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On Detection and Mitigation of Reused Pilots in
Massive MIMO Systems

Jitendra K. Tugnait, Fellow, IEEE

Abstract—In a time-division duplex (TDD) multiple antenna
system the channel state information (CSI) can be estimated using
reverse training. In multi-cell multi-user massive MIMO systems,
pilot contamination degrades CSI estimation performance and
adversely affects massive MIMO system performance. In this
paper we consider a subspace-based semi-blind approach where
we have training data as well as information bearing data from
various users (both in-cell and neighboring cells) at the base
station (BS). Existing semi-blind approaches assume that the
interfering users from neighboring cells are always at distinctly
lower power levels at the BS compared to the in-cell users.
This requires (perfect) power control. In this paper we do
not make any such assumption. Unlike existing approaches, the
BS estimates the channels of all users: in-cell and significant
neighboring cell users, i.e., ones with comparable power levels
at the BS. We exploit both subspace method using correlation
as well as blind source separation using higher-order statistics.
Finally, the estimated channels are used to detect information
symbols, which, in turn, are used as pseudo-pilots to re-estimate
the in-cell users’ channels. The proposed approach is illustrated
via simulation examples and compared with some existing semi-
blind methods.

Index Terms—Massive MIMO, pilot contamination, multi-user
channel estimation, independent component analysis.

I. INTRODUCTION
Mobile data traffic continues to grow at an exponential rate.

To meet this data challenge, massive MIMO (multiple-input
multiple-output) system technology has been proposed where
the base station employs a large number of antennas, allowing
many single-antenna users to be served simultaneously [1],
[2], [3], [4], [5]. It is regarded as one of the key enablers of
future 5G wireless systems. Successful operation of massive
MIMO depends critically on knowledge of the channel state
information (CSI) between the base station (BS) and the end
users. In a time-division duplex (TDD) system, the downlink
(DL) and uplink (UL) channels can be assumed to be recip-
rocal Therefore, the BS can acquire the CSI in a TDD system
using reverse training, where the users send individual pilot
signals to the base station during the UL operation [5]. In a
given cell, the pilots are selected to be orthogonal.
In a multi-cell environment, since the same orthogonal pilots

are re-used among the cells due to a large number of end
users. Due to pilot reuse, the channel estimates obtained at
a BS contain not only the desired CSI but also components
(contamination) from neighboring cells. The effect of inter-
cell interference does not vanish with increasing number of
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antennas at the BS. This phenomenon is called pilot contami-
nation. It degrades CSI estimation performance and adversely
affects massive MIMO system performance.
Several methods have been proposed to eliminate/mitigate

the effects of pilot contamination [6]-[16]; a recent survey
is in [5]. Time-shifted pilots have been proposed in [7], and
also considered in [15], where when users from a given cell
transmit pilots in UL, the BSs in the neighboring cells transmit
data in DL. This avoids pilot contamination but this method
is susceptible to UL/DL power disparity because of different
transmit rates (UL rates are typically much lower than the
DL rates). Therefore, DL data transmit power is significantly
higher than the UL pilot power, and hence, this method may
not yield accurate channel estimates. Multi-cell cooperative
and coordinated methods have been proposed in [ 8], [9], [10].
These approaches require cooperation among BSs, as well as
knowledge and exchange of channel covariance information.
Such information is not always available, and the methods may
not always be feasible with increasing number of antennas
because the information exchange among BSs increases with
number of antennas.
Blind/semi-blind methods have been proposed in [11], [12],

[13]. In [11], [12] signal subspace properties, based on SVD
(singular value decomposition) of data matrix [12] or on EVD
(eigenvalue decomposition) of data correlation matrix [ 11], are
used to first separate in-cell signal subspace from interference-
and-noise subspace, and then one uses pilots to resolve a
much lower-dimension unitary matrix ambiguity. In [ 13] a
semi-blind approach is proposed which requires neither inter-
cell cooperation nor channel statistical information. It exploits
data higher-order statistics (kurtosis). In [14] the approach
of [12] is augmented with angle-of-arrival properties-based
spatial filtering.
The method of [15] uses both DL and UL training where

the training overhead increases with the number of cells, by
a factor equal to the number of cells. In [16] an iterative
(turbo) joint channel estimation and data detection method
is investigated. This method requires knowledge of channel
covariance information and of large-scale fading coefficients.
Thus, existing approaches differ in the underlying assump-

tions and availability of information: just training data, or
training data plus information symbols-based data, or training
data and statistical channel information about channel, and
knowledge of large-scale fading coefficients, etc. They all
assume that the interfering users from neighboring cells are
always at distinctly lower power levels at the BS compared
to the in-cell users. This requires (perfect) power control
particularly if the interfering users are at the cell edge. In
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this paper we consider a subspace-based semi-blind approach
where we have training data as well as information bearing
data from various users (both in-cell and neighboring cells) at
the BS. We augment the approach of [11], [12] by additional
features. We allow the interfering users from neighboring
cells to be be at higher power levels at the BS compared
to the in-cell users, unlike [11], [12]. The same advantages
also hold compared to the approach of [13]. Unlike existing
approaches, the BS estimates the channels of all users: in-
cell and significant neighboring cell users, i.e., ones with
comparable power levels at the BS.
The rest of the paper is organized as follows. In Sec. II, we

present our multi-user multi-cell system model, together with
the EVD of the correlation matrices of the received signals
in both training and data phases. In Sec. III, we present our
proposed approach based on both pilots and data. Simulation
results are presented in Sec. IV.
Notation: Superscripts (.)∗, (.)� and (.)H represent complex

conjugate, transpose and complex conjugate transpose (Hermi-
tian) operation, respectively, on a vector/matrix. The notation
E{.} denotes the expectation operation, C the set of complex
numbers, IM an M ×M identity matrix, 1{A} is the indicator
function, and δi,j denotes the Kronecker delta, i.e., δi,j = 1 if
i = j, = 0 otherwise. The notation x ∼ Nc(m,Σ) denotes a
random vector x that is circularly symmetric complex Gaussian
with meanm and covariance Σ. The abbreviation w.p.1. stands
for with probability one.

II. SYSTEM MODEL

Consider a cellular wireless network composed of L cells
withK� ≤ K̄ single-antenna users in the �th cell, and one base
station (BS) with Nr antennas. The system operates in a TDD
mode. We focus on the uplink (UL) transmission phase. Let
the � = 1 index the reference cell, with � = 2, · · · , L indexing
the nearest neighbor cochannel cells. Consider a flat Rayleigh
fading environment with the channel from the ith user in the
�th cell to the reference-cell BS denoted as h�i ∈ CNr , where
h�i ∼ Nc(0, INr) represents small-scale fading. Let p�i denote
the average transmitted power as well as the effects of large-
scale fading, for the transmission of the ith user in the �th cell
to the reference-cell BS. Then the received signal at reference-
cell BS is given by

y(n) =
L∑

�=1

K�∑
i�=1

√
p�i� h�i�x�i�(n) + v(n) (1)

=

K1∑
i=1

√
p1i h1ix1i(n) +

L∑
�=2

K�∑
i�=1

√
p�i� h�i�x�i�(n)︸ ︷︷ ︸

inter-cell interference

+v(n)

(2)

where additive noise v(n) ∼ Nc(0, σ
2
vINr) and x�i�(n) de-

notes the nth symbol transmitted by the i�th user in the �th
cell.

A. Training Phase
During the training phase, active users send training se-

quences as x�i�(n). Suppose there are K0 orthogonal training

sequences sti(n) of length P symbols, i = 1, 2, · · · ,K0,
P ≥ K0. In general, K0 ≥ K� for � = 1, 2, · · · , L
but K0 � LK̄. The training sequences are assumed to be
normalized to satisfy

P−1
P∑

n=1

st,i(n)s
∗
t,j(n) = δi,j =

{
1 if i = j
0 if i �= j

(3)

All active users are assigned training sequences from the
set of K0 pilots by their respective BSs, which typically
would lead to pilot reuse from cell-to-cell, but in a given cell,
pilots are distinct and orthogonal. Suppose that the pilots are
indexed (labeled) such that during the training phase, w.r.t. the
reference-cell BS’s choice of training sequences, we have

x1i(n) = sti(n), i = 1, 2, · · · ,K1, n = 1, 2, · · · , P. (4)

Then, for n = 1, 2, · · · , P , the received signal at reference-cell
BS is given by

y(n) =
K1∑
i=1

(√
p1i h1i + h̃1i

)
sti(n) +

K0∑
i=K1+1

h̃1isti(n) + v(n)

(5)

where

h̃1i =
L∑

�=2

K�∑
i�=1

√
p�i� h�i�1{x�i�

(n)=sti(n), n=1,2,··· ,P}. (6)

Since a given pilot is assigned to no more than one user in a
given cell, in (6), there are at most L− 1 nonzero entries.
If there is no pilot reuse, then h̃1i = 0 for i = 1, 2, · · · ,K1,

and therefore, the BS would estimate √
p1i h1i as the active

in-cell ith user’s channel using training sti(n). In the case of
reused pilots, based on (5), the BS would estimate √

p1i h1i+
h̃1i as the active in-cell ith user’s channel.

B. Data Phase
During the data phase in uplink, active users transmit their

information symbols as x�i�(n). Using x�i�(n) to denote these
information sequences, the received signal at reference-cell BS
is given by (2). These information sequences are assumed to be
zero-mean i.i.d., mutually independent, and of known alphabet.
We assume that E

{|x�i�(n)|2
}
= 1 ∀�, i�, with any non-unity

constant absorbed in √
p�i� . We assume that model (5) applies

for n = 1, 2, · · · , P and model (2) applies for n = P +1, P +
2, · · · , P+Td, with total T = P+Td available measurements.
The BS knows K1 and the pilot sequences of the in-cell active
users, but does not know the number of reused pilots, and the
data sequences of the various users.

C. Correlation Matrix
Define the correlation matrices of measurements in training

and data phases as

Ryt = P−1
P∑

n=1

E
{
y(n)yH(n)

}
, (7)

Ryd = T−1
d

T∑
n=1+P

E
{
y(n)yH(n)

}
, (8)
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and the correlation matrices of users’ signals as

Rst = P−1
P∑

n=1

E
{
[y(n)− v(n)][y(n)− v(n)]H

}
, (9)

Rsd = T−1
d

T∑
n=1+P

E
{
[y(n)− v(n)][y(n)− v(n)]H

}
. (10)

Then we have

Ryt = Rst + σ2
vINr , Ryd = Rsd + σ2

vINr . (11)

It follows from (3) and (5) that

Rst =

K1∑
i=1

(√
p1i h1i + h̃1i

) (√
p1i h1i + h̃1i

)H
+

K0∑
i=K1+1

h̃1ih̃
H

1i. (12)

Using (2), and independence of information sequences from
different users, we have

Rsd =

L∑
�=1

K�∑
i�=1

p�i� h�i�h
H
�i� . (13)

By the asymptotic orthogonality of distinct channels in a
massive MIMO system [1, (10)], we have

lim
Nr→∞

N−1
r hH�1i�1h�2i�2 = δ�1,�2δi�1 ,i�2 w.p.1. (14)

Using (6) and (14) we have

lim
Nr→∞

1

Nr
hHCi1hCi2 = 0 w.p.1. for i1 �= i2, (15)

where

hCi =

{ √
p1i h1i + h̃1i, 1 ≤ i ≤ K1

h̃1i, K1 + 1 ≤ i ≤ K0
(16)

By (12), (15) and (16), it follows that for large Nr, RsthCj =

(
∑K0

i=1 hCihHCi)hCj ≈ ‖hCj‖2hCj . That is, for large Nr,
hCj is an eigenvector of Rst corresponding to eigenvalue
‖hCj‖2, for j = 1, 2, · · · ,K0. Therefore, by (15), for large
Nr, the vectors hCi/‖hCi‖, i = 1, 2, · · · ,K0, are a set of K0

orthonormal eigenvectors of Rst. Since (Rst + σ2
vINr)hCj =

RsthCj + σ2
vhCj ≈ (‖hCj‖2 + σ2

v)hCj , by (11), the vectors
hCi/‖hCi‖, i = 1, 2, · · · ,K0, are also orthonormal eigen-
vectors of Ryt corresponding to its largest K0 eigenvalues
‖hCi‖2 + σ2

v . By similar arguments, for large Nr, the vectors
h�i�/‖h�i�‖, � = 1, 2, · · · , L, i� = 1, 2, · · · ,K�, are a set of∑L

�=1K� orthonormal eigenvectors of Rsd, and by (11), they
are also orthonormal eigenvectors of Ryd corresponding to its
largest

∑L
�=1K� eigenvalues p�i� ‖h�i�‖2 + σ2

v .

III. REUSED PILOT DETECTION AND CHANNEL
ESTIMATION

We now present our proposed approach based on both pilots
and information sequences (data). In Sec. III-A we consider
pilot-based least-squares channel estimation that includes the
effects of pilot contamination. In Sec. III-B, we present a

matrix rank determination approach applied to the data corre-
lation matrix to estimate the number of “significant” users in
the system, which include in-cell users and interfering users
with received power comparable to the weakest in-cell user. In
Sec. III-C, using the eigenvectors (based on data correlation
matrix) of significant users, we project the data onto the
signal subspace, and then use higher-order statistics of the
projected data to resolve a unitary matrix ambiguity in multi-
user channel estimation for all significant users. Pilot-based
results are then used in Sec. III-C1 to identify reused pilots.
In Sec. III-D, we review a version of the approach of [11],
[12] for the case when no interfering users are detected, and
this approach is also used later in Sec. IV as representative of
[11], [12] in carrying out performance comparisons with our
proposed approach. In Sec. III-E, the estimated channels are
used to detect information symbols, which, in turn, are used
as pseudo-pilots to re-estimate the in-cell users’ channels. Our
complete solution is summarized as Algorithm 1 in Sec. III-F.

A. Pilot Based Channel Estimation in Training Phase
Here we use pilot-based least-squares procedure using

training-phase measurements to estimate K1 channels associ-
ated with K1 pilots assigned to K1 users in the reference cell.
These channels have the (ill-)effect of pilot contamination.
Using the least-squares approach, orthogonality of training,
(5), and (16), the channel corresponding to the ith pilot for
i = 1, 2, · · · ,K1, is estimated as

ĥCi = P−1
P∑

n=1

y(n)s∗ti(n). (17)

It is easy to see that E{ĥCi} = hCi, i = 1, 2, · · · ,K1, which
shows that the channel estimate is biased for reused pilots.
Define the contaminated-channel matrix

H(p) = [hC1 · · · hCK1 ], Ĥ
(p)

= [ĥC1 · · · ĥCK1 ] . (18)

Using (14) and (15), it follows that for large Nr, taking
expectation w.r.t. noise only,

E

{
‖ĥCi‖2

}
= p1i‖h1i‖2 + ‖h̃1i‖2 +√

p1i hH1ih̃1i + σ2
vNr/P

(19)

≈ p1i‖h1i‖2 +
L∑

�=2

K�∑
i�=1

p�i� ‖h�i�‖21{x�i�
(n)=sti(n), n=1,2,··· ,P}

+ σ2
vNr/P. (20)

For large Nr, invoking ergodicity,

E

{
‖ĥCi‖2

}
≈ ‖ĥCi‖2. (21)

B. Matrix Rank Determination: How many “significant” users
in data phase?
Define the sample correlation matrices under training and

data phases as

R̂yt = P−1
P∑

n=1

y(n)yH(n), (22)
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R̂yd = T−1
d

T∑
n=1+P

y(n)yH(n). (23)

Let the ordered eigenvalues of R̂yt be denoted by �t1 ≥ �t2 ≥
· · · ≥ �tNr in decreasing order of magnitude, and that of R̂yd

be denoted by �d1 ≥ �d2 ≥ · · · ≥ �dNr .
First we wish to determine the number of significant user

signals in the reference cell, given the measurements at the
reference cell BS during both training and data phases. The
BS knows K1 and K0, and therefore knows that the signal
subspace rank of R̂yt is at least K1, and no more than
K0. That is, the first K0 eigenvalues of ordered eigenvalues
�t1 ≥ �t2 ≥ · · · ≥ �tNr are possibly the signal-plus-noise
eigenvalues, whereas the remaining Nr − K0 eigenvalues
originate from σ2

v . An estimate of σ2
v is, therefore, given by

σ̂2
v =

1

Nr −K0

Nr∑
i=1+K0

�ti. (24)

By (20), (21) and (24), we have

p1i‖h1i‖2 +
L∑

�=2

K�∑
i�=1

p�i� ‖h�i�‖21{x�i�
(n)=sti(n), n=1,2,··· ,P}

≈ ‖ĥCi‖2 − σ̂2
vNr/P. (25)

Now consider the eigenvalues of data correlation matrix
R̂yd. As discussed in Sec. II-C, the eigenvalues of Rsd

corresponding to the reference cell users are p1i ‖h1i‖2,
i = 1, 2, · · · ,K1. In the absence of perfect power control,
signals from the reference cell users are not necessarily
the strongest K1 signals at the BS of the reference cell.
If received power of signals from interfering users is not
higher, on the average, than that from in-cell users, the left-
side of (25) is approximately less than Lp1i‖h1i‖2, so that
p1i‖h1i‖2 ≥ (1/L)[ĥCi‖2 − σ̂2

vNr/P ], i = 1, 2, · · · ,K1. For
some 0 < μ ≤ 1, let

α1 = min
1≤i≤K1

(μ/L)[ĥCi‖2 − σ̂2
vNr/P ]. (26)

This discussion implies that when μ = 1, the eigenvalues �di of
the data correlation matrix corresponding to in-cell users will
likely exceed α1 + σ̂2

v , since the largest
∑L

�=1 K� eigenvalues
�di of Ryd are of the form p�i� ‖h�i�‖2 + σ2

v . Since this
discussion is based on heuristic, approximate considerations,
in order to ensure that all eigenvalues �di of R̂yd corresponding
to in-cell users, do indeed exceed α1 + σ̂2

v , we introduce the
factor μ ∈ (0, 1] in (26). As discussed later, α1 is used as
a threshold on eigenvalues �di to determine a subspace of
reduced rank which includes all in-cell users. If μ = 0, then the
subspace is of full rank that includes all users in the multi-cell
system. If μ = 1, one might occasionally exclude in-cell users
from the selected reduced subspace. In simulations presented
in Sec. IV, with L = 7, μ = 0.7 was picked, leading to
μ/L = 0.1. We also show later via simulations in Fig. 9
where we picked μ =0.3, 0.7 or 1.0 for L = 7, that the
results are not sensitive to the choice. Alternatively, suppose
that BS knows that the SNR for any in-cell user at the BS is
at least α2. Then, since the SNR of the ith in-cell user equals

p1i‖h1i‖2/(Nrσ
2
v), the eigenvalues of Ryd corresponding to

the in-cell users exceed (α2Nr + 1)σ̂2
v .

The signal subspace of R̂yd is of rank
∑L

� K�. We need
to pick a subspace of reduced rank from the signal subspace
of R̂yd which includes all in-cell users, and additionally,
interfering users whose received power is comparable to the
weakest in-cell user. Consider a threshold τ for the ordered
eigenvalues of R̂yd, given by

τ = max
(
α1, (α2Nr + 1)σ̂2

v

)
. (27)

Then all �di ≥ τ are deemed to arise from signal subspace
of the data-phase correlation matrix such that this reduced
subspace includes all in-cell users as well as interfering users
having power comparable to the weakest in-cell user. Recall
that the eigenvalues {�di}i of R̂yd are arranged in decreasing
order. Our choice of the threshold τ is heuristic but reason-
able. A principled approach exploiting source enumeration
techniques such as minimum description length (MDL) can
be employed but it also picks up the presence of very weak
signals, well below thermal noise [17].
Let K̂d denote the number of eigenvalues of R̂yd that exceed

τ . (Note that, by the modeling assumptions, K̂d cannot be
less than K1.) Then the significant number of extraneous
(interfering) users are estimated as Kr = K̂d − K1. Not
all of these extraneous users necessarily have reused pilots
if K1 < K0.

C. Blind Channel Estimation in Data Phase When Kr > 0

Here we only use data-phase measurements to estimate
K̂d = K1 +Kr channels using both second and higher-order
statistics, in two steps. First we rewrite (2) as

y(n) =
K1∑
i=1

√
p1i h1ix1i(n) +

Kr∑
j=1

√
prj hrjxrj(n) + ṽ(n)

(28)

where prj , hrj , and xrj are re-indexed entries from the sets
(� ≥ 2), {p�i�}, {h�i�}, and {x�i�(n)}, respectively, that
correspond to the extraneous users estimated in Sec. III-B on
the basis of the eigenvalues of R̂yd, and ṽ(n) is the sum of
v(n) and the remaining sources not included in the first two
sums on the right-side of (28). Consider EVD of R̂yd to obtain

R̂yd = ÛΣ̂Û
H

= [Û1 Û2]

[
Σ̂1 0
0 Σ̂2

]
[Û1 Û2]

H (29)

where Σ̂ is a Nr×Nr diagonal matrix with eigenvalues {�di}i
arranged in decreasing order of magnitude, columns of Û are
the corresponding eigenvectors, and Û1 is Nr × (K1 + Kr).
Thus, Û1 determines the reduced signal subspace and Û2

determines the modified noise subspace (corresponding to
ṽ(n)) of the estimated correlation matrix.
With reference to (28), define a channel matrix Hd ∈

CNr×(K1+Kr) as

Hd = [
√
p11h11 · · · √p1K1h1K1

√
pr1hr1 · · · √prKrhrKr ].

(30)
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Then we can rewrite (28) as

y(n) = Hdx(n) + ṽ(n), (31)

x(n) = [x11(n) · · · x1K1(n) xr1(n) · · · xrKr(n)]
�. (32)

Since the data sequences x1i(n) and xrj(n) are zero-mean,
unit variance, mutually independent and i.i.d., in the notation
of (10)-(11), we have

Ryd = UΣUH = [U1 U2]

[
Σ1 0
0 Σ2

]
[U1 U2]

H (33)

where U, Σ, etc. in (33) are the true counterparts of the
estimated Û, Σ̂, etc. in (29).
The channels h1i and hrj lie in the subspace spanned by

the columns of U1. Consider, for n = P +1, · · · , P+Td = T ,

ỹ(n) = Û
H

1 y(n) ∈ C
K1+Kr , (34)

and its true counterpart, obtained after replacing Û1 with U1,

y̌(n) = UH
1 y(n) ∈ C

K1+Kr . (35)

Then we have

y̌(n) = UH
1 (Hdx(n) + v(n)) = H̃dx(n) + v̌(n) (36)

where H̃d ∈ C(K1+Kr)×(K1+Kr), H̃d = UH
1 Hd, and v̌(n) ∈

CK1+Kr . For large Nr, by orthogonality of distinct channels
from distinct users (see (14)), we have E{v̌(n)v̌H(n)} ≈
σ2
vIK1+Kr since UH

1 U = IK1+Kr , and we have neglected
contributions from the source terms not included in the first
two sums on the right-side of (28) by appealing to (14). In
practice, we approximate y̌(n) with ỹ(n).
Since data sequences are independent non-Gaussian, one

can apply higher-order statistics-based approaches to estimate
H̃d [18], [19], [20], [21]. We will use the RobustICA algorithm
of [20] that uses kurtosis of “unmixed” measurements. It
provides an estimate ˆ̃Hd of H̃d using ỹ(n); a modified version
of this algorithm has been used in [13], but we do not modify
it in any way. One obtains, for some θis,
ˆ̃Hd ≈ H̃dPΓθ, Γθ = diag{ejθi , i = 1, 2, · · · ,K1 +Kr}

(37)
where P is a permutation matrix – the order of “extracted”
sources, hence, the order of extracted columns of H̃d cannot
be determined by RobustICA (indeed, by any blind source
separation method for instantaneous mixtures [21]), and one
can only recover channels up to a constant of modulus one
when using kurtosis and related criteria for unmixing.
Remark 1: Consider the (restricted) independent component

analysis (ICA) problem

z(n) = As̃(n) (38)

where z(n), s̃(n) ∈ Cp, A ∈ Cp×p, the sequence {s̃(n)}
is zero-mean, i.i.d., non-Gaussian (finite alphabet), and the
objective is to recover s̃(n) and estimate A. Such problems
have been addressed in [18], [19], [20], [21], among others.
We will consider only square A, hence the term restricted ICA;
this is sufficient for our purposes. Ignoring noise v̌(n) in (36),
we see that (36) corresponds to (38) with K1 + Kr = p,
H̃d = A, x(n) = s̃(n) and y̌(n) = z(n). For some w ∈ Cp,

let e(n) = wHz(n). In the approach of [20], w is picked to
maximize |γ4|, where the kurtosis (normalized 4th cumulant)
γ4 of e(n) is given by

γ4 =
E{|e(n)|4} − 2E{|e(n)|2} − E{e2(n)}

(E{|e(n)|2})2 . (39)

When |γ4| is maximized for w = w̄, one has e(n) =
w̄Hz(n) = s̃m(n) for some 1 ≤ m ≤ p, where s̃m(n) is
the mth component of s̃(n). Thus, one can obtain s̃m(n),
and using s̃m(n), (38) and least-squares, estimate A�m for
1 ≤ � ≤ p, where A�m is (�,m)th element of A. After
estimating the mth column of A, contribution of s̃m(n) to
z(n) is subtracted (deflated) from z(n), and the entire process
is repeated till all sources (components of s̃(n)) are extracted,
and A is estimated. Such a procedure for more general
class of systems may also be found in [18]. The RobustICA
algorithm of [20] provides an optimal step-size in the iterative
maximization of |γ4| via a gradient-descent method, leading
to fast convergence. Note that this method can also be applied
to (31), but this would require one to process a much larger
dimensional H̃d in (31), compared to smaller H̃d in (36). More
importantly, projecting as in (34), further suppresses weaker
interfering signals by virtue of (14). �
Thus, an estimate of Hd = U1H̃d is given by

Ĥd = Û1
ˆ̃Hd ≈ HdPΓθ . (40)

1) Using Pilot-Based Channel Estimates to Identify Reused
Pilots and Interfering Users: Consider H(p) ∈ CNr×K1

defined in (18), and HdP ∈ CNr×(K1+Kr) where P ∈
C(K1+Kr)×(K1+Kr) is a permutation matrix, and Γθ is as in
(37). The pilot-based channel estimates (17) yield Ĥ

(p)
while

(40) yields Ĥd. Observe that if the ith pilot is not reused, then
the ith column of H(p) equals a scaled version of some column
of HdPΓθ. If the ith pilot is reused, then the ith column
of H(p) equals a weighted sum of two or more columns of
HdPΓθ. Therefore, there exists a matrix G ∈ C(K1+Kr)×K1

such that

(HdPΓθ)G = H(p) ⇒ ĤdG ≈ Ĥ
(p)

. (41)

Hence an estimate of G is given by

Ĝ =
(
Ĥ

H

d Ĥd

)−1

Ĥ
H

d Ĥ
(p)

. (42)

The number of nonzero entries in kth column of G signify
that the kth column of Ĥ

(p)
is a weighted sum of the columns

of Ĥd that correspond to the rows of the kth column of G with
nonzero entries. Suppose that the third column of G has one
nonzero entry (in the fourth row). This means that the third
column Ĥ

(p)
equals a scaled version of the fourth column of

Ĥd and there is no pilot reuse. On the other hand, suppose that
the third column of G has two nonzero entries (in the second
and fourth rows). This means that the third column Ĥ

(p)
equals

a weighted sum of the second and fourth columns of Ĥd, and
there is pilot reuse with the third pilot being used by two
users. Suppose that some column of Ĥd corresponds to an
interfering user that does not reuse any pilot in the reference
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cell. Then the row of G corresponding to this out-of-cell user
with non-reused pilot, will have all zero entries.
In practice, we only have noisy Ĝ. In order for Ĝ to

“represent” ideal G, we adopt the following procedure to
replace Ĝ with Ḡ, which then plays the role of the ideal G.
1) Replace the ith column Ĝi of Ĝ with

[|Ĝi1| · · · |Ĝi1|]T /‖Ĝi‖, i.e., each column is first
normalized to unit norm, and then each normalized entry
is replaced with its absolute value. Denote the resulting
matrix by Ḡ.

2) If Ḡij < τ1, set Ḡij = 0, where in our simulations we
set τ1 = 0.15 . Since the BS knows the number K1

of active reference cell users, one expects at least K1

nonzero entries in thresholded Ḡij ; if this number is less
than K1, we lower τ1. Otherwise, τ1 > 0 is picked to
ignore weak dependence of columns of Ĥ

(p)
on columns

of Ĥd, and in simulations we used τ1 = 0.15

3) Channel Resolution: Consider the ith column Ĥ
(p)

i of
Ĥ

(p)
, i = 1, 2, · · · ,K1.

a) If the ith column Ḡi of Ḡ has only one nonzero
element in its jth row, then we pick

ĥCi = Ĥ
(p)

i = P−1
P∑

n=1

y(n)s∗ti(n).

That is, the ith pilot st,i(n) is not reused and ĥCi

is the least-squares estimate of the ith user’s channel
hCi =

√
p1i h1i based on training data. We relabel it

as ĥ1i.
b) Suppose the ith column Ḡi of Ḡ has q > 1 nonzero

elements in rows j�, 1 ≤ � ≤ q. Then we have
q∑

�=1

c�Ĥdj� ≈ Ĥ
(p)

i

where we wish to determine complex c�s instead of
using thresholded, scaled Ḡij� . Define

H̄ = [Ĥdj1 · · · Ĥdjq ] ∈ C
Nr×q, c = [c1 · · · cq]�.

We estimate c as ĉ = (H̄HH̄)−1H̄HĤ
(p)

i . Then we
have q channels associated with the ith pilot: ĉ�Ĥdj� ,
1 ≤ � ≤ q. One of these is from a reference cell
user and the remaining q − 1 are from neighboring
cells. Without any additional information we cannot
determine the true origin of these q channels. We
assume that the corresponding data phase measure-
ments have some information embedded in them
regarding user identification and one can extract
this from decoded data, decoded using, for instance,
matched filter beamforming based on the estimated
channel. Denote the total number of interfering users
with pilot reuse by Kri, and order these estimated
channels as ĥrj , j = 1, 2, · · · ,Kri.

c) If the mth row of Ḡ has all zero entries, then the mth
column of Ĥd corresponds to an interfering user that
does not reuse any pilot in the reference cell. In this
case, we take the mth column of Ĥd as an estimate

of √prj hrj for some 1 ≤ j ≤ Kr. Denote the total
number of interfering users without pilot reuse by
Kro, and order these estimated channels as ĥrj , j =
Kri+1, 2, · · · ,Kri+Kro, where Kri+Kro = Kr.

d) As a result of steps a), b) and c) above, we have
the channel estimates ĥ1i and ĥrj of √p1i h1i and√
prj hrj , respectively, for i = 1, 2, · · · ,K1 and j =

1, 2, · · · ,Kr. The interfering user obtained in step c)
above corresponds to a user that does not reuse any
pilot in the reference cell, and that obtained in step b)
corresponds to a user that does reuse a pilot. Since
pilots are used to obtain Ĥ

(p)
(see (17) and (18)),

which, in turn, is used to obtain ĉ (see step b) above),
there is no scaling ambiguity (such as ejθi in (37)) in
the estimates ĥrj , j = 1, 2, · · · ,Kri, of channels of
interfering users with pilot reuse. On the other hand,
the estimates ĥrj , j = Kri + 1, 2, · · · ,Kri + Kro,
of channels of interfering users without pilot reuse
will have such ambiguities, as discussed earlier in
the context of (37).

D. Semi-Blind Channel Estimation When Kr = 0

If one determines Kr = 0, then we proceed in a manner
similar to [11], [12]. Set Kr = 0 in Sec. III-C and estimate
U1 as Û1, as in (29)-(33). This is as in [12] except that [12]
uses SVD of a data matrix instead of EVD of R̂yd, as we do
following [11]. Then, instead of using (34) with data phase
measurements, we use training phase measurements (as in one
of the options of [12]):

y′(n) = UH
1 y(n) ∈ C

K1 , n = 1, 2, · · · , P (43)
= H̃d1s(n) + v′(n) (44)

where H̃d1 = UH
1 Hd1 ∈ CK1×K1 ,

s(n) = [st1(n) · · · stK1(n)]
� , (45)

Hd1 = [
√
p11 h11 · · · √p1K1 h1K1 ] . (46)

Finally, H̃d1 is estimated as ˆ̃Hd1 using pilots, (44) and the
method of least-squares, to obtain the final estimate

Ĥd1 = Û1
ˆ̃Hd1 ≈ Hd1 (47)

where
ˆ̃Hd1 = P−1

P∑
n=1

y′(n)sH(n). (48)

Since we use pilots, there is no permutation or scaling
ambiguity, unlike (40). Notice that this approach (also of
[11], [12]) does not acknowledge the presence of any pilot
contamination, under the assumption that contaminating pilot
strength is (much) weaker owing to perfect power control and
distance to the reference cell BS.

E. Data Detection and Channel Re-Estimation
It is noted in [13] (see also [11], [12]) that data-aided

channel estimation where one also uses detected information
symbols in addition to the pilot symbols, can achieve better
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estimation performance than the pilot-only channel estimation.
Following this observation, we now use the estimated chan-
nels, of both reference cell users ĥ1i and strong interfering
users from neighboring cells ĥrj , to design linear minimum
mean-square error (MMSE) detector to estimate the informa-
tion symbols of the reference cell users.
With Hd1 as in (46), define

Hdr = [
√
pr1 hr1 · · · √prKr hrKr ], (49)

Ĥd1 = [ĥ11 · · · ĥ1K1 ], (50)
Ĥdr = [ĥr1 · · · ĥrKr ]. (51)

Then Ĥd1 and Ĥdr are the estimates of Hd1 and Hdr, respec-
tively. We can express (28) as

y(n) = Hd1x1(n) +Hdrxr(n) + ṽ(n) (52)

where
x1(n) = [x11(n) · · · x1K1(n)]

�, (53)

xr(n) = [xr1(n) · · · xrKr (n)]
�, (54)

and ignoring other (low-power) interfering users, we take the
covariance matrix of ṽ(n) to be the same as that of v(n), i.e.,
it equals σ2

vINr . Based on (52), the linear MMSE estimator
of x1(n) is given by

x̂1(n) = Hey(n) (55)

where

He =

{
HH

d1

[
Hd1HH

d1 +HdrHH
dr + σ2

vINr

]−1
if Kr > 0

HH
d1

[
Hd1HH

d1 + σ2
vINr

]−1
if Kr = 0.

(56)
In practice, we replace Hd1, Hdr, and σ2

v with their estimates
Ĥd1, Ĥdr, and σ̂2

v , respectively. Note that the scaling ambiguity
referred to in step d) of item 3), Channel Resolution, of Sec.
III-C1, has no influence on (56) since we would use ĤdrĤ

H

dr,
which is not dependent upon Γθ or ejθi because ΓθΓ

H
θ = I.

Let x1q(n) denote the quantized x̂1(n), obtained by exploit-
ing the known symbol constellation in the data phase. Define

x̃1(n) =
{

s(n) for n = 1, 2, · · · , P,
x1q(n) for n = P + 1, P + 2, · · · , P + Td.

(57)
Now use x̃1(n) above to re-estimate the multi-user channel
Hd1 (see (46)), via least-squares as

Ĥd1 = T−1
T∑

n=1

y(n)x̃H1 (n). (58)

The improved estimates may be used in (56) to re-compute
the linear MMSE estimator, which, in turn, is then used to
recompute quantized x1q(n).

F. Summary of the Solution
The overall approach is summarized in Algorithm 1.

We conclude with the following three remarks.
Remark 2: Interference Cancellation. If Kri > 0, one may
also choose to performance interference cancellation (IC) at

the end of step 10 in Algorithms 1. Using the notation of item
3), Channel Resolution, of Sec. III-C1, define

Hdri = [
√
pr1 hr1 · · · √prKri hrKri ], (59)

Hdro = [
√
pr(Kri+1) hr(Kri+1) · · ·

√
pr(Kri+Kro) hr(Kri+Kro)], (60)

Ĥdri = [ĥr1 · · · ĥrKri ], (61)
Ĥdr0 = [ĥr(Kri+1) · · · ĥr(Kri+Kro)], (62)

where Ĥdri and Ĥdro are estimates of Hdri and Hdro, re-
spectively. The channel matrix Hdri represents the channels
of the interfering users reusing pilots of reference cell users,
whereas Hdro represents the channels of the interfering users
not reusing any pilot of reference cell users. As discussed in
item 3), Channel Resolution, of Sec. III-C1, there is no scaling
ambiguity in Hdri, unlike Hdro. Therefore, we can exploit
Ĥdri to estimate the information symbols of the associated
interfering users, cancel their contribution from the received
data, and then estimate the channels of the reference cell users
using the interference-canceled data.
Based on (52) and the decomposition Hdr = [Hdri Hdro],

the linear MMSE estimator of xc(n) is given by

x̂c(n) = Hecy(n) (63)

where

xc(n) = [x11(n) · · · x1K1(n)︸ ︷︷ ︸
=x�1 (n)

xr1(n) · · · xrKri(n)︸ ︷︷ ︸
=x�ri(n)

]�, (64)

Hec =

[
HH

d1

HH
dri

] [
Hd1HH

d1 +HdrHH
dr + σ2

vINr

]−1
(65)

=

[
He

Hei

]
, (66)

and He in (66) is the same as that in (56) for Kr > 0. In
practice, we replace Hd1, Hdr, and σ2

v with their estimates
Ĥd1, Ĥdr, and σ̂2

v , respectively. Let x1q(n) and xriq(n) denote
quantized x̂1q(n) = Hey(n) and x̂riq(n)Heiy(n), respectively,
obtained via hard thresholding based on know signal constella-
tion. We cancel contribution of xriq(n), and of pilot sequences,
to obtain

yc(n) =
{

y(n)− Ĥdrisri(n) for n = 1, 2, · · · , P,
y(n)− Ĥdrixriq(n) for n = P + 1, · · · , P + Td

(67)
where the ith component of Kri-column sri(n) equals the
corresponding re-used pilot sequence. Since Ĥdr0 is not free
of scaling ambiguities, it is not suitable for IC. We now
modify (58) using interference-canceled yc(n), to re-estimate
the multi-user channel Hd1 via least-squares as

Ĥd1 = T−1
T∑

n=1

yc(n)x̃
H
1 (n). (68)

The above estimates may be used to design a linear MMSE
detector to operate on yc(n). �
Remark 3: Approaches of [11], [12]. The semi-blind

method discussed in Sec. III-D (for Kr = 0), coupled with
data detection and channel re-estimation discussed in Sec.
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III-E, follows [11], [12] closely, but not exactly. The matrix
U1 in Sec. III-D is estimated exactly as in [11] based on the
EVD of R̂yd, instead of using the SVD of a data matrix as in
[12]. We have not found any discernible difference in the two
approaches. The primary difference from [11], [12] lies in how
H̃d1 in (44) is estimated, and how data is detected based on the
estimated channel. In [11], for large Nr, H̃d1 is shown to be a
diagonal matrix, and only its diagonal elements are estimated
using pilots, with off-diagonal elements all set to zero. In this
paper, we estimate the entire matrix H̃d1 using pilots, without
setting off-diagonal elements to zero, an assumption that holds
only as Nr → ∞. Turning to detection of data discussed in
Sec. III-E, we use a linear MMSE detector (56) based on
model (52). In [11], a zero-forcing receiver is used, which in
our notation is He =

(
HH

d1Hd1

)−1
HH

d1, the pseudo-inverse of
Hd1. In [12], the data is detected not using the full channel
matrix, but the “subspace channel matrix” which is H̃d1 in our
notation. This is also the method simulated in [13] to compare
their approach with that of [12]. We use the full channel matrix
in our detector, as well as in the detector used to simulate [12].
Also, although not explicitly noted therein, [12] seems to use
the data detector scheme of [1], which would be He = H̃

H

d1,
the conjugate-transpose of the subspace channel matrix. Note
that in implementation, all true channels are replaced with
their estimates. Finally, we note again that the approaches of
[11], [12] assume that the strongest K1 users at the BS are
the in-cell users, hence, they do not have counterparts to our
Secs. III-B and III-C. �

Remark 4: Distributed Antenna Systems. The proposed
approach applies to massive MIMO cellular wireless networks
with any type of cells (macro or small cells, such as femto,
pico or micro cells) so long as the base stations are centralized,
since our mathematical system model (1)-(2) applies to all of
them. How about a distributed antenna system (DAS) where
instead of a single centralized antenna system in each cell,
one has several distributed remote access units (RAUs) with
multiple antennas, geographically separated over the cell [ 22],
[23]. Note that processing in a DAS is still centralized [22],
[23]. We claim that, in principle, our approach applies to
DAS also. We now briefly outline modifications needed in
our model to accommodate DAS. In (1)-(2), p�i also models
the effects of large scale fading. For y(n) ∈ CNr , different
sets of components of y(n) belong to different RAUs in DAS.
Suppose that we have 2 RAUs per cell, each with N̄ antennas.
Then Nr = 2N̄ , and let y(n) = [y�1 (n) y�2 (n)]� where yk(n)
is data collected at RAU k, k = 1, 2. Then in (1)-(2), we let
h�i� = [h�1�i�(n) h�2�i�(n)]

�, where hk�i�(n) is the channel
from the ith user in the �th cell to RAU k of the reference-
cell. Unlike h�i ∼ Nc(0, INr) representing small-scale fading
in Sec. II, now we let hk�i�(n) represent the effects of both
large- and small-scale fading, so that hk�i�(n) ∼ Nc(0, βkIN̄ )
for some βk > 0, and p�i now represents just the average
transmitted power of the ith user in the �th cell. So long as
the asymptotic orthogonality of distinct channels holds as in
(14), all our results will hold true. Of course, details such as
selection of threshold τ in step 3 of Algorithm 1, need to be
worked out. �

Algorithm 1 Detection and Mitigation of Reused Pilots
Input: Received signal y(n), for n = 1, 2, · · · , P , during
training phase, and for n = P +1, P +2, · · · , P +Td, during
data phase; orthogonal training sequences of K1 users in the
reference cell; total number of training sequences K0 .
Output: Estimated channels ĥ1i, i = 1, 2, · · · ,K1, of K1

users in the reference cell.
1: Compute sample correlation matrix R̂yt as in (22) using
training phase data. Carry out EVD of R̂yt to obtain
ordered eigenvalues �t1 ≥ �t2 ≥ · · · ≥ �tNr . Estimate
noise variance σ̂2

v as in (24).
2: Using training data and training sequences of K1 users
in the reference cell, compute the estimate ĥCi of hCi

as defined in (16), via (17), for i = 1, 2, · · · ,K1. Using
σ̂2
v and hCis, compute α1 as in (26) for some chosen

0 < μ ≤ 1. With α2 = minimum received SNR for in-
cell users, compute threshold τ as in (27).

3: Compute sample correlation matrix R̂yd as in (23) using
data phase received signal. Carry out EVD of R̂yd to
obtain ordered eigenvalues �d1 ≥ �d2 ≥ · · · ≥ �dNr . The
number of significant user signals in the reference cell is
estimated as

K̂d = max

(
K1,

Nr∑
i=1

1{�di≥τ}

)
,

and the number of significant extraneous user signals is
estimated as

Kr = K̂d −K1.

4: if Kr > 0 then
5: With EVD of R̂yd as expressed in (29), compute

ỹ(n) = Û
H

1 y(n) for n = P + 1, · · · , P + Td = T .
Apply RobustICA algorithm of [20] to ỹ(n) to estimate
H̃d specified in (36), as ˆ̃Hd. Next estimate Hd specified
in (30) and (31) as Ĥd = Û1

ˆ̃Hd.
6: Using the estimates ĥCi, i = 1, 2, · · · ,K1, compute

Ĥ
(p)

as in (18). Using Ĥd and Ĥ
(p)
, compute Ĝ as

specified in (42). Replace the ith column Ĝi of Ĝ with
[|Ĝi1| · · · |Ĝi1|]T /‖Ĝi‖, and denoted the resulting
matrix by Ḡ. If Ḡij < τ1, set Ḡij = 0, where in our
simulations we set τ1 = 0.15. The thresholded Ḡ is still
denoted by Ḡ.

7: Follow the procedure given in item 3), Channel Reso-
lution, of Sec. III-C1, to obtain the estimated channels
ĥ1i, i = 1, 2, · · · ,K1, where ĥ1i estimates √

p1i h1i
and knowledge of p1i is not assumed. We also obtain
estimates ĥrj of interfering users’ channels √

prj hrj ,
j = 1, 2, · · · ,Kr.

8: else
9: Carry out EVD of R̂yd as expressed in (29) with Kr =

0. Compute y′(n) = UH
1 y(n) for n = 1, 2, · · · , P ,

and then compute ˆ̃Hd1 via (48). Finally, the estimated
channels ĥ1i, i = 1, 2, · · · ,K1, are the K1 columns of
Ĥd1 specified in (47).

10: end if
11: Perform data detection and channel re-estimation using

the entire dataset, as described in Sec. III-E.
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Fig. 1: Total number of detected extraneous (interfering) users
Kr as a function of average pr (=prj ∀j) relative to noise
power σ2

v when in-cell user’s average power is fixed at average
p1i/σ

2
v = 10dB ∀i: K1=5= number of in-cell users, total

35 users in 7 cells. The method of Sec. III-B is used for
extraneous user detection. The notation is in reference to (28).
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Fig. 2: Number of detected users per pilot. Ave. pr/σ
2
v =

10dB, p1/σ2
v = 10dB. The pilots are numbered 1 through 8

and pilots 1 through 5 are reused. Based on 10,000 runs. The
method of Sec. III-C1 is used for pilot identification.

IV. SIMULATION EXAMPLES

Consider a 7-cell network, with K� = 5 users/cell, � =
1, 2, · · · , 7, total 35 users, and K0 = 8 orthogonal pilots of
length P = 8 symbols. In the 6 nearest-neighbor cells, among
total 30 users, 20 users re-use some of the reference cell pilots,
and 10 users employ others pilots that are not in use in the
reference cell. The nominal average SNR for reference cell
(� = 1) users at the reference cell BS is 10dB (=p1i/σ2

v , i =
1, 2, · · · , 5). There is a lack of perfect power control. In order
to reflect this, actual average SNR for cell � = 1 was taken
as uniformly distributed over 10± 3dB. Of the 20 interfering

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 pilot ID #

us
er

s 
pe

r p
ilo

t 

 

 

Nr=100, T=144
Nr=100, T=192
Nr=200, T=144
Nr=200, T=192

Fig. 3: Number of detected users per pilot when ave. p r/σ
2
v =

5dB; the rest as in Fig. 2.
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Fig. 4: Number of detected users per pilot when ave. p r/σ
2
v =

0dB; the rest as in Fig. 2.

users that reuse pilots, average SNR at the reference cell BS
is uniform over (prj/σ2

v)± 3dB for 5 users, and it is uniform
over (prj/σ2

v) − 9 ± 3dB for 15 users, and prj is such that
prj/σ

2
v varies from −20dB through 20dB, and it is the same

for all indexes j. The stronger 5 users may be thought of
being located at cell edges when prj is comparable to p1i,
while other 15 interfering users are farther off from BS. Of
the 10 interfering users that do not reuse any reference cell
pilots, average SNR at the reference cell BS is uniform over
(prj/σ

2
v)±3dB for 2 users, and it is uniform over (prj/σ

2
v)−

9± 3dB for 8 users.
At the reference-cell BS we have N r = 100 or 200

antennas. Orthogonal (binary) Hadamard sequences of length
P = 23 = 8 are selected as training sequences, and the
information sequences {x�i�(n)} were i.i.d. QPSK. We have
P = 8 (training bits), and pick Td =136 or 184 (data symbols),
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leading to T =144 or 192. All simulation results are based on
10,000 Monte Carlo runs.
In applying our proposed approach, we picked τ used in

step 3 of Algorithm 1 as specified in (27), where α1 is given
by (26) with μ = 0.7, and α2 = 5 (least SNR at the BS
for any in-cell user). For performance comparisons, we also
simulated the semi-blind subspace-based approach of [11],
[12], as discussed in Sec. III-D and as clarified in Remark 3,
labeled “SB-SVD” in figures, and the semi-blind approach of
[13], labeled “SB-kurt” in figures, after changing synchronous
pilots (all pilots from all users in all cells occupy the same
time-slot) to asynchronous pilots, as detailed in [13]. The
other details such as length of pilot sequences and number
of available pilots, were kept the same for all approaches.
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Fig. 5: Normalized MSE (69) of channel estimation error for
reference cell users vs average pr/σ

2
v with p1/σ

2
v = 10dB.

Nr = 100. Based on 10,000 runs. The approach labeled “SB-
SVD” is based on [11], [12]; see Sec. III-D and Remark 3 in
Sec. III-F. The approach labeled “SB-kurt” is that of [13].

Fig. 1 shows the results of our matrix rank determination
method of Sec. III-B for determining the number of extraneous
users, including reused pilots. With reference to (28), it is seen
that for higher values of prj/σ

2
v = pr/σ

2
v (∀j), the number of

detected interfering users increase with average pr/σ
2
v , since

we have five strong interfering users that reuse reference cell
pilots, and five other strong interfering users that do not reuse
reference cell pilots. The method is designed to ignore weak
signals, and as seen in Fig. 1, for lower values of pr/σ

2
v

(relative to average p1i/σ2
v = 10dB ∀i), the proposed method

ignores reused pilots and extraneous users.
Figs. 2-4 show the performance of our method of Sec.

III-C1 regarding determination of reused/contaminated pilots,
for average pr/σ2

v=15, 10 or 5dB, respectively. It is seen that
reused pilots are detected accurately. Since in all of Figs. 2-
4, average p1i/σ

2
v = 10dB ∀i, when average pr/σ

2
v=5dB,

the number of interfering users detected per pilot decrease
significantly in Fig. 4, as they are all, on the average, weak
relative to in-cell users. The opposite is true in Fig. 2 where
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Fig. 6: As for Fig. 5 except that Nr = 200.

average pr/σ
2
v=15dB.

Figs. 5 and 6 show the normalized mean-square error (MSE)
in multi-user channel estimation, which for estimated multi-
user channel Ĥ

m

tr and true channel Hm
tr (defined as in (46),

with power levels p1is included) in the mth Monte Carlo run,
is defined as

NMSE =
1

M

M∑
m=1

‖Ĥm

tr −Hm
tr‖2F

‖Hm
tr‖2F

, (69)

where ‖H‖F denotes the Frobenius norm, there are M =
10000 runs and Ĥ

m

tr follows from the procedure of Sec. III-C.
We also show the results of the semi-blind subspace approach
of [11], [12], as discussed in Sec. III-D and as clarified
in Remark 3, labeled “SB-SVD,” and of the approach of
[13], labeled “SB-kurt.” Comparing our approach with that
of [11], [12], it is seen that when reused pilots are at a power
significantly lower than in-cell users, there is little ill-effect.
But as the out-of-cell users with reused pilots become rela-
tively stronger, the approach of [11], [12] yields poorer results
compared to the proposed approach, since [11], [12] consider
K0 strongest users as in-cell users, which is not always true.
Comparing our proposed approach with that of [ 13], it is
seen from Figs. 5 and 6 that our approach outperforms [13].
While [13] exclusively uses higher-order statistics (kurtosis),
we use both second-order statistics (correlation matrix) and
kurtosis. In general, for a given data length, the estimates of
second-order statistics have lower variances than the estimate
of kurtosis. In [13], for each in-cell user, the number of
complex-valued unknowns (equivalent to w in Remark 1)
needed to be estimated using kurtosis equal Nr (=100 or
200), whereas in our approach, the number of complex-valued
unknowns per significant user (in-cell as well as interfering
users) is K̂d, which in our simulations varies from 5 to 15
(see Fig. 1). That is, the approach of [13] has much more high
variance parameter estimators than our proposed approach.
Also, the presence of higher-power interfering users’ signals,
not explicitly modeled in [13] unlike in our approach, leads to
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higher variance estimate of the kurtosis of the desired in-cell
signals.
Figs. 7 and 8 show the bit-error rate for QPSK information

sequences corresponding to the results of Figs. 5 and 6,
respectively. Again, at higher power levels of interfering out-
of-cell users, the performance of the semi-blind approach of
[11], [12] is much poorer compared to the proposed approach.
The BER results of the approach of [13] are also much worse
than that for our proposed approach, and are similar to what
has been reported in [13] for a different example.
We now turn to the effects of the choice of μ in (26) and

step 2 of Algorithm 1. As noted in the discussion following
(26), μ ∈ (0, 1] impacts the threshold used to determine a
subspace of reduced rank. For our proposed approach, in Fig.
9, we redo the results of Fig. 6 for μ =0.3, 0.7 and 1. It is
seen that there is no difference in channel MSE for different
values of μ, except for average pr/σ

2
v=15dB, i.e., the results

are not sensitive to the choice.
In Remark 2 of Sec. III-F, an IC approach was suggested

where contributions of interfering users with estimated chan-
nels having no scaling ambiguities, could be removed from
data y(n) to reduce interference, and then one could estimate
in-cell users’ channels and information symbols by operating
on interference-canceled data yc(n). For our proposed ap-
proach, in Fig. 10, we redo the results of Fig. 6 with and
without IC. One can see small improvements in channel MSE
when IC is used compared to when IC is not employed (as in
Figs. 5-9). However, the improvement does not appear to be
significant enough to warrant use of the IC approach.

−15 −10 −5 0 5 10 15

10−4

10−3

10−2

10−1

Nr = 100

Ave. pr / σv
2 (dB)

B
E

R

 

 

T=144, proposed
T=192, proposed
T=144, SB−EVD
T=192, SB−EVD
T=144, SB−kurt
T=192, SB−kurt

Fig. 7: Ave. BER for reference cell users vs pr/σ
2
v with

p1/σ
2
v = 10dB. Based on 10,000 runs. The approach labeled

“SB-SVD” is based on [11], [12]; see Sec. III-D and Remark
3 in Sec. III-F. The approach labeled “SB-kurt” is that of [13].

V. CONCLUSIONS

We proposed a novel subspace-based semi-blind approach
where we have training data as well as information bearing
data from various users (both in-cell and neighboring cells) at
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Fig. 8: As for Fig. 7 except that Nr = 200.
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Fig. 9: Normalized MSE (69) of channel estimation error for
varying μ (see (26) and step 2 of Algorithm 1), using the
proposed approach, for reference cell users vs average p r/σ

2
v

with p1/σ
2
v = 10dB. μ is 0.3, 0.7 or 1, Nr = 200. Based on

10,000 runs.

the base station. Unlike existing semi-blind methods, we allow
the interfering users from neighboring cells to be at higher
power levels at the BS compared to the in-cell users. Unlike
existing approaches, the BS estimates the channels of all
users: in-cell and significant neighboring cell users, i.e., ones
with comparable power levels at the BS. We exploited both
subspace method using pilot and data correlation matrices,
as well as blind source separation (ICA) using higher-order
statistics. The proposed approach was illustrated via simulation
examples and was shown to outperform [11], [12], [13].
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Fig. 10: Normalized MSE (69) of channel estimation error,
using the proposed approach, with and without interference
cancellation (IC) as discussed in Remark 2 in Sec. III-F, for
reference cell users vs average pr/σ
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v = 10dB.

Based on 10,000 runs.
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