well (if not better) on

the unscaffolded problems. Since some problems on the post-test

were scaffolded, one should wonder whether students were copying

scaffolding steps to solve unscaffolded problems. A sample of the

actual test papers didn’t reveal this behavior, but a future study

should contain only unscaffolded problems.

Going forward, we want to explore whether errors that arose

on the symbolic form questions manifest similarly in both the

programming and mathematical contexts. We want to analyze our

error data on domain and range questions (an analysis which did

not fit into this paper). Overall, we want to continue to explore

finer-grained impacts of the components of the BS:A design recipe,

so that we might understand effective ways to integrate math and

CS for the benefit of both disciplines.

To this point, our main instructional takeaway is that working

with and relating multiple representations of functionsÐwhether

in math or computingÐseems to positively impact students’ abili-

ties to express word problems in code and formulas. Articulating

domain/range (types), writing examples (tests), and writing sym-

bolic form (code functions) are important skills for programmers

as well as algebra students. While we do not yet know the relative

impacts of these skills on understanding and using functions, a

multi-representational approach such as the BS:A design recipe

seems a useful and lightweight method for developing them.

ACKNOWLEDGMENTS

We thank all the teachers who provided us data. We are deeply

grateful to Leigh Ann DeLyser for suggesting and helping us set up

the IRT. We are grateful to Peter Hahn for his outstanding work on

the data analysis. This work is partially supported by the US NSF.

REFERENCES
[1] Bootstrap:Algebra [n. d.]. The Bootstrap:Algebra Curriculum. http://www.

bootstrapworld.org/materials/courses/algebra. ([n. d.]).
[2] J.D. Bransford and D Schwartz. 1999. Rethinking transfer: A simple proposal

with multiple implications. In Review of Research in Education. Vol. 24. American
Educational Research Association, 61ś100.

[3] N. T. Heffernan and K. R. Koedinger. 1998. A developmental model for algebra
symbolization: The results of a difficulty factors assessment. In Proceedings of the
Twentieth Annual Conference of the Cognitive Science Society. 484ś489.

[4] National Council of Teachers of Mathematics. 2016. Should mathematics course
requirements for high school graduation be satisfied by computer science
courses? (an NCTM Position Statement). Available online, last accessed Feb
22, 2017 at http://www.nctm.org/Standards-and-Positions/Position-Statements/
Computer-Science-and-Mathematics-Education/. (Feb. 2016).

[5] D Perkins. 2009. Making Learning Whole. Jossey-Bass, San Francisco.
[6] Peter J. Rich, Keith R. Leatham, and Geoffrey A. Wright. 2013. Convergent

cognition. Instructional Science 41, 2 (March 2013), 431ś453.
[7] E Schanzer, K Fisler, S Krishnamurthi, and M. Felleisen. 2015. Transferring

skills at solving word problems from computing to algebra through Bootstrap. In
Symposium on Computer Science Education (SIGCSE). 616ś621.

[8] Geoff Wright, Peter Rich, and Robert Lee. 2013. The Influence of Teaching
Programming on Learning Mathematics. In Society for Information Technology &
Teacher Education International Conference.

Paper Session: Automated Support for Education SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

13

	Abstract
	1 Introduction
	2 Related Work
	3 An Overview of BS:A
	4 Study Design
	5 Analysis and Results
	5.1 Performance on Symbolic Form Questions
	5.2 Scaffolded Versus Unscaffolded Problems
	5.3 Performance on Writing of Examples
	5.4 IRT Analysis Across Recipe Elements

	6 Threats to Validity
	7 Conclusion and Future Work
	Acknowledgments
	References

