

# Decentralized Power Management in a Hybrid Fuel Cell Ultracapacitor System

Omid Madani, Amit Bhattacharjee, and Tuhin Das, *Member, IEEE*

**Abstract**—This paper addresses decentralized control of a hybrid energy system consisting of a fuel cell (FC) and an ultracapacitor. Separate controllers are developed for the FC and the ultracapacitor for power management rather than one central controller. Explicit communication between controllers, such as exchange of locally sensed information, is absent. The former operates the FC in a load-following mode, while attenuating transient fluctuations in fuel utilization. The latter allows the ultracapacitor to be used as an energy buffer. The paper proposes a simple energy-conservation-based approach where the FC controller estimates the energy gap that is compensated for by the capacitor, based on its own transient response history. Accordingly, it modulates its own output power. The capacitor control, in turn, imparts robustness to the collective performance of the controllers by either dissipating excess energy or regulating the load voltage. Together, synergistic power management is achieved within a decentralized framework. An experimental test stand is developed to validate the approach and experimental results are provided. This paper considers one power source and one energy storage element, and further research must be done to translate this approach to power networks.

**Index Terms**—Capacitor, decentralized control, energy storage, fuel cell (FC), hardware-in-the-loop, power management, stability.

## NOMENCLATURE

|                        |                                                                                  |
|------------------------|----------------------------------------------------------------------------------|
| $A$                    | Area enclosed by power versus time profiles ( $J$ ).                             |
| $C$                    | Capacitance of ultracapacitor (F).                                               |
| $C_1, C_2$             | Represents dc/dc converters.                                                     |
| $E_A$                  | Net change in capacitor energy ( $J$ ).                                          |
| $F$                    | Faraday's constant ( $= 96485.34 \text{ C/mol}$ ).                               |
| $i$                    | Current draw (A)<br>(the relevant subscripts of $i$ are $L$ , fc, uc, and $o$ ). |
| $k$                    | Constant anode recirculation fraction.                                           |
| $K_1, K_2$             | Represents the two decentralized controllers.                                    |
| $\dot{N}_{\text{air}}$ | Molar flow rate of air (mols/s).                                                 |
| $\dot{N}_f$            | Molar flow rate of fuel (mols/s).                                                |
| $\dot{N}_{\text{in}}$  | Anode inlet flow rate (mols/s).                                                  |
| $\dot{N}_o$            | Anode exit flow rate (mols/s).                                                   |

Manuscript received September 9, 2014; revised April 30, 2015; accepted July 4, 2015. Date of publication August 27, 2015; date of current version April 18, 2016. Manuscript received in final form July 29, 2015. This work was supported by the National Science Foundation under Grant CMMI: 1158845. Recommended by Associate Editor S. Varigonda.

O. Madani and A. Bhattacharjee are with the University of Central Florida, Orlando, FL 32816 USA (e-mail: s.omid.madani@gmail.com; amit.bhattacharjee@knights.ucf.edu).

T. Das is with the Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 USA (e-mail: tuhin.das@ucf.edu).

Color versions of one or more of the figures in this paper are available online at <http://ieeexplore.ieee.org>.

Digital Object Identifier 10.1109/TCST.2015.2464295

|                                |                                                                                    |
|--------------------------------|------------------------------------------------------------------------------------|
| $n$                            | Number of electrons participating in electrochemical reaction ( $= 2$ ).           |
| $N_{\text{cell}}$              | Number of solid oxide fuel cells (SOFCs) in series (chosen as 50).                 |
| $P$                            | Power (W).                                                                         |
| $S_t$                          | Target state of charge (SOC) of ultracapacitor.                                    |
| $U$                            | Fuel utilization of SOFC.                                                          |
| $V$                            | Voltage ( $V$ ) (Relevant subscripts: $L$ , fc, and uc).                           |
| $\eta_1, \eta_2, \bar{\eta}_2$ | Efficiencies of dc–dc converters.                                                  |
| $\mu$                          | Duty ratio of pulsewidth modulation (PWM) circuit.                                 |
| $\sigma_R$                     | Conductance of dissipating resistance ( $\Omega^{-1}$ ).                           |
| $\chi$                         | Species mole fraction in gas mixture.                                              |
| <i>Subscripts</i>              |                                                                                    |
| $a$                            | Anode control volume.                                                              |
| cal                            | Calculated value.                                                                  |
| $d$                            | Demand (relevant to $i_{\text{fc},d}$ , $V_{\text{uc},d}$ , and $\dot{N}_{f,d}$ ). |
| fc                             | Fuel cell (FC).                                                                    |
| $j, q$                         | Indices of $A$ representing deficient and excess power regions, respectively.      |
| $L$                            | Load.                                                                              |
| nom                            | Nominal.                                                                           |
| $o$                            | Used to denote $C_1$ 's output-side current.                                       |
| $r$                            | Reformate control volume.                                                          |
| ss                             | Steady State.                                                                      |
| uc                             | Ultracapacitor.                                                                    |

## I. INTRODUCTION

SOFCS have drawn attention due to many benefits such as fuel flexibility, tolerance to impurities in fuels, high efficiency, and ability to use heat for cogeneration [1]–[3]. However, slow response time leading to deficient load-following capability is an obstacle that has restricted extensive application of SOFCs [4]. The issue is manifested as a susceptibility of SOFCs to hydrogen starvation when subjected to transient and fluctuating power demands (see details in [5] and the references therein).

In SOFCs, hydrogen starvation is mainly caused by the lags introduced by the fuel supply system (FSS) and the reformer [6]. To prevent this issue, [6] develops various reference governors using a model predictive approach. Mueller *et al.* [7] address this issue using a linear compensator to modify the target fuel flow. While both methods reduce the susceptibility to fuel starvation, they are both model dependent. Furthermore, both methods have an adverse effect

on the load-following capability of the SOFC. To improve load following, Mueller *et al.* [8] develop a control method based on constant utilization operation and a control structure to keep the combustor temperature within acceptable range. Hydrogen starvation in SOFCs can be prevented by limiting the fluctuations in fuel utilization from a set-point value under transient power demands. The target fuel utilization is typically chosen between 80% and 90% for high efficiency [9]–[11]. Prior work by one of the authors proposes a current regulation (CR) method to attenuate the aforementioned fluctuations in utilization. More details of this method and discussions on the importance of fuel utilization in SOFC systems can be found in [5], [12], [13], and the references therein. While works on transient control in SOFCs are limited in the literature, considerable research is reported for polymer electrolyte membrane (PEM) FCs under transient conditions, where oxygen starvation is a relevant problem [14]–[18].

Simultaneously preventing hydrogen starvation and improving load following can be achieved by hybridizing the SOFC with an energy storage device such as battery or capacitor [4], [5], [11], [13], [19]. For PEM FCs, related work in the area of hybridization has been addressed by Vahidi *et al.* [18] and Thounthong *et al.* [20]. In load-following mode, the storage acts as a buffer that supplies or absorbs energy during transients as the FC *follows* the changing load demand. Operating the FC in load-following mode rather than in base-load operation is advantageous since it reduces the required storage capacity. However, hybridization mandates the existence of a robust power management algorithm that ensures that the storage device is neither progressively depleted nor overcharged. Robust SOC preserving control strategies for SOFC ultracapacitor hybrids were proposed in [5] and [13]. These works demonstrate power management in the hybrid system via application of nonlinear and  $H_\infty$  robust control. A similar problem was identified in [11], where a control strategy that guarantees FC health and maintains system voltages around a nominal value was developed. A supervisory controller for a SOFC ultracapacitor hybrid, based on fuzzy logic, was designed in [21].

The works mentioned above can be categorized as *centralized* power management schemes where sensed information is directed toward a central processor that commands all components of the system. While centralized control is easier to develop, practical issues can arise in scaling up to bigger networks. When posed as an optimization problem, high dimensions is an issue for current microcontrollers as the number of energy resources in the network increases [22]. In addition, in case the central controller encounters any malfunction, the entire network is influenced. Furthermore, if the network topology is subject to change, a central controller may need to be reprogrammed. Hence, the idea of *decentralized* power management is worth exploring, where information processing takes place in component-level controllers that have little or no communication between each other, and a certain level of fault tolerance is built in. While the idea of decentralized control of SOFC appears in [23], it interprets decoupled

proportional–integral–differential loops within the SOFC controller as decentralized control. In contrast, this paper considers decentralization in the context of power management in a network consisting of the SOFC and an ultracapacitor.

In recent years, there has been growing interest in distributed control in the context of large-scale networked systems. The size and the complexity of such systems necessitate decentralized control [24]–[26]. Decentralized control of power grids specifically appears in [27]–[31]. The SOFC is also deemed a fitting candidate for distributed generation in grids due to its many advantages [19], [32]–[34]. While addressing decentralized control in power networks is our ultimate goal, this paper formulates a simpler problem as a first step. We design decentralized control for a hybrid SOFC ultracapacitor system. Two separate controllers are proposed, one for the SOFC and the other for the ultracapacitor, which have no communication between each other. The former operates the FC in load-following mode, while attenuating transient fluctuations in the fuel utilization. The latter allows the ultracapacitor to be used as an energy buffer. The novelty of this paper lies in the energy-conservation-based mechanism that is incorporated in the SOFC controller. It anticipates the deficit or excess energy of the capacitor based on the SOFC’s transient response history, without communicating with the ultracapacitor. The capacitor control, in turn, imparts robustness to the performance of the decentralized system by either dissipating excess energy or regulating the load voltage. Together, synergistic power management is realized.

In this paper, a description of the SOFC and a description of the hybrid system and a statement of the control objectives are given in Section II. The main principle of the proposed decentralized control is presented in Section III, along with practical designs of the two controllers that rely on controlled energy dissipation and provide robust performance. The work reported in this paper was verified using an experimental setup that was built by the authors. The setup is explained in Section IV. An alternate approach to incorporate robustness, based on load voltage modulation, is presented along with simulation and experimental data in Section V. A discussion on the energy loss trends of the two approaches and an advantage of decentralized over centralized control is presented in Section VI. Finally, the concluding remarks are stated and acknowledgments are made.

## II. BACKGROUND

### A. SOFC System Description

The specific system considered in this paper is a steam-reformer-based SOFC system with methane as fuel, which is shown schematically in Fig. 1. The reformer produces a hydrogen-rich gas, which is supplied to the anode of the FC. Electrochemical reactions occurring at the anode due to current draw results in a steam-rich gas mixture at its exit. A known fraction  $k$  of the anode exhaust is recirculated through the reformer into a mixing chamber where fuel  $N_f$  is added. Fuel is supplied by the FSS. The FSS consists of a fuel pump and/or valves and a fuel flow controller. The heat required for



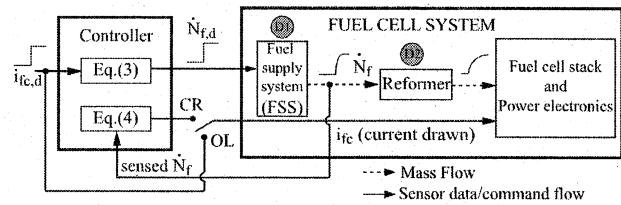
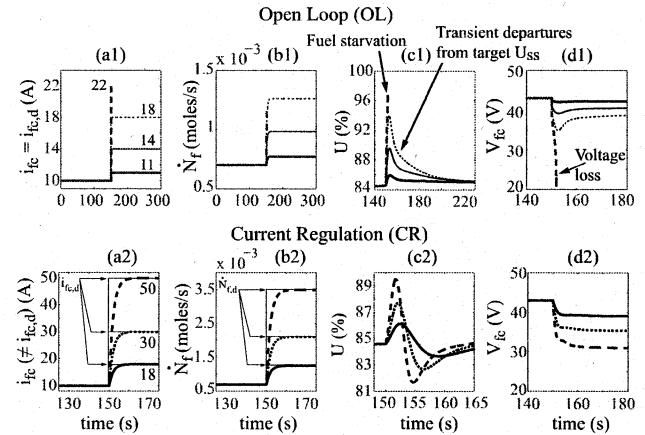
Fig. 1. Schematic of the SOFC system.

sustaining the endothermic steam reforming process occurring in the reformer catalyst bed is supplied from two sources, namely, the combustor exhaust that is passed through the reformer and the aforementioned recirculated anode flow. The combustor also serves to preheat the cathode air  $\dot{N}_{air}$ . The tubular construction of each cell causes the air to first enter the cell through the air supply tube and then reverse its direction to enter the cathode chamber. We use a control-oriented mathematical model of a tubular SOFC system developed and presented in [12] for control validation. The model captures the thermodynamics, chemical kinetics, heat transfer, and pressure dynamics phenomena and has been validated against the results in [35] and [36].

### B. Current Regulation

A strategy for attenuating transient fluctuations in fuel utilization developed in [13] and [37] will be outlined in this section. For an SOFC system such as in Fig. 1 with methane as fuel, the fuel utilization  $U$  is mathematically defined as [9], [10], [35]

$$U \triangleq 1 - \frac{\dot{N}_o(4\chi_{CH_4,a} + \chi_{CO,a} + \chi_{H_2,a})}{\dot{N}_{in}(4\chi_{CH_4,r} + \chi_{CO,r} + \chi_{H_2,r})} \quad (1)$$



where  $\chi_{CH_4,a}$ ,  $\chi_{CO,a}$ , and  $\chi_{H_2,a}$  and  $\chi_{CH_4,r}$ ,  $\chi_{CO,r}$ , and  $\chi_{H_2,r}$  are the molar concentrations of CH<sub>4</sub>, CO, and H<sub>2</sub> in the anode and the reformer, respectively, and  $\dot{N}_o$  and  $\dot{N}_{in}$  are shown in Fig. 1. Based on the molar balance equations and the rate of electrochemical reaction, a steady-state relationship of  $U$  can be obtained as in (2), where all the variables and parameters are defined in the Nomenclature section. The derivation is shown in [12] and [37]

$$U = \frac{1 - k}{(4nF\dot{N}_f/i_{fc}\mathcal{N}_{cell}) - k}. \quad (2)$$

For a desired steady-state utilization  $U_{ss}$  and a given demanded FC current  $i_{fc,d}$ , a fuel flow demand  $\dot{N}_{f,d}$  can be calculated from (2), given by

$$\dot{N}_{f,d} = \frac{i_{fc,d}\mathcal{N}_{cell}}{4nFU_{ss}} [1 - (1 - U_{ss})k]. \quad (3)$$

Note that as shown in Fig. 1, the FSS provides fuel flow  $\dot{N}_f$  in response to the demand  $\dot{N}_{f,d}$ , and (3) ensures that at steady state,  $U = U_{ss}$ . However, during transience, due to

Fig. 2. Transient control of  $U$  through CR.Fig. 3. Simulations showing the transient control of  $U$  (from [13]).

the lag associated with the FSS,  $\dot{N}_{f,d} \neq \dot{N}_f$ . This results in fluctuations in  $U$  around  $U_{ss}$ . Large changes in  $i_{fc,d}$  can result in hydrogen starvation ( $U \rightarrow 100\%$ ). This is illustrated through the simulation results shown in Fig. 3(a1)–(d1). It is mainly attributed to a delay  $D1$  (see Fig. 2 and the explanation below) introduced by the FSS between the demanded and actual fuel flows,  $\dot{N}_{f,d}$  and  $\dot{N}_f$ , respectively. This delay can be of the order of a few or several seconds. To address this issue, we propose the CR method by reversing (3) to calculate the regulated current based on the actual fuel flow  $\dot{N}_f$  given by

$$i_{fc} = \frac{4nFU_{ss}\dot{N}_f}{\mathcal{N}_{cell}} \frac{1}{[1 - (1 - U_{ss})k]}. \quad (4)$$

This CR approach as well as lags associated with fuel flow are shown in Fig. 2 with the switch position labeled CR. In comparison, the open-loop (OL) (i.e., unregulated current) approach corresponds to the switch position OL.

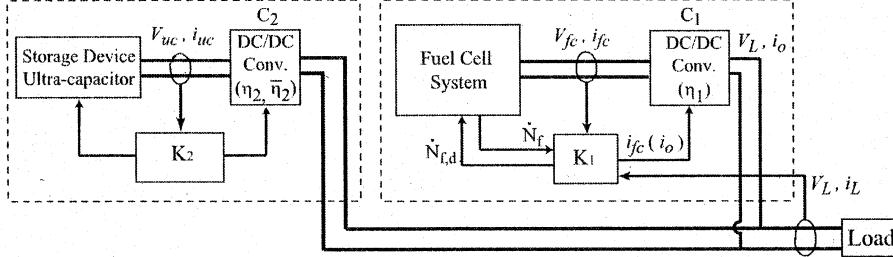



Fig. 4. Schematic of hybrid FC system under decentralized power management.

The proposed CR method has similarities with existing model-based approaches for Polymer Electrolyte Membrane Fuel Cell and SOFC systems using a current filter or a load governor [14], [16], [38]. However, an advantage of CR is that it assumes no knowledge of the dynamic characteristics of the FSS. Improvement in transient response of  $U$  in CR over OL is shown in Fig. 3. Details of the simulations and the model can be found in [12] and [13]. As shown, CR allows significantly greater fluctuations in load compared with OL [Fig. 3(a1) and (a2)] before the onset of fuel starvation [Fig. 3(c1) and (c2)]. However, this approach also creates a disparity between  $i_{fc,d}$  and  $i_{fc}$  during transients [see Fig. 3(a2)]. This implies that while CR protects the FC from fuel starvation due to power fluctuations, it results in a disparity between the demanded and delivered power during transients. This disparity amounts to deficient load following that is addressed by hybridizing the FC with an ultracapacitor. The hybrid system is described next.

### C. Hybrid System and Control Objectives

A schematic showing the hybrid FC and the control interface is shown in Fig. 4. Similar as well as alternate methods of interfacing FCs and battery/ultracapacitors can be found in [13], [18], and [39]–[42]. In this configuration, the FC and ultracapacitor are connected in parallel. The FC supplies power to the load through a unidirectional dc/dc converter  $C_1$ . The ultracapacitor is connected to the load through a bidirectional dc/dc converter  $C_2$  allowing charge and discharge. Some salient features of the hybrid system are as follows.

- 1) Due to their fast responses,  $C_1$  and  $C_2$  are assumed to be static energy conversion devices, with  $C_1$  having an efficiency of  $\eta_1$  and  $C_2$  having discharge and charge efficiencies of  $\eta_2$  and  $\bar{\eta}_2$ , respectively [5]. These efficiencies are bounded, but unknown and time varying. We also assume that  $\eta_{2,\min} \leq \eta_2, \bar{\eta}_2 \leq (1/\eta_{2,\min})$ , and  $\eta_{2,\min}$  is known. Furthermore, we consider  $C_1$  function in current control mode, while  $C_2$  maintains voltage  $V_L$  in a voltage control mode.
- 2) Based on the schematic in Fig. 4, since the FC and the ultracapacitor are connected in parallel, the following is true at any instant:

$$V_L i_L = \eta_1 V_{fc} i_{fc} + \left[ \frac{\eta_2 + \bar{\eta}_2}{2} + \frac{\eta_2 - \bar{\eta}_2}{2} \operatorname{sgn}(i_{uc}) \right] V_{uc} i_{uc}$$

$$\Rightarrow \begin{cases} V_L i_L = \eta_1 V_{fc} i_{fc} + \eta_2 V_{uc} i_{uc}, & i_{uc} > 0 \\ V_L i_L = \eta_1 V_{fc} i_{fc} + \bar{\eta}_2 V_{uc} i_{uc}, & i_{uc} < 0 \end{cases} \quad (5)$$

where  $i_{uc} > 0$  and  $i_{uc} < 0$  imply discharge and charge currents, respectively, of the capacitor. The above equation implies that the net power demand  $V_L i_L$  is supplied at every instant. It is also important to note that due to a reversal in the direction of power flow between charge and discharge, for discharge  $\eta_2$  satisfies  $0 < \eta_2 < 1$ , while for charge  $\bar{\eta}_2$  satisfies  $\bar{\eta}_2 > 1$ .

- 3) To realize a decentralized control, we impose the following restrictions on  $K_1$  and  $K_2$ . Controller  $K_1$  uses measurements of  $V_{fc}$ ,  $V_L$ ,  $i_L$ , and  $\dot{N}_f$ , commands  $C_1$  to draw  $i_{fc}$ ,<sup>1</sup> and commands the FSS to deliver a desired fuel flow rate of  $\dot{N}_{f,d}$ . However,  $K_1$  does not use measurements of  $i_{uc}$ ,  $V_{uc}$ ,  $\eta_2$ , and  $\bar{\eta}_2$ . This is also indicated in Fig. 4.
- 4) As shown in Fig. 4, controller  $K_2$  measures  $V_{uc}$  and  $i_{uc}$  only and does not use measurements of  $V_L$ ,  $i_L$ ,  $V_{fc}$ ,  $i_{fc}$ , or  $\eta_1$ .  $K_2$  commands  $C_2$  to maintain a desired load voltage  $V_L$  and, in addition, uses dissipation or voltage regulation to control the ultracapacitor's SOC.

Referring to Fig. 4 and under the operational conditions listed above, the control objectives are as follows.

- 1) The target fuel utilization at steady state will be  $U_{ss} = 0.8$ , and the deviations from  $U_{ss}$  during transients should be minimized [12], [13].
- 2) The SOC of the ultracapacitor will be maintained at a target value of  $S_t = 0.8$ .
- 3) The load voltage  $V_L$  around a nominal value will be controlled.

### III. DECENTRALIZED POWER MANAGEMENT USING CONSERVATION OF ENERGY

#### A. Approach

This work applies conservation of energy to develop decentralized control of the hybrid system in Fig. 4. Conceptually, the approach is shown in Fig. 5. Fig. 5 shows a step change in power demand  $V_L i_L$  and the corresponding load-following response of the source (FC,  $\eta_1 V_{fc} i_{fc}$ ). In load-following mode, the SOFC's delivered power  $\eta_1 V_{fc} i_{fc}$  will track the load demand  $V_L i_L$ , meeting the demand exactly at steady state. Equation (5) is satisfied at all times. In addition, at steady state, the load  $V_L i_L$  is constant and  $V_L i_L = \eta_1 V_{fc} i_{fc} \Rightarrow i_{uc} = 0$ . In Fig. 5, the intervals  $t < t_0$  and  $t > t_f$  represent the steady-state conditions.

<sup>1</sup>In implementation, hardware limitations require  $K_1$  to command  $i_o$  instead of  $i_{fc}$ , as described in Section IV-B1.

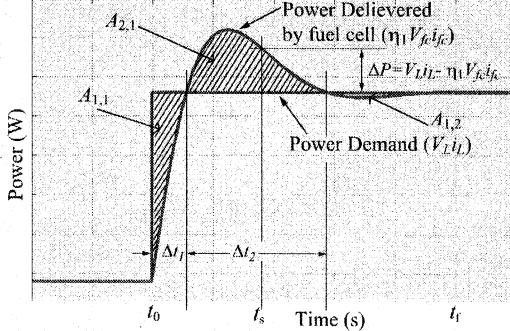



Fig. 5. Conservation of energy approach.

Next, we discuss the transient region of the plot, namely, the interval  $t_0 \leq t \leq t_f$ . This region captures how the SOFC responds to the load change. The response shown in Fig. 5 is a sample to show the energy-conservation-based approach. Consider an arbitrary instant  $t_s$  as shown. We define  $\Delta P$  to be the instantaneous difference between the load and delivered power. Hence,  $\Delta P$  as shown in Fig. 5 is

$$\Delta P \triangleq V_L i_L - \eta_1 V_{fc} i_{fc}. \quad (6)$$

We will use this definition to formulate the energy-conservation-based decentralized control. Also note that the shaded area  $A_{1,1}$  represents the total deficit between the demand and energy supplied by the SOFC over the interval  $\Delta t_1$ . The area thus represents energy removed from the ultracapacitor (discharged). Similarly, the shaded area  $A_{2,1}$  represents an excess energy supplied by the SOFC during the interval  $\Delta t_2$ . Area  $A_{2,1}$  thus represents energy returned to the ultracapacitor (charged). From Fig. 5 and (5), we can conclude that

$$\begin{aligned} A_{1,1} &= \int_{t_0}^{t_0 + \Delta t_1} \Delta P dt = \int_{t_0}^{t_0 + \Delta t_1} (V_L i_L - \eta_1 V_{fc} i_{fc}) dt \\ &= \int_{t_0}^{t_0 + \Delta t_1} \eta_2 V_{uc} i_{uc} dt \\ A_{2,1} &= \int_{t_0 + \Delta t_1}^{t_0 + \Delta t_1 + \Delta t_2} -\Delta P dt \\ &= \int_{t_0 + \Delta t_1}^{t_0 + \Delta t_1 + \Delta t_2} -(V_L i_L - \eta_1 V_{fc} i_{fc}) dt \\ &= \int_{t_0 + \Delta t_1}^{t_0 + \Delta t_1 + \Delta t_2} -\bar{\eta}_2 V_{uc} i_{uc} dt. \end{aligned} \quad (7)$$

In the transient response of the SOFC, we denote  $A_{1,j}$ ,  $j = 1, 2, \dots$ , by the areas where the ultracapacitor is discharged and  $A_{2,q}$ ,  $q = 1, 2, \dots$ , by the areas where the ultracapacitor is charged. Then under ideal charge/discharge, i.e.,  $\eta_2 = \bar{\eta}_2 = 1$ , the condition

$$\lim_{t \rightarrow \infty} E_A = \lim_{t \rightarrow \infty} \left( \sum_j A_{1,j} - \sum_q A_{2,q} \right) \rightarrow 0 \quad (8)$$

will ensure that at steady state  $t > t_f$ , the energy of the ultracapacitor, i.e., its SOC, will be preserved at the same

value as in the previous steady state  $t < t_0$ . Equation (8) can be generalized to the following integral condition:

$$\lim_{t \rightarrow \infty} E_A = \lim_{t \rightarrow \infty} \int_{t_0}^t \Delta P dt = 0. \quad (9)$$

Essentially, controller  $K_1$  that controls the delivered FC power can satisfy this integral condition by simply modulating the cell-side power, with no information about the ultracapacitor's SOC. This is because  $\Delta P$  is only a function of  $V_{fc}$ ,  $i_{fc}$ , and  $\eta_1$  that are all local information and  $V_L$  and  $i_L$  that are commonly available. However, (9) is an ideal scenario where there are no losses in the charge/discharge processes. In the presence of charge/discharge losses in  $C_2$ , with discharge and charge efficiencies  $\eta_2$  and  $\bar{\eta}_2$ , respectively, (8) must be modified to

$$\lim_{t \rightarrow \infty} E_A = \lim_{t \rightarrow \infty} \left( \sum_j \frac{A_{1,j}}{\eta_2} - \sum_q \frac{A_{2,q}}{\bar{\eta}_2} \right) \rightarrow 0. \quad (10)$$

The above equation is obtained from (5) and (8), and is obvious if we remove the assumption  $\eta_2 = \bar{\eta}_2 = 1$  from (7). If we assume  $\eta_2$  and  $\bar{\eta}_2$  to be nonunity but known, (10) can be generalized to the following integral condition that can be satisfied by controller  $K_1$ :

$$\begin{aligned} \lim_{t \rightarrow \infty} E_A \\ = \lim_{t \rightarrow \infty} \int_{t_0}^t \left[ \frac{\eta_2^{-1} + \bar{\eta}_2^{-1}}{2} + \frac{\eta_2^{-1} - \bar{\eta}_2^{-1}}{2} \text{sgn}(\Delta P) \right] \Delta P dt \rightarrow 0. \end{aligned} \quad (11)$$

Here  $\text{sgn}(\cdot)$  represents the signum function. However,  $\eta_2$  and  $\bar{\eta}_2$  will be unknown to  $K_1$ . Therefore, we need to build a robust control around this principle to handle the uncertainty in a decentralized manner. The next section will demonstrate the validity of the main principle outlined in this section.

### B. Simulations

To demonstrate that energy conservation can be used to design decentralized control, we consider a simplified scenario. We assume that in addition to the local information mentioned in Section II-C, controller  $K_1$  has knowledge of  $\eta_2$  and  $\bar{\eta}_2$ . This assumption will be removed in latter sections. Next, we note from Fig. 4 that controller  $K_1$  generates two control inputs,  $i_{fc}$  and  $\dot{N}_{f,d}$ . The inputs, generated using (3) and (4), implement CR for transient control of  $U$  (see Fig. 2). The design of  $i_{fc,d}$  is based on the following observation: in load-following mode, the SOFC's delivered power  $\eta_1 V_{fc} i_{fc}$  tracks the load demand  $V_L i_L$ , meeting the demand exactly at steady state. Additional perturbations in  $\eta_1 V_{fc} i_{fc}$  will be introduced to achieve (11). With this goal and incorporating the approach outlined in Section III-A, we formulate  $i_{fc,d}$  as

$$i_{fc,d} = \frac{V_L i_L + g_i E_A}{\eta_1 V_{fc}}, \quad g_i > 0 \quad (12)$$

where  $g_i$  is an integral gain, and  $E_A$  is defined in (11) and can be calculated by  $K_1$  using local information only.

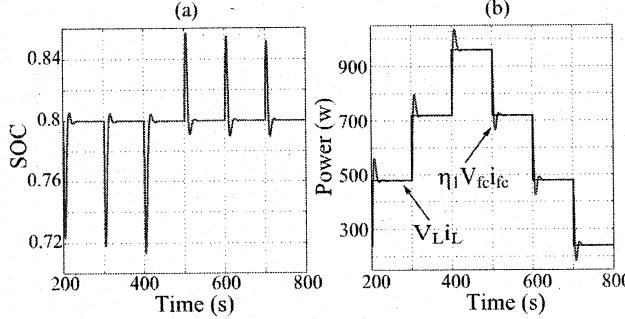



Fig. 6. Energy-conservation-based control with known  $\eta_2$  and  $\bar{\eta}_2$ .

Controller  $K_2$  simply maintains constant voltage  $V_L$  (in this case, 24 V) across the load. The design is implemented and simulation results are summarized in Fig. 6. The parameter values chosen are

$$\begin{aligned} C &= 25F, \eta_1 = 0.8, \eta_2 = \bar{\eta}_2 = 0.8 \\ g_i &= 4, S_t = 0.8, U_{ss} = 0.8. \end{aligned} \quad (13)$$

The power demand  $V_Li_L$  is subjected to step changes, as shown in Fig. 6(b). Fig. 6(a) confirms the control of SOC and Fig. 6(b) plots  $V_Li_L$  and  $\eta_1 V_{fc} i_{fc}$ . The excursions of  $\eta_1 V_{fc} i_{fc}$  from  $V_Li_L$ , as it fluctuates, are such that  $\lim_{t \rightarrow \infty} E_A = 0$ . The assumption in this section that  $K_1$  has exact knowledge of  $\eta_2$  and  $\bar{\eta}_2$  is quite restrictive. In the next section, we relax this assumption by treating the efficiencies as unknowns. Further, we augment the main approach of Section III-A with a dissipation mechanism to introduce robustness.

### C. Robust Performance Through Dissipation

1) *Design of  $K_1$  Using a Lower Bound  $\eta_{2,\min}$  of  $\eta_2$  and  $\bar{\eta}_2$ :* We now consider a more realistic case where controller  $K_1$  has no knowledge of  $\eta_2$  and  $\bar{\eta}_2$  but only knows a lower bound  $\eta_{2,\min} \leq \eta_2, \bar{\eta}_2 \leq (1/\eta_{2,\min})$ . Accordingly,  $i_{fc,d}$  in (12) must be formulated with  $E_A$  as shown in the following instead of (11):

$$E_A \triangleq \int_{t_0}^t \left[ \frac{\eta_{2,\min}^{-1} + \eta_{2,\min}}{2} + \frac{\eta_{2,\min}^{-1} - \eta_{2,\min}}{2} \operatorname{sgn}(\Delta P) \right] \Delta P dt. \quad (14)$$

Note that (14) uses conservative estimates of the magnitudes of discharge and charge. Specifically, it estimates higher discharge and lower amount of charge. The expected result is that by ensuring  $\lim_{t \rightarrow \infty} E_A = 0$ , it is guaranteed that the ultracapacitor will be overcharged for every step change in  $V_Li_L$ . Next, we observe that (3), (4), (12), and (14) generate a feedback loop. Our objective is to investigate the stability of the equilibrium  $\Delta P = 0$  of this closed-loop system and show that indeed at steady state  $E_A = 0$ . We next state the following assumption about the FSS. Defining the error between the actual and demanded fuel flow rates as  $E_{fl} = \dot{N}_f - \dot{N}_{f,d}$ , we assume that  $E_{fl}(t)$  satisfies a general exponential decay

condition given by

$$|E_{fl}(t)| \leq \gamma |E_{fl}(t_0)| e^{-\zeta(t-t_0)} \quad \forall |E_{fl}(t_0)| < r_0 \quad (15)$$

where  $\gamma, \zeta, r_0 > 0$  are constants. This is valid because the FSS causes  $\dot{N}_f$  to track  $\dot{N}_{f,d}$ . Then it can be shown that the error variable  $E_{fc,d} = i_{fc} - i_{fc,d}$  satisfies

$$|E_{fc,d}(t)| \leq \gamma |E_{fc,d}(t_0)| e^{-\zeta(t-t_0)} \quad \forall |E_{fc,d}(t_0)| < r_0/\beta \quad (16)$$

where  $\beta = (\mathcal{N}_{cell}/4nFU_{ss})[1 - (1 - U_{ss})k]$  is a positive constant. The proof of this result is simple and details can be found in [13]. We note here that the FSS behavior of (15) is not restrictive and common responses such as first-order or ramped behavior can be bounded by exponential decay. Next, we state and prove the following theorem.

*Theorem 1:* If the FSS satisfies the generalized behavior of (15), then for step changes in  $i_L$ , the design of controller  $K_1$  consisting of (3), (4), (12), and (14) renders the equilibrium  $\Delta P = 0$  asymptotically stable and ensures  $\lim_{t \rightarrow \infty} E_A = 0$ .

*Proof:* Equation (12) can be rearranged to

$$\Delta P_d + g_i E_A = 0, \quad \text{where } \Delta P_d = V_L i_L - \eta_1 V_{fc} i_{fc,d}. \quad (17)$$

Taking the derivative of (17) and from (14), we get

$$\frac{d}{dt}(\Delta P_d) + g_i \alpha \Delta P = 0, \quad \text{where } \alpha = \begin{cases} \eta_2^{-1} & \text{for } \Delta P > 0 \\ \eta_{2,\min}^{-1} & \text{for } \Delta P < 0. \end{cases} \quad (18)$$

Also note from (6), (17), and (18) that

$$\begin{aligned} \Delta P &= \Delta P_d - \eta_1 V_{fc} E_{fc,d} \\ &\Rightarrow \frac{d}{dt}(\Delta P_d) + g_i \alpha (\Delta P_d - \eta_1 V_{fc} E_{fc,d}) = 0. \end{aligned} \quad (19)$$

Further, we observe from (16) and *converse Lyapunov theorems* [43] that there exists a positive definite function  $\bar{V}_{fc}$  and the constants  $\alpha_1, \alpha_2$ , and  $\alpha_3$  such that

$$\begin{aligned} \alpha_1 E_{fc,d}^2 &\leq \bar{V}_{fc}(E_{fc,d}, t) \leq \alpha_2 E_{fc,d}^2 \\ 0 < \alpha_1 < \alpha_2 \quad \text{and} \quad \dot{\bar{V}}_{fc} &\leq -\alpha_3 E_{fc,d}^2, \quad \alpha_3 > 0. \end{aligned} \quad (20)$$

Then considering the Lyapunov function candidate  $V = (1/2)(\Delta P_d^2) + \lambda \bar{V}_{fc}$ ,  $\lambda > 0$  being a constant, and differentiating  $V$  with respect to time produces

$$\begin{aligned} \dot{V} &\leq \Delta P_d \frac{d}{dt}(\Delta P_d) - \lambda \alpha_3 E_{fc,d}^2 \\ &\leq -g_i \alpha \Delta P_d^2 - \lambda \alpha_3 E_{fc,d}^2 + g_i \alpha \eta_1 V_{fc} E_{fc,d} \Delta P_d \\ &\leq -\mathcal{E}^T Q \mathcal{E} < 0 \\ \mathcal{E} &= \begin{bmatrix} \Delta P_d \\ E_{fc,d} \end{bmatrix}, \quad Q = \begin{bmatrix} g_i \alpha & -0.5 g_i \alpha \eta_1 V_{fc} \\ -0.5 g_i \alpha \eta_1 V_{fc} & \lambda \alpha_3 \end{bmatrix}. \end{aligned}$$

Note that  $Q$  is symmetric and, in addition,  $\lambda$  can be chosen to ensure that  $Q$  is positive definite. Thus,  $\dot{V}$  will be negative definite and the equilibrium  $\mathcal{E} = [0]$  is asymptotically stable (in fact, exponentially stable since  $Q$  is positive definite and symmetric [44]). From (17) and (19), we then conclude that at equilibrium (steady state)

$$\mathcal{E} = [0] \Rightarrow \Delta P_d, E_{fc,d} = 0 \Rightarrow \Delta P, E_A = 0.$$

This completes the proof.  $\blacksquare$

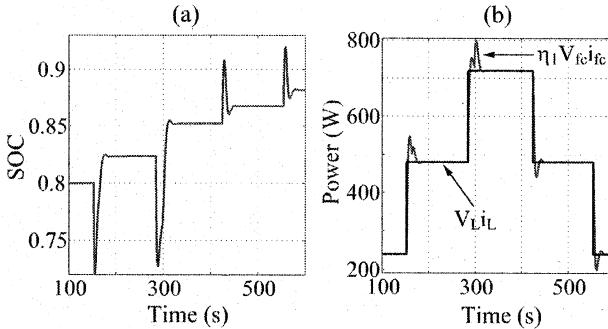
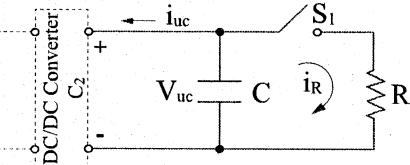


Fig. 7. Energy conservation with a conservative estimate  $\eta_{2,\min}$  of  $\eta_2$  and  $\bar{\eta}_2$ .

Fig. 8. Dissipation circuit.

Simulation results with  $E_A$  calculated using (14) are shown in Fig. 7. The parameter values chosen were the same as those in (13). In addition,  $\eta_{2,\min} = 0.7$  was chosen. The formulation of  $E_A$  according to (14) is conservative, as mentioned earlier in this section. The conservative nature of this approach is evident in Fig. 7(a) where the SOC increases with power fluctuations. The power demand  $V_L i_L$  and SOFC's supplied power  $\eta_1 V_{fc} i_{fc}$  are plotted together in Fig. 7(b). Since we consider a energy storage device of finite capacity, its SOC must be regulated. To address this regulation in a decentralized manner, we incorporate dissipation in controller  $K_2$ , as discussed in Section III-C2.

We end this section by noting that the performance of  $K_1$  can also be viewed from a classical controls perspective, under certain simplifications. In (16), if we assume equality instead of the inequality, then we can write  $\dot{E}_{fc,d} = -\zeta E_{fc,d}$ . In addition, in (18), if we assume small changes in  $V_{fc}$ , then the overall closed-loop dynamics can be expressed as

$$\frac{d^2}{dt^2}(\Delta P_d) + (g_i \alpha + \zeta) \frac{d}{dt}(\Delta P_d) + g_i \alpha \zeta (\Delta P_d) = 0.$$

From this linear dynamical equation, we can estimate the bandwidth of the closed-loop system to be  $\omega_{bw} \approx (g_i \alpha \zeta)^{1/2}$ . Since  $\alpha$  can switch between  $\eta_{2,\min}^{-1}$  and  $\eta_{2,\min}$ , a conservative estimate would be  $\omega_{bw} \approx (g_i \eta_{2,\min} \zeta)^{1/2}$ . Furthermore, the term  $(g_i \alpha + \zeta)$  provides an approximate damping of the closed-loop system. However, it must be recognized that the original dynamics is nonlinear, and hence, these predictions can be substantially off.

2) *Dissipation-Based Design of  $K_2$ :* In this approach, the ultracapacitor's SOC is regulated via dissipation through a variable resistance. We add a resistance in parallel with a capacitor, which is shown in Fig. 8. Energy dissipation is controlled by  $K_2$  by actuating a pulsedwidth-modulated switch  $S_1$ , shown in Fig. 8. Since SOC is a local information for  $K_2$ ,

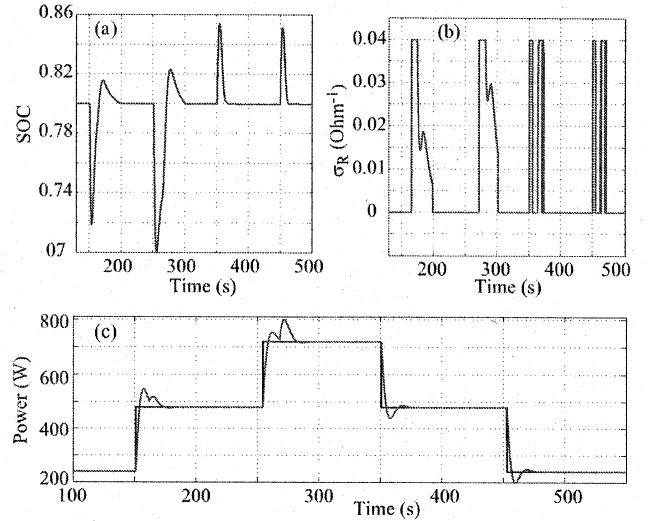



Fig. 9. System response with a PI controller for dissipation.

charge management is done locally without any information about the FC from  $K_1$ . The circuit equation corresponding to Fig. 8 is

$$C \dot{V}_{uc} = -(i_{uc} + i_R), \quad \dot{V}_{uc} = -\frac{1}{C}(i_{uc} + V_{uc} \sigma_R) \quad (21)$$

where  $\sigma_R$  is the effective conductance that can be varied by changing the duty cycle of  $S_1$ . We treat  $\sigma_R$  as a control input and use the following control law to stabilize the equilibrium  $V_{uc} = V_{uc,d}$ :

$$\sigma_R = \frac{g_{p,uc}}{V_{uc}}(V_{uc} - V_{uc,d}) + \frac{g_{i,uc}}{V_{uc}} \int_0^t (V_{uc} - V_{uc,d}) dt$$

$$\begin{cases} \dot{\sigma}_R = 0, & \text{if } \sigma_R = \sigma_{R,\max} \text{ and } V_{uc} > V_{uc,d} \\ \dot{\sigma}_R = \dot{\sigma}_R = 0, & \text{if } V_{uc} \leq V_{uc,d} \end{cases} \quad (22)$$

where  $g_{p,uc}$  and  $g_{i,uc}$  are proportional and integral gains, respectively, and  $V_{uc,d}/V_{uc,\max} = S_t$ , the target SOC.  $V_{uc,\max}$  is the known ultracapacitor voltage at which its SOC is 100%. The efficacy of this controller is shown through simulation results in Fig. 9. The manner in which the resistance  $R$  is used in the proportional-integral (PI) control is evident from Fig. 9(b). For this simulation,  $S_t = 0.8$  and  $V_{uc,\max} \approx 16$  V, and hence,  $V_{uc,d} = 13$  V. In addition,  $g_{p,uc} = 0.08$  and  $g_{i,uc} = 0.0016$ . We assume  $R = 25 \Omega$  and that  $\sigma_R$  linearly varies with duty cycle = 0  $\Rightarrow \sigma_R = 0$ , to duty cycle = 1  $\Rightarrow \sigma_R = 0.04$ . In contrast to Fig. 7(a) where the SOC control was not implemented in  $K_2$ , the SOC converges to  $S_t = 0.8$  with the control law of (22).

The performance of the SOC controller can be studied in frequency domain (transfer functions) since both the ultracapacitor and the PI controller in (21) and (22) are linear systems [45]. Defining the error  $E_{uc} = V_{uc} - V_{uc,d}$  and taking Laplace transforms under zero initial conditions, we get the following closed-loop equation:

$$E_{uc}(s) = \frac{-V_{uc,d}(s)}{1 + \frac{1}{C_s} (g_{p,uc} + \frac{g_{i,uc}}{s})} - \frac{(1/C_s) i_{uc}(s)}{1 + \frac{1}{C_s} (g_{p,uc} + \frac{g_{i,uc}}{s})}.$$

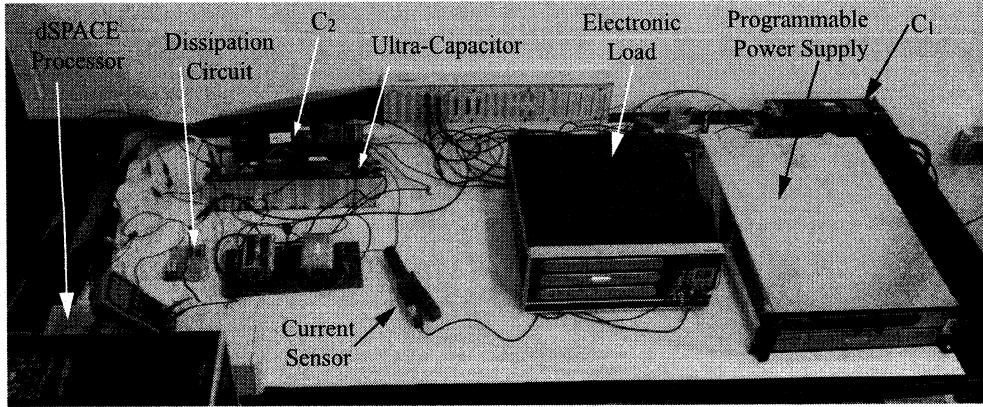



Fig. 10. Experimental test stand.

Note that the above closed-loop system with the characteristic equation  $Cs^2 + g_{p,uc}s + g_{i,uc} = 0$ , and positive  $g_{p,uc}$  and  $g_{i,uc}$  is stable. In addition, the system is type-2 with respect to  $V_{uc,d}$  and type 1 with respect to  $i_{uc}$ . Since  $V_{uc,d}$  is a constant and  $i_{uc}$  is zero at steady state, reference tracking and disturbance rejection are simultaneously achieved by the PI controller proposed in (22). Thus,  $E_{uc} = 0$  at steady state. The low-pass characteristics of the loop gain transfer function  $L(s) = (1/Cs)(g_{p,uc} + (g_{i,uc}/s))$  gives the controller its desired reference tracking and disturbance rejection abilities [45]. Note that the controller does not attempt to cancel  $i_{uc}$  through feedback, but instead treats it as a disturbance signal. This is because in load-following mode and at steady state,  $V_L i_L = \eta_1 V_{fc} i_{fc}$  and hence  $i_{uc} = 0$ . Hence, the noise-to-signal ratio in measured  $i_{uc}$  is expected to be high, and sensor-based cancellation of  $i_{uc}$  will introduce extra noise in the feedback loop. We end this section with the following observation.

*Remark 1:* Controllers  $K_1$  and  $K_2$ , discussed in Sections III-C1 and III-C2, perform independently of each other. The stability characteristics of either closed-loop system do not affect those of the other.

#### IV. EXPERIMENTAL SETUP AND RESULTS

##### A. Experimental Setup

The theoretical framework developed for decentralized control is validated using experimental setup. The experimental hardware-in-the-loop setup consists of the emulated FC along with an ultra capacitor, an electronic load, and two dc-dc converters. The setup is shown in Fig. 10. The technical specification of each equipment is given in Table I. More details of the setup can be found in [13]. The FC system that is employed is a real-time emulation of a mathematical model of the SOFC developed in [12]. Before discussing results, we summarize some aspects of practical implementation that posed challenges.

##### B. Details of Practical Implementation

1) *Control of Unidirectional Converter  $C_1$ :* As mentioned in Section II and also evident from the development

TABLE I  
EQUIPMENT SPECIFICATIONS

| Item                           | Spec.(V)    | Spec.(i) | Make             |
|--------------------------------|-------------|----------|------------------|
| dSpace                         | -           | -        | dSpace1103       |
| Power Supply                   | 110V AC/DC  | o/p:50A  | Ametek SGA100/50 |
| Electronic Load                | i/p:120V AC | 0-120A   | Sorenson SLH     |
| Ultracapacitor(250F)           | 16.2V DC    | 2000A    | BMOD0250 P16     |
| Unidirectional Converter $C_1$ | 44-50V DC   | 40A      | Zahn DC-5050F-SU |
| Bidirectional Converter $C_2$  | 44-50V DC   | 40A      | Zahn DC-5050F-SU |
| Current Sensors                | -           | 1-100A   | Fluke-80i-110S   |

in Sections III and III-C1, the dc/dc converter  $C_1$  (see Fig. 4) is controlled in current control mode. To apply our theory directly,  $K_1$  must command  $C_1$  to deliver  $i_{fc}$ . However, referring to Fig. 4, the converter  $C_1$  in our setup allows us only to command  $i_o$  directly and not  $i_{fc}$ . Hence, in Fig. 4 and Section II-C, we indicate  $i_o$  to be the input to  $C_1$  in the hardware. The dc/dc converter has an in-built controller that takes a sensed feedback of  $i_o$  flowing through a Hall-effect sensor inside the converter and, using a PI controller, precisely tracks the reference value set by the user at the control terminal. To circumvent this hardware limitation, we propose the following feedforward and feedback combination:

$$i_o = \frac{\eta_1 V_{fc} i_{fc,cal}}{V_L} + g_{p,o} E_{fc,cal} + g_{i,o} \int_0^t E_{fc,cal} dt$$

$$E_{fc,cal} \triangleq i_{fc,cal} - i_{fc}. \quad (23)$$

Here, we treat (4) to provide a calculated current  $i_{fc,cal}$ , i.e.,  $i_{fc,cal} = 4nFU_{ss}N_f/(\mathcal{N}_{cell}[1 - (1 - U_{ss})k])$ , while  $i_{fc}$  is the measured current. The objective of (23) is then to ensure  $\lim_{t \rightarrow \infty} E_{fc,cal} = 0$ . In (23),  $g_{p,o}$  and  $g_{i,o}$  are the positive proportional and integral gains. The internal controller in  $C_1$  generates fast response, on the order of microseconds. Hence, it is reasonable to assume that  $i_o$  generated by (23) is instantaneously achieved at the output of  $C_1$ . The feed-forward term  $(\eta_1 V_{fc} i_{fc,cal}/V_L)$  in (23) comes from the power balance at the input and output terminals of the converter  $C_1$ . The sequence of signal flow is explained through the schematic in Fig. 11. We next state and prove the following theorem.

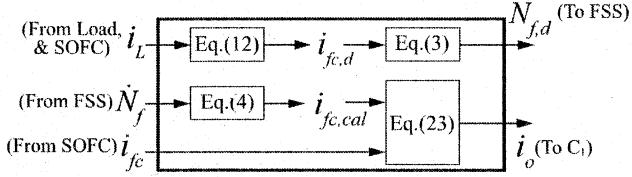



Fig. 11. Schematic of signal flow in  $K_1$ .

**Theorem 2:** The control law given in (23) leads to exponential convergence of  $E_{fc,cal} \rightarrow 0$  for  $g_{p,o} > 0$  and  $g_{i,o} > 0$ .

**Proof:** To prove this, we assume that the change in the feedforward term ( $\eta_1 V_{fc} i_{fc,cal} / V_L$ ) in (23) is small during the correction interval, which is reasonable if  $g_{p,1}$  and  $g_{i,1}$  are assigned relatively high values. Referring to Fig. 11, we then have

$$\begin{aligned} \frac{di_o}{dt} &= \frac{\eta_1 V_{fc}}{V_L} \frac{di_{fc}}{dt} = g_{p,o} \dot{E}_{fc,cal} + g_{i,o} E_{fc,cal} \\ &\Rightarrow \left( g_{p,o} + \frac{\eta_1 V_{fc}}{V_L} \right) \dot{E}_{fc,cal} + g_{i,o} E_{fc,cal} = 0. \end{aligned} \quad (24)$$

Using a Lyapunov function  $V = E_{fc,cal}^2$  and (24), it is easy to verify that  $E_{fc,cal}$  converges to zero exponentially, provided that  $g_{p,o} > 0$  and  $g_{i,o} > 0$  [43]. ■

2)  $\eta_1$  Measurement: It has been assumed throughout this paper that the measurement of  $\eta_1$  is available to  $K_1$ , since it is a local variable. In our experimental setup, it is measured by implementing the power balance equation for  $C_1$ , which is  $V_L i_o = \eta_1 V_{fc} i_{fc}$ . Since  $V_{fc}$ ,  $i_{fc}$ , and  $V_L$  are measured and  $i_o$  is a command, a coarse measurement of  $\eta_1$ , namely,  $\eta_{1,m} = V_L i_o / V_{fc} i_{fc}$ , is first obtained. The measured value is then filtered to obtain  $\eta_1$ . This approach gave satisfactory control validation results.

3) PWM Switching Circuit: Referring to Fig. 8, controller  $K_2$  manipulates the duty ratio  $\mu$  to change the dissipation rate as follows:

$$\begin{aligned} \mu(t) &= \frac{g_{p,uc}}{V_{uc}} (V_{uc} - V_{uc,d}) + \frac{g_{i,uc}}{V_{uc}} \int_0^t (V_{uc} - V_{uc,d}) dt \\ &\begin{cases} \dot{\mu} = 0, & \text{if } \mu = 1 \text{ and } V_{uc} > V_{uc,d} \\ \mu = \dot{\mu} = 0, & \text{if } V_{uc} \leq V_{uc,d} \end{cases} \quad \sigma_R = \mu \sigma_{R,max}. \end{aligned} \quad (25)$$

The average voltage appearing across the dissipating resistor effectively determines  $i_R$ . The relation between the duty ratio  $\mu(t)$  and  $i_R$  can be formulated as

$$\frac{1}{T} \int_0^T V_{uc} \mu(t) dt = i_R R$$

where  $1/T$  is the switching frequency of the PWM. The PWM circuit is switched OFF as soon as the equilibrium  $V_{uc} = V_{uc,d}$  is established. The hardware consists of a simple solid-state switch that drives the gate of a power MOSFET of appropriate rating whenever the ultracapacitor voltage surpasses a certain threshold voltage. The voltage reference is set to  $V_{uc,d} = 12.2$  V above which the PWM circuit activates. Moreover, the rate of discharge is controlled by the pulselwidth of the PWM signal that is realized by driving the gate of

the MOSFET. The gate driver circuit consists of *UCC27322* gate driver IC that can produce a 9-A peak current at the Miller Plateau region of the MOSFET [46]. The schematics and hardware of the PWM circuit are shown in Fig. 12.

4) Bidirectional Converter Control: The bidirectional converter  $C_2$  is operated in voltage control mode. The primary purpose of this converter is to maintain a constant voltage across the load at all times. The converter has been set to maintain  $V_L = 23$  V across the load for the dissipation-based method. The choice of this value for  $V_L$  is driven by the limiting output voltage of  $C_2$ , which is 23.3 V.

### C. Experimental Results

The decentralized approach with dissipation-based SOC control, discussed in Sections III and III-C, is tested on the experimental setup and the results are shown in Fig. 13. As shown in Fig. 13(a), a repetitive step load change from 10-A level to 20-A level is implemented. Fig. 13(d) confirms transient fuel utilization control with only an  $\approx \pm 2\%$  deviation about the target  $U_{ss} = 80\%$ . Fig. 13(b) and (e) is self-explanatory, representing FC current and voltages. Fig. 13(f) compares  $V_{uc}$  with (blue) and without (red) dissipation. For the test, we set  $S_t = 0.75$ , which corresponds to  $V_{uc,d} \approx 12.2$  V. The conservative nature of  $K_1$  is clear, since it gradually overcharges the capacitor in the absence of dissipation (in  $K_2$ ). With controlled dissipation, the issue is addressed.

In the experiment, the controller parameters are chosen as follows: for  $K_1$ ,  $g_i = 0.01$  in (12) and  $g_{p,o} = g_{i,o} = 0.01$  in (23), and for  $K_2$ ,  $g_{p,uc} = 0$  and  $g_{i,uc} = 20$  in (25). In Fig. 13(c),  $i_{uc}$  is plotted. As expected,  $i_{uc}$  goes to zero at steady state, indicating that, indeed, the FC supplies the entire power demand at steady state. The slow response of the FC to the load changes along with the capacitor's contribution to make up for FC's deficiency during load transients is visible in Fig. 13(g). In Fig. 13(g), also observe that  $A_{1,1} < A_{2,1}$ . This is due to losses in  $C_2$  that translates to (10) for conserving the capacitor's energy.

## V. ROBUSTNESS THROUGH VOLTAGE MODULATION

### A. Approach and Simulation Results

Using dissipation for controlling the SOC is a conservative approach that relies on dissipating the excess energy going to the storage element. The idea in the voltage regulation method is to minimize this loss. Note that energy loss would be prevented if the FC controller  $K_1$  has accurate knowledge of  $\eta_2$  and  $\bar{\eta}_2$ . Hence, the objective of this design is to develop a mechanism by which  $K_1$  can learn the aforementioned efficiencies without direct sensing or communicating with  $K_2$ . As mentioned in Section II-C,  $K_2$  can manipulate  $V_L$ . In the proposed voltage modulation approach,  $K_2$  changes  $V_L$  as the SOC deviates from  $S_t$ . Specifically,  $V_L$  is increased from a nominal value of  $V_{L,nom}$ , as the capacitor gets gradually overcharged. Since  $V_L$  is a global variable,  $K_1$  simultaneously uses changes in  $V_L$  to improve its estimates of  $\eta_2$  and  $\bar{\eta}_2$ . The process, when designed properly, causes the estimates to eventually settle close to the actual values of  $\eta_2$  and  $\bar{\eta}_2$ .

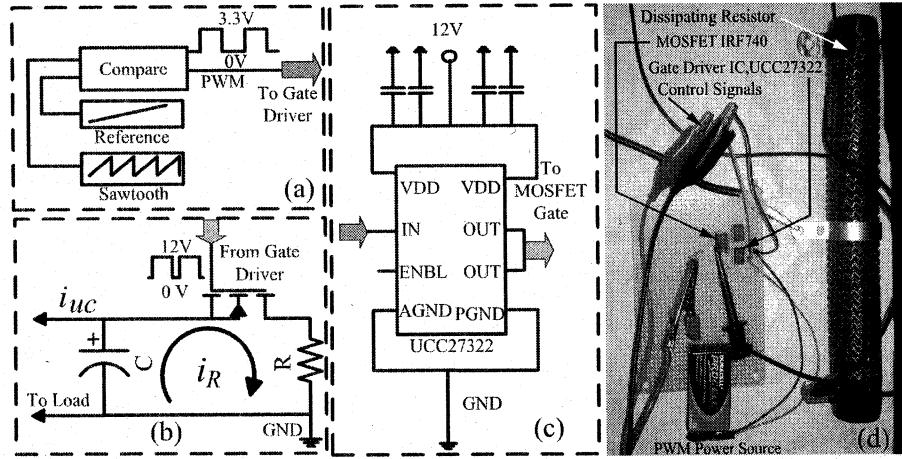



Fig. 12. (a) Schematic of a PWM generator. (b) Discharge circuit. (c) Gate driver. (d) Switching circuit.

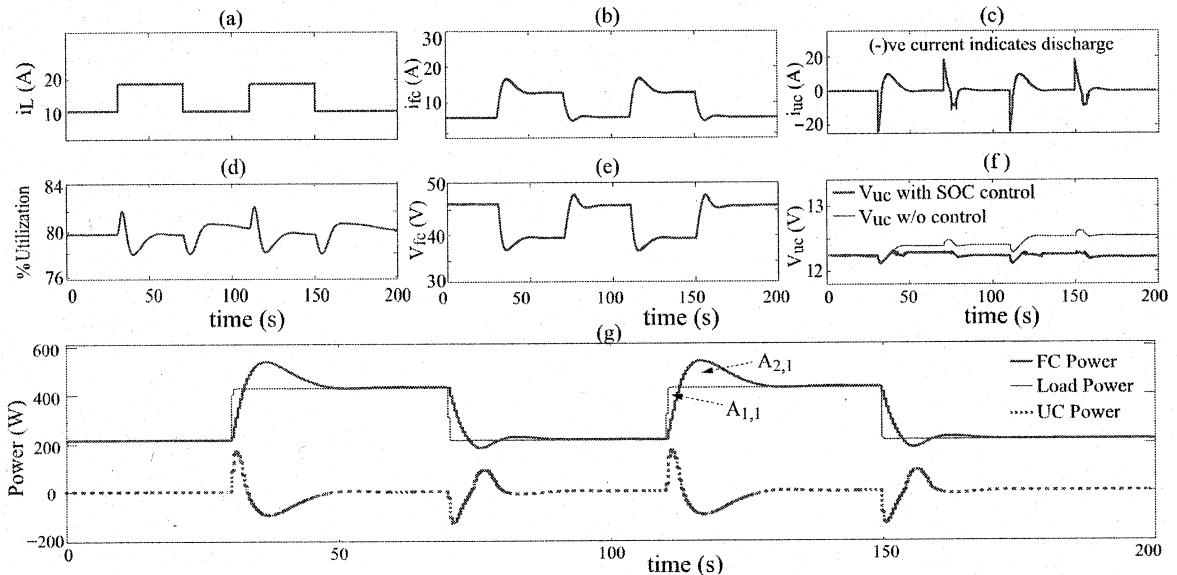



Fig. 13. Experimental results for the dissipation-based approach.

This diminishes overcharging of the ultracapacitor with progress of time. It is emphasized that this paper simply presents the voltage modulation approach as a viable alternate to dissipation. Theoretical analysis of the approach is an area of future research.

Voltage fluctuation is undesirable in power networks. Therefore, the aforementioned modulation method, even though is capable of inducing  $K_1$  to improve its efficiency estimates, must be designed in a way such that voltage fluctuations are low and they diminish over time. We propose  $V_L$  to be modulated by  $K_2$  using an integral action

$$V_L = V_{L,\text{nom}} + g_{i,v2} \int_0^t (V_{uc} - V_{uc,d}) dt$$

where  $V_{L,\text{nom}}$  is the nominal load voltage and  $g_{i,v2}$  is the integral gain. When  $V_{uc}$  is sufficiently close to  $V_{uc,d}$ , the integrator resets  $V_L$  to  $V_{L,\text{nom}}$ . In parallel, an integral action

is used in  $K_1$  to utilize the voltage deviations from  $V_{L,\text{nom}}$  for efficiency estimation

$$\eta_{2,\text{min}}(t) = \eta_{2,\text{min}}(t_0) + g_{i,v1} \int_0^t (V_L - V_{L,\text{nom}}) dt.$$

Simulation results are shown in Fig. 14. In the simulation, pulsed changes in power demand were applied every 200 s. Parameter values were  $g_{i,v1} = 0.0005$ ,  $g_{i,v2} = 0.005$ ,  $\eta_2 = \bar{\eta}_2 = 0.8$ , and  $V_{L,\text{nom}} = 24$  V. From Fig. 14(a), it is clear that  $K_2$  is able to maintain the SOC through voltage modulation. Further, Fig. 14(b) shows that voltage fluctuations reduce over time. This is primarily due to better estimation of  $\eta_{2,\text{min}}$  by  $K_1$  over time. The estimation is shown in Fig. 14(c). The saw-tooth type of response, as shown in Fig. 14(b), is due to integrator resets. Another observation is that during higher SOC/voltage fluctuations toward the beginning, efficiency adaptation was faster and it decreased

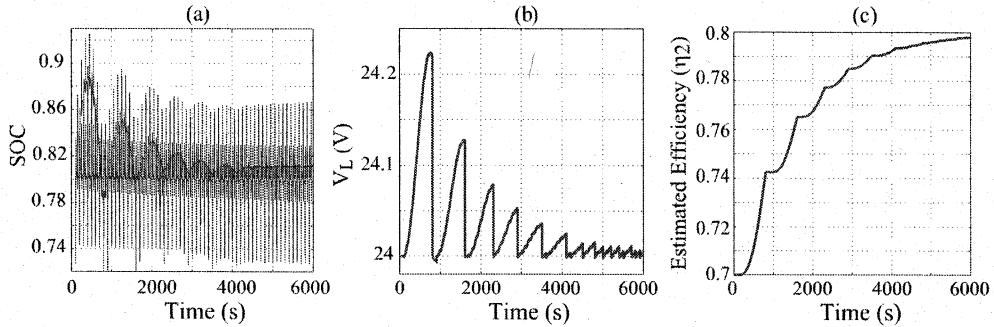



Fig. 14. Simulations with voltage modulation and efficiency estimation.

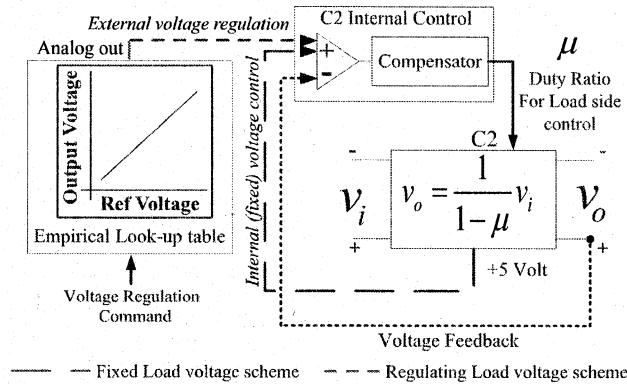



Fig. 15. Implementation of external voltage modulation on  $C_2$ .

with time. The estimation process therefore requires not only the voltage modulation but also persistent perturbations in the power demand.

### B. Implementation and Experimental Results

Voltage modulation capability was facilitated in the converter  $C_2$  with minor changes to its internal circuitry. Hardware limitations of  $C_2$  limit the maximum  $V_{L,\text{nom}}$  to  $\approx 23.3$  V. Hence, to allow voltage modulation  $V_{L,\text{nom}} = 22$  V is chosen in (26). The modifications to  $C_2$  to implement voltage modulation are shown in Fig. 15. Two integrators were used at the SOFC side (i.e.,  $K_1$ ) to utilize the load deviations from 22 V for efficiency estimation, to account for the different discharging and charging efficiencies, namely,  $\eta_2$  and  $\hat{\eta}_2$ , respectively

$$\begin{aligned}\hat{\eta}_2(t) &= \hat{\eta}_2(t_0) + g_{i,v11} \int_0^t (V_L - 22) dt \\ \dot{\hat{\eta}}_2 &= 0, \text{ when discharging} \\ \hat{\eta}_2(t) &= \hat{\eta}_2(t_0) + g_{i,v12} \int_0^t (V_L - 22) dt \\ \dot{\hat{\eta}}_2 &= 0, \text{ when charging.}\end{aligned}$$

In the experiment, the following parameter values were chosen,  $g_{i,v2} = 0.1$ ,  $g_{i,v11} = 0.001$ ,  $g_{i,v12} = 0.002$ , and  $\hat{\eta}_2(t_0) = \hat{\eta}_2(t_0) = 0.7$ . The experimental results are shown in Fig. 16.

The power draw was pulsed at regular interval, as shown in Fig. 16(a). Fig. 16(b) shows the main result of the experiment, indicating that load voltage fluctuations imposed by  $K_2$  diminished over time starting from  $\sim 0.5$  to  $< 0.05$  V. This is because with progressive improvement of the efficiency estimates, the net capacitor overcharge over individual power pulses reduce. The corresponding variations in  $V_{uc}$ ,  $i_{uc}$ , and  $i_{fc}$  are shown in Fig. 16(c)–(e), respectively. The load power and FC delivered power are plotted in Fig. 16(f). Fig. 16(f) shows how  $K_1$  modulates the FC power to attain energy conservation in the ultracapacitor. The estimates  $\hat{\eta}_2$  and  $\hat{\eta}_2$  are shown in Fig. 16(g). The estimates of discharge and charge efficiencies approach  $\hat{\eta}_2 \approx 0.85$  and  $\hat{\eta}_2 \approx 1.05$ , respectively. Both efficiency estimates are expected. As mentioned in Section II-C, the charge efficiency  $\hat{\eta}_2$  is expected to be greater than 1 since the energy supplied for charging the ultracapacitor will be higher than the change in the stored energy due to losses. It is noted that the learning rate of  $\hat{\eta}_2$  and  $\hat{\eta}_2$  could have potentially been made faster by choosing higher values of the integrator gains. We have deliberately maintained small values for safety of hardware. As mentioned in Section V-A, voltage fluctuations must be small for network safety. Both Figs. 14(b) and 16(b) show small voltage changes ( $\leq 0.5$  V for  $V_{L,\text{nom}} = 24$  or 22 V). Simultaneously, slow rate of efficiency estimation prevents high frequency signals from entering  $i_{fc,d}$ .

## VI. OBSERVATIONS

### A. Overall System Loss Trends

While both approaches described above perform satisfactorily in terms of meeting the control objectives, they have certain advantages and disadvantages that make each approach appealing from different perspectives. The voltage-regulation-based approach progressively reduces energy losses; yet it relies on persistent excitation of the load to improve its efficiency estimates. On the other hand, the dissipation-based approach results in uniform energy loss, but it does not require perturbations on the network. The energy losses with each approach were compared and plotted in Fig. 17. Each data point represents an average power loss over an interval, calculated as

$$W_{\text{loss},i} = \frac{1}{t_i - t_{i,0}} \int_{t_{i,0}}^{t_i} (V_L i_L - V_{fc} i_{fc}) dt \quad (26)$$

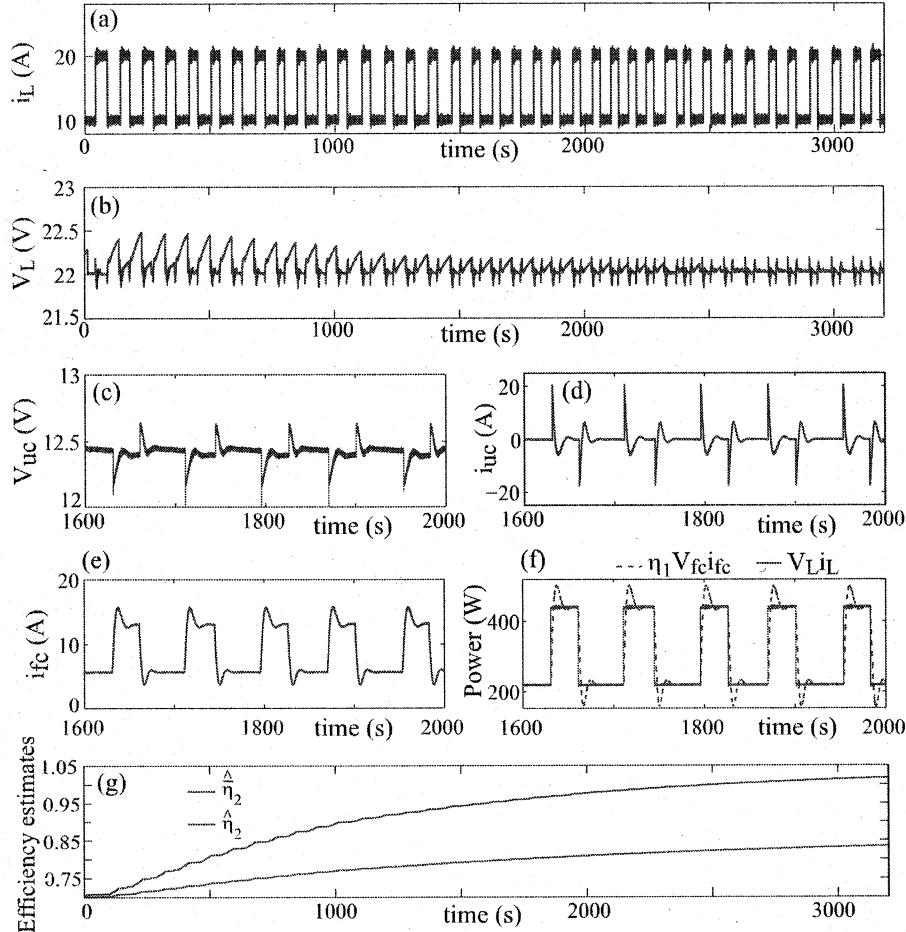



Fig. 16. Experimental results for voltage-regulation-based approach.

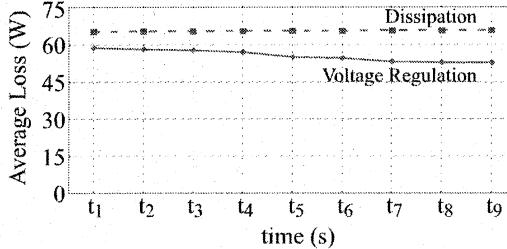



Fig. 17. Power loss trends with voltage regulation and dissipation approaches.

for both approaches. In (26),  $\Delta t_i = t_i - t_{i,0}$  represents the  $i$ th interval ending at  $t_i$  and starting at  $t_{i,0}$ . Each interval is roughly the same, around 100 s, consisting of one step up and one step down in  $i_L$ . The final instants  $t_i$  were not all equispaced in time. For example,  $(t_5 - t_4)$  and  $(t_7 - t_6)$  are longer than the others. It can be observed from the plot that with voltage regulation, the losses decay over time, whereas it is uniform for the dissipation-based approach. The overall magnitudes are not considerably different. This is because the changes in capacitor voltage due to overcharging (and hence the required dissipation) were low in our experiments, owing to

a high capacity of 250 F and comparatively lower power levels [see Fig. 13(f)]. It is expected that with lower capacity storage, the advantages of voltage regulation will be more prominent.

#### B. Fault Tolerance in Decentralized Strategy

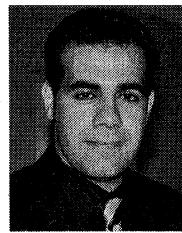
As discussed in the Introduction, one advantage of the decentralized approach is fault tolerance. This is illustrated here for the hybrid SOFC system through a simple observation. Referring to prior *centralized control* in [13], the SOFC current demand  $i_{fc,d}$  was designed as

$$i_{fc,d} = \frac{V_L i_L}{\bar{\eta}_1 V_{fc}} + g(E_s) + \delta_1(E_s) \quad (27)$$

where  $E_s = S - S_t$  and  $S$  is the SOC of the ultracapacitor. The function  $g$  and the switching parameter  $\delta_1$  are both dependent on  $E_s$ . However, in the decentralized approach proposed in this paper,  $i_{fc,d}$  is designed as given in (12), where the integral  $E_A$  is defined in (14). It is clear from (12) and (27) that in the centralized case, the control input  $i_{fc,d}$  depends on the SOC, whereas in the latter, the control input is independent of the SOC.

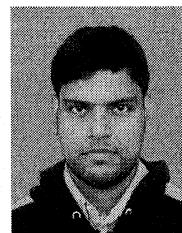
Therefore, even under steady conditions (constant  $i_L$  and  $S = S_t$ ), a fault in the ultracapacitor or a fault in sensing

the SOC will deviate the SOFC's delivered power from the steady demanded value of  $V_L i_L$ . This is because an incorrect value of  $E_s$  will result in an incorrect  $i_{fc,d}$  in the centralized case, as is clear from (27). This in turn will affect the SOFC's fuel flow rate and cause potential depletion or overcharge and eventual damage of the ultracapacitor. In contrast, in the decentralized controller, the invariance of  $i_{fc,d}$  to SOC will ensure  $\Delta P = V_L i_L - \eta_1 V_{fc} i_{fc} = 0$  even under such a fault. This is implied from the result of Theorem 1. The effectiveness of decentralized over centralized control is also dependent on the nature of faults. For certain faults, such as the one mentioned here, the advantage may be clear, but for others, secondary protection logic may be necessary for both approaches.


## VII. CONCLUSION

Distributed control for power management in a hybrid FC ultracapacitor system is demonstrated through simulations and experiments. In the proposed decentralized framework, individual controllers for the FC and the ultracapacitors use local information only. The system as a whole guarantees load-following in the presence of rapidly fluctuating power demands without jeopardizing any component. It is shown that simple decentralized controllers can be built by locally applying conservation of energy. Moreover, robust performance can be achieved through controlled dissipation of excess energy or by voltage modulation. The latter effectively amounts to establishing implicit communication between the controllers using the power line itself. Stability analysis is carried to ascertain the efficacy of the individual controllers. Elements of fault tolerance are shown to be inherent in the decentralized approach. Extending this approach to broader networks with many power sources and storage elements is an area of ongoing and future research. Here, the challenges expected are in autotuning of steady-state power among distributed resources, while maintaining stability. Another question of importance will be the management of multiple energy storage elements. Overall, an integration of feedback control and optimization problems will evidently be required.

## REFERENCES


- [1] J. Larminie and A. Dicks, *Fuel Cell Systems Explained*, 2nd ed. New York, NY, USA: Wiley, 2003.
- [2] X. Li, *Principles Fuel Cells*. New York, NY, USA: Taylor & Francis, 2006.
- [3] M. H. Nehrir and C. Wang, *Modeling and Control of Fuel Cells: Distributed Generation Applications*. New York, NY, USA: Wiley, 2009.
- [4] J. R. Meacham, F. Jabbari, J. Brouwer, J. L. Mauzey, and G. S. Samuelsen, "Analysis of stationary fuel cell dynamic ramping capabilities and ultra capacitor energy storage using high resolution demand data," *J. Power Sour.*, vol. 156, no. 2, pp. 472–479, 2006.
- [5] T. Das and S. Snyder, "Adaptive control of a solid oxide fuel cell ultracapacitor hybrid system," *IEEE Trans. Control Syst. Technol.*, vol. 21, no. 2, pp. 372–383, Mar. 2013.
- [6] R. Gaynor, F. Mueller, F. Jabbari, and J. Brouwer, "On control concepts to prevent fuel starvation in solid oxide fuel cells," *J. Power Sour.*, vol. 180, no. 1, pp. 330–342, 2008.
- [7] F. Mueller, F. Jabbari, and J. Brouwer, "On the intrinsic transient capability and limitations of solid oxide fuel cell systems," *J. Power Sour.*, vol. 187, no. 2, pp. 452–460, 2009. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S0378775308021575>
- [8] F. Mueller, F. Jabbari, R. Gaynor, and J. Brouwer, "Novel solid oxide fuel cell system controller for rapid load following," *J. Power Sour.*, vol. 172, no. 1, pp. 308–323, 2007. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S0378775307011408>
- [9] S. Campanari, "Thermodynamic model and parametric analysis of a tubular SOFC module," *J. Power Sour.*, vol. 92, nos. 1–2, pp. 26–34, 2001. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S0378775300004948>
- [10] A. Lazzaretto, A. Toffolo, and F. Zanon, "Parameter setting for a tubular SOFC simulation model," *J. Energy Resour. Technol.*, vol. 126, no. 1, pp. 40–46, May 2004.
- [11] M. Nayeripour, M. Hoseintabar, and T. Niknam, "A new method for dynamic performance improvement of a hybrid power system by coordination of converter's controller," *J. Power Sour.*, vol. 196, no. 8, pp. 4033–4043, 2011. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S0378775310021488>
- [12] T. Das, S. Narayanan, and R. Mukherjee, "Steady-state and transient analysis of a steam-reformer based solid oxide fuel cell system," *J. Fuel Cell Sci. Technol.*, vol. 7, no. 1, p. 011022, 2010.
- [13] T. Allag and T. Das, "Robust control of solid oxide fuel cell ultracapacitor hybrid system," *IEEE Trans. Control Syst. Technol.*, vol. 20, no. 1, pp. 1–10, Jan. 2012.
- [14] Y. Guezennec, T.-Y. Choi, G. Paganelli, and G. Rizzoni, "Supervisory control of fuel cell vehicles and its link to overall system efficiency and low-level control requirements," in *Proc. Amer. Control Conf.*, 2003, pp. 2055–2061.
- [15] M. Grujicic, K. M. Chittajallu, and J. T. Pukrushpan, "Control of the transient behaviour of polymer electrolyte membrane fuel cell systems," *Proc. Inst. Mech. Eng. D, J. Automobile Eng.*, vol. 218, no. 11, pp. 1239–1250, 2004.
- [16] J. Sun and I. V. Kolmanovsky, "Load governor for fuel cell oxygen starvation protection: A robust nonlinear reference governor approach," *IEEE Trans. Control Syst. Technol.*, vol. 13, no. 6, pp. 911–920, Nov. 2005.
- [17] C. H. Woo and J. B. Benziger, "PEM fuel cell current regulation by fuel feed control," *Chem. Eng. Sci.*, vol. 62, no. 4, pp. 957–968, 2007.
- [18] A. Vahidi, A. Stefanopoulou, and H. Peng, "Current management in a hybrid fuel cell power system: A model-predictive control approach," *IEEE Trans. Control Syst. Technol.*, vol. 14, no. 6, pp. 1047–1057, Nov. 2006.
- [19] A. E. Auld, K. M. Smedley, F. Mueller, J. Brouwer, and G. S. Samuelsen, "Load-following active power filter for a solid oxide fuel cell supported load," *J. Power Sour.*, vol. 195, no. 7, pp. 1905–1913, 2010. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S037877530901739X>
- [20] P. Thounthong, S. Pierfederici, J.-P. Martin, M. Hinaje, and B. Davat, "Modeling and control of fuel cell/supercapacitor hybrid source based on differential flatness control," *IEEE Trans. Veh. Technol.*, vol. 59, no. 6, pp. 2700–2710, Jul. 2010.
- [21] P. Adhikari and M. Abdelrahman, "Modeling, control, and integration of a portable solid oxide fuel cell system," *J. Fuel Cell Sci. Technol.*, vol. 9, no. 1, p. 011010, 2012.
- [22] A. Vahidi and W. Greenwell, "A decentralized model predictive control approach to power management of a fuel cell-ultracapacitor hybrid," in *Proc. Amer. Control Conf.*, Jul. 2007, pp. 5431–5437.
- [23] A. Y. Sendjaja and V. Kariwala, "Decentralized control of solid oxide fuel cells," *IEEE Trans. Ind. Informat.*, vol. 7, no. 2, pp. 163–170, May 2011.
- [24] L. Bakule, "Decentralized control: An overview," *Annu. Rev. Control*, vol. 32, no. 1, pp. 87–98, 2008. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S1367578808000096>
- [25] W. M. Haddad, Q. Hui, V. Chellaboina, and S. G. Nersesov, "Hybrid decentralized maximum entropy control for large-scale dynamical systems," *Nonlinear Anal., Hybrid Syst.*, vol. 1, no. 2, pp. 244–263, 2006.
- [26] A. Ramakrishna and N. Viswanadham, "Decentralized control of interconnected dynamical systems," in *Proc. 19th IEEE Conf. Decision Control Including Symp. Adapt. Process.*, Dec. 1980, pp. 538–543.
- [27] Y. Guo, D. J. Hill, and Y. Wang, "Nonlinear decentralized control of large-scale power systems," *Automatica*, vol. 36, no. 9, pp. 1275–1289, 2000.
- [28] V. A. Ugrinovskii and H. R. Pota, "Decentralized control of power systems via robust control of uncertain Markov jump parameter systems," in *Proc. 43rd IEEE Conf. Decision Control*, Dec. 2004, pp. 3503–3508.
- [29] A. A. Aquino-Lugo, "Distributed and decentralized control of the power grid," Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Illinois Urbana-Champaign, Champaign, IL, USA, 2011.

- [30] A. Tuladhar, K. Jin, T. Unger, and K. Mauch, "Parallel operation of single phase inverter modules with no control interconnections," in *Proc. 12th Annu. Appl. Power Electron. Conf. Expo. (APEC)*, vol. 1, Feb. 1997, pp. 94–100.
- [31] P. Hines and S. Talukdar, "Reciprocally altruistic agents for the mitigation of cascading failures in electrical power networks," in *Proc. 1st Int. Conf. Infrastruct. Syst. Services, Building Netw. Brighter Future (INFRA)*, Nov. 2008, pp. 1–6.
- [32] D. Chiappini, A. L. Facci, L. Triboli, and S. Ubertini, "SOFC management in distributed energy systems," *J. Fuel Cell Sci. Technol.*, vol. 8, no. 3, p. 031015, 2011.
- [33] A. K. Saha, S. Chowdhury, S. P. Chowdhury, and Y. H. Song, "Application of solid-oxide fuel cell in distributed power generation," *IET Renew. Power Generat.*, vol. 1, no. 4, pp. 193–202, 2007.
- [34] A. Sakhare, A. Davari, and A. Feliachi, "Fuzzy logic control of fuel cell for stand-alone and grid connection," *J. Power Sour.*, vol. 135, nos. 1–2, pp. 165–176, 2004. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S0378775304005385>
- [35] F. Mueller, J. Brouwer, F. Jabbari, and S. Samuelsen, "Dynamic simulation of an integrated solid oxide fuel cell system including current-based fuel flow control," *J. Fuel Cell Sci. Technol.*, vol. 3, no. 2, pp. 144–154, 2006.
- [36] R. Kandepu, L. Imsland, B. A. Foss, C. Stiller, B. Thorud, and O. Bolland, "Modeling and control of a SOFC-GT-based autonomous power system," *Energy*, vol. 32, no. 4, pp. 406–417, Apr. 2007.
- [37] T. Das and R. Weisman, "A feedback based load shaping strategy for fuel utilization control in SOFC systems," in *Proc. Amer. Control Conf. (ACC)*, 2009, pp. 2767–2772.
- [38] V. Tsourapas, A. G. Stefanopoulou, and J. Sun, "Model-based control of an integrated fuel cell and fuel processor with exhaust heat recirculation," *IEEE Trans. Control Syst. Technol.*, vol. 15, no. 2, pp. 233–245, Mar. 2007.
- [39] A. Drolia, P. Jose, and N. Mohan, "An approach to connect ultracapacitor to fuel cell powered electric vehicle and emulating fuel cell electrical characteristics using switched mode converter," in *Proc. 29th Annu. Conf. IEEE Ind. Electron. Soc. (IECON)*, Nov. 2003, pp. 897–901.
- [40] A. Arce, A. J. del Real, and C. Bordons, "MPC for battery/fuel cell hybrid vehicles including fuel cell dynamics and battery performance improvement," *J. Process Control*, vol. 19, no. 8, pp. 1289–1304, 2009. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S0959152409000420>
- [41] W. Greenwell and A. Vahidi, "Predictive control of voltage and current in a fuel cell–ultracapacitor hybrid," *IEEE Trans. Ind. Electron.*, vol. 57, no. 6, pp. 1954–1963, Jun. 2010.
- [42] A. G. Stefanopoulou and K.-W. Suh, "Mechatronics in fuel cell systems," *Control Eng. Pract.*, vol. 15, no. 3, pp. 277–289, 2007.
- [43] H. K. Khalil, *Nonlinear Systems*, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.
- [44] W. J. Rugh, *Linear System Theory*, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.
- [45] G. F. Franklin, J. Da Powell, and A. Emami-Naeini, *Feedback Control of Dynamic Systems*, 6th ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2009.
- [46] *Single 9-A High-Speed Low-Side MOSFET Driver With Enable*. [Online]. Available: <http://www.ti.com/lit/ds/slusa13b/slusa13b.pdf>, accessed Sep. 9, 2014.



**Omid Madani** received the B.S. degree in mechanical engineering from the Sharif University of Technology, Tehran, Iran, in 2009, and the M.S. and Ph.D. degrees from the University of Central Florida, Orlando, FL, USA, in 2011 and 2014, respectively.

His Ph.D. research was focused on decentralized power management of fuel cells and developing control strategies for energy systems using multivariable design approach. Since 2014, he has been with CD-adapco Inc., Orlando, as a Senior Engineer.



**Amit Bhattacharjee** received the B.E. degree in electrical engineering from Jadavpur University, Kolkata, India, in 2008, and the M.S. degree from the University of Central Florida (UCF), Orlando, FL, USA, in 2014, where he is currently pursuing the Ph.D. degree.

His M.S. thesis research was involved in the area of decentralized power management of microgrids with UCF. He worked in the power distribution industry and was involved in power electronics research for more than three years.



**Tuhin Das** (M'09) received the B.Tech. degree from IIT Kharagpur, Kharagpur, India, in 1997, and the M.S. and Ph.D. degrees from Michigan State University, East Lansing, MI, USA, in 2000 and 2002, respectively, all in mechanical engineering.

He has been with the industry for four years and was a Faculty Member of mechanical engineering with the Rochester Institute of Technology, Rochester, NY, USA. His research has been funded by NSF, ONR, and Siemens. He is currently an Assistant Professor of Mechanical and Aerospace

Engineering with the University of Central Florida, Orlando, FL, USA. His current research interests include mobile robots, fuel cells, and wind energy.