140

IEEE TRANSACTIONS ON BIG DATA, VOL.3, NO.2, APRIL-JUNE 2017

Significant Linear Hotspot Discovery

Xun Tang, Emre Eftelioglu, Dev Oliver, and Shashi Shekhar

Abstract—Given a spatial network and a collection of activities (e.g., pedestrian fatality reports, crime reports), Significant Linear
Hotspot Discovery (SLHD) finds all shortest paths in the spatial network where the concentration of activities is statistically significantly
high. SLHD is important for societal applications in transportation safety or public safety such as finding paths with significant
concentrations of accidents or crimes. SLHD is challenging because 1) there are a potentially large number of candidate paths (~ 10%6)
in a given dataset with millions of activities and road network nodes and 2) test statistic (e.g., density ratio) is not monotonic. Hotspot
detection approaches on euclidean space (e.g., SaTScan) may miss significant paths since a large fraction of an area bounded by
shapes in euclidean space for activities on a path will be empty. Previous network-based approaches consider only paths between road
intersections but not activities. This paper proposes novel models and algorithms for discovering statistically significant linear hotspots
using the algorithms of neighbor node filter, shortest path tree pruning, and Monte Carlo speedup. We present case studies comparing

the proposed approaches with existing techniques on real data. Experimental results show that the proposed algorithms yield

substantial computational savings without reducing result quality.

Index Terms—Hotspot detection, statistical significance, spatial networks, spatial data mining

1 INTRODUCTION

SIGNIFICANT Linear Hotspot Discovery (SLHD) identifies
routes with statistically significant concentrations of
activities (e.g., crimes, accidents, etc.). Informally, the SLHD
problem can be defined as follows: given a spatial network,
a collection of geo-referenced activities (e.g., pedestrian
fatality reports, crime reports), and a concentration of activi-
ties threshold 6y, find all shortest paths between activities in
the spatial network where the concentration of activities is
unusually high (i.e., statistically significant) and the concen-
tration of activities is equal to or greater than ;. Depending
on the domain, an activity may be the location of a pedes-
trian fatality, a carjacking, a train accident, etc. Fig. 1 illus-
trates an input example of SLHD consisting of seven nodes,
seven edges (with edge weights set to 1 for illustration pur-
poses), 10 activities (shown as squares on the edges), and
04 = 12, indicating that we are interested in the shortest
paths between activities whose concentrations of activities
is equal to or greater than 6; = 12.

1.1 An lllustrative Application Domain: Preventing
Pedestrian Fatalities

Urban computing aims to handle the major issues that cities

face by using computational techniques. Seven major urban

computing categories are urban planning, transportation,

environment, energy, social, economy, and public safety

and security [1]. Our proposed work focuses on discovering

o X. Tang, E. Eftelioglu, and S. Shekhar are with the Department of
Computer Science and Engineering, University of Minnesota, 4-192 Keller
Hall, 200 Union St, Minneapolis, MN 55455.

E-mail: {xuntang, emre, shekhar)@cs.umn.edu.

e D. Oliver is with ESRI, 380 New York Street, Redlands, CA 92373.

E-mail: doliver@esri.com.

Manuscript received 8 Dec. 2015; revised 30 July 2016; accepted 5 Nov. 2016.
Date of publication 5 Feb. 2017; date of current version 7 June 2017.
Recommended for acceptance by Y. Zheng, C.T. Silva, R. Ghani, and C. Masolo.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TBDATA.2016.2631518

the statistically significant linear hotspots on road networks
to address the issues associated with two of these applica-
tion domains namely transportation planning and public
safety and security.

To illustrate the applicability of significant linear hotspot
discovery, we focus on the problem of discovering signifi-
cant concentrations of pedestrian fatalities in a transporta-
tion network. According to a recent policy report, more
than 47,700 pedestrians were killed in the United States
from 2000 to 2009 [2], and more than 688,000 pedestrians
were injured over the same time period, which is equivalent
to a pedestrian being struck by a vehicle every 7 minutes.
Pedestrian fatalities have increased in many places, includ-
ing 15 of the country’s largest metro areas, even as overall
traffic deaths have fallen [2].

Domain experts attribute pedestrian fatalities largely to
the design of streets, which have been engineered for speed-
ing traffic with little or no provision for people on foot, in
wheelchairs or on bicycles [2]. Daily activities have shifted
away from city streets towards higher speed arterials. This
has resulted in more than half of fatal pedestrian crashes
occurring on these wide, high capacity and high-speed thor-
oughfares. Typically designed with four or more lanes and
high travel speeds, arterials are not built with pedestrians in
mind (Fig. 2a). They lack sidewalks, crosswalks (or have
crosswalks spaced too far apart), pedestrian refuges, street
lighting, and school and public bus shelters [2].

This lack of basic infrastructure can be lethal. For example,
forty percent of fatalities occurred where no crosswalk was
available [2]. Fig. 2c shows a map of pedestrian fatalities that
occurred on Orange County roads from 2000 to 2009. Trans-
portation planners and engineers need tools to assist them in
identifying which frequently used road segments/stretches
pose statistically significant levels of risk for pedestrians and
consequently should be redesigned. A promising way to
effectively discover such road segments/stretches raises from
the availability of the large amount of fatality data and

2332-7790 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

TANG ET AL.: SIGNIFICANT LINEAR HOTSPOT DISCOVERY

0.75
0.5 O node
0.25 D activity

0
0 0.25 0.5 0.75 1256 1.5 1.75 2

Fig. 1. Example of input of Significant Linear Hotspot Discovery (Best
in color).

corresponding data analysis approaches [1]. Road segments/
stretches that pose significant risks to pedestrians may be con-
ceptualized as linear concentrations because the generation
model of pedestrian fatalities is inherently linear, i.e., they
occur on roads. This paper presents an approach for identify-
ing statistically significant linear concentrations of activities
such as pedestrian fatalities in a spatial network.

If traditional hotspot discovery is used (e.g., circular hot-
spot detection), the government can just fix the hotspots for
the pedestrian. However, often such hotspots do not occur
on a circular area and the fix of those hotspot locations
requires a road to be analyzed for structural mistakes by the
transportation planners. The Minnesota Department of
Transportation proposes that building lane separators for
pedestrian sidewalks, bicycles and motorcycles along roads
illustrated in Fig. 2b as a way to decrease the risk of traffic
accidents [3]. In addition, lack of barriers between opposite
traffic on specific parts of highways may lead to severe traf-
fic accidents. For example, since Spring 2015, there were
two fatal traffic accidents occurred on Minnesota Highway
280 at similar locations. The cars that lost control went to
the flowing traffic on the opposite side since no barriers
were in between along the highway segment [5].

Traditional network-based techniques which consider
edges atomic face a fundamental limitation in dealing with
very long edge with a dense cluster of activities at one end
of the edge. These techniques may either fail to capture the
precise locations of the hotspots on such edges or even com-
pletely miss the hotspots. For example in Fig. 1, (N, Ny) is
an edge whose activities are densely clustered near NV, (i.e.,
Ay, Ay, A, Ay). Traditional techniques may capture (Ny, Ny)
as a hotspot, however, the precise location which is actually
(A4, A4) isnot captured. In worse case, suppose the concentra-
tion of (A;, Ay) exceeds the threshold but the overall concen-
tration of the entire path (N;,Ns) does not since it is
compromised by the empty end (N, 4,), this hotspot will be
completely missed. To address this limitation, domain experts
introduces dynamic segmentation which segments edges into
sub-edges at each activity. This paper investigates dynamic
segmentation in order to evaluate if paths between activities
are hotspots. For example, (A, A4) will be returned as a hot-
spot with a more precise location than (N, N,) returned by
the traditional techniques. In the other case that (N, Ns) is not
qualified as a hotspot, (4;, A;) may also be return as a hotspot.
The technical details of dynamic segmentation are elaborated
in the problem statement (Section 2.2). The significance of

141

(©

Fig. 2. (a) Pedestrian at risk on a road without proper sidewalks [2].
(b) Paved sidewalk and road separators for pedestrians, bicycles, and
motorcycles build on road [3]. (c) Pedestrian fatalities occurring on arteri-
als in Orange County, FL [4] (Best in color).

using dynamic segmentation is demonstrated in the case studies
on real datasets (Section 5).

Linear hotspot discovery can also be applied to other
application domains. Certain types of crimes (e.g., assaults,
street robbery) may form hotspots on transportation net-
works that represent roads needing more attention from
police departments [4]. In addition, water quality changes
on river networks may form hotspots that represent bursts
of pollution [6].

1.2 Challenges

SLHD is challenging due to the potentially large number of
candidate routes (~10'%) in a given dataset with millions of
activities and road segments. Enumerating and evaluating
all shortest paths at the sub-edge level results in prohibitive
computational cost. Additionally, density ratio does not
obey the monotonicity property, meaning that there is no
ordering between the density ratio of a path and its super-
paths, or vice-versa. Furthermore, depending on the method
used to determine statistical significance, computation times
may also be impacted (e.g., m = 1000 Monte Carlo simula-
tions may be required to calculate statistical significance).

1.3 Related Work and Their Limitations
Dividing spatial data into statistically significant groups is
an important task in many domains (e.g., transportation
planning, public health, epidemiology, climate science,
etc.). Methods for this type of partitioning may generally be
considered to be geometry-based or network-based.
Geometry-based techniques [7], [8] partition spatial data
using geometric shapes (e.g., circles, rectangles). This is use-
ful in domains such as public health, where finding spatial
clusters with a higher density of disease is of interest for
understanding the distribution and spread of diseases, out-
break detection, etc. Kulldorff, et al. proposed a spatial scan
statistics framework (and the SaTScan software) for disease
outbreak detection [9]. The spatial scan statistic employs a
likelihood ratio test where the null hypothesis is the proba-
bility that disease occurrence inside a region is the same as
outside, and the alternative hypothesis is that there is a
higher probability of disease inside than outside. All the
spatial regions, represented by a circle or ellipsoid in the
spatial framework, are enumerated and the one that maxi-
mizes the likelihood ratio is identified as a candidate. How-
ever, if we apply SaTScan to a road network, many
significant routes may be missed since a large fraction of the
area bounded by circles for activities on a path will be
empty. Fig. 3a shows an example of the output of SatScan.
Two circular hotspots are detected with large empty areas,
which result in high p-values (i.e., 0.125 and 0.497).

142

IEEE TRANSACTIONS ON BIG DATA,

VOL.3, NO.2, APRIL-JUNE 2017

1.75 p-value =0.125 | p-value = 0.497
15 X
1.25
1 p——C———®
0.75 0.75 0.75
0.5 Onode 0.5 Onode 05 Onode
0.25 D activity 0.25 D activity 0.25 D activity

° ®
0 02505075 1 1.25 15175 2
(@)

° ©
0 0.25 0.5 0.75 125 15175 2

° ©
0 0.25 0.5 0.75 125 15175 2

(b) (0)

Fig. 3. Example (a) output of SatScan [8], (b) output of linear intersecting paths (LIP) [11], and (c) output of constrained minimum spanning trees

(CMST) [10] (best in color).

Furthermore, geometry-based techniques may not be appro-
priate for modeling linear clusters, which are formed when
the underlying generator of the phenomena is inherently
linear (e.g., pedestrian fatalities, railroad accidents, etc.).

By contrast, network-based techniques [10], [11], [12]
leverage the underlying spatial network when partitioning
spatial data. For example, Linear Intersecting Paths
(LIP) [11] and Constrained Minimum Spanning Tree [10]
utilize a subgraph (e.g., a path or tree) to discover statisti-
cally significant groups.

LIP [11] discovers one anomalous sub-component of a set
of connected paths that intersect each other. The connected
paths are based on locations in the spatial network with the
highest percentage of activities, specified by the user. Hence
the density ratio is evaluated only on a portion of the graph
specified by this percentage, not on the entire spatial net-
work. Fig. 3b shows an example of the output of LIP. The
user-specified percentage is 40 percent, which means all the
candidates will have paths containing edge (N7, N,) since
this edge has 4 activities (out of 10 activities). Examples of
possible candidates are (Ny,N3), (Ni,Ns), (Na, Ny),
(N1, N7), etc. The output is (N, N3), since it has the highest
density ratio. However, in addition to returning only one
statistically significant component, the results of this
approach are sensitive to the percentage of the network
selected. If the percentage is too high, the number of candi-
dates may be highly restricted, which could result in not
identifying statistically significant regions of interest. If the
percentage is too low, LIP may be computationally prohibi-
tive due to the large number of candidates.

Another network-based technique, CMST [10], finds one
statistically significant tree in the spatial network. Fig. 3c
shows an example of the output of CMST. Here the output is
(N1, N3), where N; is the root, since this tree has the highest
density ratio. However, this approach also has limitations. In
addition to returning only one statistically significant tree,
the size of the tree is restricted, which could result in not
identifying statistically significant regions of interest.

1.4 Contributions

In this paper, we present a new dynamic segmentation
model which to the best of our knowledge is the first model
that allows for discovering of multiple statistically signifi-
cant routes at the sub-edge level in a spatial network. We
present new algorithmic refinements (i.e., neighbor node
filter, shortest path tree pruning) for sub-edge level linear

hotspot discovery in a scalable way. We also present a cost
model for the proposed algorithms and prove that our pro-
posed algorithmic refinements are correct. Specifically, our
research contributions are as follows:

e We propose a new model named dynamic segmenta-
tion, which allows the proposed approach to find
multiple significant linear hotspots at the sub-edge
level in the spatial network. We also introduce new
algorithmic refinements to improve the scalability of
linear hotspot detection with dynamic segmentation,
including a neighbor node filter and a shortest path
tree pruning algorithm.

e We analytically prove the correctness of the pro-
posed algorithms and present a cost analysis.

e We present two case studies comparing the detection
results under dynamic segmentation with results in
the related works, including SRM_GIS [13] and
SatScan [8].

e Experimental results on real and synthetic data
show that the proposed algorithms, yield subs-
tantial computational savings over SRM_GIS [13]
without reducing either completeness or correct-
ness of the result.

1.5 Scope and Outline of the Paper
This paper focuses on finding significant discrete activity
events (e.g., pedestrian fatalities, crime incidents) associated
with a point on a network. This does not imply that all activi-
ties must necessarily be associated with a point in a street. In
addition, other network properties such as GPS trajectories
and traffic densities of road networks [14], [15] are not con-
sidered. In this work, it is assumed that the number of activi-
ties on the road network is fixed and does not change over
time. We do not consider techniques that do not employ
statistical significance (e.g., DBScan [16], K-Means [17],
KMR [18], and Maximum Subgraph Finding [19]). This
paper only enumerates shortest paths rather than all possible
paths. This increases the computational tractability since the
enumeration space decreases from exponential to polyno-
mial. We choose shortest paths based on the assumption peo-
ple generally prefer taking shortest paths a destination.
Discovering hotspots on shortest paths may find the most
possible “dangerous” routes between two locations.

The paper is organized as follows: Section 2 presents the
basic concepts and problem statement of Significant Linear

TANG ET AL.: SIGNIFICANT LINEAR HOTSPOT DISCOVERY

Hotspot Discovery (SLHD). Section 3 presents our prelimi-
nary results towards addressing SLHD. Section 4 details
our proposed approaches for discovering sub-edge level lin-
ear hotspots in a scalable way. Section 5 presents two case
studies comparing the proposed significant network-based
outputs (i.e., shortest paths) to a significant geometry-based
output (e.g., circles) on pedestrian fatality data. The experi-
mental evaluation is covered in Section 6. Section 7 presents
a discussion. Section 8 concludes the paper and previews
future work.

2 BAsic CONCEPTS AND PROBLEM STATEMENT

This section reviews several key concepts in SLHD and
presents a formal problem statement.

2.1 Basic Concepts
We define our basic concepts as follows:

Definition 1. A spatial network G = (N, E) consists of a node
set N and an edge set E, where each element n in N is associ-
ated with a pair of real numbers (z,y) representing the spatial
location of the node in euclidean space [20]. Edge set E is a sub-
set of the cross product N x N. Each element e = (n;,n;) in E
is an edge that joins node n; to node n;.

Fig. 1 shows an example of a spatial network where
circles represent nodes and lines represent edges. A road
network is an example of a spatial network where nodes
represent street intersections and edges represent streets.

Definition 2. An activity set A is a collection of activities. An
activity a € A is an object of interest associated with only one
edge e € F and has a location in euclidean space.

In transportation planning, an activity may be the loca-
tion of a pedestrian fatality; in crime analysis, an activity
may be the location of a theft. Some of the edges in Fig. 1 are
associated with a number of activities (e.g., edge (N1, Na)
has four activities).

Definition 3. The activity coverage inside a path, a,, is the
number of activities on p. The activity coverage outside p is
|A| — a,, where |A| is the total number of activities in the spa-
tial network, G.

For example, in Fig. 1, the activity coverage inside
path (Ag, N5, Ag, No, A5, Ag) is 4 whereas the activity
coverage outside this path is 10 — 4 = 6.

Definition 4. The weight inside a path, wy, is the sum of weights
of all edges in p. The weight outside p is |W| — w,, where |W| is
sum of weights of all edges in G. In transportation planning,
weight may represent distance or travel time of the path.

In Fig. 1, the weight inside (Ag, N5, Ag, Na, A5, Ag) is 1.75
whereas the weight outside this path is 7 — 1.75 = 5.25.

Definition 5. The density ratio of path p,\, = m
[91,[12].

The density ratio of path p, A, is the ratio of the activity
density inside path p, 2 to the activity density outside p,

wp
|A]—ap

W, Fig: 4 lists 3 shortest paths from Fig. 1, namely
<A97A6>, <A4,A10>, and <A17A7>. Path <A9,A6> contains

143
Path Activities | Weight | Activities | Weight | Density
inside outside | outside | ratio
<AsNsAsN2A5A> 4 75| 6 | 525 2
<AuN,AsNsA1> 3 (1625, 7 |5375| 142
<A1,A2,A3,A4,N2,A5,A6,A7> 7 1 3 6 14

Fig. 4. Examples of density ratio.

activities Ay, Ag, A5 and Ag and has a weight of 1.75, hence

its density is - while the density outside is ~%=L. There-
fore, the density ratio of path (A, 4g) is % =2.

By similar calculation, path (A4, Ajo) has a density ratio of
1.42 and path (A;, A7) has a density ratio of 14.

The reason why we use density ratio as the test statistic
in this paper is two-fold. First, density ratio is in a family of
metrics inspired from the hypothesis test in which the null
hypothesis is “the density inside and outside a path are
equal” while the alternative hypothesis is “the density
inside a path is larger than outside”. These metrics are
largely used in hotspot detection literature [7], [9], [21] and
follow three properties [7]: (1) Given a fixed weight, the
metric increases monotonically with activity coverage. (2)
Given a fixed activity coverage, the metric decreases mono-
tonically with weight. (3) Given a fixed ratio of activity cov-
erage to the weight, the metric increases monotonically with
the weight. Any metrics that follow these properties (e.g.,
log likelihood ratio [9]) can be directly applied in the pro-
posed approaches without any algorithmic changes. Sec-
ond, among these metrics, density ratio is widely used in
the literature that deals with activities associated with spa-
tial networks [12]. We use density ratio to make it easier to
compare the proposed algorithms with the literature.

Definition 6. An active edge is an edge e € E that has 1 or more
activities. An active node is a node u joined by an active edge.
An inactive node is a node that is not joined by any active
edges.

Definition 7. An Active node is a node n € N that at least one
of its incident edges has 1 or more activities.

Edges (N1, Ns) and (N, N3) in Fig. 1 are active edges
because they each have at least one activity, and nodes NV,
Ny, N3, N5, Ng, and N7 are all active nodes because they are
all joined by active edges. By contrast, Node N, is an inac-
tive node because it is not joined by any active edges.

Definition 8. A super-path of path p is any path sp that contains
p, where sp is a subset of G. A sub-path is a path making up
part of the super-path.

For example, in Fig. 1, (Ny,Ny, N5, Ng) and
(N1, Na, N5, N7) are super-paths of (N7, Ny, N;). Conversely,
<]V17 NQ, N5> isa sub—path of <N17 NQ, N5, N6>

2.2 Problem Statement
The problem of Significant Linear Hotspot Discovery can be
expressed as follows:

Given:

1) A spatial network G = (N, E) with a set of geo-refer-
enced activities A, each if which is associated with
an edge.

2) A density ratio threshold, 6,

144

3) A p-value threshold, 6, and the corresponding num-
ber of Monte Carlo simulations needed, m,
Find. All shortest paths » € R with A, > 0, p-value < 6,
Objective: Computational efficiency
Constraints:

1) r; € R is not a sub-path of r; € R for Vrj,r; € R
where r; # 1,
2) Vr; € R is not shorter than a minimum distance (¢)
threshold 6

3) Correctness and completeness

The spatial network input for SLHD is defined in Defini-
tion 1. The 0, input is a threshold indicating the minimum
desired density ratio. The 6, input is the desired level of sta-
tistical significance and m is the corresponding number of
Monte Carlo simulations needed for determining statistical
significance. The output for SLHD is all shortest paths
between activities meeting the desired likelihood ratio and
level of statistical significance. The shortest paths returned
are constrained so that they are not sub-paths of any other
path in the output. This constraint aims to improve solution
quality by reducing redundancy in the paths returned. In
addition, the distance of significant paths cannot be shorter
than 6. This constraint aims to avoid meaningless tiny paths
that have high density ratio (e.g., a path between two activi-
ties very close to each other may have a high density ratio).

Dynamic Segmentation. Our approach resolves statistically
significant routes to the sub-edge level (i.e., routes between
activities), which is not investigated in our previous
work [13]. This requires a model called dynamic segmenta-
tion. Intuitively, it modifies the traditional network struc-
ture such that new nodes are formed at the locations of
activities and new edges are added to connect these nodes.

The pseudocode in Algorithm 1 shows the process of
dynamic segmentation. All the edges with a activities (where
a > 0) are split into a nodes and a + 1 edges (line 2). For
clarification, in this model, the nodes before segmentation
are referred to as static nodes, while the newly formed nodes,
which are essentially activities, are referred to as dynamic
nodes. The weights of the newly formed edges in the dynam-
ically segmented network are then updated based on the dis-
tance between activities (line 3). In other words, the weight
of the dynamic edge formed between activity « and activity y
will be updated to the distance between these two activities.
Dynamic nodes are stored in dynamicNodes, and newly
formed edges are stored in dynamicEdges (line 4).

Algorithm 1. Dynamic Segmentation

Input:
1) A spatial network G = (NV,E) with a set of geo-
referenced activities with point locations on network nodes
or edges and weight function w(u,v) > 0 for each edge
e = (u,v) € E (e.g., network distance)

Output:
A dynamically segmented spatial network G, derived
from G

Algorithm:

1: for each edges e € G with a > 0 activities do

2: Split e into a nodes, n,, and a + 1 edges, e,

3: update weights of e, based on coordinates of activities

4: dynamicNodes «— n,, dynamicEdges — e,

IEEE TRANSACTIONS ON BIG DATA, VOL.3, NO.2, APRIL-JUNE 2017

For example, in Fig. 1, activities A;, Ay, A3, etc. become
nodes in the spatial network, and edge (N7, N; is cut into
several edges, namely (N, A1), (A1, As), (As, A3), (A3, As),
and <A4, N 2>.

The dynamic segmentation model enables us to evaluate
paths that start and end with activities and may be in the
middle of an edge. As such, the density ratios tend to be
more precise since the extra portions of the path before the
first activity and after the last activity are trimmed. There-
fore, segments which were previously not tested for statisti-
cal significance or which may have been previously deemed
“not significant” because they were on a long empty edge,
may end up as part of the result. For example, in Fig. 1,
<A17 Az, A37 1447 NQ, A5, A67 A7> and <N17 NQ, N3> have the
same set of activities but the weight of (A, Ay, A3, A4,
Ny, A5, Ag, A7) is less. In this case, the density ratio for
(A1, Ay, Ay, Ay, No, A5, Ag, A7) is much higher (14 versus
5.83), and the p-value is smaller (0.001 versus 0.006).

2.2.1 Finding Significant Paths

Each shortest path in the spatial network is evaluated for sta-
tistical significance using Monte Carlo simulations to deter-
mine whether or not it is statistically anomalous. Here the
null hypothesis states that the paths identified by the path
density ratio are random or by chance alone. The density
ratio is associated with a p-value to decide whether the null
hypothesis should be rejected in the hypothesis test. The p-
value is the probability of obtaining a density ratio that is
equal to or greater than than that observed by chance alone.

In the Monte Carlo simulations, each activity in the origi-
nal graph G is randomly put on a location in G so that the
number of activities on each edge is shuffled, forming a
new graph G;. Note that all the activities in G are present in
G, with no activities added or removed. We then compare
the highest density ratio \,,..c, of randomized G with the
density ratio of each path p; whose density ratio is equal to
or greater than the threshold in the original G. In a naive
way, in order to compute A,..c, of G, all-pairs shortest
paths in G need to be computed using Dijkstra’s algorithm
since shuffled activities are considered as nodes, making G
a new graph. Then the density ratios of these paths are eval-
uated. However, an algorithmic refinement named neighbor
node filter (Section 4.1.1) is proposed to evaluate the density
ratios without running Dijkstra’s algorithm on the whole
graph. If the original value is smaller, then c=c+1 for
path p;. The above process repeats m, making the subse-
quent p-value < for path p;. Paths whose p-values are less
than or equal to the given p-value threshold are deemed sta-
tistically significant.

3 PRELIMINARY RESULTS

We initially solved the SLHD problem with a previously
proposed algorithm (SRM_GIS) [13] featuring two algorith-
mic refinements: Density Ratio Pruning and Monte Carlo
Speedup. Note that even though SRM_GIS was proposed to
solve SLHD without dynamic segmentation, it can also be
directly applied to dynamically segmented networks.
Before describing SRM_GIS, we first review a naive algo-
rithm Naive Significant Route Miner(SRM_Naive) that
solves the SLHD problem.

TANG ET AL.: SIGNIFICANT LINEAR HOTSPOT DISCOVERY

145

Step 1 Step 2 Step 3
/ P WA ¥ At
|Start | End | Path lap| wp | Ap |p-value |
| <Ay,Az,Az,As |
Ar A; N, A s s> 7 : 1 ‘ 14 o001
<Ay Az Az A |
A As | Na.As, As> | 6 ._0“?5 | 125 001 |
A | A <Ay P> 2 | 0125 | 13.75 | 0.01 |
0 | A A | <Az,A3> | 2 [0125 | 13.75 | 0.01
75 A A <As,Ad> | 2 | 0125 13.75 _ 0.01
05 As As <As,As> |2 [0125 | 13.75 | o0.01
Onode
0.25 [] activity
0 @ Output
0 0.25 0.5 0.75 125 15175 2 ___Start En_d Path '\P_ _p-value_
Density ratio threshold = 12 A As <Ay,Az,A3,A4 14 0.01
p-value threshold = 0.01 N2, As, As,Ar>

Minimum distance threshold = 0.75

Fig. 5. Example execution trace of Naive Significant Route Miner. Circles represent nodes and lines represent edges.

3.1 Naive Significant Route Miner

Algorithm 2 presents the pseudocode for the SRM_Naive
approach. The basic idea behind the algorithm is to find all
statistically significant shortest paths in the dynamically
segmented spatial network whose density ratio exceeds the
threshold 6, under the constraint that the shortest paths
returned are not sub-paths of any other path in the output.
Algorithm 2 proceeds by calculating all-pairs shortest paths,
P, in the spatial network (Line 2). Line 3 evaluates each
shortest path in P to determine if it meets the given 0, to
form a Candidates set. In line 4, the statistical significance of
each shortest path in Candidates is evaluated and the signif-
icant routes are stored in SigRoutes. In order to assess statis-
tical significance, all shortest paths in each of the m
simulated graphs are used to calculate the p-value. In line 5,
all paths in SigRoutes that are not sub-paths of any other
path in SigRoutes are returned, and the algorithm termi-
nates. The purpose of returning significant routes that are
not sub-paths of any other path is to improve solution qual-
ity. For example, if (Nq, No) and (Ny, N, N3) are both found
to be significant, only (N, N, N3) is returned.

Algorithm 2. Naive Significant Route Miner Algorithm

Input:
1) A spatial network G = (N, E) with a set of geo-
referenced activities with point locations on network nodes
or edges and weight function w(u,v) > 0 for each edge
e = (u,v) € E (e.g., network distance),
2) A density ratio (A) threshold, 6),
3) A p-value threshold, 6,,
4) m, indicating the number of Monte Carlo simulations,
5) A minimum distance (¢) threshold 6,
Output:
All routes r € Rwith A\, > 0, ¢, > 6, and p-value
significance level
Algorithm:
1: Gpg < dynamically segment G
2: {Step 1:} P « calculate all-pairs shortest paths in G'pg
3: {Step 2:} Candidates « paths in P having A > 6, and ¢ > 6,
4: {Step 3:} SigRoutes « significant paths in Candidates using
m Monte Carlo simulations
{Step 4:} return paths that are not sub-paths of any other
path in SigRoutes

5L

SRM_Nuaive Example. Fig. 5 shows an example execution
trace of SRM_Naive. The spatial network has seven nodes,
seven edges, and 10 activities with specific locations on the
edges. The density ratio threshold 0, is set to 12, the p-value
threshold 0, is set to 0.001, and the minimum distance
threshold 6 is set to 0.75.

In step 1, all-pairs shortest paths in the given dynami-
cally segmented spatial network are calculated (only
paths with high density ratios are shown in the figure).
For example, the shortest path between nodes A; and A,
is (A1, As). In step 2, the density ratio, A, for each shortest
path is determined (see Definition 5) and paths whose
A >0, and ¢ > 0, are stored as candidates. In the figure,
from the six paths listed whose A > 6, only the first two
paths are considered as candidates since their distances
meet or exceed the threshold. In step 3, the statistical sig-
nificance of each candidate is calculated using Monte
Carlo simulations (discussed next). Both of the two candi-
dates meet the p-value threshold of 0.01. In step 4 (shown
as the output), all paths among the significant paths that
are not sub-paths of any other path are returned as
significant routes. In this example, path (A;, Ay, Ag, Ay,
Ny, A5, Ag, A7) are returned since it is the super-path of
the other candidate. To reduce the prohibitive computa-
tional cost of SRM_Naive, a new algorithm (SRM_GIS) is
proposed in our previous work [13].

3.2 Significant Route Miner with Density Ratio
Pruning and Monte Carlo Speedup (SRM_GIS)

The SRM_GIS algorithm uses filter and refine techniques
(e.g., density ratio pruning and Monte Carlo speedup) to
achieve computational savings. The filter and refine techni-
ques may not change worst case complexity but they can
reduce runtime in many cases. Density ratio pruning creates
a boundary via an upper-bound density ratio such that not
all destinations are visited from each source node. Some of
the destinations are pruned because the shortest paths to
them will never meet the likelihood ratio threshold. Monte
Carlo speedup avoids generating all shortest paths in cases
where a shortest path in the simulated dataset has a higher
density ratio than the shortest paths in the original dataset.
Monte Carlo speedup also terminates early if the p-value
threshold will not be met based on the number of times the

146

maximum density ratio in the simulated dataset beats the
maximum density ratio in the original dataset.

3.2.1 Density Ratio Pruning

Density ratio pruning aims to reduce the need to calculate
all-pairs shortest paths in the graph G pgs based on the given
density ratio threshold 6,. It is based on the idea that for
each shortest path p, it is possible to determine an upper-
bound density ratio for the super-paths rooted at p’s start
node, without calculating those super-paths.

The intuition behind the upper-bound density ratio for
path p is that (1) the number of activities on all of p’s super-
paths rooted at p’s start node are bounded by the number of
activities in the spatial network minus the number of activi-
ties in the current shortest path tree rooted at the source
node in p and (2) the weight of any super-path of p is at least
the weight of the closest edge to p plus p’s weight. Using the
upper-bound density ratio makes it possible to terminate
the all-pairs shortest paths computing earlier. However,
since the dynamically segmented network varies during
each Monte Carlo simulation trial, the shortest paths need
to be computed in each trial. Even though each trial may be
early terminated by the upper-bound pruning, the cost is
still high. In addition, to ensure the correctness of the
results, a post-processing step to verify if the paths with
high density ratios are actual shortest path needs to be
added to each simulation trial. More details of density ratio
pruning are in our previous paper [13]. Due to the limited
speedup, density ratio pruning is no longer used in the pro-
posed approaches in this paper.

3.2.2 Monte Carlo Speedup

Monte Carlo speedup aims to calculate the p-value without
the need to consider all shortest paths in each simulated
graph. The basic idea is that once a shortest path in the simu-
lated graph is found to have a higher density ratio than the
maximum density ratio in the original graph, the simulation
immediately ends with the p-value being incremented. In
other words, there is no reason to keep looking at all shortest
paths in the simulated graph if we find one that already beats
the maximum density ratio in the original graph. Addition-
ally, Monte Carlo speedup stops all simulations the moment
p out of m simulations are found where the simulated den-
sity ratio beats the original maximum density ratio. In other
words, there is no reason to execute all m simulations if we
find that the p-value threshold will not be met.

Theorem 1. Monte Carlo Speedup is a correct method for calcu-
lating p-value.

Proof. Please see the extended version of this paper [22]. O

4 PROPOSED APPROACH

In Section 3, we reviewed SRM_GIS [13] to address the
SLHD problem. However, the high computational cost
makes it not capable to handle large amount of data. In this
section, we propose a new algorithm (SRM_TBD) to signifi-
cantly scale up the solution to the SLHD problem. Two new
algorithmic refinements, namely neighbor node filter algo-
rithm and shortest path tree pruning algorithm (SPTP) are
introduced, respectively.

IEEE TRANSACTIONS ON BIG DATA, VOL.3, NO.2, APRIL-JUNE 2017

4.1 Algorithms
4.1.1 Neighbor Node Filter

The idea behind the neighbor node filter is to obtain the
shortest path between a pair of activities by stitching
together a shortest path between two static nodes in the
original network (i.e., the network before dynamic segmen-
tation) with paths between the activities and the static
nodes. Recall that in SRM_GIS [13], due to the activity shuf-
fle, the dynamically segmented spatial network changes
during each Monte Carlo simulation trial, which requires
computing all-pairs shortest paths in each trial. In addition,
since activities are considered as dynamic nodes in the
dynamically segmented spatial networks, the cost for all-
pairs shortest path computing gets higher than it would in
the original network. Neighbor node filter reduces the
computational cost in two ways. First, since the network
does not change during Monte Carlo simulation trials, all-
pairs shortest paths only need to be computed once. Second,
only shortest paths between static nodes need to be com-
puted. This reduces the all-pairs shortest path computing
cost compared with SRM_GIS.

The pseudocode for the neighbor node filter can be found
in Algorithm 3. The algorithm first computes all-pairs short-
est paths between static nodes of the original spatial network
(line 1). Then, the algorithm seeks to avoid directly calculat-
ing all-pairs shortest paths between activities. Instead it
determines these paths by stitching together shortest paths
between static nodes in the original network Py, with
paths between activities and the start and end of paths in
Py, (lines 2-5). To determine the exact shortest path for each
pair of activities, it needs to find the shortest one from up to 4
stitched together paths. An illustrative example of this step
is shown in next paragraph. In the Monte Carlo simulations,
the original network never changes since only activities
are shuffled. Therefore, only distances between each pair of
activities need to be computed; there is no need to recompute
all-pairs shortest paths (line 7).

Algorithm 3. Significant Route Miner using the Neigh-
bor Node Filter and Monte Carlo simulation speedup
(SRM_NN)

Inputs and Outputs are the same as SRM_Naive
Algorithm:

{Step 1: Calculate shortest paths between activities}
: Py, < shortest paths between active nodes in G
: foreach a; € A do

foreacha; € Ado

P — shortestpath(x;,x;) based on combining shortest
paths in Py, with the paths between each activity a; and a;
and the nodes of their original edge
: P — shortest paths between all pairs of activities
: Step 2 the same as SRM_Naive
7: Step 3 use Monte Carlo Speedup with reuse of Py, in each
trial

8: Step 4 the same as SRM_Naive

_en s

o U1

The speedup of the neighbor node filter comes from two
directions. First, instead of computing the all-pairs shortest
paths on the dynamically segmented graph, it only com-
putes the shortest paths between static nodes. Second, it
avoids computing all-pairs shortest paths in each Monte

TANG ET AL.: SIGNIFICANT LINEAR HOTSPOT DISCOVERY

0.75
0.5 Onode
0.25

D activity

125 1.5 1.75 2

T 050 ®
0 0.25 0.5 0.75

Fig. 6. Example of Neighbor Node Filter for SLHD. Shortest paths
between activities are determined by stitching together (1) shortest
paths between nodes in the statically segmented network with (2) paths
between activities and the start and end of their original edges. Shortest
path (A;, Ayy) is calculated by stitching together (A;, Ns), (Ns, N5), and
(N5, Ayg) (Best in color).

Carlo simulation trial. In Section 4.2 and Section 6, we will
evaluate in theoretically and experiments, respectively.

Neighbor Node Filter Example of Step 1. Fig. 6 illustrates an
example of the neighbor node filter. Shortest path (A;, A1)
is calculated by selecting the shortest among 4 stitched
together paths: (1) (A1, Ni), (N1, Ns), (N5, Aio); 2) (A1, Ny),
(N1, Ng), (Ns, Aro); 3) (A1, Na), (Na, N5), (N5, A1g); and (4)
(A1, N2y, (N2, Ng), (Ng, Aig). As the result, shortest path
<1417 A10> is <A1, NQ), <NQ, N5>, <N5, A10>.

4.1.2 Shortest Path Tree Pruning

A further refinement to the neighbor node filter is the short-
est path tree pruning. In the neighbor node filter, the search
space of activity pairs is 4 x a?, where a is the total number
of activities. One way to reduce this search space is to elimi-
nate certain activity pairs using an upper-bound pruning
approach. Based on this idea, we propose the shortest path
tree pruning algorithm which prunes a number of activities
that are impossible to pair with for each activity. Given a
spatial network, a set of activities, and a density ratio
threshold, therefore, SPTP generates a list of candidate
activities associated with each activity in the network. After
SPTP, instead of evaluating paths between all pairs of activi-
ties, we only need to evaluate the paths between an activity
and its associated candidate activities.

The pseudocode for SPTP is shown in Algorithm 4. For
each shortest path tree of the original graph G, SPTP does a
depth-first-search with upper-bound pruning that elimi-
nates those activities impossible to pair with any activity
adjacent to the root of the tree. The search starts at the root
(lines 3-4), then traverses along the tree based on a depth
first routine. For each path ({(Ng¢, Nena)) under search, an
upper-bound of density ratio (@) is computed using an
upper-bound of activities and a lower-bound of weight (w).
Specifically, @ is computed by adding 4 terms together. The
first term is the number of activities on the path under
search. The second term represents the number of activities
on the edge that has the largest number of activities among
all the edges adjacent to Ny, except the edges in the path
under search. The third term is the total number of activities
on the subtree rooted at N,q. The fourth term represents
the number of activities on the edge that has the largest
number of activities among all the edges within or adjacent

147

(number of activities, weight)

edge in the SP tree

= edge not in the SP tree

Fig. 7. Example of shortest path tree pruning.

to the subtree rooted at N.,; except the edges in the path
under search. The lower-bound of weight w is the weight of
path (Nggt, Nena) (line 8). After that, the upper-bound of
density ratio) is computed (line 9) from @ and w. If \ is equal
to or exceeds the density ratio threshold), all the activities
adjacent to N,q are put into the list of each activity adjacent
to Ngart, and the search continues on the subtree rooted at
Neng (Iine 10-13). Otherwise, the search ignores the subtree
rooted at N.,,; which means that any of the activities adjacent
or within it is impossible to pair with any activity adjacent to
Nitore. Note that the activities adjacent to the same active
node, which means the path between them may not contain
a path between static nodes, are always put in the list.

Algorithm 4. Shortest Path Tree Pruning Algorithm

Input:

1) A spatial network G = (N,E) with a set of geo-

referenced activities 2) Shortest path trees T'(IN;) rooted at

active node N;, i =1,...,|n,|, where |n,| is the number of

active nodes in G 3) A density ratio threshold 6,

Output:

A list of candidate activities List,, associated with each

activities a; in G
Algorithm:

1: List,; < 0,j=1,...,|A| Stack s < 0
2: for each T'(N;) do
3: Ngtart — N;
s < Push (all children of Ng;)
while s is not empty do

Nepa POP (s)

@ <« number of activities on (Ngqt, Neng) -+ number of
activities on the edge among all the edges adjacent to Ny
that has the largest number of activities except edges in
(Ngtart, Nena) + number of activities on Subtree(Ne,q) +
number of activities on the edge among all the edges adja-
cent to or within Subtree(Ngnq) that has the largest number
of activities except edges in (N1, Nena)

8: W = W(Nytar4,Nepa)
A (1= = =
10: if X > 6, then
11: for each activities a; adjacent to Ny, do
12: List,; < Listy,+ all activities on all the adjacent
edges of Neyq
13: s « Push (all children of N,,,;)
14: Nstart — Nend

Shortest Path Tree Pruning Example: Fig. 7 shows the short-
est path tree rooted at N, from the graph in Fig. 1. Note that
the blue edge between N; and N is an edge in the graph
but not in the tree. Each edge is associated with two num-
bers, indicating its number of activities (red) and its weight
(black). We pick the path having the largest number of
activities as the shortest path if there are more than one
shortest paths of equal weight between a pair of nodes.

148

With the density ratio threshold set to 12, the algorithm
starts from N;, searching either edge (N;,N,) or edge
(N1, Ny) as the first step. For the purpose of illustration, we
select (N, Ny). Then, we compute the upper-bound of the
density ratio A of edge (N7, N2) by computing @ and w. To
compute @ of edge (N1, N2), we add four numbers: (1) the
number of activities on (Ny, N); (2) the number of activities
on (Ny, Ny) since it has the largest number of activities
among all the edges adjacent to N; except (N, No); (3) the
number of activities on the subtree rooted at N,; and (4) the
number of activities on (Ny, N3) since it has the largest num-
ber of activities among all the edges within or adjacent to
the subtree rooted at N, except (N, N,). Hence,
a=440+54 3 = 12. The lower-bound of weight w is the
weight of (N7, N»), which is 1, therefore, A = co. Since oo
exceeds the density ratio threshold (i.e., 12), the search con-
tinues and the 8 activities adjacent to N, are put into the list
of each of the 4 activities adjacent to N;. Next, The search
continues on the path (N, N;). To compute @ of path
(N7, N5), we add four numbers: (1) the number of activities
on (Ny, N5); (2) the number of activities on (N7, N,) since it
has the largest number of activities among all the edges
adjacent to Ny except (Ny, N2); (3) the number of activities
on the subtree rooted at N5; and (4) the number of activities
on (Nj, Ng) since it has the largest number of activities
among all the edges within or adjacent to the subtree rooted
at N, except (Ni,Ns). Hence, a=5+0+1+1=7. The
lower-bound of weight w is the weight of (N;, Nj), which is
2, therefore, A = 5.83. Since 5.83 is smaller than the density
ratio threshold (i.e., 12), the search on this branch terminates
and turns to path (N7, N3). A list of activity pairs will be
found during the depth-first search on the shortest path tree
rooted at each active nodes.

We propose a Significant Route Miner with both neigh-
bor node filter, shortest path tree pruning, and Monte Carlo
simulation speedup (SRM_TBD) whose pseudocode is
shown in Algorithm 5. In step 1, Instead of traversing all
activity pairs which is did in SRM_NN, SRM_TBD runs the
SPTP algorithm to reduce the number of activity pairs. Step
2~4 are the same as SRM_NN.

Algorithm 5. Significant Route Miner with Neighbor
Node Filter, Shortest Path Tree Pruning, and Monte
Carlo Simulation Speedup (SRM_TBD)

Inputs and Outputs are the same as SRM_Naive
Algorithm:
{Step 1: Calculate shortest paths between activities}
1: Py, « shortest paths between active nodes in G
2: List,, « results from Shortest Path Tree Pruning (SPTP)
algorithm, i = 1,...,|A4]
3: foreach a; € A do
for each a; € List,, do
5: P — shortestpath(a;, a;) based on combining shortest
paths in Py, with the paths between each activity a; and a;
and the nodes of their original edge
: P < shortest paths between all pairs of activities
7: Step 2~4 the same as SRM_NN

=

o)}

4.2 Theoretical Analysis

In this section, we first give some necessary theorems and
lemmas that show the correctness and completeness of the

IEEE TRANSACTIONS ON BIG DATA, VOL.3, NO.2, APRIL-JUNE 2017

proposed SRM_NN and SRM_TBD algorithms. Then, we
analyze the time complexities of these algorithms, showing
that in general cases, SRM_TBD is faster than SRM_Naive
and SRM_NN.

Lemma 1. The shortest path enumerated in the neighbor node
filter is correct.

Proof. Please see the extended version of this paper [22]. O
Theorem 2. SRM_NN is complete and correct.

Proof. Please see the extended version of this paper [22]. O
Lemma 2. Shortest path tree pruning is correct pruning.

Proof. Please see the extended version of this paper [22]. O
Theorem 3. SRM_TBD is complete and correct.

Proof. Please see the extended version of this paper [22]. O

Computational Cost Analysis. The computational costs of
SRM_Naive, SRM_GIS and the proposed algorithms
SRM_NN and SRM_TBD stem from 1) the cost of calculat-
ing all-pairs shortest path and 2) the cost of assessing statis-
tical significance for all shortest paths in the spatial network.

Cost of SRM_Naive and SRM_NN. Please see the extended
version of this paper [22].

Cost of SRM_NN. The total cost for SRM_NN is O(|Ng|*
log|Ns| + farc x m x (INp| + [Ns| x |E| + [Np|*)),
O(|Ns|*log|Ns|) is the cost for computing all-pairs shortest
paths on the original spatial network, O(m x (|[Np| + |Ng|x
|E| + |Np|®) indicates the cost of calculating the density
ratios of all enumerated paths between activities. Specifi-
cally, it costs O(|Np|) to find out the number of activities on
each edge. Then, for each shortest path tree rooted at a static
node, it costs O(|E|) to find the number of activities for each
shortest path in the tree by accumulating the numbers of
activities following a “root-to-leaf” routine. In addition, fc
is an indicator of the speedup from Monte Carlo speedup
the same as in SRM_GIS. The cost for calculating the density

where

ratios will be simplified to O(m x |Np|*) which are the dom-
inating terms.

We can see that the speedup over SRM_GIS comes from
the all-pairs shortest path computing. First, in SRM_NN,
all-pairs shortest paths need to be computed only once
instead of being computed in each Monte Carlo simulation
trial as in SRM_GIS. This decreases the cost a lot since it typ-
ically needs 100 ~ 1,000 trials in the Monte Carlo simula-
tion. In addition, number of nodes taken into consideration
decreases from |Ng| + |Np| to |Ng|. This difference can be
large since |Np| could be big when the time period of the
dataset is long.

Cost of SRM_TBD. The total cost for SRM_TBD is
O(|Ns[*log|Ns| + fuc x m x (fors % |Np|(INp| + |Ns|) + fsp x
INp|?)). Compared with SRM_NN, it aims to reduce the cost
of the path evaluation part. In each Monte Carlo simulation
trial, depth first searches are run on Np shortest path trees,
each costing O(|Np|+ |Ng|). However, the depth first
searches are not necessarily complete with existence of the
pruning, therefore, fppg is multiplied to indicate the
speedup from the pruning, where 0 < fppg < 1. Moreover,
the path evaluation does not need to go through all activity

TANG ET AL.: SIGNIFICANT LINEAR HOTSPOT DISCOVERY

149

Pivalue = 0.04
density ratio = 1.85

" P P e L P-value = 0.03
Al t p-value = 0.105 N ®p—va|ue =0.138 density ratio = 2.15
- @ o o
(@) Input (b) SaTScan (c) SRM_TBD without dynamic segmenta-
tion
= P-value = 0.02 - & 5 ;
P—Yalue = 0.02 ldensity Fatio2.7:7 P-value = 0.02 d i _ltaluet_- 2'(;245 P-Yalue i s
density ratio = 2.73 density ratio = 2.48 iy [aller 1.2 density ratio = 1.97

P-value = O.Ui
density ratio = 3.97

P-value = 0.01/
density ratio = 3.51

P-value =0.01"
density ratio = 3.85

. e g

(d) SRM_TBD with dynamic segmentation (e¢) SRM_TBD with road segments parti- (f) SRM_TBD with road segments partitioned

tioned by fixed interval of 0.2km

by fixed interval of 0.8km

Fig. 8. Comparing SRM_TBD (without dynamic segmentation), SRM_TBD (without dynamic segmentation, roads are partitioned by fixed intervals),
SRM_TBD (with dynamic segmentation), and SaTScan’s output on pedestrian fatality data from Orlando, FL [4] (Best in color).

pairs, fsp shows a speedup from that, where 0 < fgp < 1.In
worst case, SRM_TBD costs more than SRM_NN since the
depth first search takes some time but may not prune any-
thing. However, in practice, the pruning ratio is always
high, giving SRM_TBD a significant speedup over SRM_NN
(shown in Section 6).

5 CASE STuDY

We conducted two qualitative evaluations of our algorithm
(SRM_TBD) with and without dynamic segmentation by
comparing their results with the results of SaTScan [23] on
two real data sets. First, we used a real pedestrian fatality
data set [4], shown in Fig. 8a. As noted earlier, SaTScan dis-
covers areas of significant activity that are represented as
circles on the spatial network while SRM_TBD discovers
significant shortest paths. The input consisted of 43 pedes-
trian fatalities (represented as dots) in Orlando, Florida
occurring between 2000 and 2009. For each edge (portion of
road) in the network, fatality count was aggregated, yield-
ing an overall activity number. Weights of edges were the
actual road network distance. The maps were prepared
using QGIS” Open Layers plugin [24], and the network was
from the US Census Bureau’s TIGER/Line Shapefiles [25].

To evaluate the techniques, we considered the outputs of
circles versus shortest paths. We used a p-value threshold
of 0.04 for our linear hotspot discovery approach. As noted
earlier, pedestrian fatalities usually occur on streets, partic-
ularly along arterial roadways [2]. Thus this activity can be
said to have a linear generator. However, the results with
high p-values generated by SaTScan do not capture this.
From Fig. 8b, it is clear that SatScan’s circle-based output is
meant for areas, not streets. In contrast, the shortest paths
detected by SRM_TBD without dynamic segmentation fully
capture the significant activities on the arterial roads (some
of the paths in Fig. 8c are overlapping). Furthermore, the
paths in the figure make sense in this context due to the
inherently linear nature of the activities.

We further compared SRM_TBD outputs generated with
and without dynamic segmentation. With dynamic segmen-
tation (Fig. 8d), SRM_TBD is able to detect the linear hotspot
marked as brown (on the road running vertically in the mid-
dle of the figure) which is completely missed without
dynamic segmentation. The reason is that the overall den-
sity ratio of this vertical road is compromised by the empty
portion at the bottom, making it not qualified as a hotspot.
However, with dynamic segmentation, the dense portion of
that road is found as a hotspot while the empty portion at
the bottom is dismissed. This contrast shows that dynamic
segmentation assists in discovering statistically significant
hotspots that are previously missed. In addition, with
dynamic segmentation, SRM_TBD gives hotspots with
more accurate and precise locations and higher density
ratios. For example the blue hotspots in Figs. 8c and 8d indi-
cate the same road. However, the hotspot with dynamic
segmentation indicates the precise location where the activi-
ties are clustered while the hotspot without dynamic seg-
mentation contains empty portions at both the top and
bottom end. Quantitatively, with dynamic segmentation,
the density ratio of the blue hotspot is higher (i.e., 2.77 ver-
sus 1.85) and the p-value is lower (i.e., 0.02 versus 0.04).
These results demonstrate that dynamic segmentation
assists in discovering the location of hotspots more precisely
than the other technique.

Also, we partitioned long road segments in this network
with fixed intervals of 0.2km and 0.8km respectively, and
then ran SRM_TBD without dynamic segmentation. The
results detected using a small interval of 0.2km shown in
Fig. 8e are close to the results detected with dynamic seg-
mentation shown in Fig. 8d with minor difference at the
ends of the hotspots, making the density ratios slightly
smaller. Fig. 8f shows the results detected using a large
interval of 0.8km, in which the vertical hotspot (brown
color) is missed. We can see that the results are subject to
the length of the interval which is user-specified. If the

150

(c) SRM_TBD without dynamic segmentation

‘. +_ p-value = 0.01

(b) SatScan

IEEE TRANSACTIONS ON BIG DATA, VOL.3, NO.2, APRIL-JUNE 2017

25ie | P-values and density ratios of results
~3

(ol] without dynamic segmentation

Hotspot P-value Density ratio
0.01 25.55
0.01 29.68
Blue 0.01 28.76
e Pink 0.01 23.18

P-values and density ratios of results

with dynamic segmentation
,4.:: \' : & Hotspot P-value Density ratio
S e Pink 0.01 26.42
Black 0.01 26.97
0.01 3017
0.01 25.41
3N Green 0.01 32.04
' Blue 0.01 3352

(d) SRM_TBD with dynamic segmentation

Fig. 9. Comparing SRM_TBD (without dynamic segmentation), SRM_TBD (with dynamic segmentation), and SaTScan’s output on street robbery

data from Denver, CO [4] (Best in color).

interval is large, this method may still miss some patterns
compared to dynamic segmentation; if the interval is small,
this method may have comparable solution quality to
dynamic segmentation, however, the computational cost
will be expensive since the number of nodes in the parti-
tioned network is much larger than in the original network.

In order to evaluate the SRM_TBD in larger datasets, we
also conducted a case study on a dataset of 1,529 simple
assaults in Denver, Colorado during 2015 [26] with a p-
value threshold of 0.01. As shown in Fig. 9b, SatScan finds a
big circular hotspot that covers the downtown area as well
as another small hotspot in the middle of the study area.
Using a minimum distance threshold of 1km, SRM_TBD
without dynamic segmentation discovers 4 nonoverlapped
hotspots on the major roads shown in Fig. 9c. SRM_TBD
with dynamic segmentation discovers 6 nonoverlapped hot-
spots shown in Fig. 9d. Some of them (e.g., yellow, green,
blue) indicate the same roads as those without dynamic seg-
mentation but capture slightly different portions of the
roads, giving higher density ratios. In addition, some previ-
ously missed hotspots are captured using dynamic segmen-
tation such as the cyan, pink, and black hotspots. The p-
values and density ratios of the results are listed in the right
side of Fig. 9. Case study on this larger dataset also demon-
strates that dynamic segmentation helps locate the hotspots
more precisely and find previously missed hotspots.

6 EXPERIMENTAL EVALUATION

The goal of our experiments was to evaluate the scalability
of the proposed approach in sub-edge level linear hotspot
discovery. To achieve this goal, we designed two sets of
experiments. First, we conducted self-analysis experiments
that evaluate the effect of each algorithmic refinement under
a varying number of activities in the dataset. Second, we
conducted comparative analysis experiments that compare
SRM_TBD with the baseline approaches (i.e., SRM_Naive
and SRM_NN).

6.1 Experiment Set Up

Our experiments were performed on a real-world road net-
work dataset obtained from the US Census Bureau’s

TIGER/Line Shapefiles [25] that contained about 500 nodes
and 1,000 edges. The weight of each edge was the actual
road network distance. The varying number of activities
used in the experiments were synthetic data generated
under the complete spatial randomness. Network size was
varied by putting virtual nodes on the edges. All experi-
ments were performed on a Macbook Pro with an Intel Core
i7 Quad Core 2.2 GHz processor and 16 GB RAM.

6.2 Effect of Algorithmic Refinements

Effect of the Neighbor Node Filter. The experiment to evaluate
the neighbor node filter had two parts. The first part was
designed to test how much speedup is earned without
Monte Carlo (MC) simulations. We compared the running
time between SRM_Naive and SRM_Naive with the neigh-
bor node filter in one run of the all-pair shortest paths com-
puting and density ratio evaluation with varying number of
activities. The density ratio threshold was set to 5. Fig. 10a
shows the execution times in log scale. We found that the
cost of SRM_Naive grows much larger as the number of
activities increases while the cost remains steady with the
neighbor node filter. The reason is that the cost of all-pairs
shortest paths computing scales up with the number of
nodes in the dynamically segmented graph, which increases
as the number of activities increases. In contrast, with the
neighbor node filter, all-pairs shortest paths are only com-
puted on the original graph, whose size does not vary with
the number of activities. The slight increase of cost comes
from the density ratio evaluation. The second part of the
experiment aimed to evaluate the speedup coming from
the MC simulations. The parameters was set the same as the
first part except we ran 100 MC simulation trials with a
p-value threshold set to 0.05. Fig. 10b shows the execution
times in log scale. We found that the speedup of neighbor
node filter increases from 10 to 100 times as the number of
activities increases. This speedup comes from both the
all-pairs shortest paths computing as shown in the first part
and the re-use of the shortest paths.

Effect of Shortest Path Tree Pruning. This experiment aimed
to evaluate the speedup earned from the shortest path tree
pruning approach. We compared the neighbor node filter
algorithm to the approach using both neighbor node filter

TANG ET AL.: SIGNIFICANT LINEAR HOTSPOT DISCOVERY

10°)

151

[p-Naive Algorithm

“without MCS

12| Neighbor node filter
‘without MCS

v

2

"
L [>Naive Algorithm
.
/ 0" @Neighbor node filter
E0?
10

o /

Execution Time (sec)
B
Execution Time (sec)
Execution Time (sec)

o
[>Neighbor node filter
Neighbor node filter +

[#shortest path tree pruning|
10’ 7

& 800]

[=smu_NN
SAM_TBD

v

600

Execution Time (sec)
5
Memory Cost (M

40
200

o o
0 0

3
o

300 800 1600 0 700 800 600
Number of activities Number of activities

200 800
Number of activities

1600 00 600 0 2000

300 800 500 1000
Number of activities Number of nodes

(a) Effect of neighbor (b) Effect of neighbor (c) Effect of shortest path (d) Effect of Monte Carlo (e) Memory Cost with dif-
node filter in shortest path node filter tree pruning simulations ferent sizes of network
computing

g SRM_Nalve [mmayw /?»Tm‘ »>- > T'I "
e 2. i £ | Footw
S00 = s 'Z 10 [|-4=SRM_ais = TT5-SRM Naive
Esn £ ///' %w/ % SRM_TED % 4=SRM_GIS

f.

00 400 500 1600 105
Number of activities 200 Nuifiber of activifiés

(f) Memory Cost with dif- (g) Running time with dif- (h) Running time with dif- (i) Running
fernet numbers of activi- ferent numbers of activi- ferent numbers of activi- different

ties ties ties (large)

] 1000
1600 Nurmber of activities (Large)

l SRM_TBD *

N2

i

5 10 500 1000 2000
Density ratio threshold Number of Nodes
time with (j) Running time with dif-
Density ratio ferent sizes of the network
thresholds 6,

Fig. 10. Experimental evaluations of effect of each algorithmic refinement (Figs. 10a, 10b, 10c, 10d, 10e, and 10f) and comparisons among candidate

algorithms under different varying parameters (Figs. 10g, 10h, 10i, and 10j).

and SPTP. The density ratio threshold was set to 5, while the
p-value threshold was set to 0.05 and the number of MC
simulation trials was set to 100. Fig. 10c shows the execution
times in log scale. We found that the cost with SPTP grows
more slowly as the number of activities increases.

Effect of Monte Carlo Simulation Speedup. We evaluated
the speedup earned from the MC simulation speedup by
comparing SRM_TBD’s performance with and without
Monte Carlo simulation speedup. The density ratio thresh-
old was set to 5, while the p-value threshold was set to 0.05.
Fig. 10d shows the execution times in linear scale. We
found that the speedup provided from MC speedup keeps
about 20 percent.

Memory Cost Test. We evaluated the memory cost of
SRM_NN and SRM_TBD under different sizes of network
and number of activities, respectively. Fig. 10e shows the
memory costs with numbers of nodes varied from 250 to
2,000, and Fig. 10f shows the memory costs with numbers of
activities varied from 200 to 1,600. We found that SRM_TBD
cost memory as around two times as SRM_NN. The main
reason is that SRM_NN maintains only the all-pairs shortest
paths but SRM_TBD also maintains the shortest path trees.
We found that as the size of the network increased, the
memory cost for both algorithms increased relatively fast
since the total size of paths and trees increased quadrati-
cally. As the number of activities increased, the memory
cost for both algorithms increased relatively slow since the
total size of paths and trees increased linearly caused by the
increase of number of active nodes.

6.3 Results of Comparative-Analysis Experiments

Effect of the Number of Activities. This experiment was
designed to compare the performance of all approaches
with varying numbers of activities among SRM_Naive,
SRM_GIS and SRM_TBD. The density ratio threshold was
set to 5, p-value threshold was set to 0.05 and the number of
Monte Carlo simulation trials was set to 100. We varied the
number of activities from 200 to 1,600. When the number of
activities is 1,600, dynamic segmentation increases the net-
work size by adding 1,600 new nodes to the 500 nodes in
the original network. Fig. 10g gives the execution times in
log scale. SRM_TBD resides apart from SRM_Naive and

SRM_GIS, especially when the number of activities is larger.
For example, when number of activities is 1,600, SRM_TBD
was about 100 times faster than SRM_GIS.

In addition, in order to test the scalability of the pro-
posed algorithms in larger datasets, we further varied
the number of activities from 4,000 to 32,000 on a net-
work containing 2,000 nodes and 2,500 edges. The new
network was generated by putting virtual nodes on the
edges of the orginal network. We ran only SRM_NN,
SRM_NN with shortest path tree pruning and SRM_TBD
on these larger datasets since SRM_Naive and SRM_GIS
cost prohibitive time (e.g., SRM_Naive cost approximate
50,000 seconds for 2,000 activities). The execution times
in log scale given Fig. 10h show that the proposed algo-
rithmic refinements maintained the performance on these
datasets and SRM_TBD was able to handle larger data-
sets within reasonable running time.

Effect of the Density Ratio Threshold. In this experiment, the
number of activities was set to 800, the p-value threshold
was set to 0.05, and the number of MC simulations was set
to 100. We varied the density ratio threshold from 2.5 to 10.
The results are shown in Fig. 10i. As can be observed,
SRM_TBD cost fewer when the density ratio threshold got
larger while maintaining the speedup over SRM_Naive and
SRM_GIS.

Effect of the Size of the Network. In this experiment, number
of activities was set to 800, p-value threshold was set to 0.05,
number of MC simulations was set to 100, and density ratio
threshold was set to 5. We varied the number of nodes in
the network from 250 to 500, while keeping the ratio
between number of nodes and edges. This was realized by
adding or removing virtual nodes on the existing edges
of the real dataset. The results are shown in Fig. 10j. As
observed, the cost of SRM TBD resides apart from
SRM_Naive and SRM_TBD.

In summary, each of the three algorithmic refinements,
namely the neighbor node filter, the shortest path tree prun-
ing, and the Monte Carlo speedup, contributes to reduce the
computational cost. The comparative-analysis experiments
show that SRM_TBD performs much better than the
SRM_Naive approach and SRM_GIS [13] under the varying
of different parameters of the dataset.

152

7 DISCUSSION

Techniques Without Significance Testing. This paper focuses
on partitioning techniques that consider statistical signifi-
cance. There are a myriad of other techniques that divide
data into groups without considering statistical significance.
These include DBScan [16], K-Means [17], KMR [18], and
Maximum Subgraph Finding [19]. For example, the algo-
rithm from our previous work [18] on summarizing activi-
ties using routes may return routes that are not statistically
significant. DBScan [16] finds clusters in euclidean space.
However, it is sensitive to the parameter selection and may
return chance clusters even on a complete spatial random-
ness dataset. Post-processing the output of these techniques
for statistical significance will not guarantee completeness
as some of the clusters returned may not be statistically sig-
nificant. We will explore ways to include statistical signifi-
cance testing with traditional methods such as K-Means, etc.

Techniques to Reduce Memory Cost. The proposed algo-
rithm needs to store information of all-pairs shortest paths
and shortest path trees, which takes a memory cost of | Ng|*
where | Ng| is the number of road intersections in the spatial
network. When the size of the spatial network is large to a
point, it not feasible to store all the information in memory.
To deal with this problem, two techniques which trade off
memory cost with running time can be applied. (1) Store the
paths and trees in hard drive instead of memory. In this tech-
nique, the specific paths and trees are loaded into memory as
they are acquired. This reduces the memory cost by sacrific-
ing the running time brought by I/O cost. However, this cost
can be mitigated if the information is stored in a well-
indexed structure. (2) Use a hierarchical structure. With a
hierarchical structure, the spatial network is partitioned into
multiple fragments. Only information within each fragment
is stored in memory. As an intuitive example, suppose the
spatial network is partitioned into p fragments each having
| Ns|/p road intersections. The memory cost of storing short-
est paths reduces from |Ns|? to (|Ns|/p)* x p = |Ns|*/p plus
the cost for storing the boundary graph. However, when
information across different fragments is acquired, on-time
computation is needed which increase the running time.
Detailed discussion of hierarchical structure applied in rout-
ing algorithms is available in related literature [27].

8 CONCLUSIONS AND FUTURE WORK

This work explored the problem of significant linear hotspot
discovery in relation to important application domains such
as preventing pedestrian fatalities and crime analysis which
are urgent issues in urban area. We proposed a significant
route miner that discovers multiple statistically significant
shortest paths at the sub-edge level in a spatial network.
The proposed approach uses a neighbor node filter, shortest
path tree pruning, and Monte Carlo speedup to enhance its
performance and scalability. Two case studies on pedestrian
fatality and crime data validate the superiority of our
approach over SatScan for detecting statistically significant
hotspots of a linear nature. Experimental evaluation using
real-world and synthetic data indicated that the algorithmic
refinements utilized by our approach yield substantial
computational savings without sacrificing result quality.

IEEE TRANSACTIONS ON BIG DATA, VOL.3, NO.2, APRIL-JUNE 2017

In future work, we plan to explore other types of data
that may not be associated with a point in a street (e.g.,
aggregated pedestrian fatality data at the zip code level).
The present research is centered on finding high concen-
trations of activities whose counts and locations are deter-
ministic. However, future work is needed to investigate
attributes that may not be deterministic such as delay
when moving between nodes, capacity constraints, etc.
Additionally, estimating p-values via Monte Carlo simu-
lations may be done in different ways. In the current
approach we permuted the activities. Alternatively we
can permute activity count which may provide a Poisson
distribution assumption. In addition, the proposed prob-
lem aims to find significant path that are shortest paths.
We plan to investigate how to define conceptually more
meaningful paths than shortest paths and develop corre-
sponding scalable algorithms. Finally, finding spatio-
temporal linear hotspots is also a direction of our future
work. Currently, we are using an aggregated number of
activities over time. Instead, in the future, we plan to find
hotspots that incorporate temporal information [28], [29].
They are potentially applied to find life-cycle and moving
trends of hotspots.

ACKNOWLEDGMENTS

This material is based upon work supported by the US
National Science Foundation under Grant No. 1029711, IIS-
1320580, 0940818 and 1IS-1218168, USDOD under Grant No.
HMO0210-13-1-0005, and University of Minnesota via U-Spa-
tial. We would like to thank Kim Koffolt and the members
of the University of Minnesota Spatial Computing Research
Group for their comments.

REFERENCES

[1]1 Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing;:
Concepts, methodologies, and applications,” ACM Trans. Intell.
Syst. Technol., vol. 5, no. 3, pp. 38:1-38:55, 2014.

[2] M. Ernst, M. Lang, and S. Davis, “Dangerous by design: Solving
the epidemic of preventable pedestrian deaths,” presented at the
Transp. America: Surface Transp. Policy Partnership, Washing-
ton, DC, USA, 2011.

[3] M.D. of Transportation, “Bicycle and pedestrian safety initiative,”
(2016). [Online]. Available: http://www.minnesotatzd.org/
events /breakfasts/documents/bike_ped_initiatives.pdf

[4] Fatality analysis reporting system (FARS) encyclopedia, National
Highway Traffic Safety Administration (NHTSA), (2014). [Online].
Available: ftp:/ /ftp.nhtsa.dot.gov/fars/

[5] A. News, “Minneapolis man killed in crash on 1-94 at high-
way 280,” (2016). [Online]. Available: http:/ /kstp.com/news/
interstate-94-highway-280-fatal-crash /4094871/

[6] D.Matthews, S. Effler, C. Driscoll, S. O’'Donnell, and C. Matthews,
“Electron budgets for the hypolimnion of a recovering urban lake,
1989-2004: Response to changes in organic carbon deposition and
availability of electron acceptors,” Limnology Oceanography,
vol. 53, pp. 743-759, 2008.

[7] D.B. Neill and A. W. Moore, “Rapid detection of significant spa-
tial clusters,” in Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, 2004, pp. 256-265.

[8] M. Kulldorff, “Spatial scan statistics: Models, calculations, and
applications,” in Scan Statistics and Applications. Berlin, Germany:
Springer, 1999, pp. 303-322.

[91 M. Kulldorff, “A spatial scan statistic,” Commun. Statist.-Theory

Methods, vol. 26, no. 6, pp. 1481-1496, 1997.

M. A. Costa, R. M. Assuncao, and M. Kulldorff, “Constrained

spanning tree algorithms for irregularly-shaped spatial

clustering,” Comput. Statist. Data Anal., vol. 56, no. 6, pp. 1771-

1783,2012

[10]

TANG ET AL.: SIGNIFICANT LINEAR HOTSPOT DISCOVERY

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

L. Shi and V. P. Janeja, “Anomalous window discovery for linear
intersecting paths,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 12,
pp- 1857-1871, Dec. 2011.

V. P. Janeja and V. Atluri, “Ls 3: A linear semantic scan statistic
technique for detecting anomalous windows,” in Proc. ACM
Symp. Appl. Comput., 2005, pp. 493-497.

D. QOliver, et al., “Significant linear hotspot discovery: A summary
of results,” in Proc. 8th Int. Conf. Geographic Inf. Sci., 2014,
pp- 284-300.

X. Li, J. Han, J. Lee, and H. Gonzalez, “Traffic density-based dis-
covery of hot routes in road networks,” in Proc. 10th Int. Conf.
Advances Spatial Temporal Databases, 2007, pp. 441-459.

C. Brunsdon, “Computing with spatial trajectories,” Int. J.
Geographical Inf. Sci., vol. 27, no. 1, pp. 208-209, 2013.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proc. Int. Conf. Knowl. Discovery Data, vol. 96, 1996,
pp. 226-231.

J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Math. Stat-
ist. Probability, 1967, vol. 1, no. 281-297, Art. no. 14.

D. Oliver, A. Bannur,]. M. Kang, S. Shekhar, and R. Bousselaire,
“A K-main routes approach to spatial network activity summari-
zation: A summary of results,” in Proc. IEEE Int. Conf. Data Mining
Workshops, 2010, pp. 265-272.

K. Buchin, et al., “Finding the most relevant fragments in
networks,” |. Graph Algorithms Appl., vol. 14, no. 2, pp. 307-336,
2010.

S. Shekhar and D. Liu, “CCAM: A connectivity-clustered access
method for networks and network computations,” IEEE Trans.
Knowl. Data Eng., vol. 9, no. 1, pp. 102-119, Jan./Feb. 1997.

Y. Zheng, H. Zhang, and Y. Yu, “Detecting collective anomalies
from multiple spatio-temporal datasets across different domains,”
presented at the 23rd Int. Conf. Advances Geographic Inf. Syst.,
Seattle, USA, 2015.

X. Tang, E. Eftelioglu, D. Oliver, and S. Shekhar, “Technical report:
Significant linear hotspot discovery,” 2016. [Online]. Available:
https://www.cs.umn.edu/research/technical_reports/view/
16-037

M. Kulldorff, K. Rand, G. Gherman, G. Williams, and D. DeFran-
cesco, SaTScan v 2.1: Software for the Spatial and Space-Time Scan Sta-
tistics. Bethesda, MD: National Cancer Institute, 1998.

Quantum GIS openlayers plugin, (2014). [Online]. Available:
http://plugins.qgis.org/plugins/openlayers_plugin/

Us Census Bureau tiger/line shapefiles, [Online]. Available: http://
www.census.gov/geo/maps-data/data/tiger-line.html, Accessed
on: May?9, 2014.

Denver crime open dataset, city and county of Denver, (2016).
[Online]. Available: https://www.denvergov.org/opendata/
dataset/ city-and-county-of-denver-crime

S. Shekhar, A. Fetterer, and B. Goyal, “Materialization trade-offs
in hierarchical shortest path algorithms,” in Proc. Int. Symp. Spatial
Databases, 1997, pp. 94-111.

P. Mohan, S. Shekhar, J. A. Shine, and J. P. Rogers, “Cascading
spatio-temporal pattern discovery,” IEEE Trans. Knowl. Data Eng.,
vol. 24, no. 11, pp. 1977-1992, Nov. 2012.

X. Zhou, S. Shekhar, and R. Y. Ali, “Spatiotemporal change
footprint pattern discovery: An inter-disciplinary survey,” Wiley
Interdisciplinary Rev.: Data Mining Knowl. Discovery, vol. 4, no. 1,
pp- 1-23,2014.

153

Xun Tang received the bachelor's and master’s
degrees from Harbin Institute of Technology, Har-
bin, China, in 2011 and 2013, respectively. He is
working toward the PhD degree in computer sci-
ence at the University of Minnesota-Twin Cities,
MN. His research interests include spatial data
mining and spatial databases.

Emre Eftelioglu received the bachelor’s degree
in systems engineering, Turkey, in 2004 and the
master’'s degree in computer engineering from
the University of Minnesota, in 2014. He is work-
ing toward the PhD degree in computer science
at the University of Minnesota-Twin Cities, MN.
His research interests include spatial data min-
ing, spatial databases.

Dev Oliver received the bachelor's degree in
computer science from Macalester College, in
2004, the master’'s degree in computer science
from the University of Florida in 2008, and the
PhD in computer science from the University of
Minnesota in 2014. His research and develop-
ment interests include spatial networks, big data,
spatial data mining, spatial databases, and spa-
tial data summarization.

Shashi Shekhar is a McKnight distinguished
University professor with the University of Minne-
sota. For contributions to spatial databases, spa-
tial data mining, and geographic information
systems (GIS), he received the IEEE-CS Techni-
cal Achievement Award and was elected fellows
of the IEEE and the AAAS. He co-authored a
text-book on Spatial Databases, and co-edited an
Encyclopedia of GIS. He is serving as a member
of the Computing Community Consortium Coun-
cil, a co-editor-in-chief of Geo-Informatica journal,
and a program co-chair of G. |. Science Conference (2012). Earlier he
served on National Academies committees (Mapping Sciences, GEO-
INT Research Priorities, and GEOINT Workforce), and editorial board of
the IEEE Trans. on Knowledge and Data Eng. He also co-chaired Sym-
posium on Spatial and Temporal Databases and the ACM Conference
on GIS.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

