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Abstract. The axial induction exerted by utility-scale wind turbines for different operative
and atmospheric conditions is estimated by coupling ground-based LiDAR measurements and
RANS simulations. The LiDAR data are thoroughly post-processed in order to average the
wake velocity fields by using as common reference frame their respective wake directions and
the turbine hub location. The various LiDAR scans are clustered according to their incoming
wind speed at hub height and atmospheric stability regime, namely Bulk Richardson number.
Time-averaged velocity fields are then calculated as ensemble averages of the scans belonging
to the same cluster. The LiDAR measurements are coupled with RANS simulations in order to
estimate the rotor axial induction for each cluster of the LiDAR data. First, a control volume
analysis of the streamwise momentum is applied to the time-averaged LiDAR velocity fields to
obtain an initial estimate of the axial induction over the rotor disk. The calculated thrust force
is imposed as forcing of an axisymmetric RANS simulation in order to estimate pressure, radial
velocity and momentum fluxes. The latter are combined with the LiDAR streamwise velocity
field in order to refine the estimate of the rotor axial induction through the control volume
approach. This process is repeated iteratively until achieving convergence on the rotor axial
induction while minimizing difference between LiDAR and RANS streamwise velocity fields.
This procedure allows to single out the reduction in thrust load while the blade pitch angle is
increased transitioning from region 2 to 3 of the power curve. Furthermore, an enhanced thrust
force is observed for a fixed incoming wind speed and transitioning from stable to convective
stability regimes. The presented technique is proposed as a data-driven alternative to the blade
element momentum theory typically used with current actuator disk models in order to quantify
rotor aerodynamic thrust for different operative and atmospheric conditions.

1. Introduction

Quantification of the aerodynamic forcing exerted by utility-scale wind turbines on the
atmospheric boundary layer (ABL) for different turbine settings and atmospheric stability
conditions is one of the greatest challenges to overcome in order to achieve accurate predictions
of wind turbine wakes and power capture.

Numerical simulations of wind turbine wakes are typically performed by means of actuator
line or disk models [1-7], which rely on tabulated data of the blade geometry and aerodynamic
coefficients for the various airfoils composing the blades. These parameters, coupled with
the evaluation of the relative wind speed along the turbine blades, allow predicting the rotor
aerodynamic forces. Blade geometry and airfoil characteristics are typically proprietary data and
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not publicly available for real wind turbines, which justifies the wide use of turbine archetypes
to perform wake investigations, such as the 5-MW NREL wind turbine [8]. Even when turbine
data are available, the aerodynamic forcing of a real turbine rotor can differ significantly from
the predictions obtained from the blade element momentum theory due to the 3D turbulent
nature of the incoming ABL flow and to the boundary layer evolving over the blades, which
is typically not simulated with the existing actuator line/disk models. The divergence of
actual aerodynamic performance of turbine blades during real operations with respect to the
design condition is systematically proven by the variability of turbine power curves for different
atmospheric stability regimes and relative locations of the turbines within a wind farm [9-11].

Effects of power capture exerted by wind turbines on the ABL consist in the generation of
wakes, which are flow regions located downstream of each turbine characterized by a reduced
wind speed and enhanced wind turbulence. Moving downstream, the momentum fluxes make the
wake velocity field gradually recovering to the incoming ABL profile. It has been documented
experimentally [9, 12] and through numerical simulations [13], that the enhanced turbulence
intensity connected with convective stability conditions promotes wake recovery reducing wake
interactions and, in turn, power under-performance of downstream wind turbines [9].

Wind turbine wakes can extend downstream to the turbine location for distances longer
than ten rotor diameters [9]. Therefore, probing wakes generated by utility-scale wind turbines
requires measurement techniques capable to cover such large volumes, while providing adequate
spatio-temporal resolution to characterize wake turbulent flows. A very promising remote sensing
technique for probing wakes generated by utility-scale wind turbines is light detection and
ranging (LiDAR), allowing measurements of ABL flows [14-16] and wind turbine wakes [17-
19] through a variety of scanning strategies ranging from 1D fast scans to characterize wind
turbulence [20, 21] to volumetric scans for characterizations of 3D ABL flows and wakes [12].

In this paper, to achieve enhanced accuracy in the quantification of the aerodynamic
forcing exerted by utility-scale wind turbines for different atmospheric stability conditions and
turbine settings, the axial induction at the rotor disk is quantified by coupling LiDAR wake
measurements with RANS simulations. LiDAR measurements, collected for an onshore wind
farm located in North Texas, are analyzed through a control volume analysis of the streamwise
momentum in order to provide an estimate of the thrust force distribution over the rotor disk.
The latter is injected in a RANS solver as forcing on the incoming freestream. The RANS
simulations provide estimates for pressure, radial velocity and shear stress flux, which are then
leveraged within the control volume analysis in order to refine the estimate of the axial induction
over the rotor disk. This iterative procedure is stopped when convergence on the axial induction
is achieved and difference between LiDAR and RANS streamwise velocity fields is minimized.
This study enables investigating the variability of the rotor thrust force for different incoming
wind speed and atmospheric stability conditions.

The remainder of the paper is organized as follows. The wind farm and the experimental
setup is described in Sect. 2. The main features of the RANS solver are reported in Sect. 3, while
the post-processing of the LiDAR data for calculating the time-averaged wake velocity fields is
summarized in Sect. 4. Subsequently, the LiDAR data are coupled with RANS simulations in
Sect. 5 to estimate the turbine axial induction. Concluding remarks are reported in Sect. 6.

2. Site and Experimental Setup

A field campaign was performed for an onshore wind farm located in North Texas consisting
of four rows of identical 2.3-MW wind turbines extended along the east-west direction. These
turbines have a rotor diameter, D, of 108 m and hub height of 80 m. The measurement campaign
was conducted through various phases between August 2015 and March 2017. Meteorological
data, collected for the entire duration of the experiment from a met-tower, were provided as ten-
minute averages and standard deviation of wind speed, wind direction, temperature, humidity
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and barometric pressure, at heights of 36 m, 60 m, and 80 m.
Supervisory control and data acquisition (SCADA) data were provided for each turbine as ten-

minute averages and standard deviation of wind speed, power output, rotor rotational velocity,
blade pitch and rotor yaw angle. These data were used to calculate power curves for the various
wind turbines according to the IEC standard, as well as to assess parameters retrieved from the
LiDAR measurements [9].

The wind velocity around and within the turbine array was measured with a Windcube 200S
manufactured by Leosphere, which is a scanning Doppler wind LiDAR embedded in a mobile
station to allow easy deployment, control, data collection and monitoring of the instrument [9].
This LiDAR is characterized by a typical scanning range of 4 km, while a range gate of 50 m
and accumulation time of 500 ms were used.

Single-wake plan position indicator (PPI) scans were performed to maximize spatio-temporal
resolution of the wake measurements. Main constraints in the selection of the scan parameters
consisted in achieving a carrier-to-noise ratio (CNR) higher than -25 dB throughout the range of
interest, and collecting measurements at hub height within the downstream range 1-3 D with at
least five measurement points in the transverse direction within the wake. The sampling period
for a single PPI scan was always smaller than 10 s. LiDAR wake measurements were performed
only for wind turbines at the southernmost row for southerly wind directions in order to avoid
wake interactions for the present study.

3. RANS solver

The turbulent axisymmetric wake generated by a rotor disk exposed to a uniform incoming
wind speed, U∞, is simulated through the Reynolds-averaged Navier-Stokes (RANS) equations
for incompressible flows:
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where Ux and Ur are the time-averaged streamwise and radial velocities, respectively, made
non-dimensional with U∞. The pressure, p, is made non-dimensional with ρU2

∞
, where ρ is the

air density. The Reynolds number, Re, is defined with U∞ and the rotor diameter of the wind
turbine, D. Ft is the thrust force exerted by the rotor disk and νT is a uniform turbulent eddy
viscosity. It is noteworthy that in Eq. 1, the swirling velocity induced by the turbine is neglected,
which is clearly a good approximation for the far-wake region. Through a preliminary analysis,
not shown here for the sake of brevity, it was found that adding a modeled swirling velocity in
the control volume analysis does not affect noticeably the estimates of the rotor axial induction.

The numerical domain consists of a circular cylinder with axis at hub height parallel the wake
direction. After a grid sensitivity analysis, the RANS computational domain was set with the
inlet boundary at a distance of 5D upstream to the rotor disk, while the outlet is at a downstream
distance of 8 D. The radius of the numerical domain is 2 D. Free-stress boundary condition
is imposed at the lateral boundary. At the symmetry axis, radial velocity is zeroed, likewise
for the gradients of the streamwise velocity and pressure. At the outlet, a non-homogeneous
Neumann condition is applied by imposing the velocity gradients in the streamwise direction
equal to their respective values at the adjacent upstream grid points. The streamwise velocity
field at the inlet is implemented as Dirichlet condition with null radial velocity.

Eq. 1 together with the boundary conditions are discretized via a Chebyshev spectral
collocation method implemented in Matlab [3]. To ensure numerical stability, the flow field
is calculated over a rectangular grid made of Nx = 65 and Nr = 40 points in the streamwise and
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radial directions, respectively, while pressure is calculated on a staggered grid of (Nx−2)×(Nr−2)
grid points. Within the rotor area, the grid has 20 nodes in the radial direction. The resulting
non-linear system is solved by means of the Newton iterative algorithm with a convergence
threshold equal to 10−8 for the L2-norm of the residual of the RANS solution.

4. Post-processing of LiDAR data and time-averaged wake velocity fields

Each wake velocity field is represented with respect to a reference frame whose origin is the hub
location of the specific turbine under investigation and x-direction pointing downwards in the
wake direction. The latter is obtained as linear fitting of the minimum velocity deficits estimated
at various downstream locations through the Gaussian fitting in the transverse direction of the
wake velocity profiles. Each LiDAR sample is reported in a reference frame where x is the
downstream distance from the turbine rotor, while r is the radial distance from the wake direction
with sign to indicate the two sides of the wake. For more details on the LiDAR measurements
and data post-processing see [22].

From the LiDAR radial velocity, Vr, an approximation for the horizontal wind speed, Ueq, is
obtained as follows:

Ueq = Vr/cosφ/cos(θ − θw) (2)

where φ and θ are the elevation and azimuthal angles, respectively, of the LiDAR laser beam,
while θw is the wake direction for the specific PPI scan.

The LiDAR velocity field is then made non-dimensional through the incoming ABL profile,
which is also estimated through the LiDAR measurements [22]. This procedure allows to directly
compare the various wake velocity fields avoiding the typical distortion induced by the wind
shear. Furthermore, the long-wave meandering-like oscillations are filtered out in order to achieve
a time-averaged velocity field analogous to that predicted through the RANS simulations. This
filtering process is performed by aligning the wake centers at various downstream locations with
the mean wake direction, θw.

The various PPI scans are then clustered as a function of the incoming wind speed at hub
height while keeping a sufficient number of LiDAR scans for each cluster in order to achieve
statistical convergence in the data analysis. The experimental power curve for the turbines
under investigation and the blade pitch angle are reported in Figs. 1a and b, respectively. The
used bin edges of the incoming wind speed normalized with the turbine rated speed are 0.35,
0.65, 0.8, 0.9, 1 and 1.15, while the number of PPI scans for each cluster are reported in Figs.
1d over a total number of about 11,000 PPI scans.

Each cluster defined through the incoming wind speed is then split in three sub-clusters based
on atmospheric stability regime. Bulk Richardson number, RiB, calculated from the available
meteorological data is used to further cluster the LiDAR data among convective (RiB < -0.0024),
neutral (-0.0024≤ RiB ≤ 0.0011) and stable (RiB > 0.0011) conditions [22].

The wake velocity fields obtained through PPI scans belonging to the same cluster are then
ensemble-averaged in order to provide an estimate for the time-averaged wake velocity fields. The
ensemble average is performed through the Barnes scheme [23]. Accuracy in the estimate of the
average velocity fields is monitored by rejecting all the values with an error on the mean larger
than 1% and interpolating the mean velocity at that location with a bi-harmonic algorithm.
The obtained average velocity fields are reported for each cluster in Fig. 2. The black dashed
lines delimit areas with data rejected through the quality control process and interpolated.

The typical faster wake recovery occurring during convective conditions compared to neutral
and stable conditions [9, 12] is clearly detected through the average velocity fields. Furthermore,
a gradually reducing velocity deficit is observed with increasing incoming wind speed. This wake
feature is certainly connected with the transition from operations of region 2 of the power curve
(for incoming wind speeds between cut-in and rated) and region 3 (for incoming wind speeds
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