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Abstract. The axial induction exerted by utility-scale wind turbines for different operative
and atmospheric conditions is estimated by coupling ground-based LiDAR measurements and
RANS simulations. The LiDAR data are thoroughly post-processed in order to average the
wake velocity fields by using as common reference frame their respective wake directions and
the turbine hub location. The various LiDAR scans are clustered according to their incoming
wind speed at hub height and atmospheric stability regime, namely Bulk Richardson number.
Time-averaged velocity fields are then calculated as ensemble averages of the scans belonging
to the same cluster. The LiDAR measurements are coupled with RANS simulations in order to
estimate the rotor axial induction for each cluster of the LiDAR data. First, a control volume
analysis of the streamwise momentum is applied to the time-averaged LiDAR velocity fields to
obtain an initial estimate of the axial induction over the rotor disk. The calculated thrust force
is imposed as forcing of an axisymmetric RANS simulation in order to estimate pressure, radial
velocity and momentum fluxes. The latter are combined with the LIDAR streamwise velocity
field in order to refine the estimate of the rotor axial induction through the control volume
approach. This process is repeated iteratively until achieving convergence on the rotor axial
induction while minimizing difference between LiDAR and RANS streamwise velocity fields.
This procedure allows to single out the reduction in thrust load while the blade pitch angle is
increased transitioning from region 2 to 3 of the power curve. Furthermore, an enhanced thrust
force is observed for a fixed incoming wind speed and transitioning from stable to convective
stability regimes. The presented technique is proposed as a data-driven alternative to the blade
element momentum theory typically used with current actuator disk models in order to quantify
rotor aerodynamic thrust for different operative and atmospheric conditions.

1. Introduction

Quantification of the aerodynamic forcing exerted by utility-scale wind turbines on the
atmospheric boundary layer (ABL) for different turbine settings and atmospheric stability
conditions is one of the greatest challenges to overcome in order to achieve accurate predictions
of wind turbine wakes and power capture.

Numerical simulations of wind turbine wakes are typically performed by means of actuator
line or disk models [1-7], which rely on tabulated data of the blade geometry and aerodynamic
coefficients for the various airfoils composing the blades. These parameters, coupled with
the evaluation of the relative wind speed along the turbine blades, allow predicting the rotor
aerodynamic forces. Blade geometry and airfoil characteristics are typically proprietary data and
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not publicly available for real wind turbines, which justifies the wide use of turbine archetypes
to perform wake investigations, such as the 5-MW NREL wind turbine [8]. Even when turbine
data are available, the aerodynamic forcing of a real turbine rotor can differ significantly from
the predictions obtained from the blade element momentum theory due to the 3D turbulent
nature of the incoming ABL flow and to the boundary layer evolving over the blades, which
is typically not simulated with the existing actuator line/disk models. The divergence of
actual aerodynamic performance of turbine blades during real operations with respect to the
design condition is systematically proven by the variability of turbine power curves for different
atmospheric stability regimes and relative locations of the turbines within a wind farm [9-11].

Effects of power capture exerted by wind turbines on the ABL consist in the generation of
wakes, which are flow regions located downstream of each turbine characterized by a reduced
wind speed and enhanced wind turbulence. Moving downstream, the momentum fluxes make the
wake velocity field gradually recovering to the incoming ABL profile. It has been documented
experimentally [9, 12] and through numerical simulations [13], that the enhanced turbulence
intensity connected with convective stability conditions promotes wake recovery reducing wake
interactions and, in turn, power under-performance of downstream wind turbines [9].

Wind turbine wakes can extend downstream to the turbine location for distances longer
than ten rotor diameters [9]. Therefore, probing wakes generated by utility-scale wind turbines
requires measurement techniques capable to cover such large volumes, while providing adequate
spatio-temporal resolution to characterize wake turbulent flows. A very promising remote sensing
technique for probing wakes generated by utility-scale wind turbines is light detection and
ranging (LiDAR), allowing measurements of ABL flows [14-16] and wind turbine wakes [17-
19] through a variety of scanning strategies ranging from 1D fast scans to characterize wind
turbulence [20, 21] to volumetric scans for characterizations of 3D ABL flows and wakes [12].

In this paper, to achieve enhanced accuracy in the quantification of the aerodynamic
forcing exerted by utility-scale wind turbines for different atmospheric stability conditions and
turbine settings, the axial induction at the rotor disk is quantified by coupling LiDAR wake
measurements with RANS simulations. LiDAR measurements, collected for an onshore wind
farm located in North Texas, are analyzed through a control volume analysis of the streamwise
momentum in order to provide an estimate of the thrust force distribution over the rotor disk.
The latter is injected in a RANS solver as forcing on the incoming freestream. The RANS
simulations provide estimates for pressure, radial velocity and shear stress flux, which are then
leveraged within the control volume analysis in order to refine the estimate of the axial induction
over the rotor disk. This iterative procedure is stopped when convergence on the axial induction
is achieved and difference between LiDAR and RANS streamwise velocity fields is minimized.
This study enables investigating the variability of the rotor thrust force for different incoming
wind speed and atmospheric stability conditions.

The remainder of the paper is organized as follows. The wind farm and the experimental
setup is described in Sect. 2. The main features of the RANS solver are reported in Sect. 3, while
the post-processing of the LiDAR data for calculating the time-averaged wake velocity fields is
summarized in Sect. 4. Subsequently, the LiDAR data are coupled with RANS simulations in
Sect. 5 to estimate the turbine axial induction. Concluding remarks are reported in Sect. 6.

2. Site and Experimental Setup

A field campaign was performed for an onshore wind farm located in North Texas consisting
of four rows of identical 2.3-MW wind turbines extended along the east-west direction. These
turbines have a rotor diameter, D, of 108 m and hub height of 80 m. The measurement campaign
was conducted through various phases between August 2015 and March 2017. Meteorological
data, collected for the entire duration of the experiment from a met-tower, were provided as ten-
minute averages and standard deviation of wind speed, wind direction, temperature, humidity
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and barometric pressure, at heights of 36 m, 60 m, and 80 m.

Supervisory control and data acquisition (SCADA) data were provided for each turbine as ten-
minute averages and standard deviation of wind speed, power output, rotor rotational velocity,
blade pitch and rotor yaw angle. These data were used to calculate power curves for the various
wind turbines according to the IEC standard, as well as to assess parameters retrieved from the
LiDAR measurements [9].

The wind velocity around and within the turbine array was measured with a Windcube 200S
manufactured by Leosphere, which is a scanning Doppler wind LiDAR embedded in a mobile
station to allow easy deployment, control, data collection and monitoring of the instrument [9].
This LiDAR is characterized by a typical scanning range of 4 km, while a range gate of 50 m
and accumulation time of 500 ms were used.

Single-wake plan position indicator (PPI) scans were performed to maximize spatio-temporal
resolution of the wake measurements. Main constraints in the selection of the scan parameters
consisted in achieving a carrier-to-noise ratio (CNR) higher than -25 dB throughout the range of
interest, and collecting measurements at hub height within the downstream range 1-3 D with at
least five measurement points in the transverse direction within the wake. The sampling period
for a single PPI scan was always smaller than 10 s. LIDAR wake measurements were performed
only for wind turbines at the southernmost row for southerly wind directions in order to avoid
wake interactions for the present study.

3. RANS solver

The turbulent axisymmetric wake generated by a rotor disk exposed to a uniform incoming
wind speed, Uy, is simulated through the Reynolds-averaged Navier-Stokes (RANS) equations
for incompressible flows:

Uy —
%o+ 10U 0

AU, Uy _ %) 1 02Uy | 10 (,.0Uy
UxaxJFUrar——Ft—£+(m+w)[ax2+;W(Tar)} (1)
U, oUr __ _ 0 1 o%U, , 19 (,.0Ur Uy
Un G + Urg = =50 + (7 + 1) [6;;:2 + 3o (r 8r)_72]

where U, and U, are the time-averaged streamwise and radial velocities, respectively, made
non-dimensional with Us,. The pressure, p, is made non-dimensional with pU2 , where p is the
air density. The Reynolds number, Re, is defined with Uy, and the rotor diameter of the wind
turbine, D. F} is the thrust force exerted by the rotor disk and vy is a uniform turbulent eddy
viscosity. It is noteworthy that in Eq. 1, the swirling velocity induced by the turbine is neglected,
which is clearly a good approximation for the far-wake region. Through a preliminary analysis,
not shown here for the sake of brevity, it was found that adding a modeled swirling velocity in
the control volume analysis does not affect noticeably the estimates of the rotor axial induction.

The numerical domain consists of a circular cylinder with axis at hub height parallel the wake
direction. After a grid sensitivity analysis, the RANS computational domain was set with the
inlet boundary at a distance of 5 D upstream to the rotor disk, while the outlet is at a downstream
distance of 8 D. The radius of the numerical domain is 2 D. Free-stress boundary condition
is imposed at the lateral boundary. At the symmetry axis, radial velocity is zeroed, likewise
for the gradients of the streamwise velocity and pressure. At the outlet, a non-homogeneous
Neumann condition is applied by imposing the velocity gradients in the streamwise direction
equal to their respective values at the adjacent upstream grid points. The streamwise velocity
field at the inlet is implemented as Dirichlet condition with null radial velocity.

Eq. 1 together with the boundary conditions are discretized via a Chebyshev spectral
collocation method implemented in Matlab [3]. To ensure numerical stability, the flow field
is calculated over a rectangular grid made of N, = 65 and N, = 40 points in the streamwise and
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radial directions, respectively, while pressure is calculated on a staggered grid of (N, —2)x (N, —2)
grid points. Within the rotor area, the grid has 20 nodes in the radial direction. The resulting
non-linear system is solved by means of the Newton iterative algorithm with a convergence
threshold equal to 10™® for the Lo-norm of the residual of the RANS solution.

4. Post-processing of LIDAR data and time-averaged wake velocity fields
Each wake velocity field is represented with respect to a reference frame whose origin is the hub
location of the specific turbine under investigation and z-direction pointing downwards in the
wake direction. The latter is obtained as linear fitting of the minimum velocity deficits estimated
at various downstream locations through the Gaussian fitting in the transverse direction of the
wake velocity profiles. Each LiDAR sample is reported in a reference frame where x is the
downstream distance from the turbine rotor, while r is the radial distance from the wake direction
with sign to indicate the two sides of the wake. For more details on the LIDAR measurements
and data post-processing see [22].

From the LiDAR radial velocity, V;., an approximation for the horizontal wind speed, Ueg, is
obtained as follows:

Ueq = V;‘/CO'%Z)/COS(H - ew) (2)

where ¢ and 0 are the elevation and azimuthal angles, respectively, of the LiDAR laser beam,
while 6, is the wake direction for the specific PPI scan.

The LiDAR velocity field is then made non-dimensional through the incoming ABL profile,
which is also estimated through the LIDAR measurements [22]. This procedure allows to directly
compare the various wake velocity fields avoiding the typical distortion induced by the wind
shear. Furthermore, the long-wave meandering-like oscillations are filtered out in order to achieve
a time-averaged velocity field analogous to that predicted through the RANS simulations. This
filtering process is performed by aligning the wake centers at various downstream locations with
the mean wake direction, 6,,.

The various PPI scans are then clustered as a function of the incoming wind speed at hub
height while keeping a sufficient number of LiDAR scans for each cluster in order to achieve
statistical convergence in the data analysis. The experimental power curve for the turbines
under investigation and the blade pitch angle are reported in Figs. 1a and b, respectively. The
used bin edges of the incoming wind speed normalized with the turbine rated speed are 0.35,
0.65, 0.8, 0.9, 1 and 1.15, while the number of PPI scans for each cluster are reported in Figs.
1d over a total number of about 11,000 PPI scans.

Each cluster defined through the incoming wind speed is then split in three sub-clusters based
on atmospheric stability regime. Bulk Richardson number, Rig, calculated from the available
meteorological data is used to further cluster the LIDAR data among convective (Rip < -0.0024),
neutral (-0.0024< Rip < 0.0011) and stable (Rip > 0.0011) conditions [22].

The wake velocity fields obtained through PPI scans belonging to the same cluster are then
ensemble-averaged in order to provide an estimate for the time-averaged wake velocity fields. The
ensemble average is performed through the Barnes scheme [23]. Accuracy in the estimate of the
average velocity fields is monitored by rejecting all the values with an error on the mean larger
than 1% and interpolating the mean velocity at that location with a bi-harmonic algorithm.
The obtained average velocity fields are reported for each cluster in Fig. 2. The black dashed
lines delimit areas with data rejected through the quality control process and interpolated.

The typical faster wake recovery occurring during convective conditions compared to neutral
and stable conditions [9, 12] is clearly detected through the average velocity fields. Furthermore,
a gradually reducing velocity deficit is observed with increasing incoming wind speed. This wake
feature is certainly connected with the transition from operations of region 2 of the power curve
(for incoming wind speeds between cut-in and rated) and region 3 (for incoming wind speeds
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Figure 1. SCADA data: a) Normalized power; b) blade pitch angle; ¢) number of SCADA data
for each 0.5-m/s wide bin; d) number of PPI scans for each cluster.

between rated and cut-off), for which an increased blade pitch angle leads to a reduction of the
thrust coefficient of the turbine rotor.

It is noteworthy that the wake velocity profiles for high thrust coefficient conditions (low
incoming wind speed) show an evident non-symmetry with respect to the wake center. This wake
feature, which can be better appreciated from the mean velocity profiles at x/D=3.25 reported
in Fig. 3, might represent a source of inaccuracy for our current axisymmetric approach for the
analysis of the LiIDAR data and RANS simulations. However, this observed wake asymmetry
seems to be reasonable and due to the combination of high vertical wind shear of the incoming
wind, which is typical for stable atmospheric conditions, and a strong wake shear [24].

5. Estimate of axial induction by coupling LiDAR data and RANS simulations
The mean velocity field calculated from the LiDAR data is first leveraged to estimate the
optimal turbulent-eddy viscosity, vr, for each cluster. Preliminary RANS simulations have
been performed by using as inlet the average velocity, Ugq, measured at x/D=3.25, which is
a downstream location where the pressure can be considered practically recovered to ambient
pressure and the turbulent fluxes being the major component in the momentum equation [6, 7].

The v has been optimally tuned by using as objective functional the minimization of the
mean absolute percentage error (MAPE) between the LiDAR and RANS streamwise velocity
fields over the far-wake region with x/D >3.25. The optimization problem has been carried out
in Matlab with the command fmincon and using the sequential quadratic programming. The
optimally-tuned v is reported in Fig. 4 showing an increase of vy transitioning from stable to
neutral and convective stability regimes. This trend is associated with the general increase of
the incoming wind turbulence intensity due to the different stability regimes. Furthermore, a
reduction of vy is observed with increased incoming wind speed at hub height. This suggests that
v also encompasses effects of the wake-generated turbulence, which is generally proportional
to the wake velocity shear, thus it is reduced with higher incoming wind speeds (Fig. 3).

The final value of the objective functional for the optimization of the v, namely the MAPE,
is reported in Fig. 4b. A larger error is typically achieved for stable conditions due to the less
axisymmetry of the wake velocity fields, as mentioned above (Fig. 3).
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Figure 2. Mean streamwise equivalent velocity field, U4, calculated for each cluster based on
incoming wind speed at hub height and atmospheric stability regime.
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Figure 3. Mean streamwise equivalent velocity, U, calculated at the location x/D=3.25 for
various incoming wind speed and atmospheric stability: a) stable; b) neutral; ¢) convective.

The axial induction exerted by the blades is estimated through a control volume analysis
of the streamwise momentum. The adopted control volumes are concentric cylinders with ring
cross-sections (except for the innermost one having circular cross-section) and axes coincident
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Figure 4. Optimal tuning of the turbulent-eddy viscosity, vp, for the various LIDAR clusters
and atmospheric stability regimes: a) vp; b) mean absolute percentage error.

with the x-direction. The upstream base of the cylinder is at a position xg =-5 D, which is far
enough from the turbine rotor in order to be considered as immersed in the freestream, while
the downstream base is at T =1.15 D, which is the downstream location closest to the turbine
rotor for which LiDAR data are available. For a control volume with inner and outer radii equal
to R; and Ra, respectively, the momentum budget can be written as:

—7TU020(R2 R2 +27TfR2 U2 )T’dT’—Qﬂ'le U, (Rl) (Rl)dx—i-Qﬂ'RQf U RQ)U (Rg)
= _2n R1 2 Fyrdr — 27FR1 - Ter(R1)dx + 27rpR2 - Ter(Ro)dx + =& 2” (— (T )—I—Tm( ))rdr

P o zo
3)
where F; is the axial force exerted by the rotor within the selected control volume, which is the
unknown of the equation, and Ry — R1=0.01 D. The shear stresses are calculated as:

Tex = 2pUso D(1/Re + VT aéjg )
Ter = pPUso D(1/Re + vr)( 6 a[ﬁ)

As first attempt to estimate Fj, Eq. 3 is applied for the various control volumes by neglecting p,
U, and 7, while U, at T =1.15 D is the mean velocity measured by the LiDAR for the specific
cluster under investigation. The calculated thrust force is then used as a forcing for the first
RANS simulation.

The data obtained from the first RANS simulation and the LiIDAR data at T =1.15 D are
then injected in Eq. 3 for a new estimate of the thrust force, which is then used in the RANS
solver for a new simulation. This procedure is performed iteratively with a threshold equal to
1% on the MAPE between LiDAR and RANS velocity at T =1.15 D. Spurious thrust force
may appear for some radial locations beyond the blade tip due to uncertainty of the turbulence
closure and post-processing of the LiDAR data. However, this is disregarded for the thrust
estimates because leading to differences in the velocity field with MAPE lower than 5%.

An example of the application of the iterative procedure to estimate thrust force distribution
and relative wake velocity profile at T =1.15 D is reported in Fig. 5 for the cluster with
0.65 < Uporm < 0.8 and neutral stability regime. For this case, the initial thrust force estimated
by only using the LiDAR data is gradually modified in order to maximize the agreement in the
velocity profile with the LIDAR data. The thrust force is gradually reduced at the middle span
of the blade, while the load is increased towards the tip in order to widen the wake, as measured
by the LiDAR. Convergence is typically achieved with less than 20 iterations.

The thrust distribution calculated for the various clusters is reported in Fig. 6. For low
incoming wind speeds, the peak aerodynamic load is typically located towards the blade tip.
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Figure 5. Iterative estimation of the local thrust force for the cluster with 0.65 < U,orm < 0.80
under neutral atmospheric conditions: a) thrust force; b) RANS streamwise velocity at T =1.15
D (respective LIDAR data reported with dashed black line).
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Figure 6. Distribution of local thrust along the blade span for different atmospheric stability
regimes: a) stable; b) neutral; c¢) convective.

With increasing incoming wind speed, the reduction of the aerodynamic load due to the higher
blade pitch angle is clearly detected. It is also observed that the major load reduction occurs
in proximity of the blade tip. For a given incoming wind speed, the integral thrust force is
generally increased by transitioning from stable, neutral to convective regimes. This feature
is better highlighted through the thrust coefficient, C;, reported in Fig. 7. C; confirms the
reduction of loading occurring for transition from region 2 to region 3. The C; estimated
through the proposed procedure, consisting in coupling RANS simulations and LiDAR data,
is compared with estimates by only using LiDAR data or derived from the power measurements
recorded by the SCADA. Only using SCADA data, the C; is generally under-estimated, which
is a consequence of neglecting the thrust connected with turbine tower, nacelle, or the blade
stall for different wind conditions and positions along the blade span not being detected through
the power measurements, while probed by the LiDAR. Furthermore, the procedure consisting
in coupling LiDAR measurements and RANS simulations allows recovering the trend of an
increased thrust coefficient and, thus, power coefficient observed by the SCADA data, which, in
contrast, is not preserved when only using LiDAR data.
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Figure 7. Thrust force coefficient, C, for each cluster estimated from SCADA data, LiDAR
data and the iterative RANS-LiDAR procedure.

6. Concluding remarks

Ground-based LiDAR measurements of wakes generated by wind turbines at an onshore wind
farm in Texas have been coupled with wake RANS simulations in order to quantify the axial
induction of the wind turbines for different operative conditions of the rotors and atmospheric
stability regime of the incoming wind.

The LiDAR wake measurements have been thoroughly post-processed in order to estimate
the time-averaged wake velocity fields for different data clusters based on incoming wind speed
and atmospheric stability condition. This data analysis has allowed removing from the wake
measurements effects of the incoming atmospheric boundary layer profile, variability of mean
wind direction and fluctuations due to meandering.

The rotor axial induction has been calculated through a control volume analysis of the
axial momentum by leveraging the LiDAR measurements and the radial velocity, pressure and
momentum fluxes estimated through the RANS simulations. This iterative procedure is arrested
when differences between the LIDAR and RANS streamwise velocity fields are minimized.

The axial induction estimated by coupling LIDAR measurements and RANS simulations has
allowed to detect the reduction of the thrust force over the turbine blades for increasing incoming
wind speed when transitioning from region 2 to region 3 of the turbine power curve. A lower
thrust force is generally observed for stable conditions with respect to neutral and convective
conditions, which confirms results obtained from SCADA data.

The proposed procedure can be considered as an empirical data-driven alternative to the
current actuator disk/line models in order to simulate wind turbine wakes with more realistic
aerodynamic forcing of the turbine rotor for different operative conditions and regimes of the
atmospheric stability. A limitation of the current approach is represented by the axisymmetric
assumption used for the wakes, which is a consequence of the 2D LiDAR scans performed not
allowing a 3D characterization of the wakes. This limitation can be overcome by using a 3D
RANS solver and performing 2D measurements over vertical cross-planes upstream and in the
wake of a turbine with faster continuous scanning LiDARs. An effect of this limitation might be
the estimate of slightly larger wakes and over-estimated thrust under stable stability conditions,
for which wakes are skewed and become less axisymmetric due to the presence of wind veer.
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