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ABSTRACT

We present results of a large, high-resolution 3D hydrodynamical simulation of the surface
layers of a DA white dwarf (WD) with Ter = 11 800 K and log (g) = 8 using the ANTARES code,
the widest and deepest such simulation to date. Our simulations are in good agreement with
previous calculations in the Schwarzschild-unstable region and in the overshooting region
immediately beneath it. Farther below, in the wave-dominated region, we find that the rms
horizontal velocities decay with depth more rapidly than the vertical ones. Since mixing
requires both vertical and horizontal displacements, this could have consequences for the size
of the region that is well mixed by convection, if this trend is found to hold for deeper layers.
We discuss how the size of the mixed region affects the calculated settling times and inferred

steady-state accretion rates for WDs with metals observed in their atmospheres.

Key words: convection —stars: atmospheres —stars: interiors — white dwarfs.

1 INTRODUCTION

Siedentopf (1933) first suggested that the surface layers of white
dwarfs (WDs) should be convective. This insight still holds today:
WDs of type DA, characterized by a surface composed of (nearly)
pure hydrogen, have convection zones due to the partial ionization
of hydrogen for effective temperatures T S 14 000K at a surface
gravity of log (g) = 8. Theoretical calculations confirming this qual-
itative picture include envelope and evolutionary models of WDs
(e.g. van Horn 1970; Fontaine & van Horn 1976) as well as numer-
ical, hydrodynamical simulations of limited regions of the stellar
surface (‘box-in-a-star’ calculations) in 2D (two spatial dimensions,
Freytag, Ludwig & Steffen 1996) and more recently in 3D (three
spatial dimensions, Tremblay et al. 2011, 2013, 2015). Such 2D
and 3D simulations also allow the determination of mixing below
the convective zone, similar to non-local Reynolds stress models
(Montgomery & Kupka 2004).

In this work, we address the question of overshooting and mixing
induced by this surface convection zone of DA WDs in the context of
accretion and diffusion processes. A sizable fraction (~25 per cent)
of DA WDs show evidence of metal lines in their spectra (Gianninas
et al. 2014; Koester Gansicke & Farihi 2014). Since the theoreti-
cal gravitational settling times (from days to thousands of years,
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Koester & Wilken 2006; Koester 2009) are much shorter than the
evolutionary times, this is taken to be evidence of ongoing or recent
accretion. In order for charge neutrality to be maintained by a plasma
in a gravitational field, a weak electric field is set up; this electric
field leads to a settling velocity of the trace amounts of metals in a
predominantly hydrogen background (Arcoragi & Fontaine 1980).
Since the velocities in the convection zone are much larger than the
computed settling velocities, the convective region acts as a single
zone, and the settling time for the surface abundances is determined
by the settling time at the point beneath the convection zone at
which the velocities from the convection zone produce negligible
mixing compared to gravitational settling (see Dupuis et al. 1992).

With the advent of detailed 3D numerical simulations of stellar
convection zones, it becomes possible to compute, in principle, the
amount of mass mixed in the ‘thin’ surface convection zones of DA
WDs. These convection zones are just a few km deep and contain
a very small fraction of the total stellar mass; for DA WDs with
log (g) = 8 and T ~ 11 500K, Tremblay et al. (2015) derive the
mass of the convection zone to be ~10~!* of the total stellar mass.

We analyse a 3D numerical simulation calculated with ANTARES
(Muthsam et al. 2010) that differs from previous work by consid-
ering a computational box much wider and much deeper such that
a larger fraction of the stellar envelope mixed by convective over-
shooting is contained inside it. We discuss models for the extent of
overshooting underneath convection zones in this class of objects,
in particular the so-called exponential overshooting suggested first
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in Freytag et al. (1996) in the context of A-type stars and proposed
by Herwig (2000) to be applied to a much larger variety of objects
(for WDs cf. Tremblay et al. 2015). The simulation data are then
used to infer the extent of the convectively mixed region and to
investigate the effect this mixing has on the inferred settling and
accretion rates of metals in DA WDs.

In Section 2 we describe model parameters and procedures of
relaxation and statistical evaluation for our numerical simulation.
Its mean thermal structure and the velocity fields are evaluated in
Section 3. We analyse these data with respect to convective mixing
and calculate the mixed mass in Section 4, followed by a discussion
and an outlook in Section 5.

2 NUMERICAL SIMULATION

Since surface convection zones of DA WDs are very shallow com-
pared to the stellar radius, we can use a box-in-a-star ansatz and
confine our numerical simulation to a small volume located at the
stellar surface. As the stellar photosphere is optically thin we need
to solve the radiative transfer equation to compute the radiative flux
in the upper part of the simulation volume. Since the DA WDs
are strongly stratified with high enough velocities to produce shock
fronts (cf. the root mean square velocities published by Tremblay
et al. 2013, 2015), the fully compressible conservation laws of
radiation hydrodynamics have to be solved numerically. This cal-
culation is performed with the ANTAREs software suite which has
been utilized for various astro- and geophysical applications. The
main purpose of the code is the simulation of the solar surface
convection zone (Muthsam et al. 2010; Grimm-Strele, Kupka &
Muthsam 2015b). However, several add-ons extended the code
for convection simulations of other types of stars, as e.g. A-stars
(Kupka, Ballot & Muthsam 2009) or Cepheids (Mundprecht, Muth-
sam & Kupka 2013). Stellar interior simulations concerning semi-
convection have been investigated by Zaussinger & Spruit (2013) for
the fully compressible and incompressible formulation, and subse-
quently for the general Mach number regime by Happenhofer et al.
(2013).

We first describe our setup for the simulation code ANTARES (Muth-
sam et al. 2010) which we use to solve the governing radiation hy-
drodynamic equations on a three-dimensional rectangular Cartesian
grid (x-coordinate vertical, y and z ones horizontal). The radiative
heating and cooling of gas is modelled by computing the radiative
heat exchange rate Qy,q from solving the radiative transfer equation
by a short characteristics method in the grey approximation. Below
an optical depth of 7 ~ 150, i.e. for the lower 75 percent of the
simulated region, the diffusion approximation is used instead. The
equation of state for the pure hydrogen WD is given by a tabulation
from the opaL data base (Rogers et al. 1996) for Z = 0. Rosseland
opacities ko for pairs of (p, T) points (density and temperature,
respectively) are given by Iglesias & Rogers (1996). Fluid can leave
and enter through the top vertical layer located in the upper pho-
tosphere (Grimm-Strele et al. 2015a). The lower vertical boundary
is located deeply inside the radiative region and is thus assumed
to be closed with vertically stress-free conditions for the horizontal
velocities and aradiative flux Frag = Fiotal = Finput = aTe‘}qr entering
the box such that T = 11 800 K. Periodic boundary conditions are
assumed along horizontal directions. We applied only small initial
density fluctuations directly inside the convectively unstable zone
to trigger convection to minimize relaxation time particularly of
the lower radiative zone. The high mixing rate of the downdrafts
rapidly damps initial patterns and guarantees statistically unbiased
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Figure 1. Temperature field for a horizontal cut where the horizontally
averaged temperature (T) = Tfr, at 912 m below the top of the simulation
box, for a snapshot of our 3D simulation.

data. The ANTAREs code is parallelized in a hybrid way in MPI and
OpenMPI, and we have used up to 576 cores for this simulation.

Our starting model has T, = 11 800K, a gravitational accelera-
tion of log(g) = 8, and a pure hydrogen composition. Vertical extent
and numerical resolution are determined by the effective height of
the convective zone including the overshooting region and by re-
quiring a well-resolved thermal structure. The horizontal directions
scale with an aspect ratio of 2.2 and allow for 26-8 granules in
each direction. A vertical resolution of ~15 grid cells per pressure
scale height H, ensures an average change of pressure <7 per cent.
For a total vertical extent of ~16.8 Hy, 252 cells are used vertically
while 522 x 522 cells are used horizontally, with grid spacings
Ax = 29.42m vertically and Ay = Az = 31.19 m horizontally. The
simulated box thus has a volume of 7.384 x 16.28 x 16.28 km®
and consists of about 6.8 x 107 grid cells. A snapshot from this
simulation is shown in Fig. 1.

We use the time a sound wave requires to travel from top to bot-
tom as a unit here, whence 7oy = 0.236s. The simulation has been
run for 92 scrt, i.e. 21.7 s, resulting in 2 TB of data. This includes
tp = 30scrt of initial relaxation of the mean structure by a 2D
simulation with otherwise identical extent, resolution, and physi-
cal parameters. The 2D simulation was started from a 1D model
computed with the Warsaw envelope code (Paczyriski 1969, 1970;
Pamyatnykh 1999) and saves relaxation time for the mean stratifi-
cation in the overshooting zone which cannot be accurately guessed
from our 1D model. The transfer from 2D to 3D was established by
horizontally averaging a snapshot of the 2D simulation to generate
anew, ‘pre-relaxed 1D model” which was then used as initial condi-
tion for the 3D simulation. The time f,p was chosen to ensure zero
total vertical momentum at a time where strong vortices in the over-
shooting zone have not yet developed. The pre-relaxed 1D model
was then perturbed again as described above. The statistical anal-
ysis is based on snapshots of density, momentum, internal energy,
radiative flux, and pressure made each 0.1 scrt. Further quantities
of interest can be calculated in post-processing, e.g. mean values
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Figure2. Adiabatic minus average temperature gradient from the numerical
simulation (ANTARES) and a 1 D model based on the ML2 mixing length model
with an o-parameter of 0.67.

(horizontally and also in time), variance, skewness, kurtosis, and
cross-correlations of various fields. The statistical analysis has been
performed from averages over the last #g,: ~ 22 scrt of the simula-
tion.

3 MEAN STRUCTURE, RELAXATION, AND
VELOCITIES

3.1 Mean structure

In Fig. 2 we compare V,q — V of the simulation averages with results
from a 1D stellar model with ML2 convection model (Bohm &
Cassinelli 1971) using @ = 0.67, where « has been adjusted to
provide the best fit to the final state of the 3D simulation. We observe
that the simulation averages and the 1D model merge towards the
interior, below layers where log(1 — M,/M,) 2 —13.5. Above
that layer differences in the gradients occur due to overshooting
modifying the stratification, i.e. where —13.5 2 log (1 — M,/M,)
2> —15. The superadiabatic feature at log (1 — M,/M,) ~ —16.4 is
slightly broader and shallower in the simulation than it is for the
stellar model. Differences further above it are due to the different
treatment of radiative transfer and the upper boundary conditions in
the simulation and the 1D model.

In Fig. 3 we compare the contributions of radiative, convective,
and kinetic energy fluxes in the vertical direction to the total (ver-
tical) energy flux. The Schwarzschild unstable region ranges from
0.8 km down to 2km (as measured from the top of the simulation
box). This is followed by a large overshooting region with non-zero
convective and kinetic energy fluxes. The latter essentially vanish
around 4 km.

3.2 Relaxation

We discuss in more detail the relaxation process during our 3D
simulation and the accuracy which we can expect for our statistical
data averaged over fyy. Already from the total energy flux depicted
in Fig. 3, which is obtained from averaging the horizontal average
of Fioal OVET fgy, We can expect the simulation to be quite close to
thermal relaxation, since the deviations of Figra from Figpy are about
4 per cent or less. In Kupka & Muthsam (2017) it is explained in
detail why we can expect a simulation to require thermal relaxation
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Figure 3. Radiative, convective, and kinetic energy fluxes, denoted as Frad,
Feonvs and Fiin, as well as their sum Fiora1, €ach normalized relative to the
input flux of the 1D starting model, plotted against depth measured from the
top of the simulation box.

only for the upper part of the simulation domain, if it is started
from an initial condition where the lower part of the computational
domain — located more closely to the stellar interior — is already in
a (nearly) relaxed state. This is possible if the lower part is either
stratified quasi-adiabatically as in simulations of solar granulation
or radiatively as in the present case, since both can easily and
sufficiently accurately be guessed from a 1D model. Indeed, for the
solar case fast relaxation from various initial conditions, all quasi-
adiabatic for the solar interior, was demonstrated with ANTARES by
Grimm-Strele et al. (2015a) (see their figs 9 and 10).

However, there is a region in the DA WD considered here, for
which the thermal structure cannot be easily guessed from a 1D
model: the region of overshooting below the convection zone. There,
Faa is up to 20 per cent larger than the total flux (see Fig. 3). These
layers require thermal relaxation and thus enforce a minimum re-
laxation time much larger than in surface convection simulations of
stars with a lower boundary placed inside a quasi-adiabatic convec-
tion zone such as that one of our Sun (cf. Kupka & Muthsam 2017).

In many cases of astrophysical interest the thermal relaxation
time associated with a certain layer of a star is approximately equal
to the Kelvin—-Helmholtz time-scale for that layer (cf. Chap. 2.3.4 in
Kupka & Muthsam 2017 and also Chap. 5 and 6 in Kippenhahn &
Weigert 1994, also for discussions of limitations of applicability of
this approximation): finerm(x) & fxu(x). The latter is obtained from
integrating fxu(x) = —3(f”" pp~tdM;)/L,, where a is the mass
near the surface of the star (or the simulation box, here ~0) and b
is the mass contained above that layer at depth x, i.e. M. We recall
that p and p are pressure and density, whereas L, = 47 12 F o is the
local luminosity. It is straightforward to adopt this to a box-in-a-star
configuration with plane parallel geometry and obtain a practical
definition for fgu(x), namely: fu(x) = (3(fy P(x")dx")/ Fotal In.ts
where the integration occurs over vertical location x’, with 0 <
X < x, and the result is averaged horizontally and in time — or a
horizontally averaged pressure is time averaged, as we have done
here. In Fig. 4 we plot this calculation of rgy(x) for our simulation
as a function of depth along with the acoustic time 7,.(x), i.e. the
time a sound wave requires to travel from the top of a simulation
box to a particular layer at the vertical point x. In addition, we dis-
play the convective time-scale feony(x), Which is likewise obtained
from integrating the inverse of the time and horizontally averaged
root mean square of the fluctuating part of the vertical velocity,
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Figure 4. Integral time-scales of interest for relaxation computed here as
a function of model depth: the convective turnover time fcony, acoustic time
tac, and Kelvin—Helmholtz time rgy.

i.e. the square root of w2, = ((w — (w)y)*)ns = (W), from top
down to x. Clearly, Tsx = tfac(Xportom)- INOW before statistics can be
collected (i.e. ahead of averaging results over the statistical sam-
pling time fqy,), the time integration has to be first performed long
enough such that initial perturbations both of the thermal mean
structure (given by p, T, p) and the velocity field no longer in-
fluence the result and this is just the relaxation time-scale frjax.
Following the discussion on thermal relaxation in Kippenhahn &
Weigert (1994) and on relaxation of hydrodynamical simulations
of stellar convection in Kupka & Muthsam (2017) we can expect
trelax = mMax (fkg(x1), feonv(*2)), i.€. the maximum of rxy(x;), eval-
uated at a layer x; below which the stratification is essentially in
thermal equilibrium already from the beginning, and of fcony(x2),
where x, is evaluated close to the bottom of the simulation do-
main (or at the bottom in case of open boundary conditions). We
find Figtal & Fraq below x; = 4 km throughout most of our simu-
lation. Precisely, their difference drops strictly monotonically from
~0.8 per cent at 4 km to <0.1 per cent at 5.5 km, and <0.01 per cent
at 7km. In the same region, Fioq differs from Figpy on average by
<1.5percent and at most by < 2.3 per cent. We choose x; slightly
above Xprom t0 avoid the layers where wrzms — 0. We conclude that
txu(x1) & 255 ~ 106 Ty and feony(X2) & feony(x = 7km) ~ 30s ~
127 75cr. So we expect the relaxation of the thermal stratification
and the velocity field to require up to roughly 130 Tgq.

To show the degree of thermal relaxation and the simulation time
required to achieve it we evaluate Fryq at the top of the simulation
box to plot it against model age measured in fy = f/Tsx Where
t is the model age in seconds. We note that until fy; = 30 the
simulation has been evolved in 2D and has then been reset through
horizontally averaging that state to provide the initial condition
of the 3D simulation, as described in Section 2. For a thermally
relaxed model we expect Frag(xiop) A~ Finput. In Fig. 5 we see the
result for our simulation from the beginning of the 3D setting.
During the first 20 scrt there is obviously some major readjustment
going on until a convergence of Frag(Xtop) —> Finput S€ts in which is
roughly proportional to #,~'/? during the time over which we have
performed the simulation (halving the flux difference with respect
to Finpu requires to continue the simulation for twice the amount
of time). We have decided to also drop the next segment of 20 scrt
for statistical evaluation and begin with the computation of #y, at
toerr & 70.
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Figure 5. Thermal relaxation is shown here by the time evolution of the
emerging radiative flux at the top of the simulation, normalized by the
input flux, plotted as a function of model age fscq, and grouped into three
consecutive sets of data.

Averaged over the time interval of £, we find an emerging radia-
tive flux Frag(Xtop)/ Finput & 1.038 45, when normalizing it relative to
Finput. This corresponds to a Teg of 11912 K and may be compared
with an equivalent of 12 197 K obtained when averaging over the
first 10scrt of the 3D simulation, at the beginning of relaxation. For
the average over the last 5 scrt of fy, We find Fraq(Xiop)/ Finput to have
dropped already below 1.035, whence Ter &~ 11900 K. From the
time dependence seen in Fig. 5 we expect that a doubling of simula-
tion time from sy = 30 onwards, i.e. up to fy.x = 154, would allow
halving the residual flux difference to less than 2 per cent and thus
T S 11 850K, in agreement with the relaxation estimate discussed
above for rgy (see Fig. 4). We note that from an observer’s point of
view we might use the emitted surface flux, i.e. a T,z of 11912 K, to
characterize the simulation when averaging it from a sy of 70-92.
However, for the present discussion we prefer to use the input flux
at the bottom (equivalent to T = 11 800 K) for scaling the results,
since this value is fixed throughout the simulation.

The differences between surface and input radiative flux which
are expected to remain at that value of #,. are partially caused by the
initial stratification of the lower region not being in perfect thermal
equilibrium, in particular with respect to its interaction with layers
further above. But there are also systematic differences introduced
by numerical inaccuracies of the radiative transfer solver (cf. the
little in dip in Fioa around a depth of 1km in Fig. 3 — we point
out here that this quantity is not often shown in publications on
numerical simulations of stellar surface convection, but when it is,
similar features are found for layers near the stellar surface). Other
sources of systematic differences of similar order or smaller occur
when comparing grey with non-grey radiative transfer (cf. Grimm-
Strele et al. 2015a and also Tremblay et al. 2011), or they originate
from the detailed implementation of the input boundary condition
as well as from differences between the numerical approximation
and assumed microphysics of the 1D starting model in comparison
with the numerical simulation. Although one could try to ‘remove’
residual flux differences originating from these sources by longer
relaxation, it makes neither physical nor mathematical sense to do
so: the systematic and numerical errors they contribute to are al-
ready roughly equal to the flux difference caused by an ‘incomplete
relaxation’ of the order of 2 per cent of the total flux. For the same
reason it is also not important whether we estimate rgu(x) by av-
eraging over fqy, as we have done, or calculate it from the initial
condition to guide the simulation. An estimate of the numerical
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Figure 6. Relaxation of the root mean square average of the fluctuation of
the u-component of horizontal velocity around its horizontal mean, tmys,
displayed as a function of depth and time averaged over a sequence of
intervals distinguished by model age fscq.

errors due to resolution on the mean temperature profile as obtained
from numerical simulations of solar granulation with ANTARES has
been made by Grimm-Strele et al. (2015b): the accumulated error
over several sound crossing times — for a relative resolution roughly
comparable to the one used in this work — was found in the range of
a fraction of 1 per cent, with maximum errors up to a few per cent.
The error calculated that way is chiefly due to finite resolution in the
numerical simulation and since the relative resolutions, maximum
Mach numbers, etc., are roughly comparable to our present case, we
should expect relative (numerical) errors of similar size also for the
present simulation. Moreover, from Fig. 5 we can see the impact
of oscillations present in the simulations: they lead to a variation in
Frad(Xtop)/ Finput Of £0.5 per cent over Ty (We discuss those further
below).

It is thus of little practical use to extend the present simulation
over a longer interval in time. If at all, one may consider foen —
150, since beyond this value the systematic errors become domi-
nant. But as we show here, also for sufficiently accurate statistics
of the velocity field time integration beyond #,.x &~ 92 is not nec-
essary. Fig. 6 provides an example for the rapid convergence of
the velocity field towards a statistically stationary state well within
our estimate of fcony(x2) discussed along Fig. 4. We find halving of
the relative error of the horizontally and time averaged root mean
square of the fluctuation of the u-component of horizontal velocity,
Ums, relative to its instantaneous horizontal mean for each consec-
utive interval of 10 scrt, i.e. ofser 2. As can be estimated from the
mere 12 per cent increase through most of the layers of the simu-
lation when progressing from a 7,y in the interval [60, 80] to [70,
92], i.e. the range of fq, quadratic convergence is found for nearly
the entire simulation duration of f. This is fast enough such that
the difference between these two averagings is already the entire
expected growth if the computation were continued beyond a tyc Of
about 150. Fig. 6 thus also provides an error estimate for iy, with
respect to its relaxation.

For the surface layers this error is even much smaller and clearly
it converges rapidly throughout the entire simulation box. This sim-
ilarly holds for the siblings of tns, i.€. Vims and wms, Which char-
acterize the second horizontal and the vertical component of the
flow. Also skewness and kurtosis of velocity and temperature fields,
i.e. higher order statistical correlations that we discuss below in
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Figure 7. Vertical rms velocity, W, and its horizontal counterparts, tms
and v, perfectly agreeing, on a logarithmic scale. The dimensionless
anisotropy ratio ® is also plotted together with its linear fit computed for
the interval from 4.45 to 5.85 km.

Section 4.2, converge fast but for a limited region dominated by
single events which is explained there in more detail. We can hence
safely use velocity and temperature statistics averaged over fyq in
the following discussion. From a physical point of view this fast
convergence of the statistics for the velocity field irrespectively of
the less accurate convergence of the emerging radiative flux is not
surprising: the velocity fields are generated by convective processes
occurring in the upper part of the simulation box (with very short
relaxation times). All what is left is a small drift as a function of
time, which does not affect the functional form, physical processes,
and even the level of accuracy we expect from the velocity related
quantities that we discuss below. The independence of the residual
error in the velocity field from the degree of thermal relaxation
is also corroborated by the completely different convergence rates,
X et~ 2 fOT Ums and Xtse ~1/2 for the total (radiative) flux at the sur-
face. We expect the faster convergence rate of velocities to change
to the smaller one of thermal relaxation once fyer 2 feonv(¥2)/ Tsert
A 127. As discussed in the context of thermal relaxation, at this
point in time evolution the model intrinsic errors dominate over
the residual error, and the accuracy reached for iy, and related
quantities at fscr € [70, 92] is already adequately small. Thus, our
simulation data obtained over fq, are both based on a sufficiently
well relaxed simulation and have statistical errors small enough to
be useful subsequently.

3.3 Velocities

As the vertical and horizontal velocity fields are reasonably well
converged in the convection zone and in the overshooting region
underneath, we can analyse the time and horizontally averaged
root mean square of their fluctuating components, i.e. Wy for the
vertical velocity, and likewise tms and vy for the two horizon-
tal components. In Fig. 7 we plot them on a logarithmic scale.
From local maxima of ~5.7kms™! near the top of the convective
zone they gradually drop towards its bottom. Where Feoyy Changes
sign (see Fig. 3), tms and vy have reached ~1.8kms~! while
Wems 1S still ~2.8kms™!, but has begun to decay much faster, a
process occurring for ims and vims again from around 3.2 km on-
wards. The horizontal velocity components begin to dominate the
total kinetic energy and ® = (w2, + 12, + vZ,,)/ w2, exceeds a
value of 2 with a local maximum around 3.5 km. There, a rapid,
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Figure 8. Logarithm of W, ttrms, and vy, as functions of the logarithm of
total pressure, relative to a reference velocity and pressure. The exponential
decay hypothesis for wms as function of pressure scale height is indicated.

exponential decay sets in. It is slightly larger for umms and vip.
For wyys the decay slows down around 4 km, where Fony begins
to vanish (—1percent S Feony/ Finpu S Opercent). The decay of
Uyms and vys continues to be rapid down to about4.2km and @ < 2.
The simulation can be used for an accurate study of even deeper
layers where the lower boundary is still sufficiently away to avoid
direct interference. We find that velocities decay at a slower rate
than in the ‘overshooting zone proper’. Interestingly, t;ms and vims
continue to decay more rapidly than wys: over an extended region
from about 4.45 to 5.85 km & features a nearly linear decrease with
depth which ceases only once the influence of the lower (closed)
boundary condition becomes notable. Fig. 7 highlights this relation
by a linear least squares fit of ® for that region. Note that the loga-
rithmic scale in that figure would actually suggest an exponential fit
for ® while a plot in linear scale motivates the linear model func-
tion chosen. This small difference is caused by a very low e-folding
scale: in this case an actually exponential function can be approxi-
mated by a linear function over an extended range. We return to a
comparison between both models in Section 4.3.2.

In Fig. 8 we plot the logarithm of wys as well as ums and vemg
as functions of InP, normalized relative to the velocity and the total
pressure at the layer where Fo,y changes sign (at2.785 kmin Fig. 3).
We also plot a line to indicate an exponential decay of the vertical
velocity field with H,, as proposed in Tremblay et al. (2015) to occur
for DA WDs. We cannot identify a unique exponential scaling law
for wyys in regions where Feony < 0. For the layers where AlnP
is between 0 and 1.5 (| Feonv/ Finput| > 1 per cent), the decay rate is
first about 1 H,, then becomes twice as steep (0.5 H}), then settles
at a quarter of that rate (2 H,). Similar holds for s and vy with
a shift in location and different decay rates particularly for AlnP
2 1.5. No simple polynomial law can describe this dependence
either (Canuto & Dubovikov 1997 derived a polynomial decay as
a function of distance from the convection zone if the dissipation
rate of turbulent kinetic energy was computed from its local limit
expression, cf. Fig. 7).

In turn, wms depends linearly on log 7' from 2.73 km, where Feony
2, 0, down to about 3.73 km, where Feony/ Finput & —2 per cent (see
Fig. 9). The linear fit of wys as a function of log 7 finds Wy
to become zero where Feony/ Finpu & —0.87 per cent, although this
occurs below the domain of its validity. There, log T =~ 4.80 at
a depth of ~3.97km. Inside the fit region, AlnP increases from
—0.07 to 1.04. A linear decay of wyys as a function of log T for
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Figure 9. ® as well as Wrms, Ums, and vms as functions of log 7 alongside
a linear fit of wms in the overshooting region (see the text).

exactly the same part of the overshooting region has been reported
by Montgomery & Kupka (2004) for hotter DA WDs with T
2> 12200K when solving the Reynolds stress model of Canuto &
Dubovikov (1998). Note that the same scaling could also be inferred
from fig. 4 of Tremblay et al. (2015) for their models with a Teg of
12100, 12500, and, roughly, also 13 000K for ‘zone 3’ (cf. their
table 1). As hydrogen is fully ionized in that zone and Fioa1 & Frad,
both T and Hj, scale linearly with depth, thus our Fig. 9 and fig. 1 of
Montgomery & Kupka (2004) imply the same (non-) linear decay
of Wms with T and Hy, albeit (cf. Fig. 8) this also only holds for a
limited region.

4 ANALYSIS

4.1 The temperature field and overshooting

One may characterize an overshooting zone with respect to the
sign of the convective flux, the superadiabatic gradient (or alterna-
tively the gradients of entropy or potential temperature), the flux
of (turbulent) kinetic energy, the mass flux, or the local maxima
and minima of these quantities. Assuming a nearly adiabatic tem-
perature gradient for cases of convection at low radiative loss rates
(high Peclet number) Zahn (1991) distinguished a separation of the
Schwarzschild unstable convection zone proper (Feony > 0, V > Vyq,
with |V — Vu4|/Vas < 1), from the zone of subadiabatic penetra-
tion (Feony < 0, V < V4, while again |V — Vy4|/Vaq < 1), and the
thermal boundary layer (Feony < 0, V < Vg, but |V — Vu|/Vag
— 0O(1)), until eventually Foony ~ O (stable, radiative region, no
longer mixed by convection). This case of penetrative convection
he distinguished from the case of overshooting for which a more
narrow definition was suggested: there, large radiative losses pre-
vent altering the temperature gradient towards the adiabatic one in
regions where Fyony < 0.

For the DA WD we consider in the present case, it follows from
Fig. 3 that radiative losses everywhere in the overshooting region
are large (low Peclet number). So it makes sense to distinguish, as
in Freytag et al. (1996), the following regions. First of all, the con-
vection zone proper with its Schwarzschild boundary (Feony > 0,
V > V,) and then an overshooting region where plumes gradu-
ally heat up that do not yet experience negative net buoyancy (and
which we call countergradient region, Feony > 0, V < V). The
layer at which the change of sign in Fgo,y occurs is termed ‘flux
boundary’ by some authors, for example, in Tremblay et al. (2015).

MNRAS 474, 46604671 (2018)
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Figure 10. Horizontal cuts of temperature as a function of depth at time fscq = 92. The top row displays snapshots at depths of 1.50, 2.00, and 2.50 km (a—)
as measured from the top of the simulation box. The middle row continues this series for depths of 2.75, 3.00, and 3.50km (d-f). The bottom row displays
the cuts for depths of 4.00, 4.50, and 5.00 km (g—i). Note that the temperature scale changes for each snapshot and the ratio between maximum and minimum
value peaks near the Schwarzschild stability boundary around 2.00 km. Clearly inside the plume-dominated region it is already smaller and drops only gently
from 3.00 to 4.00 km. There is again a drastic drop in scale for layers inside the wave-dominated region.

From there onwards throughout where Feony < 0 and V < Vg,
plumes penetrate into a region of counterbuoyancy. We call this the
plume-dominated region in the following. One might also consider
the local minimum of Fcoqy to mark the region where the thermal
boundary layer begins, as in Zahn (1991), although this has a less
important role, as we see in the following figures. Finally, motion
can persist beyond where Fony — 0 and V < V4, which we further
below call the wave-dominated region. The reasons for this naming
become evident from the following figures.
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In Fig. 10(a), well inside the convection zone, the network
of intergranular lanes is still clearly visible, similar to the
stellar surface depicted in Fig. 1, although the temperature con-
trast between maximum and minimum values has become larger
and more skewed (low-temperature regions cover a smaller area).
At the Schwarzschild boundary, Fig. 10(b), the granular structure is
still recognizable, but the intergranular ‘network’ of downflows is
no longer connected; rather, it is characterized by plumes, chiefly
grouped together near corner points where several granules meet



each other in layers inside the convection zone. The now isolated,
cold downflow columns maintain their identity (Fig. 10c), although
they gradually lose the contrast between them and their environ-
ment, until the ‘flux boundary’ is reached, where Fcoy changes
sign (Fig. 10d). Below this level the structure rapidly changes:
the temperature contrast is drastically reduced over a small dis-
tance, from 3 : 2 at the flux boundary around 2.75km to just 7:
6 at 3.00km (Fig. 10e). Now the plumes have reverted their role:
they are hotter than their environment. This structure is maintained
throughout the entire plume-dominated region (Figs 10e—g). The
contrast drops only gently (down to 9 : 8), but more importantly,
the number of plumes per area and the area each of them covers
rapidly decrease. Indeed, at 4.00km we see just one strong plume
left in comparison with some three dozen at 3.00 km. As we know
through Fig. 3, around 4.00km, Feony/Fioa — O (essentially), and
a new pattern becomes visible. This pattern remains throughout the
wave-dominated region depicted in Figs 10(h)—(i), with the small
contrast between maximum and minimum temperature slowly de-
creasing from 2.2 percent to 1.5 percent. This continues further
into the wave-dominated region (e.g. to a contrast of 1.2 per cent at
5.50km, not shown in Fig. 10), although the visible structures have
no longer the trivial vertical correlation which is easily found for the
layers further above. We remark here that the flow patterns — which
allow an easy distinction between the convectively unstable, the
counter-gradient, the plume-dominated, and the wave-dominated
region — are present already at fx = 35. They are not related to
the patterns of initial relaxation, say at #;cx = 30.1, where the wave-
dominated region is still mostly unperturbed (AT < 1 K at 5.00 km)
and the pattern visible in the plume-dominated region has very little,
if any, relation to what can be seen in the wave-dominated region
5 scrt later. We conclude that the patterns observed in Fig. 10 are
intrinsic to the flow, but not to the initial perturbation chosen to
start it, either in the wave-dominated region, or in any layer fur-
ther above. We skip a similarly detailed discussion of the velocity
field and instead demonstrate how skewness and kurtosis capture
many of the statistical and topological properties of the velocity and
temperature field.

4.2 Skewness and kurtosis of velocity fields and temperature

In Fig. 11 we display the skewness of fluctuations of the tem-
perature field, Sp, and the vertical (w) and horizontal com-
ponents of the velocity field, S,, S,, and S,, around their
horizontal mean, averaged over each layer and in time (over
tqa), plotted as a function of depth. The negative values of
So = (T — (T)n)n, o/ (AT = (T)n)In, )% = (T}, o/ ((T"*n, 0>
within the convectively unstable zone indicate that locally low val-
ues of T cover a smaller surface area and hence have to deviate
further from the horizontal mean value than locally high values,
in perfect agreement with Fig. 10(a). Within the countergradient
region this becomes even more pronounced due to the fast columns
of downflows generated by the strongest remnants of the downflow
network (cf. Fig. 10c). The situation becomes reversed around the
flux boundary (Fig. 10d) and the plumes, which cover a smaller area
than the upflow, are now hotter than their environment (Figs 10e—f).
Hence, Sp > 0 in that region with a pronounced global maxi-
mum where S, has its global minimum. Eventually, in the wave-
dominated region, Sy — 0 which demonstrates that the temperature
distribution is symmetric around its horizontal mean in those lay-
ers. In comparison, S,,, which is defined analogously to Sg, but for
the vertical velocity field, also demonstrates that the downflows
cover a more narrow area than the upflows (due to ‘conservation
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Figure 11. Skewness of fluctuations of the temperature field, Sp, and the
components of the velocity field, S,;, Sy, Sy, around their horizontal mean,
averaged over each layer and in time (over fsq), plotted as a function of
depth.

of mass and momentum), whence S,, < 0 in the convection zone.
The distribution becomes more and more skewed once the network
of downflows has transformed into a set of plumes where only the
fastest and hottest one can penetrate sufficiently deep (cf. Fig. 10f
and note its location close to the global extrema of S,, and Sg). Once
the plumes disappear in number, S,, — 0 and remains near that value
for the entire wave-dominated region. Since the simulation has (or,
rather, should have) no preferred symmetry of velocities into any of
the horizontal directions, we expect S, &~ 0 and S, &~ 0 throughout
the simulation and this is also an indicator for the degree of con-
vergence of the statistical results. We find this confirmed by Fig. 11
with one exception: around 4 km, both S, and S, deviate from 0 and
this can be understood as resulting from the statistics depending on
very few events with large impact, i.e. on a few plumes managing to
penetrate deep enough (Fig. 10g), leading eventually to sidewards
flow by conservation of mass. Many more such events are required
to obtain a converged statistical result within #g, in that region at
the given horizontal extent of our simulation.

In Fig. 12 we display the kurtosis of fluctuations of the
temperature field, Ky, and the vertical and horizontal compo-
nents of the velocity field, K,,, K,, and K,, computed in anal-
ogy to skewness except that now Ky = ((T — (TYn)" .o/
(T = (TY)*)n, ) = (T"*)n.t/((T"*)n,0)?, and likewise for the com-
ponents of the velocity field. The kurtosis provides a measure of
the strength and importance of deviations of a fluctuation from a
given root mean square average. For a mathematically meaningful
distribution, K > 1. For a Gaussian distribution, K = 3 in addi-
tion to S = 0. These are necessary though not sufficient conditions
for Gaussianity. As one can read from Fig. 12 the plumes lead to
extreme values of K,,, especially where a few, isolated plumes dom-
inate the distribution (around 4 km). In comparison, for Kj the flux
boundary with its reversion from cold to hot plumes leads to a local
minimum in that region (around 3 km). For the Sun or other main
sequence stars (Kupka & Robinson 2007; Kupka 2009) the network
of downflows with its embedded granules leads to global minima of
K, and K, at the superadiabatic peak and we find this also for our
simulation of a DA WD (neglecting the top of the simulation box)
(see Fig. 13). Likewise, for both Ky and K, the plumes in the over-
shooting region lead to very large values of K which characterizes
their large deviation from the root mean square values of fluctua-
tions of vertical velocity and temperature. In the wave-dominated
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Figure 13. Kurtosis of fluctuations of the temperature field, Ky, and the
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averaged over each layer, and in time (over #qy), plotted as a function of
depth (values truncated above 10).

region eventually K — 3 for each of the four fields depicted in
Fig. 13. Along with their values of S ~ 0 this demonstrates their
different nature in comparison with the plume-dominated region
further above. We note that the plumes also lead to very large val-
ues of K, and K, since they lead to locally very large velocities (the
precise values at Fig. 12 around 4 km are less certain again due to
the limited statistics of a small number of plumes).

4.3 Properties of the velocity field and mixing

4.3.1 Analysis of the velocity field and best-fitting functions

With the statistical and topological properties of the velocity and
temperature field in mind we now turn to a more detailed character-
ization of overshooting and its associated root mean square velocity
fields.

We find an exponential decay of wms only in a very general sense.
As we have shown in Section 3.3, in the plume-dominated region
down to the deepest layer where still Feony/ Finput < —1 per cent, the

assumption of a linear dependence of wys on log T allows an accu-
rate fit. Indeed, its root mean square deviation normalized to the data
range is just $1.2 per cent over a range of ~1.1 H,, (Fig. 9). If the fit
is made with T as an independent variable over the same depth re-
gion, one even obtains a marginally lower fit error (by 0.07 per cent).
The smallness of the difference between the two is due to the limited
region in log T over which the fit occurs. We expect that from the
viewpoint of a physical interpretation, the linear fit in T'is physically
more relevant. Now if we instead aim at finding the best exponential
fit of the velocity field which at least partially includes the plume-
dominated region and is of identical extent (~1.1 H), we have to
shift the Aln P range (see Fig. 8) to the region from 0.35 to 1.45
to obtain a root mean square deviation normalized to data range
of S1.6percent for Alnwyys. This is larger by 1/3 compared to
the linear fit in 7. Moreover, as discussed in Section 3.3, the fit in
log T (or T) occurs over exactly the plume-dominated region, except
for the lowermost part, which is dominated by rare events (single
plumes) and even for this region the fit of wmys versus log 7T is at
least good for deriving a lower limit for the region which can be
assumed to be very well mixed by overshooting [down to ~4 km or
log(1 — M,/M,) ~ —13.9]. In comparison, the clearly poorer ex-
ponential fit begins only around 3.08 km and ends around 4.14 km.
Thus, it starts already right inside the plume-dominated region and
includes the physically very different region where plumes have
essentially disappeared. It is hence both less accurate and has a less
obvious physical motivation.

As mentioned already in the discussion of Fig. 8 in Section 3.3,
one could attempt fitting also the transition regions from the plume-
dominated to the counter-gradient region and from the plume-
dominated to the wave-dominated region by exponential fits with
different decays. However, these hold for even smaller depth ranges
and we see little physical motivation for them beyond providing
decent mathematical fits. A ‘compromise exponential fit’ for both
transition regions and the plume-dominated region yields a clearly
poorer result than any of the more localized fits.

We hence suggest that the best approximation for the plume-
dominated region is that of an approximately linear decay of rms
velocities with depth, as it is also found from the Reynolds stress
model as used by Montgomery & Kupka (2004). We emphasize
that this statement is restricted to the case of overshooting zones
with strong, hot plumes that are subject to high radiative losses.
Clearly, this does not include the case where convection zones have
amarginal Feony/Finpu already inside the convective zone itself (i.e.
for Te 2, 13000K) and to understand the complex variation of
overshooting with parameters such as T and log (g), which was
studied by Tremblay et al. (2015), requires a grid of models, as has
indeed been used by these authors.

4.3.2 The wave-dominated region

How is the region underneath the plume-dominated region different
from layers further above it? In previous literature on overshooting
inside stars, little attention appears to have been paid to the horizon-
tal velocity field. As Fig. 7 demonstrates, after a transition region of
~0.5 km below the very well mixed region, we find a nearly linear
decay of horizontal kinetic energy relative to vertical one (see the
behaviour of ® in Figs 9 and 7). This is remarkable, since hori-
zontal velocities are expected to increase relative to vertical ones,
if the flow approaches a closed, stress-free vertical boundary. ®
decreases linearly over 1.15 pressure scale heights with an error of
<1.9 per cent. We note that an exponential decay at optimized decay
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rate is slightly better (<1.4 per cent). If optimized fits of exponential
decay are individually made for Wims, s, and viys, residual errors
are in the range of 0.5-0.9 per cent. Thus, although the decay of the
root mean square velocity fields and the quantity @ is exponential
to very high accuracy, we can use the linear decay of ® observed in
the simulated region as a lower estimate for the extent of mixing.

We emphasize that the clear identification of this exponential de-
cay for the case of overshooting with strong, hot plumes (i.e. at the
Tefr of our simulation target) requires the extra extent of ~1 H, in
comparison with earlier work (Tremblay et al. 2011, 2013, 2015
and even more so Freytag et al. 1996). This allows a clear sepa-
ration of the impact of the lower boundary condition on the ve-
locity fields, especially on the horizontal components, where this
is more pronounced (Fig. 7). The detailed analyses of exponential
decay of velocities underneath the convection zone have focused
more on hotter DA WDs in earlier work, for which conveniently
a sufficiently deep simulation is more easily achieved, because the
equivalence of a plume-dominated region cannot exist in their case,
as |Feonvl/ Finput S 1 percent for these stars even inside their con-
vectively unstable zone. Thus, the total number of pressure scale
heights needed in a simulation to model the wave-dominated region
such that at least the upper part of it is not affected by the lower
boundary condition is smaller.

Since in our case, only underneath about 6 km, at still a pressure
scale height distance from the lower boundary condition, the latter
begins to notably influence the flow, we conclude the decay of
horizontal relative to vertical velocities, which is visible in each of
Fig. 7-9, to be real. Below about 4km (where Fr,g = Fiou1), the
flow gradually changes into a slow, chiefly vertical, and thus a more
wave-like motion. Independently from the limitations of even the
present simulation, it is clear that a lack of horizontal flow prevents
mixing. Thus, the mixing in this region is much less efficient than
in the layers of notable convective energy flux, and the effective
diffusivities and mixing time-scales are expected to differ by a very
large amount, since a wave-like motion is much less efficient in
entraining fluid in comparison to an overturning flow.

In the region between 4.45 and 5.85 km the fluctuations of den-
sity and temperature decay rapidly (<3 x 1073 of their horizontal
mean). Skewness and kurtosis, as depicted in Figs 11-13 of the
velocity and temperature fluctuations, yield S = 0 £+ 0.06 and
K = 3 £ 0.2 for all layers below 4.85km (at 3.5km we find
K> 3, |S| > 1). This excludes a flow with a granulation pattern or
thin plumes embedded in gently moving upflows, as is proven by
Fig. 10. The components and magnitude of vorticity of u drop faster
than W, tms, and vy in that region. No indications for ‘extreme
events’ have appeared during fg.

We also observe a stable oscillation, a vertical, global pressure
mode without interior node, which is easily visible for the hor-
izontally averaged, vertical mean velocity. It has a frequency of
Vose = 3.7959 Hz and thus a period of Pys, = 0.263 44 s. Its ampli-
tude is ~30ms~! at ~5.85 km where wyys ~ 105 ms~!. It can also
be identified in the emerging radiative flux even though in this case
it is subject to perturbations by local events (shock fronts, etc.) and
drift due to thermal relaxation (discussed in the context of Fig. 5).
After removing the latter from Frq(x = 0km, 1) by a polynomial fit,
itis easy to extract the dominant mode frequency, as is demonstrated
in Fig. 14. Once excited, this oscillation cannot be removed from
the simulation by artificial damping, if that were attempted (we have
done a number of experiments with 2D simulations to corroborate
that), so evidently the convection zone in the simulation is able to
feed the mode energetically at a sufficiently high rate against damp-
ing mechanisms (due to radiative losses, viscosity, etc.) to support
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Figure 14. Pressure oscillation mode in our numerical simulation, whose
period is close to the sound crossing time. In the upper panel we show the
fractional variation of the radiative flux emerging at the top of the simulation
domain after division by a polynomial fit to remove the trend due to thermal
relaxation (blue, solid curve); the dotted (red) curve shows the sinusoidal fit
to these data. The lower panel gives the Fourier transform of the normalized
flux variations, which indicates a mode with a period of 0.263s and an
amplitude of ~0.3 percent.

this very stable amplitude. The mode is also present throughout the
convection zone and even has its maximum amplitude right there
where it provides just a small fraction of the kinetic energy of the
flow.

The oscillation with a frequency of vos can also be identified
when tracing hot or cold structures in Figs 10(h)—(i), in Wms, or in
Fraq (see Fig. 5). Thus, the flow taking place in the region below
4 km is a combination of global waves and local, transient features.
Its properties with respect to skewness, kurtosis, vorticity, the clear
presence of a global vertical mode with a significant contribution
(~10 per cent) to the kinetic energy in that region, and the decrease
of @ (and thus the faster decrease of horizontal in comparison with
vertical velocities) justifies its naming as wave-dominated region.
But these properties are at variance with efficient mixing and we thus
expect the mixing processes in the two regions, the overshooting
zone proper and the wave-dominated region, to differ physically
and in their efficiency.

Now one might use the velocity field found in the numerical sim-
ulation, as has been done before (e.g. Freytag et al. 1996; Tremblay
et al. 2015), and derive a depth below which diffusion velocities
dominate and in this sense define an extent of the mixed region.
We have to point out here a major caveat of this procedure: just as
simulations of solar surface convection, which have open lower ver-
tical boundaries, the solid, slip boundaries used for simulations with
a radiative region at the bottom also reflect vertical waves. Thus,
while fluid can leave or enter the domain only in the former case,
both types of boundary conditions conserve momentum inside the
box and create a reflecting layer for vertical waves at the bottom of
the simulation box. For both cases waves in a real star should have
smaller maximum amplitudes due to the simple fact that the mode
mass contained in the simulation box is much smaller. Amplitudes of
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p-mode oscillations hence have to be scaled by mode mass (Stein &
Nordlund 2001) to be compared to observations (or models of the
entire star). Although the theoretical explanation of waves excited
in the overshooting zone proposed by Freytag et al. (1996) is based
on g~ -modes rather than p-modes, we expect the former also to be
altered (towards exhibiting a much lower equilibrium amplitude)
due to the fact that in a real star such waves connect to a much
larger mass. Hence, we expect that the velocities obtained for the
wave-dominated region are systematically overestimated compared
to a model of a full star. A determination of the mixed region by
means of wmys then leads to an even more pronounced overestima-
tion. Consequently, as an upper limit of the extent of the mixed
region one should rather use ums and vy or an exponential fit of
D.

Having the inevitable overestimations by this procedure in mind
and without a suitable method of scaling of the velocity fields yet
at hands, we may also consider the linear fit of ® which at least
provides a lower estimate for mixing due to the processes in the
wave-dominated region, if the velocities of the numerical simulation
in that part are taken at face value. Indeed, if we extrapolate the
linear fit of @, it would reach a value of 1 at ~7.67 km, some
5.67 km below the lower boundary of where V > V4 still holds.
This hopefully provides a safe, lower limit for the extent of the well
mixed region; it corresponds to a mass of log (1 — M,/M,) ~ —12.7
in our stellar model.

4.3.3 Mixing and accretion

For the case of steady-state accretion of metals, the observed surface
abundance results from a competition between the accretion rate on
to the surface and the settling rate of the metals at the base of the
mixed region. Using the published values of Koester (2009, tables 1
and 4), we can estimate the effect that mixing beneath the formally
convective region has on the settling rates for trace amounts of
metals in a hydrogen atmosphere WD. If we assume that mixing
only occurs in the region defined by the Schwarzschild criterion,
the base of the mixed region would be at log (1 — M,/M,) ~ —15.2;
interpolating in tables 1 and 4 of Koester yields a settling time for
carbon of T_j52 ~ 0.14 yr. On the other hand, if we assume the base
of the mixed region is at log (1 — M,/M,) ~ —13.9, corresponding
to the depth of penetration of the plumes, then we find the settling
time of carbon is 7_j39 ~ 1.4 yr. Finally, if we take the base of
the mixed region to be log (1 — M,/M,) ~ —12.7 (where ® =1 is
extrapolated from the ANTARES simulation), then we obtain a settling
time for carbon of t_j»7 ~ 12yr. The ratio of this settling time
to that assuming mixing only in the Schwarzschild unstable region
is ~87. For the elements Na, Mg, Si, Ca, and Fe, we find similar
ratios for the enhancement of their settling times, in the range of
50-97. Thus, including the mixing in the overshooting region has
a very large effect on the computed settling times of metals in WD
envelopes.

In a similar vein, we would like to examine the effect that a
larger mixed region has on the inferred accretion rates, assum-
ing steady-state accretion. From equation 6 of Koester (2009),
Xcz = tczM x(Mcz)™!, where Xcz is the mass fraction of ele-
ment X in the convection zone, 7¢z is the settling time at the
base of the mixed region, MX is the mass accretion rate of ele-
ment X, and Mcz is the mass of the mixed region. If we assume
that Xcz is fixed by the observations, then MX & Mcz/tcz. Using
log(1 — M,/M,) ~ —15.2 and —13.9 for the extent of the mixed
region with and without overshooting, respectively, we find that
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including the overshooting region enhances the inferred accretion
rates by factors of 1.6-2.5 for the set of metals previously consid-
ered. If instead we take the depth of the overshooting region to be at
log(1 — M,/M,) ~ —12.7, then we find that the inferred accretion
rates are enhanced by factors 3.2-6.3 for the same set of metals with
respect to the no-overshooting case.

We point out here that the total mixed mass obtained from the lin-
ear fit of @ with the requirement ® — 1 is roughly 300 times larger
than that contained in and above the Schwarzschild-unstable re-
gion. This number is similar to suggestions by Freytag et al. (1996),
Koester (2009), and within the (much larger) range suggested by
Tremblay et al. (2015).

5 DISCUSSION AND OUTLOOK

We have highlighted here that estimates for the extent of the mixed
region underneath the surface convection zone of DA WDs at inter-
mediate effective temperatures (Teg =~ 11 800K) as obtained from
(3D) hydrodynamical simulations have to be revisited from a new
perspective. This has become possible thanks to the larger (3D) sim-
ulation domain and the simulation being performed over a sufficient
amount in time. The larger horizontal extent reduces artefacts by the
periodic boundary conditions and allows a better sampling of statis-
tical data due to a larger number of realizations. The larger vertical
extent allows for the first time a clear identification of exponential
decay of the velocity field, as a function of depth, underneath a
region dominated by plumes. In the latter, exponential fits lack both
accuracy, since the decay rate itself would have to be a function
of depth, and also a physical basis, since the upper parts of the
overshooting zone are completely dominated by plumes and their
dynamics instead of waves (even though the latter are of course
also present in that part of the simulation domain). In the plume-
dominated region (once Feony < 0) we find a linear decay with depth
to provide a more accurate model and in this sense the simulations
agree qualitatively and, roughly, quantitatively with solutions of
Reynolds stress models for somewhat hotter objects (cf. Mont-
gomery & Kupka 2004). The wave-dominated region, for which we
confirm exponential decay of the vertical root mean square velocity,
is not modelled by the Reynolds stress approach (as the time depen-
dent mean velocity was assumed to be zero, so it cannot be included
in the model used by Montgomery & Kupka 2004). Viewing our
results at a more coarse level we also confirm some basic findings
of earlier studies (especially from Freytag et al. 1996; Tremblay
etal. 2011, 2013, 2015) performed with different simulation codes
and with smaller domain sizes.

Contrary to earlier work we stress here that the horizontal veloc-
ities, which decay more rapidly than the vertical ones in the wave-
dominated region, provide an indication for a less efficient mixing.
We also point out that the amplitudes due to waves obtained from
this class of simulations should be expected to be systematically too
large. Thus, while the convective mixing due to overshooting up to
and including the plume-dominated region is on safe ground, its
extension into the wave-dominated region is much less certain and
certainly subject to gross overestimation. We thus provide a linear
extrapolation based on horizontal velocities which might be used
as a more conservative estimate of the extent of the convectively
mixed region.

We emphasize here that our results have been obtained for the
case of a DA WD with a large amount of convective flux inside the
unstable zone which features strong, long-lived plumes penetrating
into the stably stratified region. Further studies should clarify the
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dependencies of these results on Teg and log (g), and, with respect
to the wave-dominated region, on simulation depth and time.

Finally, we show that the extent of the mixed region can have a
large effect on the computed settling times and accretion rates of
metals in WDs also when using our more conservative estimates
of the extent of mixing due to overshooting. While we think there
is merit in the prescription we have adopted for defining the ex-
tent of the mixing region, it is probably a lower limit compared to
results which assume mixing velocities to decrease exponentially
with depth. More precise estimates of this kind clearly require fur-
ther work, not only from the viewpoint of simulations, but also with
respect to some theoretical aspects such as mixing efficiency of the
encountered types of flows and characterizations of the effect of
limited simulation domain sizes.
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