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Abstract—In a time-division duplex (TDD) multiple antenna
system, the channel state information (CSI) can be estimated
using reverse training. A pilot spoofing (contamination) attack
occurs when during the training phase, an adversary (spoofer)
also sends synchronized, identical training (pilot) signal as that of
the legitimate receiver. This contaminates channel estimation and
alters the legitimate beamforming/precoder design, facilitating
eavesdropping. A recent approach proposed superimposing a
random sequence on the training sequence at the legitimate
receiver and then using the minimum description length (MDL)
criterion to detect pilot contamination attack. In this paper, we
augment this approach with estimation of both legitimate receiver
and eavesdropper channels, and secure beamforming, to mitigate
the effects of pilot spoofing. We consider two cases: (i) the spoofer
transmits only the pilot signal, (ii) the spoofer also adds a random
sequence to its pilot, mimicking the legitimate receiver. We
also employ a random matrix theory based source enumeration
approach instead of MDL, for spoofing detection, leading to
improved detection performance. The proposed detection and
mitigation approaches are illustrated via simulations.

Index Terms—Physical layer security, pilot spoofing attack,
active eavesdropping, secure beamforming.

I. INTRODUCTION

Wireless networks are vulnerable to malicious attacks aimed
at disrupting their operation, due to their broadcast nature.
Physical layer security methods have shown that using the
properties of physical channels, it is possible to ensure con-
fidentiality of data against eavesdropping [1], [2]. In these
physical layer security methods, full or partial knowledge of
the channel state information (CSI) of the legitimate system is
required [2]. This knowledge is typically acquired by channel
estimation during the training phase before the information
signal transmission. In a time-division duplex (TDD) multiple
antenna system, CSI can be acquired using reverse training.

Consider a three-node TDD multiple antenna system, con-
sisting of a multi-antenna base station Alice, a single antenna
legitimate user Bob, and a single antenna eavesdropper Eve.
Alice designs its transmit beamformer based upon its channel
to Bob for improved performance. In a TDD system, the
downlink and uplink channels can be assumed to be reciprocal.
Therefore, Alice can acquire the CSI regarding Alice-to-Bob
channel via reverse training during the uplink transmission.
Bob sends pilot (training) signals to Alice during the training
phase of the slotted TDD system. If a publicly known protocol
is used where the pilot sequences are publicly known, a mali-
cious single-antenna terminal (eavesdropper) Eve can transmit
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the same pilot sequence during the training phase. If Eve
attacks the channel training phase by transmitting the same
pilot sequence during the training phase, synchronized with
Bob’s training, the CSI estimated by Alice then is a weighted
sum of Bob-to-Alice and Eve-to-Alice CSIs. Consequently, the
beamformer designed on this basis will lead to a significant
information leakage to Eve. This is an example of a pilot
spoofing/contamination attack [3]-[6].

Several types of eavesdropping have been identified and
analyzed in the literature [6]. In passive eavesdropping, the
eavesdropper does not transmit any signal of its own, but tries
to intercept confidential communication between a legitimate
transmitter-receiver pair. In active eavesdropping, the eaves-
dropper also transmits a signal of its own. If the intent is to
disrupt the legitimate operation, active eavesdropping attack is
more appropriately termed as a jamming attack [7], [8]. Such
jamming attacks may occur during the training phase (pilot
jamming), as in [7]-[9], and/or in the data phase, as in [7], [8].
The objective of a jamming attack is to degrade the overall
legitimate system performance. Distinct from pilot jamming
is the pilot spoofing or pilot contamination attack [3], [6],
[10], [11], where the eavesdropper Eve sends synchronized,
identical training (pilot) signal as that of the legitimate user
Bob. In contrast, in a pilot jamming attack, Eve’s signal is
a different pilot or not noise-like signal [9]. Eve’s objective
in pilot spoofing is to deceive Alice into treating the Alice-to-
Eve channel as Alice-to-Bob channel. This paper is concerned
with pilot spoofing attack issues.

A. Related Work

There exist several approaches to the problem of pilot
jamming and spoofing detection, and countermeasures to the
attack. They differ in the underlying assumptions regarding the
attack model, and the assumed degree of cooperation between
Alice and Bob, e.g., two-way methods utilizing both uplink
and downlink communication between Alice and Bob, versus
methods based on uplink signals only.

1) Jamming Detection and Mitigation: Here representative
examples include [7]-[9]. These approaches do not address
issues involving pilot spoofing.

2) Pilot Spoofing Attack Detection: The pilot contamination
attack was first noted in [3] where the focus is on enhancing
eavesdropper’s performance. Several approaches have been
discussed in [4]-[6], [10]-[16] for detection of the attack.

a) Two-way Methods or User Cooperation: The ap-
proaches of [10], [11], [14], [15] all require two-way com-
munication between Alice and Bob. Asymmetry of received



signals’ power levels at Alice and Bob is exploited in [10] to
design an attack detector. It is based on uplink reverse training
from Bob to Alice as well as a subsequent downlink transmis-
sion from Alice to Bob relaying received signal power level
of Bob-to-Alice transmission. A two-way training method is
proposed in [14] for attack detection and secure transmission
(attack mitigation), where one requires additional downlink
training from Alice to Bob, not attacked by Eve. An interesting
secret key arrangement protocol is proposed in [11] for attack
detection and mitigation. This protocol involves several uplink
and downlink transmissions between Alice and Bob in order
to operate successfully. More recently, [15] proposed a two-
stage uplink training method for attack detection (and secure
transmission). This training method consists of splitting the
training sequence into two subsequences of unequal lengths
and unequal power levels from Bob, but same power level
from Eve, where the knowledge of the power split is unknown
to Eve, but is communicated by Alice to Bob in a downlink
transmission.

b) Only Uplink Signals: The approaches proposed in
[4]-[6], [12], [13], [16] for detection of the pilot spoofing
attack are all based on uplink signals only. The methods
discussed in [4]-[6] apply only to massive MIMO systems,
relying on the fact that number of antennas at Alice is large
(approaching infinity). The detection approach of [13] requires
knowledge of the statistical CSI of both Bob and Eve at Alice.
The training signal is self-contaminated by Bob in the method
of [12], which results in signal subspace of dimension two in
the presence of pilot contamination attack and of dimension
one in its absence. In [12], the minimum description length
(MDL) source enumeration method ( [17]-[19]) based on
data correlation matrix is used for estimation of the signal
subspace dimension, hence, for attack detection. An additional
random training phase is added in [16] after the conventional
pilot training phase in order to devise a new pilot spoofing
attack detector, and a secure transmission scheme. In [20],
[21], a space division multiple access (SDMA) uplink was
considered to allow for simultaneous transmission of training
from multiple legitimate users. The model of [20], [21] also
allows multiple Eves.

3) Pilot Spoofing Attack Countermeasures: Having de-
tected a pilot spoofing attack at Alice, what approaches can
be taken by Alice to secure her downlink transmission to Bob
against Eve’s eavesdropping? This issue has been considered
in [10], [11], [14]-[16], [22], where Alice needs to obtain
estimates of channels of both Bob and Eve.

a) Two-way Methods or User Cooperation: The methods
of [10], [11], [14], [15] have already been discussed in Sec.
I-A2a. Given the presence of attack, in the approach of [22],
Alice communicates this information in downlink to Bob, who
then transmits a random binary sequence in a post training
phase to help devise countermeasures.

b) Only Uplink Signals: The secure transmission ap-
proach of [16] assumes that during the random training phase,
Eve’s power is much lower than Bob’s power at Alice,
otherwise Eve’s channel can not be reliably estimated at Alice
to allow for secure beamforming. In this paper, we allow Eve’s
power to be (much) higher than Bob’s power at Alice, and still

have secure beamforming at Alice. A preliminary conference
version of this paper is [23]..

B. Contributions of This Paper

A preliminary conference version of this paper is [23],
where the approach of [12] utilizing MDL criterion for attack
detection, was augmented with estimation of both Bob’s and
Eve’s channels, and secure beamforming, to mitigate the
effects of pilot spoofing. In the set-up of [23], while Bob
superimposes a random sequence on its training sequence,
Eve does not. In this paper, we also consider the scenario
where Eve also could superimpose its own random sequence
on the training sequence, before spoofing Bob. The main
contributions of this paper are as follows:

o Our approaches need only uplink signals at Alice in
the training phase in order to detect an attack and to
devise a countermeasure, unlike other existing approaches
discussed in Sec. I-A, except for [16]. Unlike [16], we
allow Eve’s power to be (much) higher than Bob’s power
at Alice, and still have secure beamforming at Alice, since
Bob’s channel can be accurately estimated.

o We employ the random matrix theory (RMT) based
source enumeration approach of [24], [25] instead of
MDL, for spoofing detection, leading to more accurate
detection performance, compared to our earlier results in
[12], [23].

o Accurate estimation of Bob’s channel in the presence of
Eve’s attack in uplink is crucial for secure beamforming
at Alice for downlink transmission. For the case where
Eve transmits only pilot in the training phase, we present
a novel algorithm for estimation of Bob’s and Eve’s
channels in Sec. III using the correlation matrices of
data and projected data, where the latter is obtained
by exploiting the temporal subspace properties of the
pilot signal (Sec. III-B1). While various steps of the
algorithm rely on existing techniques, pre-processing of
data before application of these techniques, and order of
the steps, are novel and non-trivial. For instance, second-
order statistics-based blind estimation of Bob’s channel
detailed in Sec. III-B2 will not work if applied to the
received signal at Alice; it has to operate on projected
data which is devoid of pilot signal contributions.

e We also consider the attack model where Eve also could
superimpose its own random sequence on the training
sequence. We present a novel algorithm in this case for
estimation of Bob’s and Eve’s channels in Sec. IV, using
higher-order statistics of the data after removal of the
contribution of pilot sequence.

o We exploit the signal subspace rank of the projected
data to determine which attack model is true: Eve with
pilot only, or Eve with pilot and random sequence. Thus,
one does not need to know apriori which attack model
applies. This is also a contribution of this paper.

The rest of the paper is organized as follows. In Sec. II, we
present our system model, and also review some background
material regarding the pilot spoofing attack detection approach
of [12], and the RMT-based source enumeration approach of



[241, [25]. Two attack models are considered: (i) Eve transmits
only the pilot signal, (ii) Eve also adds a random sequence
to its pilot, mimicking Bob. Estimation of both Bob’s and
Eve’s channels are discussed in Secs. III and IV for the case
of pilot-only Eve transmission and pilot-and-random signal
Eve transmission, respectively. In Sec. V, we discuss measures
taken at Alice for her transmission to Bob, taking into account
presence/absence of Eve. Simulation results are presented in
Sec. VI to illustrate the proposed approaches. Since Eve’s
objective in pilot spoofing is to deceive Alice into treating the
Alice-to-Eve channel as Alice-to-Bob channel, Bob’s secrecy
rate as it pertains to Alice’s downlink transmission, is taken
as a performance measure.

Notation: Superscripts (.)*, (.) T and (.)* represent complex
conjugate, transpose and complex conjugate transpose (Hermi-
tian) operation, respectively, on a vector/matrix. The notation
E{.} denotes the expectation operation, C the set of complex
numbers, and Iy, an M x M identity matrix. The notation
x ~ N.(m,X) denotes a random vector x that is circularly
symmetric complex Gaussian with mean m and covariance X..
The abbreviations w.p.1 and i.p. stand for with probability one
and in probability, respectively.

II. SYSTEM MODEL AND BACKGROUND

We consider an MISO (multiple-input single-output) system
with a multi-antenna transmitter Alice equipped with N, > 3
antennas and a single antenna legitimate user Bob, operat-
ing in a flat Rayleigh fading environment. Alice designs its
transmit beamformer for downlink transmission to Bob based
on its channel to Bob. The system operates in a TDD mode
where the downlink and uplink channels can be assumed
to be reciprocal. If N, is large (as in massive MIMO and
similar systems [6]), it is more convenient and efficient for
Bob to send a single training sequence to Alice to enable
Alice to estimate the IV, sub-channels via reverse training
in uplink, and then use channel reciprocity to infer Alice-
to-Bob channel for downlink beamforming. If Alice were to
send pilot sequences to Bob simultaneously in downlink, one
would need N, orthogonal pilot sequences, hence, at least IV,
symbols long pilots. Alternatively, each Alice antenna-to-Bob
sub-channel can be trained by the same pilot in downlink,
sent sequentially in a time-division set-up, still needing at
least N, symbols for training. Therefore, reverse training
is preferred. We assume that there exists a pilot spoofing
eavesdropper Eve who transmits synchronized, identical pilot
signal as that of Bob, during the training phase. Eve’s objective
in pilot spoofing is to deceive Alice into treating the Alice-to-
Eve channel as Alice-to-Bob channel. Hence, the number of
antennas at Eve must be the same as the number of antennas
at Bob. Therefore, in our model, Eve also has a single antenna.

Such a system model has also been investigated in [4], [10],
[12]-[16], [22]. Let si(n), 1 < n < T, denote the training
sequence of length 7' time samples. Consider a flat Rayleigh
fading environment with Bob-to-Alice channel denoted as
hp = Vdp hy € CM and Eve-to-Alice channel denoted
as hg = \/EBE € CNr, where real scalars dp and dp
include the effects of respective path losses (dependent upon

path loss exponents and distance between transmitter-receiver
pairs), and hg ~ N.(0,Iy,) and hg ~ N.(0,Iy, ) represent
small-scale fading. Let P and Py denote the average training
power allocated by Bob and Eve, respectively. In the absence
of any transmission from Eve, the received signal at Alice
during the training phase is given by

¥(n) = v/Pp hpsi(n) + v(n)

where additive noise v(n) ~ N.(0,02Iy, ), and we normalize
T lsi(n)]? = 1 (e.g., take |s;(n)| = 1). When Eve
also transmits (Eve’s pilot spoofing attack), the received signal
at Alice during the training phase is

y(n) = (\/EhB + \/EhE> si(n) +v(n).

In case of Eve’s attack, based on (2), Alice would estimate
VPghp + +Pghg as Bob-to-Alice channel, instead of
v/Pg hp based on (1).

How to detect Eve’s attack based only on the knowledge
of s¢(n) and y(n), is addressed in [12], where a fraction
£ of the training power Pp at Bob is allocated to a scalar
random sequence sp(n) (zero-mean, i.i.d., normalized to have
T-'3°"_ |sp(n)> = 1, finite alphabet: binary phase-shift
keying (BPSK) or quadrature phase-shift keying (QPSK), e.g.),
to be transmitted by Bob along with s;(n). That is, instead of
V/Pgsi(n), Bob transmits (0 < 3 <1, n=1,2,---,T)

M
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5p(n) =/ Pp(1=p)si(n)+PpBsp(n).  (3)
The sequence {sp(n)} is unknown to Alice (and to Eve) and
it can not be replicated in advance as it is a random sequence
generated at Bob. However, Alice knows that such {sp(n)} is
to be expected in y(n). In the approach of [12], one considers
the following two hypotheses, #( (no attack) and #; (attack

present), for the received signal at Alice:

Hi : y(n) =hgsp(n) + VPghgsi(n) +v(n).

We also consider another attack model where we allow
Eve too to add a scalar random sequence sg(n) (clearly
independent of sp(n)) to s;(n) at Eve’s transmitter. This
results in the following set-up:

Hi y(n) =hgsp(n) + hgsep(n) + v(n)
where
5p(n) =/ Pe(l - p2)si(n) +/PeB2se(n), (6)

and Eve allocates a fraction (o of its transmit power
to {sg(n)}. We assume that {sg(n)} is similar in na-
ture to {sp(n)}, ie. it is zero-mean, i.i.d., finite al-
phabet (but unknown to Alice), and normalized to have
T-1 Zle |sp(n)|?> = 1. That is, Eve spoofs Bob more
closely than in [12].



A. Attack Detection Approach of [12]

It is based on the model (4). Define the correlation matrix
of measurements as (z = 0, 1)

T
R,; =T E{y(n)y"(n)|H:} )

and the correlation matrix of source signals as (i = 0, 1)

T
Ry =T E{ly(n) —v(n)lly(n) —v(n)]" [H:}. (8)

n=1

Then we have

R, =R,;+0lly,, i=0,1. )

It is shown in [12] that rank(R, ) = 1 and rank(R, 1) = 2.
Thus, introduction of {sz(n)} by Bob leads to signal subspace
of rank 2 in the presence of Eve’s attack. If § = 0, then
rank(R; 1) = 1. Define the sample correlation matrix as

(10)

Let the ordered eigenvalues of ﬁy be denoted by A\ >
Ay > --- > Apn,.. The MDL estimator [17] darpyr, of the
signal subspace dimension based on the eigenvalues \;s, is
exploited in [12] to detect spoofing attack; for details, see
[A12]. If dyspr, = 1, there is no spoofing pilot attack, and if
dypr, > 1, we have a spoofing pilot attack. Attack mitigation
(countermeasure) is not addressed in [12]. Note that if Eve
also adds a random sequence to its pilot, rank(R; 1) = 2. The
attack will still be detected, i.e., the approach of [12] also
applies to attack model (5).

B. RMT Based Rank Determination [24], [25]

The RMT-based approach of [24], [25] is based on the
distribution of the eigenvalues of R, when y(n) = v(n) (noise
cigenvalues). Let R, = T~ S2"_ v(n)v¥ (n), with ordered
eigenvalues ¢4 > fy > -+ > Un.. As N,,T — oo with
N, /T — ¢ > 0, the largest eigenvalue ¢; of ﬁv is distributed
with a Tracy-Widom distributed of order 2 [25], i.c.,

lim
N, ,T—oc0
N,./T—c>0

P{ty <o) (Hrn + 2055 )} = FPrwa(z)

Y
where Frryy2(z) denotes the Tracy-Widom probability distri-
bution function of order 2, and by [26],

1 2
Hov, =7 (\/T T05+ /N, + 0.5) ,

/3
K N, 1 1 )1

=/ Hr " a2

.y T (\/T+O.5 /N, 105 (12)

When signals with correlation matrix of rank d are added to
v(n), the (d + 1)st eigenvalue of R,, follows a Tracy-Widom
distribution, as in (11), except that we replace N, with N, —d;
for details, see [25].

The RMT-based signal subspace rank estimator d, rymT Of
[24], [25] is given by

dryr = argm}jn {/\k < (fv2(k) (MTYM% + Z(Pfa)chﬂNr)}—l

13)
where & € {1,2,--- min(N,,T) — 1}, z(Py,) is such
that Frwo(2(Pre)) = Pra, and Py, is the probability
of false alarm for the hypothesis testing problem where
signal subspace rank < k — 1 is the null hypothesis
Ho and signal subspace rank > £ is the alternative
Hi. Instead of using the maximum likelihood estimator
G,2(k) = 55 Y A for noise variance (which
has a negative bias [25]), [25] develops an alternative
iterative estimator ¢,%(k) of o2 which is more accurate. A
MATLAB code of the algorithm of [24], [25] is available at
http://www.wisdom.weizmann.ac.il/~nadler/Rank_Estimation.
Since in this paper, we are interested only in the fact whether
dryr = 1 or dryr > 1, in (13), we search for the minimum
over a smaller set k € {1,2}. As discussed in [24], [25], the
RMT-based approach can detect weaker signals compared to
the MDL detector.

ITI. CHANNEL ESTIMATION UNDER ATTACK MODEL (4)

In this section, we discuss several variations of channel
estimation assuming that the attack model (4) is true. If no
attack is indicated, Alice uses an iterative channel estimation
approach to estimate Bob’s channel, as discussed in Sec. I1I-A.
It turns out that independent of attack detection, Alice can
estimate Bob’s channel up to a complex constant. This is
discussed in Sec. III-B. If the MDL or the RMT method
indicates presence of attack, Alice can jointly estimate the
channels to Bob and Eve. These estimated channels underlie
the countermeasures taken at Alice for her transmission to
Bob, discussed in Sec. V.

A. No Attack

If the attack detector indicates absence of any attack, Alice
proceeds to initially estimate the channel using (4) under
Ho, knowledge of {s;(n)} and the least-squares method. This
approach treats {sp(n)} as interference. An obvious solution,
as discussed in [12], is to perform iterative channel estimation
via a linear minimum mean-square error (MMSE) equalizer
to estimate and decode (quantize) self-contamination sg(n),
and then use the decoded sp(n) in conjunction with s;(n) as
pseudo-training. For details, see [12, Sec. IV].

B. Blind Estimation of Bob’s Channel

Here we exploit temporal subspace properties of the pilot
signal to null out the contribution of the pilot, from both Bob
and Eve (if Eve’s signal is present), to the signal received at
Alice. However, the contribution of random sequence sp(n)
remains, and is exploited to estimate Alice-to-Bob channel, up
to a complex constant. This method applies whether or not a
pilot spoofing attack is present, and whether or not the attack
detector (RMT or MDL) detects a spoofing attack.


http://www.wisdom.weizmann.ac.il/~nadler/Rank_Estimation

1) Projection Orthogonal to Training: The projection ap-
proach discussed here was first proposed in the preliminary
conference version [23]. It was later used in [21] for detection
and identification of spoofed pilots in TDD/SDMA systems
where multiple Bobs and Eves are allowed. However, [21]
does not address the issue of estimation of Bob’s channel when
Bob is under a pilot spoofing attack.

Stack P consecutive samples of ¢th component y¢(n) of
y(n) into a column:

ye(1) -

y4(1)

Ye(P) ye(P+1) -+ e

¥4(2)

2pP)--- (14

Define v/(m) from vy (n), the £th component v(n), in a similar
fashion. Let

St(P)}T ’
(P+(m—1)P)]"

§t = [St(l) St(Z) e
§B(m) = [sB(l—l-(m—l)P) -+ SpB

(15)
. (16)

Then, in the presence of self-contamination and eavesdropper,
we have

f(m) = (\/ Pg(1—pB)hpe+ \/EhE,Z) St
+ /PpBhp.sp(m)+vi(m) (17)

where hp, is the ¢th component of hp, and similarly for
hpg,e. Let 73L denote the projection orthogonal to the subspace
spanned by §;, given by PJ; =Ip—P71s € CP*P where
we have used 57§, = P. Then ngye(m) has no contribution
from training s¢(n). “Reshape” ’ngyf (m) into a row vector
along time and put all components /s together. Then the so
“projected” y(n) lacks s;(n), but has the effect of hp and
sp(n), which can be used to estimate hp up to a scale factor
via eigen-decomposition. We elaborate on this approach in
what follows.

The eigenvalue decomposition (EVD) of Hermitian, non-
negative definite matrix ”ng of rank P — 1, can be expressed
as
U, € (CPX(P—l) ,

P = U507, (18)

where ¥ is diagonal with positive eigenvalues along its diag-
onal. Consider the reduced dimension vectors (of dimension
P — 1), given by

v (m) = UV (m), y*"(m) =
% (m) .= Ulsg(m). (19)
Then E{v"(m)(v"(m))"} = o21p_;, and v*"(m;) and
vi"(ms) are independent for m; # ma; see also [21, Sec.

II]. Since Pg-s; = 0 implies UHs, = 0, we have, for
m:172a"' 7T/Ps

U1Y( )s

=/ Ppf hpS(m

=1,---,T/P, with T/P an inte-

)+ v (m). (20)

Now reshape yh(m), m

ger, into a row of scalars g,(n), n =1,2,--- ,(T/P)(P —1),
using the correspondence
ge() -+ ge(P = 1) go(P) -+ ge(2(P = 1)) -+ (21)
yir(1) ¥ (2)

Similarly define @¢(n) from v*"(m), m = 1,--- ,T/P, and
similarly construct §%(n) from §%(m). Then y(n) € CNr,
with /th component g,(n), satisfies

n) = +/Ppfhpsg(n) 4+ v(n).

In the above model, {9( )} is i.i.d. zero-mean complex
Gaussian with covariance 021y, , and 51m1larly 5p(n) is uncor-
related zero-mean sequence with E{|55(n)|?} not a function
of n (follows just as the properties of v(n)).

2) Estimation of Bob’s Channel: Consider (22) with n =
1,2,-++ ;ny(P — 1), where n, = T//P= an integer. Then, as
in (7), with T" = ny(P — 1),

Rj=- ZE{Y

where E{|sp(n)|?} = 1 = E{|35(n)|?}. It follows that
hp/||hg| is a unit-norm eigenvector of R; with eigenvalue
(BPg||hp||?+02), all other eigenvectors have eigenvalues o2,
Hence, we estimate hp up to a complex constant as the unit

norm eigenvector v; corresponding to the largest eigenvalue
of Ry
Yo

(22)

} 6PBhBhB —|—O‘21N,‘ (23)

T
R; = Ti > ¥my” (24)
n=1

The above approach can be thought of as applying the EVD-
based channel estimation method of [27], proposed for mul-
ticell, multi-user massive MIMO systems, but applicable here
for our problem even though N, can be small, since we have
just one user Bob in (22).

Since hg = ¢v; for some complex ¢, we pick ¢ to minimize

= Z ly(n) — 1/ (1 = B)Pesi(n) |, (25)
leading to the solution
1 T
~ ~H *
6= e S ym)si (). (26)
VA = B)PsT ,;1 ! !
Then we have the estimate of hy as
hp = &¥;. (27)

Since lim7_, ﬁg = Ry i.p. [18], we have lim7_,o Vi = vy
i.p. [18], and for some 6,

vi = e’’hp/||hp|. (28)

Note that the eigenvector is unit norm, and e’? reflects
the complex scalar, unit modulus ambiguity that remains in
determining the eigenvector. Using (4) under H;, (26) and
(27), we have

lim &= v’

(hB 4+ /Ps/(Ps(l - hE) ip. (29)
T— 00
It follows from (26)-(29) that, i.p.,
Jim hp = hp = (1 +/Ps/(Ps(1—B))h hE/||hB||2) hy.
—00

(30)

Thus, while the direction of hp is correct, its com-
plex scaling is biased. As N, — oo, hilhg/||hp|? =



(1/N.)hghg/((1/N,)hithg) — 0 wp.l since hgp ~
N.(0,1In,), hg ~ N.(0,Iy,), and hp and hp are indepen-
dent.

C. Under Attack

If the MDL or the RMT method indicates presence of
attack, Alice can jointly estimate the channels to Bob and
Eve, as discussed in this section. To this end, we strive for a
more accurate estimate of hp compared to that in Sec. I11-B2,
utilizing the finite alphabet property of sp(n).

Under H;, we have

- (mhg + \/EhE) s¢(n)

+\/PBBhBSB(TL)+V(Tl). (31)
We estimate the composite channel
h.:=+/Pp(l—B)hg ++/Prghg (32)
using the training sequence s;(n) and least-squares, as
1 I
he == y(n)s;(n) (33)
n=1
This is an unbiased estimator of h. since E{flc} = h..
Furthermore, straightforward calculations show that
E{|h. — E{h.}|*} = [ﬂPB||hB||2 +ouNe] . (34)

Therefore, we have limp_, hC = h, i.p.

We first estimate sp(n), up to a rotation ambiguity, using
its finite alphabet property. This property does not hold for
$p(n) in (22), which precludes use of (22) and the approach of
Sec. III-B. Let x denote the signal symbol constellation, and
let © be the set of rotation angles which leave y invariant,
ie, if x = {sp, m = 1,2,--- M} and © = {6,, ¢ =
1,2,---, L}, then x = {e/%s,,, m =1,2,--- , M} for any
0, € ©. For example, let x correspond to a QPSK constellation
with M =4 and y = {1, j, —1, —j}. Then the corresponding
O={{(—-1)r/2, £ =1,2,3,4} with L = 4. Alice know the
sets x and ©.

Define

y(n) =y(n) — hes(n)

=v/PpBhpsp(n) + (h. — h.)si(n) +v(n)  (35)
~\/PgBhpsp(n) +v(n). (36)

With vy as in Sec. III-B1, define
z(n) =91'¥(n) = V/PpB Vi hpsp(n) +¥1'v(n)  (37)
=c,sp(n) + vy (n) (38)

where v, (n) = v v(n) ~ N.(0,02) and
co =\/PpBvi'hg ~ \/Pppvihg = ¢/ \/Ppplhg],
~

(39)

provided v, is close to vy, as defined in (28).
Using (38) and (39), one can estimate sp(n), up to a
rotation ambiguity. In the following we will assume a QPSK

constellation, so that in xy, M = 4 and |[s,,|=1 for every
m =1,2,3,4. We estimate ¢ in (39), using (38) and assuming
QPSK signals, as

6 = i 40
arg min r1(¢) (40)
where
T o
Z e 9% z(n) e
~ veozm gy | o)

In 71 (¢) above, we first compensate for unknown 6 with —¢,
then normalize e~7¢ z(n) to unit modulus (the modulus of
QPSK symbol constellation) which also eliminates the need
to know «, and for each time n, pick the symbol in the
constellation closest to e~ x(n)/|z(n)| as the estimate of
sp(n). Optimization in (40) can be carried out exhaustively
over a grid of ¢ values in the interval [0, 77/2]. Because of the
rotation ambiguity in QPSK constellation, in (40), search is
confined to the interval [0, 7/2], instead of [0, 27).
With optimized 6 from (40), we estimate sg(n) as

5Br (n) = 6_-7'1&(") (41)
where
. L ,
Y(n) = min ¢ z(n) — Y
pel{o,z.x2xy | |z(n)

In the absence of any noise, the estimated symbols §,-(n) may
differ from true sp(n) due to rotation ambiguity (symmetry)
of y, i.e., for QPSK constellation, 55,(n) = e’?sg(n) for
some # € ©® and n = 1,2,--- ,7T. In the presence of noise,
we additionally have symbol decoding errors.

Our next step is to resolve this rotation ambiguity, and
then use the decoded symbols as pseudo-pilots, in conjunction
with (36), to re-estimate hp without the rotation ambiguity.
Consider (36) and with \/35p,(n) as the training sequence,
estimate \/gh B as h Br up to a rotation ambiguity, as

N 1 R

hor = =7 Zy(n) B (1) (42)
where we have used the fact that [sp,.(n)| = 1. We now look
for an estimate hg = &’ h gr for 8 € ©, which resolves
the rotation amblgulty h,. To this end, we reconstruct Bob’s
contribution to y(n) at Alice, and cancel it from y(n) to leave
only Eve’s contribution and noise. Consider

yB,é(n) =V 1- BejeﬁBrst(n) + \/BﬁBrgBr(n)
which is an attempt to reconstruct the contribution of Bob’s
signal \/Pg(1 — ) si(n) + v/PgB sp(n) to Alice’s received
signal y(n). Note that we include v/Pp in hp,. We can not
resolve the rotation ambiguity by using $p,-(n) alone, since
the latter is the cause of this ambiguity, and furthermore, the
ambiguity 6 is inherent in 5, (n). However, since true training
s¢(n) is known, it suffers from no such uncertainty. Let

Ya.a(n) =y(n) —¥p4(n)

where y(n) follows (4) under ;. When 6 € © takes its true
value, we have y, 5(n) = /Pghgsi(n) + v(n), otherwise it

(43)

(44)



has additional contributions due to hg, hg,, s (n), s¢(n), and
$pr(n). Consider

0= in 75(0) wh 2. @5
arg min r2(0) where 72(0 Zb’d& (45)
When 6 is not equal to its true value, we have
Yaa(n) =v1-5 ( Pphp — ejéﬁBr) s¢(n)
+/8 (\/ Pghpsp(n) — BBT’éBT(n)>
+ v/ Pghgsi(n) +v(n) (46)
1-— B ( PBhB — ejéﬁBT) St(’I’L)
+ vV Pehgsi(n) +v(n). (47)

When @ is equal to its true value, using hp = ejéﬁBr ~ hp,

we have
~ v/ Pphgs,(n) +v(n).

Thus, with 6, denoting the true value of 6, one expects
r2(0g) < ro(f) for 6 # Oy, 0, 0y € O, resulting in 6 = 0.
Then we estimate «/Pghp w1thout any rotation ambiguity as

(48)

hp = e hp,. (49)
Since ydg( n) ~ /Pghgsi(n) + v(n), a least-squares
estimate hE of v/ Prhg is given by

1 T
T 2 Vaasi )

(50)

D. Summary of Solutions Under Attack Model (4)

We have discussed three different approaches to channel es-
timation under the attack model (4), which we now summarize.
In the following, we assume that, if needed, the RMT-based
spoofing attack detector is used.

1) Attack Not Detected: 1f the attack detector declares no
attack, we can only estimate Bob’s channel. If dARMT =1,
estimate Bob’s channel via the method of [12, Sec. IV], and
design Alice’s beamformer as in (70) of Sec. V, discussed
later. Estimation of Bob’s channel utilizes both training s;(n)
and random sequence sp(n) in an iterative procedure.

2) Attack Ignored — Blind Channel Estimation: Here re-
gardless of the outcome of the spoofing attack detector, we
only estimate Bob’s channel, using the method of Sec. III-B.
Generate the projected sequence y(n) as specified in Sec.
III-B1. Then Bob’s channel is estimated as in (27), and it
equals a scaled version of the eigenvector of the sample
correlation matrix of y(n). For secure transmission from Alice
to Bob, design Alice’s beamformer as in (70) of Sec. V,
discussed later.

3) Attack Detected: 1f CZRMT > 1, there is a spoofing
attack. Now Alice estimates both Bob’s and Eve’s channels,
following the procedure outlined in Sec. III-C.

IV. CHANNEL ESTIMATION UNDER ATTACK MODEL (5)

Now we consider the case where attack model (5) could be
true. If (5) and hypothesis H; are true, then (22) becomes

= +/Ppfhpsip(n)+ /PpP2hrsp(n (51)

where 5 E(n) is defined in (6). While the signal subspace of
(22) is of rank 1, the signal subspace of (51) is of rank 2.
The RMT or the MDL criterion applied to {y(n)} will reveal
its signal subspace rank. If this rank is 1, the approach of
Sec. III-C for channel estimation suffices. If this rank is 2,
then (5) is true, and the approach of Sec. III-C will fail. We
now consider how to estimate channels of Bob and Eve in
the latter case. The signal in (51) represents a mixture of two
non-Gaussian signals in white Gaussian noise, but the non-
Gaussian signals are not necessarily stationary (although they
are wide-sense stationary), hence, the standard approaches for
unmixing using higher-order statistics (e.g., kurtosis) [28]—
[31] do not apply to (51). Therefore, we follow a different
approach.
Under model (5) and hypothesis H;, let

he :=+/Pp(l1—58)hg + /Pr(l—5)hg.

Let us estimate h.p using the training sequence s;(n) and
least-squares, as

)+ v(n)

(52)

h, = % > y(n)s;(n). (53)

This is an unbiased estimator of h.o since E{ﬁcg} = hgo.

Also, straightforward calculations show that

[BPs|hg|? + B2 Pe|hg|? + 02N, ]
T )

E{|[he2—E{h.2}|*} =

A (54)
Therefore, we have limp_, o, hee = heo i.p. Define
¥2(n) =y(n) — heasi(n) (55)
=\/PpfBhpsp(n) + /Pefzhpsp(n)
+ (hey — heo)se(n) + v(n) (56)
~\/Ppfhpsp(n)+/PgP2hgsg(n (n). (57)

Since sequences {sp(n)} and {sg(n)} are independent non-
Gaussian, one can apply higher-order statistics-based ap-
proaches to estimate h g and hg [28]-[31]. We first whiten
¥5(n), and then use the RobustICA algorithm of [30] that uses
kurtosis of “unmixed” whitened measurements. It provides
estimates h B and hE of hp and hg, respectively, up to a
complex scaling factor, using y,(n). Details follow.
Let

~

th 9 ()} and Ry, = 2 3" 52 ()54 (n),
) (58)

where ﬁlh is a consistent estimator of the correlation matrix
Ry, of {y,(n)}. Consider the EVD of Ry, to obtain

R, — USU" = [0, 0, [ X0 (59)

0 ] [0, 0"



where Y is an N, x N,. diagonal matrix with the eigenvalues of
R, arranged in decreasing order of magnitude, the columns
of U are the corresponding eigenvectors, and U; is N, X 2.
With reference to (57), define a channel matrix Hy € CN*2

as
Hy = [\/PpBhp +/ PgB2hg]. (60)
Then we can rewrite (57) as
Vo(n) =Has(n) +v(n), s(n) = [sp(n) spn)]". (61)

Since the contamination sequences sp(n) and sg(n) are zero-
mean, unit variance, mutually independent and i.i.d., we have
the true correlation function

X1 0

R;, = USUY = [U; Uy [ 0,

| 01w

=HH] + 2Ly, (62)

where U, X, etc. in (62) are the true counterparts of the
estimated ﬁ, f], etc. in (59).

The channels hp and hg lie in the subspace spanned by
the columns of U;. Consider x(n) = Uiy, (n) € C2. Then
we have

x(n) = U (Hys(n) + v(n)) = Hgs(n) + v(n)
where Hy € C2*2, Hy = U7H, and v(n) = Ufv(n) € C2.
We have E{v(n)v(n)} = 02I, since UF'U = I,. We will

use the RobustICA algorithm of [30] to yield an estimate Hy
of H, using x(n). One obtains, for some 6;s,

(63)

Hy ~H,PTy, Tp=diag{e’®, i=1,2}  (64)

where P is a permutation matrix — the order of “extracted”
sources, hence, the order of extracted columns of H, cannot
be determined by RobustICA (indeed, by any blind source
separation method for instantaneous mixtures [31]), and one
can only recover channels up to a constant of modulus one
when using kurtosis and related criteria for unmixing. Thus,
an estimate of Hy; = U;Hy is given by

l:ld = ﬁll:ld = [\/PBBBB \/PEﬁg lAlE} ~ H,{PFQ. (65)

Remark I: Consider the (restricted) independent component
analysis (ICA) problem

z(n) = As(n) (66)

where z(n),s(n) € C?, A € CP*P, the sequence {s(n)} is
zero-mean, i.i.d., non-Gaussian (finite alphabet), with inde-
pendent components, and the objective is to recover s(n) and
estimate A. Such problems have been addressed in [28]-[31],
among others. We will consider only square A, hence the term
restricted ICA; this is sufficient for our purposes. Ignoring
noise v(n) in (63), we see that (66) corresponds to (63) with
p =2, A = Hy, and z(n) = x(n). For some w € CP, let
e(n) = wiz(n). In the approach of [30], w is picked to
maximize |y4|, where the kurtosis (normalized 4th cumulant)
v4 of e(n) is given by

. Ele(n)|"} — 2B{le(n)[*} — Efe*(n)}
(E{Je(n)[?})”

(67)

When |y4] is maximized for w = w, one has e(n) =
wiz(n) = s;,(n) for some 1 < m < p, where s,,(n) is
the mth component of s(n). Thus, one can obtain s,,(n),
and using s,,(n), (66) and least-squares, estimate Ay, for
1 < ¢ < p, where Ay, is (¢,m)th element of A. After
estimating the mth column of A, contribution of s,,(n) to
z(n) is subtracted (deflated) from z(n), and the entire process
is repeated till all sources (components of s(n)) are extracted,
and A is estimated. Such a procedure for more general
class of systems may also be found in [28]. The RobustICA
algorithm of [30] provides an optimal step-size in the iterative
maximization of |y4| via a gradient-descent method, leading
to fast convergence. [

Remark 2: Note that order of the extracted sources in an
ICA problem is unknown [30], [31]. That is, in Remark 1,
the index m in the recovered s,,(n) could correspond to
any of the existing sources in the mixture. Therefore, the
channel estimated based on the extracted source signal is
not “labeled,” i.e., with reference to (57), we do not know
if an estimated channel resulting from the application of
the RobustICA algorithm of [30] (or any other unmixing
approach), corresponds to that of Bob or of Eve. We need
some additional information to resolve this ambiguity. If old,
outdated estimates of Bob’s channel (from earlier frames) are
available to Alice, they can be used to distinguish between
current estimates of Bob’s and Eve’s channel. If Bob and
Eve use different symbol constellations for random sequences,
it can help distinguish between the two. In this paper, we
assume that either outdated estimates of Bob’s channel are
available, or the superimposed random sequence of Bob has
some information embedded in it regarding user identification,
and Alice can extract this from decoded data. [J

A. Summary of Solution

Alice does not know if attack model (4) or (5) is in
effect. Based on the discussion in Secs. III and IV, we have
the following approach to pilot spoofing attack detection,
and estimation of both legitimate receiver and eavesdropper
channels.

(i) Apply RMT rank estimator (13) to (original) measure-
ments y(n), to determine signal subspace rank dgasp. If
dryT = 1, estimate Bob’s channel via the method of
[12, Sec. IV].

If drypr > 1, there is a spoofing attack. Generate the
projected sequence y(n) as specified in Sec. III-C. Apply
the RMT rank estimator to {y(n)} to estimate signal

(i)

subspace rank d of the projected measurements. If d=1,
attack model (4) is in effect, and if d > 1, attack model
(5) applies.

Ifd = 1, follow second-order statistics-based method
discussed in Sec. III-C to obtain estimates of h g and
hg.

If d > 1, follow kurtosis-based method discussed in Sec.
IV to obtain estimates hg and hg.

(iii)

(iv)



V. COUNTERMEASURE: SECURE BEAMFORMING

In this section, we discuss measures taken at Alice for
her transmission to Bob, taking into account presence/absence
of Eve, or simply ignoring Eve. These measures are based
on known results, but their applicability depends upon the
spoofing detection results and consequent estimation of the
channels of Bob and Eve, as appropriate.

Let {s.(n)}, E{|s,(n)|?} = 1, denote the scalar informa-
tion sequence of Alice intended for Bob, and let w € CN~
denote the unit norm beamforming vector of Alice. Then Alice
transmits \/Paw s, (n) where P, is the transmit power. The
received signals at Bob and Eve are given, respectively, by

yp(n) = \/Ehgw sa(n) +vp(n) (68)
yap(n) = /Pahpw s, (n) + vp(n), (69)

where we have used channel reciprocity, vg(n) ~ N.(0,0%)
and vg(n) ~ N.(0,0%) are additive white Gaussian noise at
Eve’s and Bob’s receivers.

A. MF Beamforming

For matched filter (MF) reception at Bob, Alice should pick
w as h;/||hg|| if hp is known [32], [33], but instead uses the
estimated channel to pick the optimum beamformer

w. =hy/|lhg|. (70)

The choice w = hj/||hp| maximizes the SNR at Bob
since [hyw| < ||hp| ||w| with equality iff w = ch} for
some constant c¢. We will refer to the solution (70) as MF
beamforming. Generally, we would use MF beamforming
when there is no Eve (or Eve is not detected) and we use
the estimate of Bob’s channel as obtained in Sec. III-DI.

B. Blind Beamforming

In blind beamforming, we do not depend upon the decision
of the attack detector, and use MF beamformer based on blind
estimate of Bob’s channel, which is obtained as described in
Sec. III-D1. Since the blind channel estimate is obtained from
projected data, it is not influenced by the presence or absence
of Eve’s signal.

C. Secure Beamforming

We now discuss the case where Eve has been detected. Us-
ing beamformer w at Alice, the signal-to-noise ratios (SNRs)
SNRp and SNR g at Bob and Eve, respectively, are

SNRp = Palhgw|?/0%, SNRp = Palhpw|?/o%. (71)

If a Gaussian codebook is used for {s.(n)}, the achiev-
able rates at Bob and Eve, respectively, are Rp =
log, (1+SNRp) and R = log, (1 4+ SNRg), and the se-

crecy rate at Bob is [1]
RB7S€C:maX(RB —RE,O). (72)

In the presence of Eve with channel hp, the beamformer
w may be picked to maximize Rp sc.. By [1, Theorem 2],

the optimal beamformer w, is given by the (unit-norm) gen-
eralized eigenvector corresponding to the largest generalized
eigenvalue of the matrix pair

(In, +hhg /0%, Iy, +hphL/o%) . (73)

Under high SNR, the above solution approaches the solution
that satisfies hgw = 0 [1, Cor. 1] (see the discussion in the
second paragraph after the statement of Cor. 1 in [1], and also
its proof in [1, Sec. VL.B]). If hpw = 0, then Rp = 0 and
maximizing Rp se. is equivalent to maximization of rate Rp,
hence of [hj;w|. This leads to the optimization problem

max, |hjw| subjectto how=0, |[w]|=1.  (74)

The constraint hgw = 0 implies that w lies in a subspace
orthogonal to hj, ie., for some wo, with Py denoting
projection orthogonal to h7,

W:P@WO = (INT —h*Ehg/HhE”z) Wo. (75)

T ~T . ..

With hp := (’P,f;E)ThB, |hpw| = [hpwo| is maximized w.r.t.
wo by an MF solution wg, = cﬁ*B for some nonzero constant
¢, as in Sec. V-A. Since Plf-;: is a projection operator satisfying
Pis (Piz ) = Pyt , in terms of w, we have w = Pk wo, =
E E E
cPh*Eh*B, which after normalization to unit norm, leads to the
optimal solution

_ (v, —hghg/|[hp|?)
I (Ly, = hhg/|he]?) |

The optimization problem (74) has been investigated in [34] in
a different context, with solution (76). In practice, we replace
hp and hp with their estimates. We will refer to the optimal
solution (73) and suboptimal solution (76), both as secure
beamforming.

(76)

W

VI. SIMULATION EXAMPLES

We consider Rayleigh flat-fading channels with path losses
dp = dg = 1, noise power 03, training power budget Pp
at Bob is such that Pg/0? = 10dB, training power budget
Pg at Eve is such that Pg/o? varies from —20dB through
20dB, and fractional allocation 3 of training power at Bob
to random sequence sp(n) is 0.4, and B2 = 0.4 when Eve
chooses to add sg(n) under attack model (5). Bob and Eve
have single antennas while Alice has N, = 4 or 40 antennas.
The training sequence is selected as periodic extension of a
(binary) Hadamard sequence of length P = 2% = 16, and the
random sequences {sp(n)} and {sg(n)} were ii.d. QPSK
symbols. Alice knows that {sp(n)} is QPSK, but does not
know the alphabet size of {sg(n)}. All shown simulation
results were averaged over 5000 runs.

A. Attack Model (4)

Here we consider the case where Eve does not transmit
any random sequence, just the pilot. Figs. la-1b show our
detection probability P, results averaged over 5000 runs
under pilot contamination attack for various parameter choices,
when Pp/o2 = 10dB. Fig. la compares RMT and MDL
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Fig. 1: Attack model (4). (a) Probability of attack detection using
MDL or RMT estimators, as a function of Eve’s power Py relative
to noise power o2, when Bob’s power is fixed at Pg /o2 = 10dB.
g =04

(b) Probability of attack detection using RMT estimator or energy-
ratio detector (ERD) of [10], as a function of Eve’s power Py relative
to noise power o2, when Bob’s power is fixed at Pg /o> = 10dB.
g=04.

approaches. We picked Py, = 0.001 for the RMT method. The
MDL method needs no threshold. It is seen from Fig. 1a that
the RMT method significantly outperforms the MDL detector,
in that the RMT method is able to detect pilot spoofing attack
for much smaller values of Eve’s power Pr compared to MDL.
For the cases shown in Fig. 1a, the empirical Py, for the MDL
method was less than 0.0008 for (N,,T") = (40, 16), (4.64)
and (40,64), and it was 0.048 for (N,,T) = (4, 16), whereas
for the RMT method. the empirical probability of false alarm
was 0.049, 0.026, 0.002 and 0.002, for (N,.,T) = (4,16),
(4.64), (40.16) and (40.64). respectively. Fig. 1b compares
RMT-based detector with the energy-ratio detector (ERD) of
[10], the latter designed for Py, = 0.05, which additionally
requires feedback from Alice to Bob. If is seen from Fig. 1b
that the RMT method significantly outperforms ERD. Also,
comparing Figs. la and 1b we see that the MDL detector
also outperforms ERD. For the cases shown in Fig. 1b. the
empirical Py, for the RMT method was exactly as for Fig. la,
whereas for ERD, it was 0.050, 0.044, 0.048 and 0.058. for
(N;,T) = (4,16), (4.64), (40.16) and (40.64), respectively.
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Fig. 2: Attack model (4). Phase-insensitive channel MSEs as a
fimction of Eve’s power Pg relative to noise power o=, when Bob’s
power is ficed at Pg/o2 = 10dB. 8 = 0.4. (a) MSE (77) for
Bob’s channel. The method of Sec. III-B was used for curves labeled
“blind” and indicated via dashed curves. For solid curves, we use
the method of Sec. III-C if the RMT detector indicates the presence
of Eve’s aftack, otherwise use the method of Sec. IIT-A .

(b) MSE (78) for Eve’s channel. We use the method of Sec. III-C if
the RMT detector indicates the presence of Eve’s affack, else Eve'’s
channel is not estimated.

Given the channel hg and its rotated version e’®hg for
some 6, the solution to secure beamforming via (73) or (76),
and the solution to MF or blind beamforming via (70). none
depends upon the phase rotation f. Similar comments apply to
hz and its rotated version e’?hy when secure beamforming is
considered. Therefore. we will use a phase-insensitive mean-
square error (MSE) measure to evaluate channel estimation
errors in estimating hg and hg. Such a measure has been
used in [35] in a different context. Note also that (70) and
(76) do not depend upon the norms of hg and hg. If hg
is an estimate of hp. both normalized to unit norm. phase-
insensitive MSE in estimation of hg is given by [35]

CMSEp = min |hg —?hp|? =2—2hlhgs|. (77)
#€[0,27]

Similarly, if h g 1s an estimate of hg. both normalized to unit

norm. phase-insensitive MSE in estimation of hg is given by

CMSEg = min |hg — hg|? =2 —2hlhg|. (78)
6<[0,2m]



Figs. 2a and 2b show phase-insensitive MSE in Bob’s and
Eve’s channel estimation, respectively. Bob’s channel can be
estimated two different ways: blind estimation as discussed in
Sec. III-B (labeled “blind” and indicated via dashed curves
in Fig. 2a), or estimation as in Sec. III-C only if the RMT
method indicates the presence of Eve’s attack, otherwise use
the method of Sec. III-A (shown via solid curves in Fig.
2a). Since the blind approach is applied after projection of
data orthogonal to training, independent of the result of the
attack detector, and since the projected data is devoid of
Eve’s signal, the MSE in Bob’s blind channel estimation is
invariant to Eve’s power. This fact is reflected in Fig. 2a.
On the other hand, when Bob’s channel is estimated based
on the result of the attack detector (methods of Sec. III-A
or Sec. IMI-C), the channel estimation performance depends
upon Eve’s power. If the RMT method indicates absence of
the attack., we use the method of Sec. III-A., where Eve’s
signal at Alice is not modeled, and therefore, it contributes to
increased noise, resulting in increasing MSE with increasing
Eve’s power. However, as soon as the attack is detected. we
switch to the method of Sec. ITI-C, where Eve’s signal at Alice
is explicitly modeled, resulting in improved channel MSE in
Fig. 2a with increasing Pgr. As T increases, we have improved
attack detection (see Fig. 1a)., which results in lower channel
MSE in Fig. 2a with increasing 7.

Eve’s channel is estimated only if the RMT detector indi-
cates the presence of a spoofing attack. The phase-insensitive
MSE CMSEg in Eve’s channel estimation is shown in Fig. 2b.
At first, it decreases with increasing Pg. before leveling off,
or increasing a little. Since, in Sec. ITI-C, hg is estimated after
canceling the contribution of Bob’s signal from y(n). Bob’s
channel needs to be estimated with accurate phase rotation and
magnitude, to yield “effective” cancellation. It turns out that,
at higher values of Pg. such errors increase, which, in turn,
cause leveling off or increase in CMSEg shown in Fig. 2b.
This discrepancy, however, lessens with increasing N,.

Based on the channel estimates, Alice designs secure beam-
formers for downlink transmission to Bob, as discussed in
Sec. V. Bob’s secrecy rate results are shown in Figs. 3a-3b
for T = 16 and T = 64, respectively. For comparison, we
also show the results for the case where Alice is ignorant of
Eve’s attack, and estimates Bob’s channel as described in Sec.
IMI-A. and then designs MF beamformer (70). These results
are labeled “unsecure MF” in Figs. 3a-3b. It is seen that as
Eve’s spoofing power P increases, the secrecy rates decrease
to zero for all values of T' and N, since the estimated Bob’s
channel at Alice is now dominated by Eve’s channel. There is
significant information leakage to Eve. Now consider the case
where Alice is aware that there could be Eve’s pilot spoofing
attack, but instead of trying to detect it, simply uses blind
estimation of Bob’s channel (Sec. III-B), and then designs
MF beamformer (70). These results are labeled “blind” in
Figs. 3a-3b. For this case, it is seen from Figs. 3a-3b that
the secrecy rates are invariant to Eve’s spoofing power Pg.
resulting in secure transmission to Bob. The curves labeled
“secure” refer to beamforming based on (73) when Eve is
detected and on (70) when Eve is not detected, and we use
the methods of Sec. ITI-A or Sec. III-C for channel estimation,
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depending upon if the attack is not detected or detected. In
our simulations, we did not find any discernible difference
between secure beamformers based on (73) or (76). As seen
in Figs. 3a-3b, when Eve increases her transmit power Pg. she
reveals more of herself (i.e.. leads to better channel estimation
performance at Alice, see Fig. 2b), resulting in befter secrecy
rate for Bob with increasing Pr. We achieve better nulling by
the beamformer of Alice along Eve’s direction.
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Fig. 3: Attack model (4). Secrecy rate (bps/Hz) at Bob using the
beamformers based on (70) or (73), as a function of Eve’s power
Pg. All parameters as for Fig. la. The label “secure” refers to
beamforming based on (73) when Eve is defected, and on (70)
when Eve is not detected; “unsecure MF” means one uses (70) with
Eve ignored in channel estimation, i.e, Bob'’s channel is estimated
using the method of Sec. III-A; “blind” means one uses (70) with
Bob’s channel estimated using the method of Sec. III-B. P4 = 1,
o =05 =01.(aT =16, (b)) T =64.

Multiple Eves: We also considered the case of 3 Eves
under attack model (4) where (2) is modified as y(rn) =

(\/Ehg +33 /P, hE‘,) s¢(n) + v(n). and hg,s are
mutually independent. We take Pr, = Pg/3 Vi. This model
is tantamount to having one virtual Eve with /Pghg =
E?:l v/ Pg, hg,. Our spoofing detection results are shown
in Fig. 4a, and they are similar to the single Eve results of
Fig. l1a. After obtaining the channel estimates hp and hg (we
can not get ﬁE‘, s), we design secure beamformers as for the
results in Fig. 3a (T' = 64), and evaluate secrecy rates of Bob
(shown in Fig. 4b) wr.t. one of the Eves (in downlink each



Eve receives its own Alice-to-Bob signal). Since now Alice
does not know a single Eve’s channel with any accuracy, the
secrecy rate does not improve with increasing Pr (compare
with Fig. 3a), but it does not deteriorate either when using
blind or secure beamformers.
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Fig. 4: Multiple Eves in attack model (4). (a) Probability of attack
defection using RMT estimators, as a function of three Eves’ fotal
power Py relative to noise power o>, when Bob’s power is fixed at
Pg/o2 =10dB.  =0.4.

(b) Secrecy rate (bps/Hz) at Bob using the beamformers based on
(70) or (73), as a function of three Eves’ fotal power Pg. The labels
are as in Fig. 3a.

B. Attack Model (5)

Here we consider the case where Eve also transmits a
random sequence, in addition to the pilot. Alice follows the
algorithm detailed in Sec. IV-A. We use 3 = 35 = 0.4, ie.,
Eve behaves just like Bob. Fig. 5 shows our spoofing detection
results using the RMT-based detector.. The label “pre-proj”
means that the detector operates on original y(n), and label
“aft-proj” means that the detector operates on projected ¥(n),
given by (22) or (51). Fig. 5a shows the results for data
generated under attack model (5) whereas Fig. 5b shows
the results for data generated under attack model (4). Our
detection approach (step (ii) in Sec. IV-A) clearly distinguishes
between models (4) and (5). Note that Alice has no prior
knowledge as to which attack model is true.
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Figs. 6 and 7 show the channel estimation and secrecy rate
results, respectively, for data generated under attack model (5).
and they correspond to Figs. 2 and 3. respectively, for attack
model (4). Under attack model (5). even if Eve’s presence
is correctly detected at low Pg/o2 values, since the channel
estimation performance depends upon the relative strength of
Bob’s and Eve’s random signals. and on 7" (in general, higher-
order statistics-based approaches need larger data samples),
there are larger errors in Eve’s channel estimation at lower
values of Eve’s power Py /o2 at Alice. Compare Figs. 2b and
6b for Pg/o? values between -7.5dB to 5dB for T = 16,
to notice this phenomenon. Poor estimation of Eve’s channel
seen in Fig. 6b is reflected in Fig. 7a. in decrease in Bob’s
secrecy rate for these values of Pg/o2 and T = 16, since
poorer Eve’s channel estimates lead to poorer nulling by the
beamformer of Alice along Eve’s direction.
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Fig. 5: Probability of attack detection using RMT rank estimator,
as a fimetion of Eve’s power Pg relative to noise power o2, when
Bob’s power is fixed at Pg /o> = 10dB. (a) Attack model (5), B =
B2 = 0.4, (b) Attack model (4), 3 =04, f2=0.

VII. CONCLUSION

A novel approach to detection of pilot spoofing attack in a
three-node TDD system was recently presented in [12] where
attack mitigation was not addressed. In this paper we augment
the approach of [12] with estimation of the channels of Bob
and Eve, followed by secure beamforming, to mitigate the
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Fig. 6: Attack model (5). Phase-insensitive channel MSEs as a
function of Eve’s power Pr relative to noise power o=, when Bob’s
power is fixed at Pg /a2 = 10dB. The method of Sec. IV was used.
8 = 2 = 0.4. (a) MSE (77) for Bob’s channel, (b) MSE (78) for
Eve’s channel.

effects of pilot spoofing. Two spoofing attack models were
considered: (i) the spoofer Eve transmits only the pilot signal,
(ii) Eve also adds a random sequence to its pilot, mimicking
Bob. We also employed a random matrix theory (RMT) based
source enumeration approach, instead of the MDL method
used in [12]. for spoofing detection. The proposed approaches
were illustrated by numerical examples.

The proposed approach is confined to a single Bob and
single Eve. It is desirable to extend the results to the case
of multiple Bobs and multiple Eves. The problem of pilot
spoofing detection (but not of countermeasures) for multiple
Bobs and Eves has been considered in [21]. where each Bob
uses an independent self-contamination signal, in addition to
its assigned orthogonal pilot sequence. Although these self-
contamination signals act as interference to other Bobs, it is
shown in [21] that by using iterative methods for multi-user
channel estimation (first estimate the channels based solely on
orthogonal training sequences with self-contamination signals
acting as noise/interference, then use a linear MMSE equalizer
based on the estimated channels to estimate and quantize
the self-contamination signals, and repeat with training plus
quantized self-contamination signal acting as pseudo-training
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for each individual Bob). one can obtain successful CSI
estimates at Alice for those Bobs that are not spoofed. In [21]
an approach is presented for detection of pilot spoofing, iden-
tification of which pilot has been spoofed, and then estimation
of the channels of unspoofed Bobs via an iterative approach.
However, [21] does not address the issue of estimation of
a particular Bob’s channel when that Bob is under a pilot
spoofing attack. This is an open problem.
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