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ABSTRACT
Class ambiguity refers to the phenomenon whereby samples with

similar features belong to different classes at different locations.

Given heterogeneous geographic data with class ambiguity, the

spatial ensemble learning (SEL) problem aims to find a decompo-

sition of the geographic area into disjoint zones such that class

ambiguity is minimized and a local classifier can be learned in

each zone. SEL problem is important for applications such as land

cover mapping from heterogeneous earth observation data with

spectral confusion. However, the problem is challenging due to

its high computational cost (finding an optimal zone partition is

NP-hard). Related work in ensemble learning either assumes an

identical sample distribution (e.g., bagging, boosting, random for-

est) or decomposes multi-modular input data in the feature vector

space (e.g., mixture of experts, multimodal ensemble), and thus

cannot effectively minimize class ambiguity. In contrast, our spatial

ensemble framework explicitly partitions input data in geographic

space. Our approach first preprocesses data into homogeneous spa-

tial patches and uses a greedy heuristic to allocate pairs of patches

with high class ambiguity into different zones. Both theoretical

analysis and experimental evaluations on two real world wetland

mapping datasets show the feasibility of the proposed approach.
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1 INTRODUCTION
Classifying heterogeneous geographic data with class ambiguity,

i.e., same feature values corresponding to different classes in differ-

ent locations, is a fundamental challenge in machine learning [13,

14]. This kind of effect is also called “ecological fallacy" [25]. Fig-

ure 1 shows an example in a wetland mapping application. The goal

is to classify remote sensing image pixels (Figure 1(a)) into wetland

and dry land classes (Figure 1(b)). The two circled areas contain

pixels that share very similar spectral values yet belong to two dif-

ferent classes (also called spectral confusion). As a result, decision

tree and random forest classifiers learned from the entire image

makes tremendous prediction errors as shown in Figure 1(c-d). The

goal of spatial ensemble learning is to decompose the geographic

area into zones so as to minimize class ambiguity and to learn a

local model in each zone.

(a) Spectral features in remote
sensing image

(b) Ground truth classes (red: dry
land, green: wetland)

(c) Decision tree predictions (d) Random forest predictions

Figure 1: Real world example of heterogeneous geographic
data: class ambiguity exists in two white circles

Motivations: Spatial ensemble learning can be used in many

applications where geographic data is heterogeneous with class

ambiguity. For example, in remote sensing image classification,

spectral confusion is a challenging issue [16, 21]. The issue is par-

ticularly important in countries where the type of auxiliary data

that could reduce spectral confusion, such as elevation data, or

imagery of high temporal and spatial resolution, is not available.

In hydrologic scaling applications, the relationships between wa-

tershed characteristics and hydrologic responses is often spatially

heterogeneous, driven by different physical control variables. In

https://doi.org/10.1145/3139958.3140044
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economic study, it may happen that old house age indicates high

price in rural areas but low price in urban areas [8]. Thus, age
can be an effective coefficient to classify house price in individual

zones but ineffective in a global model. In cultural study, touching

somebody during conversation is welcomed in France and Italy, but

considered offensive in Britain unless in a sport field; the “V-Sign"

gesture can mean “two" in America, “victory" in German, but “up

yours" in Britain [24]. In these cases, spatial ensemble learning can

provide a tool that captures heterogeneous relationships between

factors (e.g., house age, gestures) and target phenomena (e.g., house

price, culture meanings).

Challenges: The SEL problem is computationally challenging.

First, there are a large number of spatial samples (pixels) to par-

tition. Second, the objective measure of class ambiguity is non-

distributive, i.e., the degree of class ambiguity in a zone cannot

be easily computed from the degrees of class ambiguity in its sub-

zones. Finally, given a geographic data, the number of candidate

partitions is exponential to the number of spatial samples. It can be

proved that finding an optimal zone partition is NP-hard.

Related work: Spatial ensemble learning belongs to a general cat-

egory of ensemble learning problems [4, 29, 34], in which a number

of weak models are combined to boost prediction accuracy. Con-

ventional ensemble methods, including bagging [2], boosting [9],

and random forest [3], assume an identical distribution of sam-

ples. Thus they cannot address heterogeneous geographic data

with class ambiguity. Decomposition based ensemble methods (also

called divide-and-conquer), including mixture of experts [15, 33]

andmultimodal ensemble [22], go beyond the identical and indepen-

dent distribution assumption in that these methods can partition

multi-modular input data and learn models in local partitions. Par-

titioning is usually conducted in feature vector space via a gating

network, which can be learned simultaneously by an EM algorithm,

or modeled by radius basis functions [32] or multiple local ellip-

soids [27]. However, partitioning input data in feature vector space

cannot effectively separate samples with class ambiguity because

such samples are very "close" in non-spatial feature attributes. Other

methods such as adding spatial coordinates into feature vectors can

be ineffective since it creates geographic partitions whose zonal

footprints are hard to interpret and can be too rigid to separate am-

biguous zones with arbitrary shapes. There are other techniques for

spatially heterogeneous data. A geographically weighted model [8]

uses spatial kernel weighting functions to learn local models. How-

ever, it requires to learn a local model at every location, which

is computationally very expensive, and it cannot allow arbitrary

shapes of spatial zones for local models. Gaussian process [20]

and multi-task learning [10] can also be used for heterogeneous

geographic data, but they do not particularly focus on the class

ambiguity issue. The mixture-of-experts approach has been used

for scene classification on images via sub-blocks partitioning and

learning local experts. But that problem is to classify an entire

image (not individual pixels) [30].

Our contributions: To address limitations of related work, we

formulate a spatial ensemble learning framework, which explicitly

partitions input data in geographic space. Our approach first pre-

processes data into homogeneous patches and then uses a greedy

heuristic to group patches into contiguous zones while minimizing

class ambiguity. A local model is learned from each zone to make

predictions on samples in the same zone. We make the following

contributions: (1) we formulate a novel spatial ensemble learning

problem to classify heterogeneous geographic data with class am-

biguity; (2) we propose effective and efficient algorithms, including

constraint-based hierarchical clustering for homogeneous patch

generation, as well as a bisecting algorithm to group patches into

contiguous zones via greedy heuristics; (3) we provide theoretical

analysis on the proposed algorithms; (4) we conduct experimental

evaluations on the classification and computational performance

of proposed approach on real world wetland mapping datasets.

Scope: This paper focuses on the class ambiguity issue in hetero-

geneous geographic data. Other recent advances that do not address

class ambiguity, such as spatial-spectral classifiers [6], object-based

image analysis [5, 23], and deep learning, fall outside the scope.

Outline: The paper is organized as follows. Section 2 defines basic
concepts and formalizes the spatial ensemble learning problem.

Section 3 introduces our approach. Experimental evaluations are in

Section 4. Section 5 discusses some other relevant works. Section 6

concludes the paper with future work.

2 PROBLEM STATEMENT
2.1 Basic Concepts
Geographic raster framework: A geographic raster framework F is

a tessellation of a 2-D plane into a regular grid. Each grid cell (or

pixel) is a spatial data sample, defined as si = (xi , li ,yi ), 1 ≤ i ≤ |F|,
where xi is a non-spatial feature vector, li is a 2-dimensional vector

of spatial coordinates, andyi ∈ {c1, c2, ..., cp } is a class label among

p categories. All the samples in F can be divided into two disjoint

subsets, a labeled sample set L = {si = (xi , li ,yi ) ∈ F|yi is known}
and unlabeled sample set U = {si = (xi , li ,yi ) ∈ F|yi is unknown}.
In the example of Figure 2(a), F has 64 samples, including 14 labeled

samples (colored in “training labels") and 50 unlabeled samples.

Each sample has a 1-dimensional feature x and a class label (red or

green).
Geospatial neighborhood relationship: It is a boolean function on

two samples R(si , sj ), whose value is true if and only if si and sj
are spatially adjacent (i.e., two cells share a boundary).

Patch: A patch P is a spatially contiguous subset of samples,

formally, P ⊆ F such that for any two samples si , sj ∈ P, either
R(si , sj ) is true or we can find a set of samples sp1 , sp2 , ..., spL ∈ P
such that R(si , sp1 ), R(spk , spk+1 ), and R(spL , sj ) are all true for 1 ≤
k ≤ L − 1. For example, all samples with input feature value 3 in

Figure 2(a) form a patch. A patch is homogeneous if its samples have

similar feature vectors (e.g., by Euclidean distance) and its labeled

samples, if exist, belong to only one class. For example, there are

seven homogeneous patches highlighted in different gray scales in

the first map of Figure 2(a).

Zone: A zone Z is a number of homogeneous patches that are

spatially contiguous with each other. It is a set of spatially contigu-

ous samples in a raster framework Z ⊆ Fwith both labeled samples

LZ = L ∩ Z and unlabeled samples UZ = U ∩ Z. In the example of

Figure 2(c), zone 1 consists of three homogeneous patches, while

zone 2 consists of four homogeneous patches.

Class ambiguity refers to the phenomenonwhereby samples with

the same non-spatial feature vector belong to different classes, due



Spatial Ensemble Learning for Heterogeneous Geographic Data SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

Table 1: A list of symbols and descriptions

Symbol Description

F All samples in a raster framework

L All labeled samples in F
U All unlabeled samples in F
si The ith spatial data sample

xi The vector of non-spatial features

li The vector of two spatial coordinates

yi The class label of of sample si
R(si , sj ) Spatial neighborhood relationship

P A patch

Z A zone

LZ All labeled samples in Z
Nk (si ) Feature space neighborhood of si
a(si ) Per sample class ambiguity

a(Z) Per zone class ambiguity

to spatial heterogeneity (e.g., heterogeneous terrains). For example,

in Figure 2(a), the four samples labeled with feature value x = 1

belong to different classes (two red and two green). A global decision

tree model makes erroneous predictions (Figure 2(b)). The degree

of class ambiguity in a zone Z can be measured on its labeled

samples LZ. We define the following three concepts to quantify

class ambiguity:

Feature space neighborhood: Feature space neighborhood of a sam-

ple si among all labeled samples LZ in zone Z is defined as Nk (si ) =
{sj ∈ LZ |sj , si ,d(xi ,x j ) is the k smallest}, where d(xi ,x j ) is a
metric function such as Euclidean distance. For example, for the

red sample in the last column in the middle of Figure 2(a), its N2(si )
can be any two labeled samples with x = 1 except the sample itself,

including one red sample and two green samples. In this definition,

we assume that labeled samples are locally dense in feature space

to avoid the curse of dimensionality. In reality, this assumption is

often satisfied due to the spatial autocorrelation effect (i.e.,nearby

training samples often resemble each other).

Per sample class ambiguity on a labeled sample si among all

labeled sample LZ in zone Z is defined as the ratio of labeled sam-

ples in different class from si in its neighborhood Nk (si ). Formal

definition is in Equation 1, where I (·) is an indicator function. For

example, the class ambiguity of the red sample in the last column of

Figure 2(a) is
1

2
= 0.5 if one red sample and one green sample (with

feature x = 1) are selected as N2(si ). Its value can also be
2

2
= 1 if

both green samples with feature value 1 happen to be selected as

N2(si ).
a(si ) =

1

k

∑
sj ∈Nk (si )

I (yj , yi ), (1)

The per zone class ambiguity of a zone is defined as the av-

erage of per sample class ambiguity over all labeled samples. It

is formally defined in Equation 2. For example, in Figure 2(a-b),

the class ambiguity in the zone of the entire raster framework is

( 1
2
× 4+ 1

2
× 4+ 0× 2+ 0× 4)/14 = 0.3. Similarly, the per zone class

ambiguity of Z1 or Z2 in Figure 2(c) is 0.

a(Z) = 1

|LZ |
∑
si ∈LZ

a(si ), (2)

A spatial ensemble is a decomposition of a raster framework

F intom disjoint zones {Z1,Z2, ..,Zm} such that the average per

zone class ambiguity is minimized. A local model can be learned in

each zone Zi based on its labeled (training) samples LZi , and then

be used to classify unlabeled samples UZi in the same zone. The

concept of a local model in each zone can be generalized to a set

of models (e.g., bagging, boosting, random forest) in the zone. In

other words, spatial ensemble learning can be used together with

traditional ensemble methods since they are orthogonal. Figure 2(c)

shows an example of spatial ensemble withm = 2.

2.2 Problem Definition
The spatial ensemble learning problem is defined as follows:

Input:
• A geographic raster framework F with labeled samples L and

unlabeled samples U
• The number of zones in the spatial ensemble:m
• The parameter in feature space neighborhood: k
Output: A spatial ensemble withm contiguous zones such that:

argmin

Z1,Z2, ..,Zm

1

m

m∑
i=1

a(Zi)

subject to (1)Zi ∩ Zj = ∅ for i , j

(2)
m⋃
i=1

Zi = F

where a(Zi) is the per zone class ambiguity, and f (Zi) is the number

of isolated patches.

Figure 2 shows a problem example. Inputs include a geographic

data with 64 samples, 14 labeled (training) and 50 unlabeled, with

one feature x and two classes (red, green) (Figure 2(a)). The class
ambiguity of the entire framework is a(F) = 0.3, computed from the

class histogram of training samples. A global decision tree makes

prediction errors (Figure 2(b)). In contrast, a spatial ensemble with

two zones in Figure 2(c) reduces per zone class ambiguity to zero.

Predictions of local models show zero errors.

The spatial ensemble learning problem is formulated as a geo-

graphical partition problem because we assume that the underlying

causes of class ambiguity is spatial heterogeneity. This phenom-

enon is also known as “ecological fallacy", or spatial Simpson’s

Paradox. Individual zones in spatial ensemble are contiguous to

avoid overfitting (spatial regularization) and also to conform the

first law of geography, "Everything is related to everything else, but

nearby things are more relevant than distant things" [31]. There

are several other assumptions in our problem formulation. First,

we assume samples in the raster framework form homogeneous

patches. This is often true due to the spatial autocorrelation effect,

particularly when the pixel resolution is high. Second, we assume

feature vectors of unlabeled (test) samples are given within the

same raster framework of training samples. In other words, the

problem belongs to transductive learning. This can limit the scope

of the problem. Finally, we assume a pixel belongs to only one class,

i.e., there is no class ambiguity within a pixel. The computational

challenges of the problem is discussed in Theorem 2.1 below.

Theorem 2.1. The spatial ensemble learning problem is NP-hard.
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(a) Problem inputs (b) Problem outputs for global model

 1 2 3 x value 
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4 
Class ambiguity is 0 

Zonal prediction1 Zonal prediction2 Model 1 

x ≤ 1 

red green 

 1 2 3 x value 

Count 

4 
Class ambiguity is 0 

x ≤ 1 

green red 

Model 2 

Zone 1 

Zone 2 

(c) Problem outputs for spatial ensemble

Figure 2: Illustrative example of problem inputs and outputs (best viewed in color)

Proof. Due to space limit, we only provide main ideas. First, our

objective function of per zone class ambiguity is non-monotonic

and non-distributive. Thus, we cannot compare one candidate zone

partitioning against another without computing class ambiguity.

Second, the number of possible zone partitioning is beyond poly-

nomial. This can be derived from the NP-hardness of grid graph

partitioning problems [7]. □

3 PROPOSED APPROACH
In this section, we present our algorithms to address computational

challenges of the spatial ensemble learning problem. Our algo-

rithms consist of two phases. First, input spatial data samples (both

labeled and unlabeled) are clustered into homogeneous patches. We

propose to use a constraint-based hierarchical spatial clustering

approach (Section 3.1). After this, homogeneous patches are fur-

ther grouped into contiguous zones through a recursive bisecting

process (Section 3.2).

3.1 Preprocessing: Homogeneous Patches
Given geographic data with all labeled and unlabeled samples, gen-

erating homogeneous patches can be considered as image segmen-

tation [11] but with the constraint that labeled samples in the same

patch, if exist, belong to the same class.

Algorithm 1 shows our bottom-up hierarchical method to gen-

erate homogeneous patches. First, each data sample is initialized

as a patch (step 1). The algorithm then repeatedly merges pairs

of adjacent patches (patches with samples that are spatial neigh-

bors) in a greedy manner. Only patch pairs whose labeled samples

belong to the same class can be merged (step 6). The patch pair

whose samples have the smallest feature dissimilarity (step 7) are

merged first (steps 10-11). Merging continues until the number of

patches is reduced to a given number n. In implementation, we can

Algorithm 1 Homogeneous Patch Generation

Input:
• All samples in the raster framework: F
• Spatial neighborhood relationship: R(·, ·)
• The number of output patches: n, n ≪ |F|

Output:
• A set of n patches: P = {P1, P2, ..., Pn}

1: Initialize a patch set P = {Pi = {si }|si ∈ F}
2: while number of patches |P| > n do
3: for each adjacent pair Pi and Pj do
4: if d(Pi, Pj) has been computed then
5: Continue to next for iteration

6: if Lpi , Lpj either empty or same class then
7: d(Pi, Pj) ← 1

|Pi | |Pj |
∑

si ∈Pi,sj ∈Pj
d(xi ,x j )

8: else
9: d(Pi, Pj) ← +∞
10: Find Pi, Pj with minimum dissimilarity d(Pi, Pj)
11: Merge these two patches: Pi ← Pi ∪ Pj, P← P \ Pj
12: return P.

use a patch adjacency graph to efficiently find pairs of adjacent

patches. The graph can be easily updated when two patches (nodes)

are merged. Figure 3 shows a toy example. The input geographic

data contains 64 samples with one feature and two classes (red and

green). Adjacent samples with the same feature value are merged

into a patch. For instance, all samples with feature value 4 in the

upper left corner are merged into patch A. The final output is 7
homogeneous patches (shown by different shades: A to G).
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(a) Input geographic
data
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F 
G 

(b) Output homoge-
neous patches

Figure 3: Illustration of homogeneous patch generation

Algorithm 1 has two major computational bottlenecks in its

iterations: identification of the adjacent patch pair with the mini-

mum dissimilarity on the entire map (step 10), and computation of

dissimilarity values between new adjacent patch pairs (step 7). To

address the first bottleneck, we propose to use a priority queue with

adjacent patch pairs ordered by dissimilarity. To reduce the cost

of patch dissimilarity computation, we reuse previously computed

dissimilarity values when possible.

Details of these computational refinements are in Algorithm 2.

The algorithm maintains a neighborhood graph where nodes are

patches and edges are spatial adjacency between patches. Edge

weights ei j are dissimilarity values between adjacent patch pairs

(vi ,vj ). Initially, the graph is a grid graph with each sample (pixel)

as a node (patch) (steps 1-2). Then, the algorithm repeatedly merge

two neighboring nodes with the minimum edge weight, until the

total number of nodes (patches) are reduced to a required number n.
In order to quickly find neighboring nodes with the minimum edge

weight, we maintain a priority queue of all neighboring node pairs

ordered by their edge weights (step 3), and extract the minimum

element from the queue in each iteration (step 6). After extracted,

the pair of nodes vi ,vj are merged into a new node vn (step 10),

and the corresponding edges are also updated. When computing

the weights of edges connected to the new node vn , we reuse

the weights of edges connected to nodes vi ,vj (step 12) to avoid

redundant computation (see definition of d(Pi, Pj) in steps 7 and

9 in Algorithm 1). The weights of new patch pairs are added to

the priority queue (step 13). Once nodes vi ,vj are merged, their

corresponding elements in the priority queue become obsolete.

Thus, we maintain a hash set of all obsolete nodes (steps 1 and 9)

to ignore their elements in the priority queue (steps 7-8).

3.2 Group Homogeneous Patches into Zones
After samples are clustered into homogeneous patches, the second

phase of our spatial ensemble learning method aims to divide these

patches into several contiguous groups (zones) to minimize class

ambiguity within each group (zone). This can be considered as a pla-

nar graph partition problem where nodes are patches and edges are

spatial adjacency. In order to group patches (nodes) into multiple

zones, we propose a bisecting algorithm (Algorithm 3). The algo-

rithm starts with one zone containing the set of all patches (steps

1-2), and then keeps breaking down the current most ambiguous

zone into two until the number of zones reaches a required num-

ber (steps 3-7). The critical question now becomes how to divide

Algorithm 2 Faster Homogeneous Patch Generation

Input:
• All samples in the raster framework: F
• Spatial neighborhood relationship: R(·, ·)
• The number of output patches: n, n ≪ |F|

Output:
• A set of n patches: P = {P1, P2, ..., Pn}

1: Initialize a patch set P = {Pi = {si }|si ∈ F}
2: Initialize a neighborhood graph G(V ,E) with each patch as a

node:

vi = Pi = {si } for 1 ≤ i ≤ |F|

ei j =

{
d(xi ,x j ) if si , sj are neighbors, same class or unlabeled

∞ otherwise

3: Create a priority queue PQ with all neighbor pairs (vi ,vj , ei j )
4: Initialize a set of obsolete nodes O ← ∅
5: while |V | > n and PQ not empty do
6: (vi ,vj , ei j ) ← ExtractMin(PQ)
7: if vi ∈ O or vj ∈ O then
8: Continue to next while iteration
9: O ← O ∪ {vi } ∪ {vj }
10: Create a new node vn merging vi ,vj in G (Pn ← Pi ∪ Pj)
11: for each other neighbor node vk of vi or vj do
12:

ek,n =


ek,i |Pk | · |Pi |+ek, j |Pk | · |Pj |

|Pk | · |(Pi |+ |Pj |) if vk neighbors both vi ,vj
d (Pk,Pi) |Pk | · |Pi |+ek, j |Pk | · |Pj |

|Pk | · |(Pi |+ |Pj |) | if vk neighbors vj only

ek,i |Pk | · |Pi |+d (Pk,Pj) |Pk | · |Pj |
|Pk | · |(Pi |+ |Pj |) if vk neighbors vi only

13: Add edge (vk ,vn , ek,n ) to graph G
14: Add (vk ,vn , ek,n ) into priority queue PQ
15: Remove obsolete nodes vi ,vj and their edges

16: return P = V .

a zone (set of patches) into two to minimize class ambiguity. This

is done via another subroutine called TwoZoneSpatialEnsemble

(Algorithm 4) whose details are introduced below.

Since graph partitioning problems are generally computationally

hard [7], in Algorithm 4, we propose a greedy heuristic that assign

patches (graph nodes) into two zones maximizing inter-zone class
ambiguity while minimizing intra-zone class ambiguity. To do that,

the algorithm uses a seed growing process to expand two zones on

a patch adjacency graph. At the beginning, all patches are marked

as unassigned (step 2), and the class ambiguity of all patch pairs

(whether adjacent or not) are computed (step 3). The algorithm

finds the two patches with the highest class ambiguity as initial

seeds, and assigns one patch to each zone respectively (steps 4-5).

The algorithm also maintains a set of frontier nodes (unassigned

spatially adjacent nodes) F1, F2 for each zone (steps 6-7). Next, the

algorithm iteratively grows a zone by adding a node from its frontier

until all nodes are assigned (i.e., two frontiers are empty).

When selecting a node from the frontier of a zone, we use a

greedy heuristic that maximizes inter-zone class ambiguity while

minimizes intra-zone class ambiguity. This is shown in the formula

ofA1

k andA2

k (steps 10 and 14). In the formula ofA1

k , the numerator



SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA Zhe Jiang et al.

Algorithm 3 Bisecting Multi-zone Spatial Ensemble

Input:
• A set of homogeneous patches: P = {P1, P2, ..., Pn}
• The number of zones:m (m ≪ n)
• The parameter in class ambiguity measure: k
• The balancing parameter in our greedy heuristic: α

Output:
• A spatial ensemble ofm zones: Z = {Z1, ...,Zm}

1: Initialize a zone with all input patches: Z1 ← P
2: Initialize a set of zones for outputs: Z← {Z1}
3: while |Z| < m do
4: Find the zone with max class ambiguity:

Z0 = argmax

Zi∈Z
a(Zi)

5: Remove zone Z0 from result set: Z← Z \ Z0
6: {Z′1,Z

′
2} = TwoZoneSpatialEnsemble(Z0, k , α )

7: Z← Z ∪ {Z′1} ∪ {Z
′
2}

8: return Z

Algorithm 4 Two Zone Spatial Ensemble

Input:
• A set of homogeneous patches: P = {P1, P2, ..., Pn}
• The parameter in class ambiguity measure: k
• The weight parameter in our greedy heuristic: α

Output:
• A spatial ensemble of two zones: {Z1,Z2}

1: Create a spatial adjacency graph with patches as nodes

2: Initialize all nodes as unassigned
3: Compute class ambiguity ai j = a(Pi ∪ Pj) for any i , j
4: Find Pi, Pj with max class ambiguity ai j
5: Initialize Z1 ← {Pi}, Z2 ← {Pj}, mark Pi, Pj as visited
6: Initialize F1 with all unassigned neighboring patches of Z1
7: Initialize F2 with all unassigned neighboring patches of Z2
8: while F1 , ∅ or F2 , ∅ do
9: for each Pk ∈ F1 do

10: A1

k =

1+ sup

Po∈Z2
a(Pk,Po)

1+ sup

Po∈Z1
a(Pk,Po) //class ambiguity avoidance

11: B1k ← SizeBalance(Z1 ∪ {Pk},Z2) //zone size balance
12: Compute overall score: S1k ← αA1

k + (1 − α)B
1

k
13: for each Pk ∈ F2 do

14: A2

k =

1+ sup

Po∈Z1
a(Pk,Po)

1+ sup

Po∈Z2
a(Pk,Po) //class ambiguity avoidance

15: B2k ← SizeBalance(Z1,Z2 ∪ {Pk}) //zone size balance
16: Compute overall score: S2k ← αA2

k + (1 − α)B
2

k
17: Find the Pk0 ∈ Ff0 (f0 ∈ {1, 2}) with max overall score

18: Zf0 ← Zf0 ∪ {Pk0 }, mark Pk0 as visited
19: F1 ← F1 \ {Pk0 }, F2 ← F2 \ {Pk0 }
20: Expand Ff0 with all unassigned neighboring patches of Pk0
21: return {Z1, Z2}

Table 2: Patch pairs with non-zero class ambiguity

Patch Pi Patch Pj a(Pi ∪ Pj)
B F 0.5

C D 0.5

D C 0.5

F B 0.5

is the maximum class ambiguity between the candidate patch Pk
and patches in the other zone Z2, reflecting inter-zone class am-

biguity, while the denominator is the maximum class ambiguity

between Pk and patches in its corresponding zone Z1, reflecting
intra-zone class ambiguity. We add a value 1 in the formula for nor-

malization. To avoid the case in which most patches are assigned

to one single zone, we also add a size-balance factor B1k (B2k ) to our

heuristic. Size balance factor across two zones can be measured via

the entropy −r1 log r1 −r2 log r2 where r1 and r2 are the ratio of the
sizes (number of samples) of zone 1 and zone 2 to their total size. A

higher entropy value indicates more size-balanced zones. We use a

parameter α to weight the influence of two factors in our heuristic

(step 12 and 16). The node with the maximum overall score Pk0
is selected, and is added to its corresponding zone Zf0 (step 18).

The node is then removed from frontiers. Its original frontier is

expanded with the node’s unassigned neighbors. Finally, all nodes

are assigned, the frontiers become empty, and the two zones are

returned (step 21).

Running example: Figure 4 shows a running example of Algo-

rithm 4 with the same input data as the example in Figure 3. Assume

k = 2, α = 0.5, andm = 2. The adjacency graph of patches is shown

in Figure 4(b). Patch pairwise class ambiguity is shown in Table 2.

The two zones are shown by two different colors. Frontiers are

shown by solid edges connected to zones. Initially, Z1 = {C} and
Z2 = {D} (Figure 4(b)). The frontier of Z1 is {B}, while the frontier
of Z2 is {A,E, F ,G}. In the next iteration, all candidate nodes from

the frontiers have zero class ambiguity avoidance score, but node

B has the highest size balance score, so it is selected to grow Z1.
Nodes F ,A,G,E are then selected consecutively. The final output

two zones are shown in Figure 4(i). This output is slightly differ-

ent from our problem example in Figure 2, but both reduce class

ambiguity to zero.

3.3 Theoretical Analysis
Theorem 3.1. The expectation of our per zone class ambiguity

measure is an upper bound of Bayesian error.

Proof. We omit the detailed proof due to space limit. □

The Theorem 3.1 is important because Bayesian error rate is gen-

erally considered as the lowest possible error rate for any classifier

in statistical classification. The fact that class ambiguity is an upper

bound of Bayesian error means that minimizing class ambiguity in

spatial ensemble learning can help reduce Bayesian error rate.

4 EXPERIMENTAL EVALUATION
The goal of the experiments was to:

• Evaluate the classification accuracy of spatial ensemble learning.
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Figure 4: A running example of Algorithm 3

• Test the sensitivity of spatial ensemble to its parameters.

• Evaluate the computational costs of spatial ensemble algorithms.

4.1 Experiment Setup
For classification performance evaluation, we compared spatial en-

semble learning (learning models and making predictions within

individual zones) with global model learning (i.e., learning models

and making predictions on the entire study area). We used a single

model, bagging, boosting, and random forest on both learning meth-

ods. For example, we can learn a random forest in each individual

zone in our spatial ensemble learning method. We also tested the

sensitivity of spatial ensemble learning to its parameters, including

the number of zones m, the base classifier type, class ambiguity

measure parameter k , and balancing parameter α in greedy heuris-

tic. The number of patches n in preprocessing was determined via

trying different values and visualizing the output homogeneous

patches. For computational performance comparison, we compared

our baseline and refined homogeneous patch generation algorithms

(Algorithm 1 and 2). We also evaluated computational performance

of bisecting spatial ensemble algorithm (Algorithm 3). All codes

were implemented in Java and base classifiers were from Weka

toolbox [1]. We conducted experiments on an iMac Desktop with 4

GHz Intel Core i7 processor and 32GB DDR3 main memory.

Dataset description: Our datasets were collected from two ar-

eas in Minnesota: Chanhassen and Big Stone [28]. We used eight

Table 3: Dataset Description

Scene

Training Samples Test Samples

Dry Wet Dry Wet

Chanhassen 6715 4323 40362 31254

Big Stone 45483 27138 345557 177762

Table 4: Results on Chanhassen ("SE" for spatial ensemble)

Ensemble Method Confusion Matrix F score

Global Single Model

36734 3628
0.769640 21614

Global Bagging

36497 3865
0.798272 22982

Global Boosting

35506 4856
0.797646 23608

Global Random Forest

36867 3495
0.798349 22905

SE with Single Model

37407 2955
0.922073 29181

SE with Bagging

37565 2797
0.931871 29383

SE with Boosting

37527 2835
0.931851 29403

SE with Random Forest

37609 2753
0.931688 29566

explanatory features, including four spectral bands (red, green,

blue, near-infrared) in high resolution (3m by 3m) aerial photos

from the National Agricultural Imagery Program during leaf-off

season, and four corresponding texture on homogeneity [26]. Class

labels (wetland and dry land) were collected from the updated Na-

tional Wetland Inventory. The Chanhassen scene contains 221 by

374 pixels, and the BigStone scene contains 718 by 830 pixels. We

used systematic clustered sampling to select training set, and used

remaining pixels as test set (details in Table 3).

Evaluation metric: We evaluated the classification performance

with confusion matrices, and F-score (harmonic mean of precision

and recall) on the wetland class (wetland class is of more interest).

4.2 Classification Performance Evaluation
4.2.1 Comparison on Classification Accuracy. In Chanhassen

data, we set parameter values as n = 100,m = 6, k = 10, α = 0.9.

In BigStone data, we set parameter values as n = 800, m = 20,

k = 10, α = 0.9 (n and m were set higher in BigStone than in

Chanhassen because BigStone is larger). The classification accuracy

results for the two datasets are summarized in Table 4, 5 respectively.

In the confusion matrix displayed in each table, the first and second

rows show true dry land and wetland samples respectively, and

the first and second columns show predicted dry land and wetland

samples respectively. We can see that in global models, bagging,

boosting, and random forest slightly improve a single decision tree

(overall F-score increases by 0.03), but significant errors remain. In

contrast, the spatial ensemble of models improved the F-score of

global models from around 0.8 to over 0.9 on Chanhassen data, and
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Table 5: Results on BigStone ("SE" for spatial ensemble)

Ensemble Method Confusion Matrix F score

Global Single Model

305172 40385
0.7546760 131002

Global Bagging

313625 31932
0.7745586 132176

Global Boosting

307866 37691
0.7644813 132949

Global Random Forest

317777 27780
0.7846263 131499

SE with Single Model

316201 29356
0.8525300 152462

SE with Bagging

316908 28649
0.8623162 154600

SE with Boosting

315817 29740
0.8523397 154365

SE with Random Forest

318009 27548
0.8622926 154836

from 0.76 to 0.86 on BigStone data. The improvements can be seen

in the reduction on the number of false negatives in the confusion

matrices (lower left corner) (around 80% reduction on Chanhassen

data, and around 50% reduction on BigStone data).

4.2.2 Effect of the Number of Zonesm. To test the effect of the

number of zonesm in spatial ensemble learning, we fixed the other

parameters the same as Section 4.2, but varying the number of zones

m from 2 to 10 in Chanhassen data, and from 2 to 40 in BigStone

data. We measured the overall F-score of the four spatial ensemble

learning models overm. Results are summarized in Figure 5. As

can be seen, as the number of zonesm increases, the classification

accuracy of all spatial ensemble learning models improves, and then

reach to a plateau. Similar trends are shown on both datasets. In

practice, the parameterm can be determined based on the size and

homogeneity of the study area. The bigger and more heterogeneous

a study area is, a largerm value is needed.

4.2.3 Effect of Base Classifier Type. The parameters were the

same as Section 4.2. We chose several different base classifier types

including decision tree (DT), SVM, neural network (NN), and lo-

gistic regression (LR). Results on Chanhassen data are shown in

Figure 7. We can see that spatial ensemble learning consistently

outperforms global model learning on different base classifier types.

Trends were similar on BigStone data.

4.2.4 Effect of the Parameter k in Class Ambiguity Measure. We

fixed the same parameters as Section 4.2 except that we varied

the parameter k from 5 to 25. Results of our four spatial ensemble

models on different parameter k are summarized in Figure 8. From

the results, we can see that the spatial ensemble learning algorithm

is not sensitive to the value of k . In practice, we can select k = 5.

Similar trend was also observed on the BigStone data.

4.2.5 Effect of the Parameter α in Greedy Heuristic. We fixed

the same parameters as Section 4.2 except that we varied the bal-

ancing parameter in our greedy heuristic α from 0 to 1. A higher

α means a higher weight on class ambiguity avoidance than on
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Figure 5: Effect of the number of zonesm

zone size balance. Results are summarized in Figure 6. We can see

that the spatial ensemble learning results are generally stable. In

Chanhassen data, classification performance slightly improves as α
increases. In BigStone data, classification performance stays stable

except for the extreme cases alpha = 0 and α = 1. In practice, we

can determine the value of α based on cross-validation.

4.3 Computational Performance Evaluation
We now discuss the computational time costs of our spatial ensem-

ble learning algorithms, including the homogeneous patch genera-

tion phase, and the bisecting spatial ensemble phase.

To evaluate the time costs of homogeneous patch generation

phase, we compared our baseline algorithm (Algorithm 1) and re-

fined algorithm (Algorithm 2) on different parameter values of n
(the number of patches). We used the Chanhassen data with 82,654

total input samples.We varied the values of parametern from 82,000

to 100. Results are shown in Figure 9. We can see that as n decreases,

the time costs of both algorithms increase (due to more merging

operations), but the cost of baseline is far higher than the refined

algorithm. The growth rate of time cost in the baseline algorithm

gradually gets lower with decreasing n. The reason is that as the

patch adjacency graph gets smaller, the cost of finding the best

patch pair with the minimum dissimilarity is also lower. In contrast,



Spatial Ensemble Learning for Heterogeneous Geographic Data SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

0.0 0.2 0.4 0.6 0.8 1.00
.8

0
0

.8
5

0
.9

0
0

.9
5

Spatial Ensemble Heuristic Parameter (alpha)

F
−

s
c
o

re

SE with Single Model
SE with Bagging
SE with Boosting
SE with Random Forest

(a) Results on Chanhassen

0.0 0.2 0.4 0.6 0.8 1.00
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0

Spatial Ensemble Heuristic Parameter (alpha)

F
−

s
c
o

re

SE with Single Model
SE with Bagging
SE with Boosting
SE with Random Forest

(b) Results on BigStone

Figure 6: Effect of balancing parameter α in spatial ensemble

DT SVM NN LR

F
−

s
c
o

re
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Global Single Model
SE with Single Model

Figure 7: Effect of the base classifier type on Chanhassen
data

5 10 15 20 25

0
.8

6
0
.9

0
0
.9

4

Class ambiguity measure parameter (k)

F
−

s
c
o
re

SE with Single Model
SE with Bagging
SE with Boosting
SE with Random Forest

Figure 8: Effect of class ambiguity measure parameter k on
Chanhassen data

the growth rate in the refined algorithm gets higher. The reason is

that as patches get larger, the cost computing dissimilarity is more
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Figure 9: Time costs of baseline and refined algorithms in
homogeneous patch generation

expensive (finding the patch pair with the minimum dissimilarity

from a priority queue is very fast).

We measured the time costs of homogeneous patch generation

(the refined algorithm) and bisecting spatial ensemble on the two

datasets we used. The parameter settings were the same as Sec-

tion 4.2. Results are summarized in Table 6. The time costs are

averages of five runs. The reported time does not include local

model learning time. Our algorithms can process over half a million

samples within several minutes.

Table 6: Computational time costs of spatial ensemble

Chanhassen BigStone

Number of samples 82,654 595,940

Patch Generation 45 second 238 seconds

Bisecting Spatial Ensemble 6 seconds 190 seconds
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5 DISCUSSION
There are other relevant works to our problem. Geographic Object

Based Image Analyze (GEOBIA) [12] is a popular technique for

earth imagery classification. GEOBIA first segments earth imagery

into objects and then treats objects as minimum classification units.

Segmentation can be done by software tools (e.g., eCognition) based

on feature similarity (e.g., color, texture) often semi-automatically

with human in the loop. Results are promising (e.g., reducing salt-

and-pepper noise) particularly on high-resolution earth imagery.

The main difference from our work is on the goal of space partition:

GEOBIA partitions image based on feature similarity to recognize

objects, while our spatial ensemble approach partitions space into

zones to minimize class ambiguity. To consider class ambiguity

in existing GEOBIA, extra manual efforts are often needed such

as adding object features like “distance to roads". In fact, image

segmentation in GEOBIA can be used in the preprocessing step of

our approach (Algorithm 1-2) to generate homogeneous patches.

After this, our spatial ensemble algorithms (Algorithm 3-4) can

be applied to assign patches (or image segments) into different

zones to minimize class ambiguity. There are other spatial clas-

sification methods that address spatial autocorrelation, including

spatial decision trees [17–19]. These methods are orthogonal and

complementary to spatial ensemble learning.

6 CONCLUSION
This paper investigates the spatial ensemble learning problem for

heterogeneous geographic data with class ambiguity. We proposed

spatial ensemble learning algorithms that consists of two phases:

generating homogeneous patch from input spatial data samples,

and grouping homogeneous patches into different zones to reduce

class ambiguity via a greedy heuristic. We analyzed the theoretical

properties of proposed algorithms on effectiveness. Evaluations on

real world datasets show that our spatial ensemble approach out-

performs global models in classification accuracy. Computational

experiments also show that proposed computational refinements

are effective in reducing time cost.

In future work, we plan to evaluate proposed algorithms on

other applications such as spatial modeling in hydrological data.

We can also investigate inductive spatial ensemble learning (spatial

transfer learning), whereby test samples can be from a different

spatial framework from the training samples.
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