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Abstract—In a time-division duplex (TDD) multiple antenna
system the channel state information (CSI) can be estimated using
reverse training. In multicell multiuser massive MIMO systems,
pilot contamination degrades CSI estimation performance and
adversely affects massive MIMO system performance. In this
paper we consider a subspace-based semi-blind approach where
we have training data as well as information bearing data
from various users (both in-cell and neighboring cells) at the
base station (BS). Existing subspace approaches assume that the
interfering users from neighboring cells are always at distinctly
lower power levels at the BS compared to the in-cell users. In
this paper we do not make any such assumption. Unlike existing
approaches, the BS estimates the channels of all users: in-cell
and significant neighboring cell users, i.e., ones with comparable
power levels at the BS. We exploit both subspace method using
correlation as well as blind source separation using higher-order
statistics. The proposed approach is illustrated via simulation
examples.

I. INTRODUCTION

Mobile data traffic continues to grow at an exponential rate.
To meet this data challenge, massive MIMO (multiple-input
multiple-output) system technology has been proposed where
the base station employs a large number of antennas, allowing
many single-antenna users to be served simultaneously [2], [3].
It is regarded as one of the key enablers of future 5G wireless
systems. Successful operation of massive MIMO depends
critically on knowledge of the channel state information (CSI)
between the base station (BS) and the end users. In a time-
division duplex (TDD) system, the downlink (DL) and uplink
(UL) channels can be assumed to be reciprocal Therefore,
the BS can acquire the CSI in a TDD system using reverse
training, where the users send individual pilot signals to the
base station during the UL operation. In a given cell, the pilots
are selected to be orthogonal.
In a multi-cell environment, since the same orthogonal pilots

are re-used among the cells due to a large number of end
users. Due to pilot reuse, the channel estimates obtained at
a BS contain not only the desired CSI but also components
(contamination) from neighboring cells. The effect of inter-
cell interference does not vanish with increasing number of
antennas at the BS. This phenomenon is called pilot contami-
nation. It degrades CSI estimation performance and adversely
affects massive MIMO system performance.
Several methods have been proposed to eliminate/mitigate

the effects of pilot contamination. The approaches include
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multi-cell cooperation [4], subspace-based methods using SVD
(singular value decomposition) of data matrix [5] or EVD
(eigenvalue decomposition) of data correlation matrix [6],
semi-blind approaches [7] and others [8]. These approaches
differ in the underlying assumptions and availability of infor-
mation: just training data, or training data plus information
symbols-based data, or training data and statistical channel
information about channel, etc.
In this paper we consider a subspace-base semi-blind ap-

proach where we have training data as well as information
bearing data from various users (both in-cell and neighboring
cells) at the BS. We augment the approach of [5], [6] by addi-
tional features. Unlike existing approaches, the BS estimates
the channels of all users: in-cell and significant neighboring
cell users, i.e., ones with comparable power levels at the BS.

II. SYSTEM MODEL

Consider a cellular wireless network composed of L cells
withKℓ ≤ K̄ single-antenna users in the ℓth cell, and one base
station (BS) per cell with Nr antennas. The system operates in
a TDD mode. We focus on the uplink (UL) transmission phase.
Let the ℓ = 1 index the reference cell, with ℓ = 2, · · · , L
indexing the nearest neighbor cochannel cells. Consider a flat
Rayleigh fading environment with the channel from the ith
user in the ℓth cell to the reference-cell BS denoted as h ℓi ∈
C

Nr , where hℓi ∼ Nc(0, INr
) represents small-scale fading.

Let pℓi denote the average transmitted power as well as the
effects of large-scale fading, for the transmission of the ith
user in the ℓth cell to the reference-cell BS. Then the received
signal at reference-cell BS is given by

y(n) =
L∑

ℓ=1

Kℓ∑

iℓ=1

√
pℓiℓ hℓiℓxℓiℓ(n) + v(n) (1)

=

K1∑

i=1

√
p1i h1ix1i(n) +

L∑

ℓ=2

Kℓ∑

iℓ=1

√
pℓiℓ hℓiℓxℓiℓ(n)

︸ ︷︷ ︸
inter-cell interference

+v(n)

(2)

where noise v(n) ∼ Nc(0, σ
2
vINr

) and xℓiℓ(n) denotes the nth
symbol transmitted by the iℓth user in the ℓth cell.

During the training phase, active users send training se-
quences as x ℓiℓ(n). Suppose there are K0 orthogonal training
sequences sti(n) of length P symbols, i = 1, 2, · · · ,K0,
P ≥ K0. In general, K0 ≥ Kℓ for ℓ = 1, 2, · · · , L
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but K0 ≪ LK̄. The training sequences are assumed to be
normalized to satisfy

P−1
P∑

n=1

sti(n)s
∗
tj(n) = δi,j =

{
1 if i = j
0 if i 6= j

(3)

All active users are assigned training sequences from the
set of K0 pilots by their respective BSs, which typically
would lead to pilot reuse from cell-to-cell, but in a given cell,
pilots are distinct and orthogonal. Suppose that the pilots are
indexed (labeled) such that during the training phase, w.r.t. the
reference-cell BS’s choice of training sequences, we have

x1i(n) = sti(n), i = 1, 2, · · · ,K1, n = 1, 2, · · · , P. (4)

Then, for n = 1, 2, · · · , P , the received signal at reference-cell
BS is given by

y(n) =
K1∑

i=1

(√
p1i h1i + h̃1i

)
sti(n) +

K0∑

i=K1+1

h̃1isti(n) + v(n)

(5)
where (1A denotes an indicator function)

h̃1i =
L∑

ℓ=2

Kℓ∑

iℓ=1

√
pℓiℓ hℓiℓ1{xℓiℓ

(n)=sti(n), n=1,2,··· ,P}. (6)

Since a given pilot is assigned to no more than one user in a
given cell, in (6), there are at most L − 1 nonzero entries. If
there is no pilot reuse, then h̃1i = 0 for i = 1, 2, · · · ,K1, and
therefore, the BS would estimate √p1i h1i as the active in-cell
ith user’s channel using training sti(n). In the case of reused
pilots, based on (5), the BS would estimate √

p1i h1i + h̃1i as
the active in-cell ith user’s channel.
During the data phase in uplink, active users transmit their

information symbols as x ℓiℓ(n). Using xℓiℓ(n) to denote these
information sequences, the received signal at reference-cell BS
is given by (2). These information sequences are assumed to be
zero-mean i.i.d., mutually independent, and of known alphabet.
We assume that E

{
|xℓiℓ(n)|2

}
= 1 ∀ℓ, iℓ, with any non-unity

constant absorbed in pℓiℓ . We assume that model (5) applies
for n = 1, 2, · · · , P and model (2) applies for n = P +1, P +
2, · · · , P+Td, with total T = P+Td available measurements.
The BS knows K1 and the pilot sequences of the in-cell active
users, but does not know the number of reused pilots, and the
data sequences of the various users.
Correlation Matrices: Define the correlation matrices

of measurements Ryt = P−1
∑P

n=1 E
{
y(n)yH(n)

}
,

Ryd = T−1
d

∑T

n=1+P E
{
y(n)yH(n)

}
, and the

correlation matrices of users’ signals as Rst =
P−1

∑P

n=1 E
{
[y(n)− v(n)][y(n)− v(n)]H

}
, Rsd =

T−1
d

∑T

n=1+P E
{
[y(n)− v(n)][y(n)− v(n)]H

}
. Then we

have

Ryt = Rst + σ2
vINr

, Ryd = Rsd + σ2
vINr

. (7)

It follows from (3) and (5) that

Rst =

K1∑

i=1

(√
p1i h1i + h̃1i

) (√
p1i h1i + h̃1i

)H
+

K0∑

i=K1+1

h̃1ih̃
H

1i

Rsd =

L∑

ℓ=1

Kℓ∑

iℓ=1

pℓiℓ hℓiℓh
H
ℓiℓ

.

By the asymptotic orthogonality of distinct channels in a
massive MIMO system [1, (10)], we have

lim
Nr→∞

N−1
r hHℓ1iℓ1hℓ2iℓ2 = δℓ1,ℓ2δiℓ1 ,iℓ2 w.p.1. (8)

Also, limNr→∞
1
Nr

hHCi1
hCi2 = 0 w.p.1. for i1 6= i2, where

hCi =

{ √
p1i h1i + h̃1i, 1 ≤ i ≤ K1

h̃1i, K1 + 1 ≤ i ≤ K0
(9)

This suggests that for large Nr, the vectors hCi/‖hCi‖,
i = 1, 2, · · · ,K0, are a set of K0 orthonormal eigenvectors
of Rst, and they are also orthonormal eigenvectors of Ryt

corresponding to its largest K0 eigenvalues ‖hCi‖2 + σ2
v .

By similar arguments, for large Nr, the vectors hℓiℓ/‖hℓiℓ‖,
ℓ = 1, 2, · · · , L, iℓ = 1, 2, · · · ,Kℓ, are a set of

∑L

ℓ=1 Kℓ

orthonormal eigenvectors of Rsd, and they are also orthonor-
mal eigenvectors of Ryd corresponding to its largest

∑L
ℓ=1 Kℓ

eigenvalues pℓiℓ ‖hℓiℓ‖2 + σ2
v .

III. REUSED PILOT DETECTION AND CHANNEL
ESTIMATION

A. Pilot Based Channel Estimation in Training Phase
Here we use pilot-based least-squares procedure using

training-phase measurements to estimate K1 channels associ-
ated with K1 pilots assigned to K1 users in the reference cell.
These channels have the (ill-)effect of pilot contamination.
Using the least-squares approach, orthogonality of training,
(5), and (9), the channel corresponding to the ith pilot for
i = 1, 2, · · · ,K1, is estimated as

ĥCi = P−1
P∑

n=1

y(n)s∗ti(n). (10)

It is easy to see that E{ĥCi} = hCi, i = 1, 2, · · · ,K1, which
shows that the channel estimate is biased for reused pilots.
Define the contaminated-channel matrix H(p) and its estimate
Ĥ

(p)
as

H(p) = [hC1 · · · hCK1
], Ĥ

(p)
= [ĥC1 · · · ĥCK1

] . (11)

For large Nr, taking expectation w.r.t. noise only,

E

{
‖ĥCi‖2

}
= p1i‖h1i‖2 + ‖h̃1i‖2 +

√
p1i hH1ih̃1i + σ2

vNr/P

≈ p1i‖h1i‖2 + σ2
vNr/P

+
L∑

ℓ=2

Kℓ∑

iℓ=1

pℓiℓ ‖hℓiℓ‖21{xℓiℓ
(n)=sti(n), n=1,2,··· ,P}. (12)

For large Nr, E
{
‖ĥCi‖2

}
≈ ‖ĥCi‖2.

Define the sample correlation matrices under training and
data phases as R̂yt = P−1

∑P

n=1 y(n)y
H(n), R̂yd =

T−1
d

∑T

n=1+P y(n)yH(n). Let the ordered eigenvalues of R̂yt

be denoted by ℓt1 ≥ ℓt2 ≥ · · · ≥ ℓtNr
in decreasing order of

magnitude, and that of R̂yd be denoted by ℓd1 ≥ ℓd2 ≥ · · · ≥
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ℓdNr
. First we wish to determine the significant number of

user signals in the reference cell, given the measurements at
the reference cell BS during both training and data phases.
The BS knows K1 and K0, and therefore knows that the
signal subspace rank of R̂yt is at least K1, and no more than
K0. That is, the first K0 eigenvalues of ordered eigenvalues
ℓt1 ≥ ℓt2 ≥ · · · ≥ ℓtNr

are possibly the signal-plus-noise
eigenvalues, whereas the remaining Nr − K0 eigenvalues
originate from σ2

v . An estimate of σ2
v is, therefore, given by

σ̂2
v = 1

Nr−K0

∑Nr

i=1+K0
ℓti. Then we have

p1i‖h1i‖2 +
L∑

ℓ=2

Kℓ∑

iℓ=1

pℓiℓ ‖hℓiℓ‖21{xℓiℓ
(n)=sti(n), n=1,2,··· ,P}

≈ ‖ĥCi‖2 − σ̂2
vNr/P. (13)

Now consider the eigenvalues of data correlation matrix
R̂yd. The eigenvalues of Rsd corresponding to the reference
cell users are p1i ‖h1i‖2, i = 1, 2, · · · ,K1. In the absence of
perfect power control, signals from the reference cell users
are not necessarily the strongest K1 signals at the BS of the
reference cell. If received power of signals from interfering
users is not higher, on the average, than that from in-cell users,
the left-side of (13) is approximately less than Lp1i‖h1i‖2, so
that p1i‖h1i‖2 ≥ (1/L)[‖ĥCi‖2− σ̂2

vNr/P ], i = 1, 2, · · · ,K1.
Let

α1 = min
1≤i≤K1

(1/L)[‖ĥCi‖2 − σ̂2
vNr/P ]. (14)

This discussion implies that the eigenvalues ℓdi of the data
correlation matrix corresponding to in-cell users will exceed
α1 + σ̂2

v , since the largest
∑L

ℓ Kℓ eigenvalues ℓdi of Ryd

are of the form pℓiℓ ‖hℓiℓ‖2 + σ2
v . Alternatively, suppose that

BS knows that the SNR for any in-cell user at the BS is at
least α 2. Then, since the SNR of the ith in-cell user equals
p1i‖h1i‖2/(Nrσ

2
v), the eigenvalues of Ryd corresponding to

the in-cell users exceed (α2Nr + 1)σ̂2
v .

The signal subspace of R̂yd is of rank
∑L

ℓ Kℓ. We need
to pick a subspace of reduced rank from the signal subspace
of R̂yd which includes all in-cell users, and additionally,
interfering users whose received power is comparable to the
weakest in-cell user. Consider a threshold τ for the ordered
eigenvalues of R̂yd, given by

τ = max
(
α1, (α2Nr + 1)σ̂2

v

)
. (15)

Then all ℓdi ≥ τ are deemed to arise from signal subspace
of the data-phase correlation matrix such that this reduced
subspace includes all in-cell users as well as interfering users
having power comparable to the weakest in-cell user. Recall
that the eigenvalues {ℓdi}i of R̂yd are arranged in decreasing
order. Our choice of the threshold τ is heuristic but reasonable.
Let K̂d denote the number of eigenvalues of R̂yd that exceed
τ . (Note that K̂d cannot be less than K1.) Then the significant
number of extraneous (interfering) users are estimated as
Kr = K̂d −K1. Not all of these extraneous users necessarily
have reused pilots if K1 < K0.

B. Blind Channel Estimation in Data Phase
Here we only use data-phase measurements to estimate

K̂d = K1 +Kr channels using both second and higher-order
statistics, in two steps. First we rewrite (2) as

y(n) =
K1∑

i=1

√
p1i h1ix1i(n) +

Kr∑

j=1

√
prj hrjxrj(n) + ṽ(n)

(16)

where prj , hrj , and xrj are re-indexed entries from the sets
(ℓ ≥ 2), {pℓiℓ}, {hℓiℓ}, and {xℓiℓ(n)}, respectively, that
correspond to the extraneous users estimated earlier on the
basis of the eigenvalues of R̂yd, and ṽ(n) is the sum of v(n)
and the remaining sources not included in the first two sums
on the right-side of (16). Consider EVD of R̂yd to obtain

R̂yd = ÛΣ̂Û
H

= [Û1 Û2]

[
Σ̂1 0
0 Σ̂2

]
[Û1 Û2]

H (17)

where Σ̂ is a Nr×Nr diagonal matrix with eigenvalues {ℓdi}i
arranged in decreasing order of magnitude, columns of Û are
the corresponding eigenvectors, and Û1 is Nr × (K1 +Kr).
Thus, Û1 determines the reduced signal subspace and Û2

determines the modified noise subspace (corresponding to
ṽ(n)) of the estimated correlation matrix.
With reference to (16), define a channel matrix Hd ∈

C
Nr×(K1+Kr) as

Hd = [
√
p11 h11 · · · √p1K1

h1K1

√
pr1 hr1 · · · √prKr

hrKr
].

(18)
Then we can rewrite (16) as

y(n) = Hdx(n) + ṽ(n), (19)

x(n) = [x11(n) · · · x1K1
(n) xr1(n) · · · xrKr

(n)]T . (20)

Since the data sequences x1i(n) and xrj(n) are zero-mean,
unit variance, mutually independent and i.i.d., in the notation
of (7), we have

Ryd = UΣUH = [U1 U2]

[
Σ1 0
0 Σ2

]
[U1 U2]

H (21)

where U, Σ, etc. in (21) are the true counterparts of the
estimated Û, Σ̂, etc. in (17).

The channels h1i and hrj lie in the subspace spanned by
the columns of U1. Consider, for n = P + 1, · · · , P +
Td = T , ỹ(n) = UH

1 y(n) ∈ C
K1+Kr . Then we have

ỹ(n) = UH
1 (Hdx(n) + v(n)) = H̃dx(n) + v̌(n) where H̃d ∈

C
(K1+Kr)×(K1+Kr) and v̌(n) ∈ C

K1+Kr . For large Nr, by
orthogonality of distinct channels from distinct users (see (8)),
we have E{ṽ(n)ṽH(n)} ≈ σ2

vIK1+Kr
since UH

1 U = IK1+Kr
,

and we have neglected contributions from the source terms
not included in the first two sums on the right-side of (16) by
appealing to (8).
Since data sequences are independent non-Gaussian, one

can apply higher-order statistics-based approaches to estimate
H̃d. We will use the RobustICA algorithm of [10] that uses
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kurtosis of “unmixed” measurements. It provides an estimate
ˆ̃Hd of H̃d using ỹ(n). For some θis, one obtains

ˆ̃Hd ≈ H̃dPΓθ, Γθ = diag{ejθi , i = 1, · · · ,K1 +Kr}
(22)

where P is a permutation matrix – the order of “extracted”
sources, hence, the order of extracted columns of H̃d cannot
be determined by RobustICA (indeed, by any blind source
separation method for instantaneous mixtures [11]), and one
can only recover channels up to a constant of modulus one
when using kurtosis and related criteria for unmixing. Thus,
an estimate of Hd = U1H̃d is given by

Ĥd = Û1
ˆ̃Hd ≈ HdPΓθ . (23)

C. Using Pilot-Based Channel Estimates to Identify Reused
Pilots and Interfering Users
Consider H(p) ∈ C

Nr×K1 defined in (11), and HdP ∈
C

Nr×(K1+Kr) where P ∈ C
(K1+Kr)×(K1+Kr) is a permu-

tation matrix, and Γθ is as in (22). The pilot-based channel
estimates (10) yield Ĥ

(p)
while (23) yields Ĥd. Observe that

if the ith pilot is not reused, then the ith column of H(p)

equals a scaled version of some column of HdPΓθ. If the ith
pilot is reused, then the ith column of H(p) equals a weighted
sum of two or more columns of HdPΓθ. Therefore, there
exists a matrix G ∈ C

(K1+Kr)×K1 such that (HdPΓθ)G =

H(p) ⇒ ĤdG ≈ Ĥ
(p)

. Hence an estimate of G is given by
Ĝ =

(
Ĥ

H

d Ĥd

)−1

Ĥ
H

d Ĥ
(p)

.
The number of nonzero entries in kth column of G signify

that the kth column of Ĥ
(p)

is a weighted sum of the columns
of Ĥd that correspond to the rows of the kth column of G
with nonzero entries. Suppose that the third column of G has
one nonzero entry (in the fourth row). This means that the
third column of Ĥ

(p)
equals a scaled version of the fourth

column of Ĥd and there is no pilot reuse. On the other hand,
suppose that the third column of G has two nonzero entries
(in the second and fourth rows). This means that the third
column Ĥ

(p)
equals a weighted sum of the second and fourth

columns of Ĥd, and there is pilot reuse with the third pilot
being used by two users. Suppose that some column of Ĥd

corresponds to an interfering user that does not reuse any
pilot in the reference cell. Then the row of Ḡ corresponding
to this out-of-cell user with non-reused pilot, will have zero
entries. In practice, we only have noisy Ĝ. In order for Ĝ to
“represent” ideal G, we adopt the following procedure.
(1) Replace the ith column Ĝi of Ĝ with
[|Ĝi1| · · · |Ĝi(K1+Kr)|]T /‖Ĝi‖, i.e., each column is
first normalized to unit norm, and then each normalized
entry is replaced with its absolute value. Denote the resulting
matrix by Ḡ.
(2) If Ḡij < τ1, set Ḡij = 0, where in our simulations we
set τ1 = 0.15 . Since the BS knows the number K1 of active
reference cell users, one expects at least K1 nonzero entries
in thresholded Ḡij ; if this number is less than K1, we lower
τ1. Otherwise, τ1 > 0 is picked to ignore weak dependence

of columns of Ĥ
(p)

on columns of Ĥd, and in simulations we
used τ1 = 0.15

(3) Channel Resolution: Consider the ith column Ĥ
(p)

i of
Ĥ

(p)
, i = 1, 2, · · · ,K1.

a) If the ith column Ḡi of Ḡ has only one nonzero el-
ement in its jth row, then we pick ĥCi = Ĥ

(p)

i =
P−1

∑P
n=1 y(n)s

∗
ti(n). That is, the ith pilot st,i(n) is

not reused and ĥCi is the least-squares estimate of the ith
user’s channel hCi =

√
p1i h1i based on training data.

b) Suppose the ith column Ḡi of Ḡ has q > 1 nonzero
elements in rows jℓ, 1 ≤ ℓ ≤ q. Then we have∑q

ℓ=1 cℓĤdjℓ ≈ Ĥ
(p)

i where we wish to determine com-
plex cℓs instead of using thresholded, scaled Ḡijℓ . Define

H̄ = [Ĥdj1 · · · Ĥdjq ] ∈ C
Nr×q, c = [c1 · · · cq]T .

We estimate c as ĉ = (H̄HH̄)−1H̄HĤ
(p)

i . Then we
have q channels associated with the ith pilot: ĉℓĤdjℓ ,
1 ≤ ℓ ≤ q. One of these is from a reference cell user
and the remaining q − 1 are from neighboring cells.
Without any additional information we cannot determine
the true origin of these q channels. We assume that the
corresponding data phase measurements have some infor-
mation embedded in them regarding user identification
and one can extract this from decoded data, decoded
using, for instance, matched filter beamforming based on
estimated channel.

IV. SIMULATION EXAMPLES

Consider a 7-cell network, with Kℓ = 5 users/cell, ℓ =
1, 2, · · · , 7, total 35 users, and K0 = 8 orthogonal pilots of
length P = 8 symbols. In the 6 nearest-neighbor cells, among
total 30 users, 20 users re-use some of the reference cell pilots,
and 10 users employ others pilots that are not in use in the
reference cell. The nominal average SNR for reference cell
(ℓ = 1) users at the reference cell BS is 10dB (=p1i/σ2

v , i =
1, 2, · · · , 5). There is a lack of perfect power control. In order
to reflect this, actual average SNR for cell ℓ = 1 was taken
as uniformly distributed over 10± 3dB. Of the 20 interfering
users that reuse pilots, average SNR at the reference cell BS
is uniform over (prj/σ2

v)± 3dB for 5 users, and it is uniform
over (prj/σ2

v) − 9 ± 3dB for 15 users, and prj is such that
prj/σ

2
v varies from −20dB through 20dB, and it is the same

for all indexes j. The stronger 5 users may be thought of
being located at cell edges when prj is comparable to p1i,
while other 15 interfering users are farther off from BS. Of
the 10 interfering users that do not reuse any reference cell
pilots, average SNR at the reference cell BS is uniform over
(prj/σ

2
v)±3dB for 2 users, and it is uniform over (p rj/σ

2
v)−

9± 3dB for 8 users.
At the reference-cell BS we have N r = 100 or 200

antennas. Orthogonal (binary) Hadamard sequences of length
P = 23 = 8 are selected as training sequences, and the
information sequences {xℓiℓ(n)} were i.i.d. QPSK. We have
P = 8 (training bits), and pick Td =136 or 184 (data symbols),
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leading to T =144 or 192. All simulation results are based on
10,000 Monte Carlo runs.
Fig. 1 shows the normalized mean-square error (MSE) in

multiuser channel estimation, which for estimated multi-user
channel Ĥ

m

tr and true channel Hm
tr (defined as in (11) with hCi

replaced with h1i) in the mth Monte Carlo run, is defined as

NMSE =
1

M

M∑

m=1

‖Ĥm

tr −Hm
tr‖2F

‖Hm
tr‖2F

, (24)

where ‖H‖F denotes the Frobenius norm, and there are
M = 10000 runs. We also show the results of the approach
of [5], labeled “semi-blind.” It is seen that when reused pilots
are at a power significantly lower than in-cell users, there is
little ill-effect. But as the out-of-cell users with reused pilots
become relatively stronger, the semi-blind approach yields
poorer results compared to the proposed approach. Figs. 2
and 3 show the bit-error rate for QPSK information sequences
(Fig. 3 corresponds to the results of Fig. 1), when we employ
linear MMSE multi-user deocder/equalizer/beamformer using
the estimated channels via either the proposed approach or the
semi-blind approach. Again, at higher power levels of inter-
fering out-of-cell users, the performance is much poorer for
the semi-blind method, compared to the proposed approach.
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Fig. 1. Normalized MSE (24) of channel estimation error for reference cell
users vs average pr/σ2

v
with p1/σ2

v
= 10dB. Nr = 200. Based on 10,000

runs. The approach labeled “semi-blind” is based on [5], [6].
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decontamination,” IEEE J. Sel. Topics Signal Proc., vol. 8, pp.
773-786, Oct. 2014.

[6] H.Q. Ngo and E.G. Larsson, “EVD-based channel estimation
in multicell multiuser MIMO systems with very large antenna
arrays,” in Proc. ICASSP 2012, pp. 3249-3252, Kyoto, Japan,
March 2012.

[7] D. Hu, L. He and X. Wang, “Semi-blind pilot decontamination
for massive MIMO system,” IEEE Trans. Wireless Commun.,
vol. 15, pp. 525-536, Jan. 2016.

[8] J. Ma and L. Ping, “Data-aided channel estimation in large
antenna systems,” IEEE Trans. Signal Proc., vol. 62, pp. 3111-
3124, Jume 2014.

[9] J.K. Tugnait, “Self-contamination for detection of pilot con-
tamination attack in multiple antenna systems,” IEEE Wireless
Communications Letters, vol. 4, No. 5, pp. 525-528, Oct. 2015.

[10] V. Zarzoso and P. Comon, “Robust independent component
analysis by iterative maximization of the kurtosis contrast with
algebraic optimal step size,” IEEE Trans. Neural Netw., vol.
21, pp. 248-261, Feb. 2010.

[11] P. Comon and C. Jutten, Handbook of Blind Source Separation.
New York: Academic, 2010.

1070


