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ABSTRACT

Class ambiguity refers to the phenomenon whereby samples with
similar features belong to different classes at different locations.
Given heterogeneous geographic data with class ambiguity, the
spatial ensemble learning (SEL) problem aims to find a decompo-
sition of the geographic area into disjoint zones such that class
ambiguity is minimized and a local classifier can be learned in
each zone. SEL problem is important for applications such as land
cover mapping from heterogeneous earth observation data with
spectral confusion. However, the problem is challenging due to
its high computational cost (finding an optimal zone partition is
NP-hard). Related work in ensemble learning either assumes an
identical sample distribution (e.g., bagging, boosting, random for-
est) or decomposes multi-modular input data in the feature vector
space (e.g., mixture of experts, multimodal ensemble), and thus
cannot effectively minimize class ambiguity. In contrast, our spatial
ensemble framework explicitly partitions input data in geographic
space. Our approach first preprocesses data into homogeneous spa-
tial patches and uses a greedy heuristic to allocate pairs of patches
with high class ambiguity into different zones. Both theoretical
analysis and experimental evaluations on two real world wetland
mapping datasets show the feasibility of the proposed approach.

CCS CONCEPTS

+ Information systems — Geographic information systems;

Data mining; « Computing methodologies — Ensemble meth-

ods;

KEYWORDS

Spatial classification, class ambiguity, spatial heterogeneity, spatial
ensemble, local models

ACM Reference format:

Zhe Jiang, Yan Li, Shashi Shekhar, and Lian Rampi, Joseph Knight. 2017.
Spatial Ensemble Learning for Heterogeneous Geographic Data with Class
Ambiguity: A Summary of Results. In Proceedings of SIGSPATIAL’17, Los
Angeles Area, CA, USA, November 7-10, 2017, 10 pages.
https://doi.org/10.1145/3139958.3140044

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSPATIAL’17, November 7-10, 2017, Los Angeles Area, CA, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5490-5/17/11...$15.00
https://doi.org/10.1145/3139958.3140044

Yan Li, Shashi Shekhar
Department of Computer Science
University of Minnesota
{lixx4266,shekhar}@umn.edu

Lian Rampi, Joseph Knight
Department of Forest Resources
University of Minnesota
{ortiz073,jknight}@umn.edu

1 INTRODUCTION

Classifying heterogeneous geographic data with class ambiguity,
i.e., same feature values corresponding to different classes in differ-
ent locations, is a fundamental challenge in machine learning [13,
14]. This kind of effect is also called “ecological fallacy" [25]. Fig-
ure 1 shows an example in a wetland mapping application. The goal
is to classify remote sensing image pixels (Figure 1(a)) into wetland
and dry land classes (Figure 1(b)). The two circled areas contain
pixels that share very similar spectral values yet belong to two dif-
ferent classes (also called spectral confusion). As a result, decision
tree and random forest classifiers learned from the entire image
makes tremendous prediction errors as shown in Figure 1(c-d). The
goal of spatial ensemble learning is to decompose the geographic
area into zones so as to minimize class ambiguity and to learn a
local model in each zone.

AR .
(a) Spectral features in remote (b) Ground truth classes (red: dry

sensing image land, green: wetland)

* W

(d) Random forest predictions

(c) Decision tree predictions

Figure 1: Real world example of heterogeneous geographic
data: class ambiguity exists in two white circles

Motivations: Spatial ensemble learning can be used in many
applications where geographic data is heterogeneous with class
ambiguity. For example, in remote sensing image classification,
spectral confusion is a challenging issue [16, 21]. The issue is par-
ticularly important in countries where the type of auxiliary data
that could reduce spectral confusion, such as elevation data, or
imagery of high temporal and spatial resolution, is not available.
In hydrologic scaling applications, the relationships between wa-
tershed characteristics and hydrologic responses is often spatially
heterogeneous, driven by different physical control variables. In
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economic study, it may happen that old house age indicates high
price in rural areas but low price in urban areas [8]. Thus, age
can be an effective coefficient to classify house price in individual
zones but ineffective in a global model. In cultural study, touching
somebody during conversation is welcomed in France and Italy, but
considered offensive in Britain unless in a sport field; the “V-Sign"
gesture can mean “two" in America, “victory" in German, but “up
yours" in Britain [24]. In these cases, spatial ensemble learning can
provide a tool that captures heterogeneous relationships between
factors (e.g., house age, gestures) and target phenomena (e.g., house
price, culture meanings).

Challenges: The SEL problem is computationally challenging.
First, there are a large number of spatial samples (pixels) to par-
tition. Second, the objective measure of class ambiguity is non-
distributive, i.e., the degree of class ambiguity in a zone cannot
be easily computed from the degrees of class ambiguity in its sub-
zones. Finally, given a geographic data, the number of candidate
partitions is exponential to the number of spatial samples. It can be
proved that finding an optimal zone partition is NP-hard.

Related work: Spatial ensemble learning belongs to a general cat-
egory of ensemble learning problems [4, 29, 34], in which a number
of weak models are combined to boost prediction accuracy. Con-
ventional ensemble methods, including bagging [2], boosting [9],
and random forest [3], assume an identical distribution of sam-
ples. Thus they cannot address heterogeneous geographic data
with class ambiguity. Decomposition based ensemble methods (also
called divide-and-conquer), including mixture of experts [15, 33]
and multimodal ensemble [22], go beyond the identical and indepen-
dent distribution assumption in that these methods can partition
multi-modular input data and learn models in local partitions. Par-
titioning is usually conducted in feature vector space via a gating
network, which can be learned simultaneously by an EM algorithm,
or modeled by radius basis functions [32] or multiple local ellip-
soids [27]. However, partitioning input data in feature vector space
cannot effectively separate samples with class ambiguity because
such samples are very "close" in non-spatial feature attributes. Other
methods such as adding spatial coordinates into feature vectors can
be ineffective since it creates geographic partitions whose zonal
footprints are hard to interpret and can be too rigid to separate am-
biguous zones with arbitrary shapes. There are other techniques for
spatially heterogeneous data. A geographically weighted model [8]
uses spatial kernel weighting functions to learn local models. How-
ever, it requires to learn a local model at every location, which
is computationally very expensive, and it cannot allow arbitrary
shapes of spatial zones for local models. Gaussian process [20]
and multi-task learning [10] can also be used for heterogeneous
geographic data, but they do not particularly focus on the class
ambiguity issue. The mixture-of-experts approach has been used
for scene classification on images via sub-blocks partitioning and
learning local experts. But that problem is to classify an entire
image (not individual pixels) [30].

Our contributions: To address limitations of related work, we
formulate a spatial ensemble learning framework, which explicitly
partitions input data in geographic space. Our approach first pre-
processes data into homogeneous patches and then uses a greedy
heuristic to group patches into contiguous zones while minimizing
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class ambiguity. A local model is learned from each zone to make
predictions on samples in the same zone. We make the following
contributions: (1) we formulate a novel spatial ensemble learning
problem to classify heterogeneous geographic data with class am-
biguity; (2) we propose effective and efficient algorithms, including
constraint-based hierarchical clustering for homogeneous patch
generation, as well as a bisecting algorithm to group patches into
contiguous zones via greedy heuristics; (3) we provide theoretical
analysis on the proposed algorithms; (4) we conduct experimental
evaluations on the classification and computational performance
of proposed approach on real world wetland mapping datasets.

Scope: This paper focuses on the class ambiguity issue in hetero-
geneous geographic data. Other recent advances that do not address
class ambiguity, such as spatial-spectral classifiers [6], object-based
image analysis [5, 23], and deep learning, fall outside the scope.

Outline: The paper is organized as follows. Section 2 defines basic
concepts and formalizes the spatial ensemble learning problem.
Section 3 introduces our approach. Experimental evaluations are in
Section 4. Section 5 discusses some other relevant works. Section 6
concludes the paper with future work.

2 PROBLEM STATEMENT
2.1 Basic Concepts

Geographic raster framework: A geographic raster framework F is
a tessellation of a 2-D plane into a regular grid. Each grid cell (or
pixel) is a spatial data sample, defined as s; = (x;,1i,y;), 1 < i < |F|,
where x; is a non-spatial feature vector, /; is a 2-dimensional vector
of spatial coordinates, and y; € {c1, c2, ..., cp} is a class label among
p categories. All the samples in F can be divided into two disjoint
subsets, a labeled sample set L = {s; = (x;,1;,y;) € Fly; is known}
and unlabeled sample set U = {s; = (x;,1;,y;) € Fly; is unknown}.
In the example of Figure 2(a), F has 64 samples, including 14 labeled
samples (colored in “training labels") and 50 unlabeled samples.
Each sample has a 1-dimensional feature x and a class label (red or
green).

Geospatial neighborhood relationship: It is a boolean function on
two samples R(s;, sj), whose value is true if and only if s; and s;
are spatially adjacent (i.e., two cells share a boundary).

Patch: A patch P is a spatially contiguous subset of samples,
formally, P C F such that for any two samples s;,s; € P, either
R(si, sj) is true or we can find a set of samples SpysSpys e Spy €P
such that R(s;, sp, ), R(spy. Spy,, )» and R(sp, , s) are all true for 1 <
k < L — 1. For example, all samples with input feature value 3 in
Figure 2(a) form a patch. A patch is homogeneous if its samples have
similar feature vectors (e.g., by Euclidean distance) and its labeled
samples, if exist, belong to only one class. For example, there are
seven homogeneous patches highlighted in different gray scales in
the first map of Figure 2(a).

Zone: A zone Z is a number of homogeneous patches that are
spatially contiguous with each other. It is a set of spatially contigu-
ous samples in a raster framework Z C F with both labeled samples
Lz = L N Z and unlabeled samples Uz = U N Z. In the example of
Figure 2(c), zone 1 consists of three homogeneous patches, while
zone 2 consists of four homogeneous patches.

Class ambiguity refers to the phenomenon whereby samples with
the same non-spatial feature vector belong to different classes, due
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Table 1: A list of symbols and descriptions

Symbol | Description
F All samples in a raster framework
L All labeled samples in F
U All unlabeled samples in F

S The ith spatial data sample

Xi The vector of non-spatial features

I; The vector of two spatial coordinates

yi The class label of of sample s;
R(si,s;) | Spatial neighborhood relationship

P A patch

zZ A zone

Lz All labeled samples in Z
Ny (si) | Feature space neighborhood of's;
a(s;) | Per sample class ambiguity

a(Z) Per zone class ambiguity

to spatial heterogeneity (e.g., heterogeneous terrains). For example,
in Figure 2(a), the four samples labeled with feature value x = 1
belong to different classes (two red and two green). A global decision
tree model makes erroneous predictions (Figure 2(b)). The degree
of class ambiguity in a zone Z can be measured on its labeled
samples Lz. We define the following three concepts to quantify
class ambiguity:

Feature space neighborhood: Feature space neighborhood of a sam-
ple s; among all labeled samples Lz in zone Z is defined as Ni.(s;) =
{sj € Lzlsj # si,d(xi,x;) is the k smallest}, where d(x;, x;j) is a
metric function such as Euclidean distance. For example, for the
red sample in the last column in the middle of Figure 2(a), its Na(s;)
can be any two labeled samples with x = 1 except the sample itself,
including one red sample and two green samples. In this definition,
we assume that labeled samples are locally dense in feature space
to avoid the curse of dimensionality. In reality, this assumption is
often satisfied due to the spatial autocorrelation effect (i.e.,nearby
training samples often resemble each other).

Per sample class ambiguity on a labeled sample s; among all
labeled sample Lz in zone Z is defined as the ratio of labeled sam-
ples in different class from s; in its neighborhood N (s;). Formal
definition is in Equation 1, where I(-) is an indicator function. For
example, the class ambiguity of the red sample in the last column of
Figure 2(a) is % = 0.5 if one red sample and one green sample (with
feature x = 1) are selected as Ny(s;). Its value can also be % =1if
both green samples with feature value 1 happen to be selected as
Na(si).

as)=p D T # <1>
s; €Nk (s;)

The per zone class ambiguity of a zone is defined as the av-
erage of per sample class ambiguity over all labeled samples. It
is formally defined in Equation 2. For example, in Figure 2(a-b),
the class ambiguity in the zone of the entire raster framework is
(% X4+ % X4+4+0X2+0x4)/14 = 0.3. Similarly, the per zone class
ambiguity of Z; or Z in Figure 2(c) is 0.

aZ)= i Y als) 2)

si€Llz
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A spatial ensemble is a decomposition of a raster framework
F into m disjoint zones {Z1, Zy, .., Zm } such that the average per
zone class ambiguity is minimized. A local model can be learned in
each zone Z; based on its labeled (training) samples Lz, and then
be used to classify unlabeled samples Uz, in the same zone. The
concept of a local model in each zone can be generalized to a set
of models (e.g., bagging, boosting, random forest) in the zone. In
other words, spatial ensemble learning can be used together with
traditional ensemble methods since they are orthogonal. Figure 2(c)
shows an example of spatial ensemble with m = 2.

2.2 Problem Definition

The spatial ensemble learning problem is defined as follows:
Input:

e A geographic raster framework F with labeled samples L and
unlabeled samples U

e The number of zones in the spatial ensemble: m

® The parameter in feature space neighborhood: k

Output: A spatial ensemble with m contiguous zones such that:

1 m
argmin = — Z a(Zy)
21,23, Zm ™5
subjectto  (1)ZiNZ; =0 fori#j

(2) O Zi=F
i=1

where a(Z;) is the per zone class ambiguity, and f(Z;) is the number
of isolated patches.

Figure 2 shows a problem example. Inputs include a geographic
data with 64 samples, 14 labeled (training) and 50 unlabeled, with
one feature x and two classes (red, green) (Figure 2(a)). The class
ambiguity of the entire framework is a(F) = 0.3, computed from the
class histogram of training samples. A global decision tree makes
prediction errors (Figure 2(b)). In contrast, a spatial ensemble with
two zones in Figure 2(c) reduces per zone class ambiguity to zero.
Predictions of local models show zero errors.

The spatial ensemble learning problem is formulated as a geo-
graphical partition problem because we assume that the underlying
causes of class ambiguity is spatial heterogeneity. This phenom-
enon is also known as “ecological fallacy", or spatial Simpson’s
Paradox. Individual zones in spatial ensemble are contiguous to
avoid overfitting (spatial regularization) and also to conform the
first law of geography, "Everything is related to everything else, but
nearby things are more relevant than distant things" [31]. There
are several other assumptions in our problem formulation. First,
we assume samples in the raster framework form homogeneous
patches. This is often true due to the spatial autocorrelation effect,
particularly when the pixel resolution is high. Second, we assume
feature vectors of unlabeled (test) samples are given within the
same raster framework of training samples. In other words, the
problem belongs to transductive learning. This can limit the scope
of the problem. Finally, we assume a pixel belongs to only one class,
i.e., there is no class ambiguity within a pixel. The computational
challenges of the problem is discussed in Theorem 2.1 below.

THEOREM 2.1. The spatial ensemble learning problem is NP-hard.
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Figure 2: Illustrative example of problem inputs and outputs (best viewed in color)

Proor. Due to space limit, we only provide main ideas. First, our
objective function of per zone class ambiguity is non-monotonic
and non-distributive. Thus, we cannot compare one candidate zone
partitioning against another without computing class ambiguity.
Second, the number of possible zone partitioning is beyond poly-
nomial. This can be derived from the NP-hardness of grid graph
partitioning problems [7]. O

3 PROPOSED APPROACH

In this section, we present our algorithms to address computational
challenges of the spatial ensemble learning problem. Our algo-
rithms consist of two phases. First, input spatial data samples (both
labeled and unlabeled) are clustered into homogeneous patches. We
propose to use a constraint-based hierarchical spatial clustering
approach (Section 3.1). After this, homogeneous patches are fur-
ther grouped into contiguous zones through a recursive bisecting
process (Section 3.2).

3.1 Preprocessing: Homogeneous Patches

Given geographic data with all labeled and unlabeled samples, gen-
erating homogeneous patches can be considered as image segmen-
tation [11] but with the constraint that labeled samples in the same
patch, if exist, belong to the same class.

Algorithm 1 shows our bottom-up hierarchical method to gen-
erate homogeneous patches. First, each data sample is initialized
as a patch (step 1). The algorithm then repeatedly merges pairs
of adjacent patches (patches with samples that are spatial neigh-
bors) in a greedy manner. Only patch pairs whose labeled samples
belong to the same class can be merged (step 6). The patch pair
whose samples have the smallest feature dissimilarity (step 7) are
merged first (steps 10-11). Merging continues until the number of
patches is reduced to a given number n. In implementation, we can

Algorithm 1 Homogeneous Patch Generation

Input:
o All samples in the raster framework: F
e Spatial neighborhood relationship: R(:, -)
e The number of output patches: n, n < |F|
Output:
o A set of n patches: P = {P1,Py, ..., Pp}
1: Initialize a patch set P = {P; = {s;}|s; € F}
2: while number of patches |P| > n do
3:  for each adjacent pair P; and P; do

4 if d(P;, Pj) has been computed then

5 Continue to next for iteration

6: if Lp,, Lp; either empty or same class then

7 d(P;,Pj) «— ﬁlpjl s,ep.zs.ep. d(xi, xj)
i€k, 55 €k

8: else

9: d(P;, Pj) < +oo

10:  Find Py, Pj with minimum dissimilarity d(P;, Pj)
11:  Merge these two patches: Pj <~ P; UPj, P < P\ P;
12: return P.

use a patch adjacency graph to efficiently find pairs of adjacent
patches. The graph can be easily updated when two patches (nodes)
are merged. Figure 3 shows a toy example. The input geographic
data contains 64 samples with one feature and two classes (red and
green). Adjacent samples with the same feature value are merged
into a patch. For instance, all samples with feature value 4 in the
upper left corner are merged into patch A. The final output is 7
homogeneous patches (shown by different shades: A to G).
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Figure 3: Illustration of homogeneous patch generation

Algorithm 1 has two major computational bottlenecks in its
iterations: identification of the adjacent patch pair with the mini-
mum dissimilarity on the entire map (step 10), and computation of
dissimilarity values between new adjacent patch pairs (step 7). To
address the first bottleneck, we propose to use a priority queue with
adjacent patch pairs ordered by dissimilarity. To reduce the cost
of patch dissimilarity computation, we reuse previously computed
dissimilarity values when possible.

Details of these computational refinements are in Algorithm 2.
The algorithm maintains a neighborhood graph where nodes are
patches and edges are spatial adjacency between patches. Edge
weights e;; are dissimilarity values between adjacent patch pairs
(vi,vj). Initially, the graph is a grid graph with each sample (pixel)
as a node (patch) (steps 1-2). Then, the algorithm repeatedly merge
two neighboring nodes with the minimum edge weight, until the
total number of nodes (patches) are reduced to a required number n.
In order to quickly find neighboring nodes with the minimum edge
weight, we maintain a priority queue of all neighboring node pairs
ordered by their edge weights (step 3), and extract the minimum
element from the queue in each iteration (step 6). After extracted,
the pair of nodes v;, v are merged into a new node v, (step 10),
and the corresponding edges are also updated. When computing
the weights of edges connected to the new node v,, we reuse
the weights of edges connected to nodes v;, v; (step 12) to avoid
redundant computation (see definition of d(P;, Pj) in steps 7 and
9 in Algorithm 1). The weights of new patch pairs are added to
the priority queue (step 13). Once nodes v;, vj are merged, their
corresponding elements in the priority queue become obsolete.
Thus, we maintain a hash set of all obsolete nodes (steps 1 and 9)
to ignore their elements in the priority queue (steps 7-8).

3.2 Group Homogeneous Patches into Zones

After samples are clustered into homogeneous patches, the second
phase of our spatial ensemble learning method aims to divide these
patches into several contiguous groups (zones) to minimize class
ambiguity within each group (zone). This can be considered as a pla-
nar graph partition problem where nodes are patches and edges are
spatial adjacency. In order to group patches (nodes) into multiple
zones, we propose a bisecting algorithm (Algorithm 3). The algo-
rithm starts with one zone containing the set of all patches (steps
1-2), and then keeps breaking down the current most ambiguous
zone into two until the number of zones reaches a required num-
ber (steps 3-7). The critical question now becomes how to divide
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Algorithm 2 Faster Homogeneous Patch Generation

Input:
o All samples in the raster framework: F
e Spatial neighborhood relationship: R(, -)
e The number of output patches: n, n < [F|
Output:
o A set of n patches: P = {P1,Py,...,Py}
1: Initialize a patch set P = {P; = {s;}|s; € F}
2: Initialize a neighborhood graph G(V, E) with each patch as a
node:
vi=Pi={sj}for1 <i<|F|

3 d(xi,xj) if s;,sj are neighbors, same class or unlabeled
€ = 00 otherwise

3: Create a priority queue PQ with all neighbor pairs (v;, v}, e;;)
4: Initialize a set of obsolete nodes O « 0

5: while |V| > n and PQ not empty do

6 (vi,vj,eij) < ExtractMin(PQ)

7. if v; € Oorvj € O then

8: Continue to next while iteration

9: O« O0U{v;}U{vj}

10:  Create a new node v, merging v;,v; in G (Py « P; UP;j)
11:  for each other neighbor node vy of v; or v; do

12:

ek, i |Pi| |Pil+ex ;|Pi|-|P;

if vy neighbors both v;, v;

aPu PRl g, Pl
k> Li) [Pk |- [Pi|ter jIPk|-|Pj . .
€kn = |Pk|'|(Pi|+|Pj|J)| L if vy neighbors v; only
er,i|Pi|-Pi|+d(Py, Py [Py |- [Pj| . :
- |Pk|~|(Pi|+|P;|) L if vy neighbors v; only
13: Add edge (vg,vn, ek, ) to graph G
14: Add (v, v, e, ) into priority queue PQ

15:  Remove obsolete nodes v;, v; and their edges
16: return P=1V.

a zone (set of patches) into two to minimize class ambiguity. This
is done via another subroutine called TwoZoneSpatialEnsemble
(Algorithm 4) whose details are introduced below.

Since graph partitioning problems are generally computationally
hard [7], in Algorithm 4, we propose a greedy heuristic that assign
patches (graph nodes) into two zones maximizing inter-zone class
ambiguity while minimizing intra-zone class ambiguity. To do that,
the algorithm uses a seed growing process to expand two zones on
a patch adjacency graph. At the beginning, all patches are marked
as unassigned (step 2), and the class ambiguity of all patch pairs
(whether adjacent or not) are computed (step 3). The algorithm
finds the two patches with the highest class ambiguity as initial
seeds, and assigns one patch to each zone respectively (steps 4-5).
The algorithm also maintains a set of frontier nodes (unassigned
spatially adjacent nodes) F1, Fy for each zone (steps 6-7). Next, the
algorithm iteratively grows a zone by adding a node from its frontier
until all nodes are assigned (i.e., two frontiers are empty).

When selecting a node from the frontier of a zone, we use a
greedy heuristic that maximizes inter-zone class ambiguity while
minimizes intra-zone class ambiguity. This is shown in the formula
of A}c and Ai (steps 10 and 14). In the formula of A}(, the numerator
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Algorithm 3 Bisecting Multi-zone Spatial Ensemble

Input:
o A set of homogeneous patches: P = {P1,Ps,...,Pp}
e The number of zones: m (m < n)
o The parameter in class ambiguity measure: k
o The balancing parameter in our greedy heuristic: «
Output:
o A spatial ensemble of m zones: Z = {Z1, ...,Zn }
1: Initialize a zone with all input patches: Z; < P
2: Initialize a set of zones for outputs: Z « {Z1}
3: while |Z| < m do
4:  Find the zone with max class ambiguity:
Zo = argmax a(Z;)
ZieZ
Remove zone Zg from result set: Z «— Z \ Z
{21,Z},} = TwoZoneSpatialEnsemble(Zo, k, a)
Z—ZU{ZyU{Z}}
return Z

Algorithm 4 Two Zone Spatial Ensemble

Input:
o A set of homogeneous patches: P = {P1,Py, ..., Py}
® The parameter in class ambiguity measure: k
o The weight parameter in our greedy heuristic: «
Output:
e A spatial ensemble of two zones: {Z1,Z3}
1: Create a spatial adjacency graph with patches as nodes
2: Initialize all nodes as unassigned
3: Compute class ambiguity a;; = a(P; U Pj) for any i # j
4: Find P, Pj with max class ambiguity a;;
5: Initialize Zg « {Pi}, Zy « {P;j}, mark P;, Pj as visited
6: Initialize Fy with all unassigned neighboring patches of Z4
7. Initialize Fp with all unassigned neighboring patches of Z;
8: while F1 # 0 or F; # 0 do
9

for each Py € F; do
1+ sup a(Pg,P,)

10: A}( = % //class ambiguity avoidance
PocZy

11: Bllc « SizeBalance(Zy U {Py}, Z3) //zone size balance

12: Compute overall score: S}C — ocA}C +(1- oz)B]lc

13:  for each Py € F2 do
1+ sup a(Pg,P,)

14: Ai = % //class ambiguity avoidance
PocZy

15: Bi « SizeBalance(Z1,Zy U {Py}) //zone size balance

16: Compute overall score: SIZC — r)cA?C +(1- a)Bi

17:  Find the Py, € Fg, (fo € {1,2}) with max overall score

18 Zg, < Zg, U {Py, }, mark Py as visited

190 F1 « F1 \ {Py }, F2 « F2 \ {Py,}

20 Expand Fg, with all unassigned neighboring patches of Py,
21: return {Z1,7Z,}

Zhe Jiang et al.

Table 2: Patch pairs with non-zero class ambiguity

Patch P; | Patch P; | a(P; UPj)
B F 0.5
C D 0.5
D C 0.5
F B 0.5

is the maximum class ambiguity between the candidate patch Py
and patches in the other zone Zj, reflecting inter-zone class am-
biguity, while the denominator is the maximum class ambiguity
between Py and patches in its corresponding zone Z, reflecting
intra-zone class ambiguity. We add a value 1 in the formula for nor-
malization. To avoid the case in which most patches are assigned
to one single zone, we also add a size-balance factor B,lc (Bi) to our
heuristic. Size balance factor across two zones can be measured via
the entropy —rq log ri —r2 log ro where r1 and ry are the ratio of the
sizes (number of samples) of zone 1 and zone 2 to their total size. A
higher entropy value indicates more size-balanced zones. We use a
parameter « to weight the influence of two factors in our heuristic
(step 12 and 16). The node with the maximum overall score Py,
is selected, and is added to its corresponding zone Zg, (step 18).
The node is then removed from frontiers. Its original frontier is
expanded with the node’s unassigned neighbors. Finally, all nodes
are assigned, the frontiers become empty, and the two zones are
returned (step 21).

Running example: Figure 4 shows a running example of Algo-
rithm 4 with the same input data as the example in Figure 3. Assume
k =2,a = 0.5,and m = 2. The adjacency graph of patches is shown
in Figure 4(b). Patch pairwise class ambiguity is shown in Table 2.
The two zones are shown by two different colors. Frontiers are
shown by solid edges connected to zones. Initially, Z; = {C} and
Z; = {D} (Figure 4(b)). The frontier of Z1 is {B}, while the frontier
of Zy is {A, E, F, G}. In the next iteration, all candidate nodes from
the frontiers have zero class ambiguity avoidance score, but node
B has the highest size balance score, so it is selected to grow Z;.
Nodes F, A, G, E are then selected consecutively. The final output
two zones are shown in Figure 4(i). This output is slightly differ-
ent from our problem example in Figure 2, but both reduce class
ambiguity to zero.

3.3 Theoretical Analysis

THEOREM 3.1. The expectation of our per zone class ambiguity
measure is an upper bound of Bayesian error.

Proor. We omit the detailed proof due to space limit. O

The Theorem 3.1 is important because Bayesian error rate is gen-
erally considered as the lowest possible error rate for any classifier
in statistical classification. The fact that class ambiguity is an upper
bound of Bayesian error means that minimizing class ambiguity in
spatial ensemble learning can help reduce Bayesian error rate.

4 EXPERIMENTAL EVALUATION

The goal of the experiments was to:
e Evaluate the classification accuracy of spatial ensemble learning.
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(a) Homogeneous (b) Patch adjacency (c) Assign C, D to
patches graph two initial zones

(d) Grow on B (e) Grow on F (f) Grow on A

(g) Grow on G

(h) Grow on E

(i) Final 2 zones

Figure 4: A running example of Algorithm 3

o Test the sensitivity of spatial ensemble to its parameters.
o Evaluate the computational costs of spatial ensemble algorithms.

4.1 Experiment Setup

For classification performance evaluation, we compared spatial en-
semble learning (learning models and making predictions within
individual zones) with global model learning (i.e., learning models
and making predictions on the entire study area). We used a single
model, bagging, boosting, and random forest on both learning meth-
ods. For example, we can learn a random forest in each individual
zone in our spatial ensemble learning method. We also tested the
sensitivity of spatial ensemble learning to its parameters, including
the number of zones m, the base classifier type, class ambiguity
measure parameter k, and balancing parameter « in greedy heuris-
tic. The number of patches n in preprocessing was determined via
trying different values and visualizing the output homogeneous
patches. For computational performance comparison, we compared
our baseline and refined homogeneous patch generation algorithms
(Algorithm 1 and 2). We also evaluated computational performance
of bisecting spatial ensemble algorithm (Algorithm 3). All codes
were implemented in Java and base classifiers were from Weka
toolbox [1]. We conducted experiments on an iMac Desktop with 4
GHz Intel Core i7 processor and 32GB DDR3 main memory.
Dataset description: Our datasets were collected from two ar-
eas in Minnesota: Chanhassen and Big Stone [28]. We used eight
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Table 3: Dataset Description

Training Samples | Test Samples
Dry Wet Dry Wet
Chanhassen | 6715 4323 40362 31254

Big Stone | 45483 27138 345557 | 177762

Scene

Table 4: Results on Chanhassen ("SE" for spatial ensemble)

Ensemble Method Confusion Matrix | F score
Global Single Model 396672(;1 231662111 0.76
Cobalboggimg. | 2507|9865 |,
Global Boosting 375654;)66 ;;6502 0.79
Global Random Forest ?;528:97 ;:99055 0.79
SE with Single Model 32704;) 37 2299 15851 0.92
Eithboggng | S0 27| o,
SE with Boosting 317;52 17 22: 43;)53 0.93
2
SE with Random Forest 3176680 89 5 ; 556?; 0.93

explanatory features, including four spectral bands (red, green,
blue, near-infrared) in high resolution (3m by 3m) aerial photos
from the National Agricultural Imagery Program during leaf-off
season, and four corresponding texture on homogeneity [26]. Class
labels (wetland and dry land) were collected from the updated Na-
tional Wetland Inventory. The Chanhassen scene contains 221 by
374 pixels, and the BigStone scene contains 718 by 830 pixels. We
used systematic clustered sampling to select training set, and used
remaining pixels as test set (details in Table 3).

Evaluation metric: We evaluated the classification performance
with confusion matrices, and F-score (harmonic mean of precision
and recall) on the wetland class (wetland class is of more interest).

4.2 Classification Performance Evaluation

4.2.1  Comparison on Classification Accuracy. In Chanhassen
data, we set parameter values as n = 100, m = 6, k = 10, « = 0.9.
In BigStone data, we set parameter values as n = 800, m = 20,
k = 10, « = 0.9 (n and m were set higher in BigStone than in
Chanhassen because BigStone is larger). The classification accuracy
results for the two datasets are summarized in Table 4, 5 respectively.
In the confusion matrix displayed in each table, the first and second
rows show true dry land and wetland samples respectively, and
the first and second columns show predicted dry land and wetland
samples respectively. We can see that in global models, bagging,
boosting, and random forest slightly improve a single decision tree
(overall F-score increases by 0.03), but significant errors remain. In
contrast, the spatial ensemble of models improved the F-score of
global models from around 0.8 to over 0.9 on Chanhassen data, and
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Table 5: Results on BigStone ("SE" for spatial ensemble)

Ensemble Method Confusion Matrix | F score
172 4

Global Single Model 3;1()657670 1 ;)1308052 0.75
31362 31932

Global Bagging 1 5356865 132 137 = 0.77
3078 37691

Global Boosting 447816: 152949 0.76
31 27780

Global Random Forest 1 672767; 3 174 99 0.78
316201 29356

SE with Single Model 52300 | 152362 0.85
316908 28649

SE with Bagging 53162 | 154600 0.86
31581 29740

SE with Boosting 233977 ToI0E 0.85
318009 27548

SE with Random Forest 53936 | 154836 0.86

from 0.76 to 0.86 on BigStone data. The improvements can be seen
in the reduction on the number of false negatives in the confusion
matrices (lower left corner) (around 80% reduction on Chanhassen
data, and around 50% reduction on BigStone data).

4.2.2  Effect of the Number of Zones m. To test the effect of the
number of zones m in spatial ensemble learning, we fixed the other
parameters the same as Section 4.2, but varying the number of zones
m from 2 to 10 in Chanhassen data, and from 2 to 40 in BigStone
data. We measured the overall F-score of the four spatial ensemble
learning models over m. Results are summarized in Figure 5. As
can be seen, as the number of zones m increases, the classification
accuracy of all spatial ensemble learning models improves, and then
reach to a plateau. Similar trends are shown on both datasets. In
practice, the parameter m can be determined based on the size and
homogeneity of the study area. The bigger and more heterogeneous
a study area is, a larger m value is needed.

4.2.3  Effect of Base Classifier Type. The parameters were the
same as Section 4.2. We chose several different base classifier types
including decision tree (DT), SVM, neural network (NN), and lo-
gistic regression (LR). Results on Chanhassen data are shown in
Figure 7. We can see that spatial ensemble learning consistently
outperforms global model learning on different base classifier types.
Trends were similar on BigStone data.

4.2.4  Effect of the Parameter k in Class Ambiguity Measure. We
fixed the same parameters as Section 4.2 except that we varied
the parameter k from 5 to 25. Results of our four spatial ensemble
models on different parameter k are summarized in Figure 8. From
the results, we can see that the spatial ensemble learning algorithm
is not sensitive to the value of k. In practice, we can select k = 5.
Similar trend was also observed on the BigStone data.

4.2.5 Effect of the Parameter o in Greedy Heuristic. We fixed
the same parameters as Section 4.2 except that we varied the bal-
ancing parameter in our greedy heuristic « from 0 to 1. A higher
a means a higher weight on class ambiguity avoidance than on
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Figure 5: Effect of the number of zones m

zone size balance. Results are summarized in Figure 6. We can see
that the spatial ensemble learning results are generally stable. In
Chanhassen data, classification performance slightly improves as o
increases. In BigStone data, classification performance stays stable
except for the extreme cases alpha = 0 and « = 1. In practice, we
can determine the value of a based on cross-validation.

4.3 Computational Performance Evaluation

We now discuss the computational time costs of our spatial ensem-
ble learning algorithms, including the homogeneous patch genera-
tion phase, and the bisecting spatial ensemble phase.

To evaluate the time costs of homogeneous patch generation
phase, we compared our baseline algorithm (Algorithm 1) and re-
fined algorithm (Algorithm 2) on different parameter values of n
(the number of patches). We used the Chanhassen data with 82,654
total input samples. We varied the values of parameter n from 82,000
to 100. Results are shown in Figure 9. We can see that as n decreases,
the time costs of both algorithms increase (due to more merging
operations), but the cost of baseline is far higher than the refined
algorithm. The growth rate of time cost in the baseline algorithm
gradually gets lower with decreasing n. The reason is that as the
patch adjacency graph gets smaller, the cost of finding the best
patch pair with the minimum dissimilarity is also lower. In contrast,
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expensive (finding the patch pair with the minimum dissimilarity
from a priority queue is very fast).

We measured the time costs of homogeneous patch generation
(the refined algorithm) and bisecting spatial ensemble on the two
datasets we used. The parameter settings were the same as Sec-
tion 4.2. Results are summarized in Table 6. The time costs are
averages of five runs. The reported time does not include local
model learning time. Our algorithms can process over half a million
samples within several minutes.

Table 6: Computational time costs of spatial ensemble

the growth rate in the refined algorithm gets higher. The reason is
that as patches get larger, the cost computing dissimilarity is more

Chanhassen | BigStone
Number of samples 82,654 595,940
Patch Generation 45 second | 238 seconds
Bisecting Spatial Ensemble | 6 seconds | 190 seconds
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5 DISCUSSION

There are other relevant works to our problem. Geographic Object
Based Image Analyze (GEOBIA) [12] is a popular technique for
earth imagery classification. GEOBIA first segments earth imagery
into objects and then treats objects as minimum classification units.
Segmentation can be done by software tools (e.g., eCognition) based
on feature similarity (e.g., color, texture) often semi-automatically
with human in the loop. Results are promising (e.g., reducing salt-
and-pepper noise) particularly on high-resolution earth imagery.
The main difference from our work is on the goal of space partition:
GEOBIA partitions image based on feature similarity to recognize
objects, while our spatial ensemble approach partitions space into
zones to minimize class ambiguity. To consider class ambiguity
in existing GEOBIA, extra manual efforts are often needed such
as adding object features like “distance to roads". In fact, image
segmentation in GEOBIA can be used in the preprocessing step of
our approach (Algorithm 1-2) to generate homogeneous patches.
After this, our spatial ensemble algorithms (Algorithm 3-4) can
be applied to assign patches (or image segments) into different
zones to minimize class ambiguity. There are other spatial clas-
sification methods that address spatial autocorrelation, including
spatial decision trees [17-19]. These methods are orthogonal and
complementary to spatial ensemble learning.

6 CONCLUSION

This paper investigates the spatial ensemble learning problem for
heterogeneous geographic data with class ambiguity. We proposed
spatial ensemble learning algorithms that consists of two phases:
generating homogeneous patch from input spatial data samples,
and grouping homogeneous patches into different zones to reduce
class ambiguity via a greedy heuristic. We analyzed the theoretical
properties of proposed algorithms on effectiveness. Evaluations on
real world datasets show that our spatial ensemble approach out-
performs global models in classification accuracy. Computational
experiments also show that proposed computational refinements
are effective in reducing time cost.

In future work, we plan to evaluate proposed algorithms on
other applications such as spatial modeling in hydrological data.
We can also investigate inductive spatial ensemble learning (spatial
transfer learning), whereby test samples can be from a different
spatial framework from the training samples.
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