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ABSTRACT

The Washington DC Metrorail system operates 1,126 railcars on
six different routes over 117 miles of track to support over 500,000
passengers each day. The Washington Metropolitan Area Transit
Authority relies on their On-Time Performance (OTP) metric to
determine how well their system is running and identify delays in
the system. This paper utilizes passenger tap-in/tap-out and train
movement data to create a predictive model of OTP for current
passengers in real time. These predictions can be used by WMATA
to improve performance and communicate delays to passengers
more effectively. Our approach goes beyond predicting OTP of cur-
rent in-flight passengers and uses RNN predictions of the future
network state to make OTP predictions for passengers who have not
yet entered the network. These empirical applications can be power-
ful for agencies and planners to assess and improve transit service
performance using big data analytics and real-time predictions.

1 INTRODUCTION

The Washington Metropolitan Area Transit Authority (WMATA)
operates the Metrorail system in Washington D.C serving over
half a million trips daily. The DC Metrorail system consists of 91
stations spanning 117 miles of track across 2 states and the District
of Columbia (Fig. 1). It is the third-busiest rapid transit system in
the United States in number of passenger trips. To support the
development of new analytics for transit planning and operations,
Virginia Tech’s Discovery Analytics Center and WMATA formed
a partnership through the US National Science Foundation(NSF)-
sponsored Urban Computing Program. This paper represents one
of the first problems addressed through this collaboration.

One of the primary performance measures of interest to WMATA
is On-Time Performance (OTP), defined as the percentage of pas-
sengers whose trip time is less than or equal to WMATA’s Travel
Time Standards (Figs. 2 and 3). WMATA has compiled a database
of expected trip times for riders, given Origin/Destination pairs
for each Service Period. For example, during the AM peak time, it
should take no longer than 15 minutes to travel from Ballston to
West Falls Church. Customers who experience a trip longer than
this time are said to be late and decrease OTP for the network.

Inherently, one cannot know for certain whether a customer
took longer than expected until the customer exits the network.
Therefore, we propose a method for predicting the percentage of in-
flight passengers who will experience a late trip using information
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Figure 1: Map of DC Metro Rail System

Observed Travel Time

—

[ .
™
/" Tap ST & T { Tap
\“,,J/. Wait Time H Transit Time }—\m Y,

|

Walk Time Origin Walk Time Destination

Maximum Bl T |
Headway ail Trave
Time on

on hedul
Schedule Schedule

Figure 2: Components of Travel Time Standards
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Figure 3: Example Travel Time Standards

which is available in real time such as where customers are in-flight
from and the current train movement data. This is the first step
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Figure 4: Defining Headway (HDW).

towards WMATA’s primary goal of creating a predictive model that
will identify how passengers will be impacted due to an incident.

The above proposed model gives an estimate of the number
of passengers experiencing delays in real time using passenger
and train movement data. However, knowing that the network is
currently in a delayed state is not actionable. We, therefore, propose
a method for predicting headway (HDW; defined as the time from
the instance the tail of a train leaves the station and the instance
the tail of the next train leaves the station, see Fig. 4) delays for
every station on the network given the prior HDW delays using an
RNN (recurrent neural network).

1.1 Research Impact

Having a predictive model for OTP allows WMATA to better esti-
mate where delays will occur. WMATA currently makes real-time
system control decisions based on the dispatcher’s assessment of
the network state and some alerts that are set for a certain thresh-
olds. This process is almost entirely manual and lacks predictive
modeling or recommendation algorithms. Our model adds accuracy
to their expectations as well as detail (station by station). WMATA
operators can then take actions to mitigate these effects in advance
of the riders being impacted. These actions may include physical
changes to the network by adding more trains/cars or staggering/s-
lowing trains to close gaps in service from an incident or delay.
WMATA will also communicate this real-time delay information to
their customers. Giving riders this information allows the riders to
adjust their trip accordingly or take another mode of transportation
(which also helps to resolve overcrowding). Additionally, customers
tend to be happier when you are able to give them better informa-
tion.

Additionally, from a historical perspective understanding the
impacts of certain events or incidents enables WMATA to better
invest resources or make planning changes that can improve the
performance of the network.

Furthermore, WMATA recently implemented the Rush Hour
Promise policy for 2018 that refunds fares to customers who expe-
rience 15 minutes or more of delay during peak travel times (AM,
AM Peak, and PM Peak) [24]. Being able to react to potential delays
sooner can now be tied to a direct monetary impact.

This paper makes the following key contributions:

(1) We propose a discrete state model encoded in minute-by-
minute intervals that uses either passenger or train move-
ment data to represent and reason about the status of the
system. This approach enables us to adopt a categorical en-
coding of normalized HDW state for describing and forecast-
ing the overall state of the Metrorail network.
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(2) Building upon the network state encoding approach, we pro-
pose a time shift model, based on the expected travel time
of a train between stations, to better understand and rep-
resent delay propagation. This propagation method further
enriches the vocabulary that is available for forecasting via
machine learning algorithms.

(3) WMATA'’s analysis is currently limited to retrospective stud-
ies of OTP. Our approach develops two new predictive mod-
els that enables operators to forecast the experience of riders
currently in network and that of riders who have not yet
entered the system.

2 RELATED WORK

The potential of smart card and detailed train movement patterns
for planning and performance management have attracted the at-
tention of many researchers in urban computing and public transit
system analysis[12, 18, 26]. Massive data being collected by smart
card and railway information systems can greatly benefit traffic
management and dispatching. We focus our related work discussion
primarily on works that concentrate on modeling and predicting
delays.

Most studies [3, 10, 11, 15] attempt to predict actual arrival, travel,
or delay times and report errors based on actual times. WMATA
has stated their current interest is only in identifying OTP. This
relaxation allows this paper to focus simply on classifying trains
as on-time or not on-time instead of attempting to predict a more
precise transit time. Strathman [21] did perform an empirical as-
sessment of factors simply affecting OTP but did not make any
efforts to predict OTP.

A key problem when predicting train delays in large-scale rail-
way networks is often studied through the lens of detecting recur-
rent delays. Several studies have treated this problem as one of
time series forecasting using train movement records as the funda-
mental data source. Milinkovic et al. [15] employed a fuzzy petri
net (FPN) model to estimate train delays. An alternative approach
is to address delay prediction from the perspective of stochastic
modeling where the duration of each activity has an associated
probability distribution. Two of the most important studies using
this approach, Carey et al. [2] and Meester et al. [14], proposed us-
ing approximations of delay distributions to reduce computational
effort and study the error propagation for such approximations.
Berger et al. [1] forecasted the delay for the whole German railway
network based on directed acyclic graphs, the timetable, and its
corresponding event graph.

Multiple studies [3, 11] acknowledge the advantages to using ad-
vanced techniques, such as neural networks, to model transit travel
times because times are affected by various inter-correlated and
time-varied factors and neural networks do not require a specific
form or function. Neural networks can capture complex relation-
ships between the dependent variables. Pongnumbkul et al. [20]
modeled train delays in the network using kNN models. Using neu-
ral networks, Yaghini et al. [25] and Peters et al. [19], investigated
the problem of predicting train delays based on the delay profiles
of the trains on each line. These sets of data-driven models make it
possible to use regression analysis and classification techniques to
predict future delays. Kalaputapu [8] used ANNS to predict schedule
deviation of bus routes.
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Key | Value

Entry DTM | 01-MAY-15 00:00:25
Entry MSTN ID | MSTN 010
Exit DTM | 01-MAY-15 00:45:52
Exit MSTN ID | MSTN 056
Trip Time Min | 45.45

Figure 5: Sample record of tap-in tap-out passenger data.

In recent efforts, which mainly focuses on addressing the issue of
long training times of neural networks, Oneto et al. [17] develop a
specialized algorithm for big data parallel architectures, to analyze
past delay profiles and predict future ones accordingly.

Significant research has been performed on travel time prediction
using regression as well as more advanced techniques, like neural
networks, for vehicular traffic (including buses) on roadways [10,
11, 22]. These methods utilize loop data (flow, occupancy and/or
velocity) to make their predictions. Similar data points could be
collected in the train network but WMATA and most other transit
agencies don’t currently collect them. There is also a concern that
even if collected they might not hold the same predictive power
given the differences in the road network versus a train network.

3 AVAILABLE DATASETS

3.1 Passenger Data

WMATA provided the team with tap-in/tap-out passenger data
(collected from the turnstiles gating entry to and exit from the
stations of the Metrorail network) and Travel Time Standards for
estimating OTP trip times. The passenger data comprises rows
of passenger trips where each row contains columns describing
the entry and exit stations/times and a column that subtracted
those times to provide a total observed trip time for that passenger
in minutes. The data spanned all of 2015 and 2016; however, we
analyzed only a four-month subset (May, August, September and
October of 2015) of this data to avoid major long-term maintenance
efforts as well as holidays while still encompassing any potential
seasonality. An example of a single row of data can be seen in Fig. 5.

3.2 Train Movement

WMATA tracks the movement of trains with a real-time system
which includes the current status of all traffic in the network (i.e.,
including in-transit). For this paper, the research team had access
to data about train interactions with station platforms. The data
spanned from 4 January 2015 to 31 December 2016 and included
34,624,940 rows each accounting for a single arrival/departure of a
train at a network platform. A similar four-month subset (March,
May, August, and October of 2015) of train movement data was
selected again to avoid major long-term maintenance efforts as well
as holidays while still encompassing any potential seasonality.
The train movement data associates platforms to metro sta-
tions in a many-to-one relationship (186 platforms to 91 stations).
WMATA’s platform ID designation also reflects the line and direc-
tion of the train. Note that some physical platforms are shared by
trains of different lines moving in the same direction over portions
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Figure 6: Flowchart for creation of passenger state, train
state and percentage correlation between stations.

where the networks converge but in the data each line has separate
stations and platforms even if they are physically shared.

Arrival/departure data includes arrival time (measured by the
arrival of the head of the train at the station), departure time (mea-
sured by the departure of the tail), and the number of cars in the
train (referred to as length, LN). The dwell (DW) of the train is also
available in some cases. WMATA defines dwell as the period of
time that the doors of the train are open. Apparently, issues with
door sensors prevent consistent measurement of this value.

3.3 Supplementary Datasets

In addition to the above mentioned datasets, other supplementary
datasets were provided by WMATA. These are represented in Fig. 6.

4 DATA CONDITIONING

One approach to associating the train movement data (platform
arrival/departure events) and passenger data (entry/exit at stations)
to the overall network is to establish a vector related to the network
state. As we have more information about network nodes (stations)
than network edges (rail line), we chose to model the network from
a node perspective. Creation of state for train and passenger data
is defined in subsections below.

4.1 Passenger Data

A flowchart depicting the workflow for creating passenger state
is shown in Fig. 6. The passenger data was pre-processed and an
extra column depicting the ServicePeriod was added. The data was
then annotated with the appropriate OTP standard. Late trips were
normalized by dividing the number of late trips by the total number
of trips. We then create a state vector for each minute in the time
period studied. Each minute will capture how many users are on
the network (In-flight), where they are coming from (In-flightFrom-
MSTN-ddd), where they are heading to (In-flightTo-MSTN-ddd),
and how many of these users will experience a late trip (Late Trip
Percentage).

The total network usage for May 1st, 2015 is shown in Fig. 7.
As expected, there are peaks in users on the network during the
AM Peak and PM Peak periods. In between, the network stabi-
lizes around 500 entries/exits per minute and thus the number of
passengers in-flight remains constant.
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Figure 7: Left: Plot of entries and exits per minute on May
1st, 2015. Right: Plot of in-flight passengers on network per
minute on May 1st, 2015. In-flight is defined as passengers
which have entered the subway system but have not yet ex-
ited during that minute.

Percentage of inflight who will experience a late trip on May 1st, 2015

° ° ° =
= S ® °

% of passengers who will experience a late trip
-

[—

Fri - 04 hours
Fri - 05 hours
- 07 hours
Fri - 08 hours
Fri - 09 hours
Fri - 10 hours
Fri- 11 hours
Fri - 12 hours
Fri - 13 hours
Fri - 14 hours
Fri - 15 hours
Fri - 16 hours
Fri- 17 hours
Fri - 18 hours
Fri - 19 hours
Fri - 20 hours
Fri - 21 hours
22 hours

Fri - 23 hours

Fri - 06 hours

Fri
Fri-

Figure 8: Percentage of passengers/minute currently in-
flight who will experience a late trip on May 1, 2015.

The percentage of in-flight passengers who will experience a
late trip is shown in Fig. 8. Spikes in late trip percentages at the
beginning and end of service seem to be characteristic of this data.
It is believed that passengers enter the station/network before the
first train. Therefore, they end up waiting longer than the Travel
Time Standards predict for the first train and experience a late trip.
WMATA also confirmed that maintenance is typically scheduled
at these times of the day. The fact that there is a lower number of
in-flight passengers during these periods results in higher noise
and also requires more time for in-flight OTP to return to “normal”

4.2 Train Movement

The team used four variables to identify the state of the train move-
ment network: HDW, DW, LN and Transit Time (TT, which is
calculated as a trains arrival at station 2 minus its departure from
station 1). The values of these variables are determined by recorded
events that change the continuous state of the overall network. The
team had to make a design decision regarding how to associate
these discrete events and the associated state data to the timeline
of the network. For example, in the case of HDW, a change in the
HDW could be written to the network state when Train 1, from
Fig. 4, departs Station X (customer-focused), when Train 2 departs
Station X (sensor-focused), or anytime in between. We chose to take
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a network-focused approach. Changes to the network state occur
when changes initially occur in the network, but when in reality
the final value of the change may not be fully realized in the system.
This choice was made in order to simplify network state creation
and to avoid potential cause-effect sequence inconsistencies that
might be introduced by over points of view (like customer-focused).

Although the analog state vectors describe the network, they do
not reflect any normalization to expected network conditions, like
rush-hour versus weekend schedules and relative scale of transit
delays versus normal transit time. WMATA has specific day-of-
week, time-of-day, Metro line, and platform-specific normalization
values appropriate to the state variables. We normalize the resultant
state vector using the Travel Time Standards data. For the purposes
of this research, we thereafter seek a binary encoding of the state
that captures the general characteristics of the information. The
encoding of the normalized network state might then be used as a
feature set for regression, classification, or other analysis.

Using our 4 month subset of data we constructed 113,464 minute-
by-minute values of the four states for the 171 network platforms
(684-dimension analog state vector). Each day’s data was bounded
by the Metro service hours and each morning the state vector was
initially undefined. Upon daily state vector initialization, a few
platforms retain undefined status much longer than the rest of the
network, reflecting little-used platforms. While these platforms
could be discarded from the state vector entirely, their use might
indicate the kinds of significant event that we wish to track and
understand. On further analysis, we found that the cost to the
volume of available data was, in the trade-off, worth including
additional encoding to designate a "NaN" state at all platforms.
Therefore, we chose to encode each state with three bits retaining
the zero value to indicate "no defined value" associated with daily
start-up and rarely used stations. The three bits enabled us to encode
three ranges for each state.

In encoding the normalized state variables, it is important to note
their long-tail distribution (according to the scale-free property of
power laws, Fig. 9). WMATA is is concerned with staying on, or
ahead of, schedule, as well as in degraded network performance
that may be impacting customer experience. Therefore, for a three
bit encoding, we decided to use one bit to designate on, or ahead
of, schedule, leaving us two bits to separate the remainder of the
range. In the absence of other data to appropriately segregate the
remainder of the data, the median normalized value above zero
would divide the remainder of the data into two equal volumes.
Encoding of HDW is shown in Fig. 10. The normalized HDW, DW,
and TT states are more directly and dynamically related to network
incidents; due to WMATA’s data capture system, of these three
states the HDW data is of the highest quality. For the purposes
of the current effort, we have restricted analysis and classification
efforts to the HDW component of the network state hereafter.

5 RESEARCH METHODOLOGY

Here is a list of the research questions addressed by the team:

(1) Can delays be correlated in time and space? (Section 6) (Box
1 in Fig. 6)

(2) Can passenger information, which is available in real time,
be used as an indicator of the delays that customers are
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Figure 9: Histograms of Normalized Network State Variables
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Figure 10: Binary Encoding of HDW Network State

currently experiencing on the network? (Section 7) (Box 2
in Fig. 6)

(3) Can the current state of the network be used to forecast
delays that will be seen by riders who have not yet entered
the network? (Section 8) (Box 3 in Fig. 6)

6 CORRELATING LATE TRIP PERCENTAGES
ACROSS STATIONS

Because passengers at different stations rely on the same train and
rail network to transport them to their destination, it is expected
that when large percentages of passengers at one station experience
delay, that large percentage of passengers at neighboring stations
will also experience delay. Therefore, we analyze in-flight OTP To
and From derivations (described in Fig. 11) as continuous signals
and compute the Pearson product-moment correlation coefficient
for all station pairs.

Our first cut, as shown at the top of Fig. 11 simply correlates the
continuous signals. We first drop out any portions of the signals
where there are no passengers on the network (overnight when
the network is closed) and then take the Pearson product-moment
correlation of all in-flight OTP for all red line stations. We note that
communities appear where stations that are closer together on the
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Figure 11: Pearson product-moment correlation coefficients
between Red line stations’ in-flight OTP at varying time
shifts (Top: No Shift, Middle: Left Shift, Bottom: Right Shift).
Stations are ordered on the correlation plot as they are or-
dered on the rail line. The left plots represent correlations
between OTP calculated only from passengers which were
currently in-flight and would exit the network at that sta-
tion, the right plots represent correlations between OTP cal-
culated only from passengers which were currently in-flight
and had entered the network at that station. The Shady
Grove, Rockville, Twinbrook, and White Flint community
is highlighted in red.

red line are more highly correlated to each other. We noticed that
Judiciary Square does not appear to be highly correlated with any
other stations. The reasoning for this seems to be that construction
work was being done at the entrance to the station that impacted
the usage of the station as compared to other stations. Additionally,
we note that the end of line stations are still slightly correlated with
one another (indicated by the bottom left and top right corners).
We then apply time shifts to the data to reflect our belief that a
delay at a station will not affect another station until at least the
time it would take a train to traverse between the two stations
(TT). For example, if Station 2 is 4 minutes away from Station 1
then delays at Station 1 during minute X are compared to delays at
Station 2 during minute X + 4 when a Left Shift is applied. X would
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Figure 12: Pearson product-moment correlation coefficients
between Red and Orange line stations’ in-flight OTP with
no time shift. Stations are ordered as they are ordered on
the rail line. The left plots represent correlations between
OTP calculated only from passengers which were currently
in-flight and would exit the network at that station, the right
plots represent correlations between OTP calculated only
from passengers which were currently in-flight and had en-
tered the network at that station. Metro Center’s community
is highlighted in red. Note the difference in color scale be-
tween this and Fig. 11.

be compared to X - 4 for a Right Shift. Fig. 11 shows a depiction of
the a left shift (middle) and right shift (bottom). After applying the
time shifts, the communities become even more apparent. We see
that the first four stations (Shady Grove, Rockville, Twinbrook, and
White Flint: highlighted in Fig. 11) are all highly correlated in three
of the four shifted plots (and only one of the plots without a shift)
and also appear to be less correlated with the other stations on the
rest of the line. The correlations between the end of line stations are
no longer there, indicating that these stations may not have direct
affects on each other via trains or the rail line but are correlated
due to similarities in volume of customers or cyclic properties of
late trip percentages.

We sought to expand the dataset to include two lines, orange and
red. It is less clear how a time shift would be applied to these signals,
therefore, we only studied the no shift case, which can be seen in
Fig. 12. The ends of the lines are almost completely uncorrelated.
It is much less apparent but we do see some correlation near the
center of the two lines where they share a transfer station at Metro
Center (highlighted in red in Fig. 12).

In order to better visualize the communities that are revealed
by the correlation plot between stations, we employ k-spectral
clustering [16]. Interestingly, spectral clustering generally groups
the stations closest to the transfer station (on both lines) together
when using the InflightOTPTo correlation matrix as a precomputed
affinity matrix, while the end of lines form separate clusters for each
line. One result, when using 3 clusters, is shown in Fig. 13. Note
that the clustering results using the InflightOTPFrom correlation
matrix does not show a similar result.

WMATA sees the benefit in identifying clusters and understand-
ing propagation and correlation across stations because it allows
them to communicate more specific and effective delay notifica-
tions. Instead of issuing network-wide or only rail-line specific
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Figure 13: Google Maps depiction of the results of 3-spectral
clustering using the InflightOTPTo correlation matrix as a
precomputed affinity matrix.

alerts they could provide alerts specific to a cluster of stations. Rid-
ers can then potentially choose to make decisions that avoid these
stations instead of opting to avoid the entire rail-line or metro as a
whole.

7 RIDER EXPERIENCE PREDICTION USING
REAL TIME PASSENGER DATA

Initially, to predict the delay of passengers currently on the network
given only information that would be available in real time, the
passenger state vector was used, along with minute, hour, and
day-of-week. In order to conform to the real-time data availability
requirement the In-flight To-MSTN-ddd features were dropped. The
Late Trip Percentage attribute was used as the values to learn with
the remaining attributes as features (normalized). We employed
a fully connected neural network (with dense layers of size 512,
128, and 32) and a ReLU activation function with a dropout rate of
50%. The output of these layers was fed into a single output with a
sigmoid activation function for use in regression prediction of late
trip percentage. The model was built and trained using the Keras
[6] framework on top of TensorFlow [13] using the Adam optimizer
[9] with mean squared error as the loss function.

The vectors were split into training and validation sets based
on real-world availability. Therefore, instead of randomly splitting
the rows, the data from May, August, and September of 2015 were
used to train the model and the data from October 2015 was used to
validate the model. The results from the model are shown in Fig. 14.

8 RIDER EXPERIENCE PREDICTION USING
PRIOR RAIL NETWORK STATE

In an effort to build a predictive model of customer experience based
on train movement, we construct a neural network architecture
based on a series combination of deep learning primitives. This
deep learning architecture allows us to predict future network
state based on the highest quality subcomponent of measured data
available, and then embed the state in a lower dimensional space.
Researchers have demonstrated the effectiveness of conditioning a
decoding recurrent neural network (RNN) with the final state of
an encoded sequence when predicting a time series whose entirety
depends on another sequence [7][4][23]. Here, we seek to use an
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Figure 14: Forecasts for October 2015 (the model has a mean
squared error of 0.0157 and an R? value of 0.691). Each pre-
diction represents a minute in time.
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encoder-decoder sequence-to-sequence (seq2seq) RNN to predict
sequences of future HDW states based on past sequences (Fig. 15).
We feed the output of the decoder RNN network into an au-
toencoder in order to develop clusters more closely related to
the customer experience classification of interest. This predicted-
embedded space becomes the basis for a classification algorithm
that we show is able to predict binary and more granular class
categorizations of network-wide OTP, 30 minutes in advance.
Design and training of the (seq2seq) RNN, autoencoder, and
customer experience classifier could now each be performed in
sequence. Restricting the scope to HDW-only states of the network
will increase the number of available training sequences that can
be held in memory while dovetailing with our results of customer-
experience prediction from the auto-encoded state. We chose to
keep the length of the sequences short and the scope of the future
forecast limited to improve accuracy, predicting 15 and 30 minutes
of future state based on the state 30 min and 15 min in the past
and the current state. We used Chollet[5] as a guide for our model
including a hidden layer of 256 LSTM cells (input/output dimension
for HDW state of 513). The output layer of the decoder was set to
sigmoid activation to create a binary encoding prediction. Training
was via mini-batches of 64 input sequences using cross-entropy loss
against the binary decoder output and stochastic gradient descent

with Adam optimization. Independent validation of the HDW data
prediction was via test data of length 13,004 sequences, providing
2,223,684 individual platform HDW state evaluation opportunities.
For each three-bit platform output, the value was assigned to [0,0,0]
if the maximum output was less than 0.33 and to the maximum
argument bit otherwise. Accuracy of a 20% withheld test set during
training of the seq2seq RNN prediction for the 15-min forecast
was 0.962 and 0.958 for the 30-min forecast, albeit against a null-
accuracy of 0.88 for each due to the relative stability of the network.

Next an autoencoder with fully connected layers of dimension
513-128-32-128-513 was trained on the 30-min forecast HDW state
to create an embedding of reduced dimension of 32. The design
and training of the autoencoder is typical (hidden layers with ReLU
activation, output with sigmoid, cross-entropy loss, mini-batches
of 128 inputs, stochastic gradient descent with Adam optimization
[9], early stopping at 12 epochs). The hope in using an autoencoder
to learn a nonlinear embedding for the state is that clusters of
differentiated state character will also discriminate network-wide
ridership experience.

The nature of the encoding as a vector space that may provide
clustering associated with the desired classification suggests intu-
itively that k-nearest neighbor would be an appropriate classifica-
tion technique to apply. To confirm our intuitive choice of kNN
classification, we compared kNN to decision tree and naive Bayes
classifiers and confirmed the superiority of the nearest neighbor
classifier (7-13% improvement in accuracy for binary above/below
mean categorization).

We compared performance of various numbers of neighbors as
well as linear support vector classification (SVC) for a range of
ground-truth binary threshold division values (Table 1); note that
model selection in application might also be influenced by desirable
operational capability (value of classification division point) as well
results driven by the data. Here, we suggest 0.4 might represent a
reasonable balance between predictive performance and ability to
segregate normal-customer-experience mode from poor-customer-
experience mode. Considering 38,588 values of late-customer per-
centage and corresponding HDW sequences/predictions from May,
Aug, and Oct of 2015, late-customer-percentage characteristics are
given in Fig. 16. Using a training dataset of 80% of values and a test
data set of 7,718 values (20%) and pre-trained RNN state prediction
and autoencoder networks previously described, we first consid-
ered prediction of in-flight late-customer-percentage performance
based on categorization as above and below a sliding ground-truth
threshold value for various numbers of kNN neighbors (Fig. 17).

Considering the character of the late-customer-percentage his-
togram, it seems likely that the classifier has difficulty differenti-
ating standard modes of network operation leading to common
customer experience in the lower, more bunched section of the
late-customer fraction histogram, below 0.4 (Fig.16).

WMATA is interested in increasing prediction performance and
granularity at lower values of customer late percentage to refine
performance during standard operations to maximize efficiency.
However, WMATA is more interested in the less frequent, but more
impactful, longer delays in support of its "Rush Hour Promise"
initiative. Therefore, sacrificing granularity at the lower range of
late-ridership percentage in the interest of improving percentages
at the higher range may be an appropriate tradeoff. Varying the
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Figure 17: Binary Classifier Accuracy Versus Threshold
Value

categorization threshold for various numbers of categories in late-
customer percentage confirms our suspicion that values in the
lower quartile/near the mode of operation result in poor classifier
performance. Fig. 17 shows variation in the accuracy for a single
threshold value/binary classification. Adopting a three neighbor
classifier with the lowest threshold value near the inflection point
0.4 to discriminate between normal operation modes below, and
operation modes of concern above (see bold values in Table 1)
additional categories may be introduced. Fig. 18 and 19 show heat
maps of accuracy varying two threshold values for 3 neighbors.
When the three threshold values are set to 0.4, 0.55, and 0.7 we are
still able to achieve an overall classifier accuracy of 0.867.

9 CONCLUSION

Metrorail data, both passenger tap-in/tap-out and train movement,
enable modeling of WMATA’s OTP metric. Unfortunately, as is com-
mon in the transit industry, the data sets are large and cumbersome
to work with. They show lack of diligence in fields with manual
coding/entry, issues with sensor data, corruption in file export and
handoff and other challenges that result in ‘dirty data’. Some as-
pects of the data, particularly those naturally flowing from network
operation and not under WMATA’s direct control, exhibit long-tail
power-law scale-free distributions. The network itself is geospa-
tially distributed and the data has important temporal sequencing,
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but the nature of the geospatial network is not simple, consisting
of separate, yet interconnected and overlapping networks.

This initial exploration created new bases for defining the state of
the network, algorithms for extracting regularized information from
the datasets, and demonstrated that regression, encoders, neural
networks, and classifiers are capable of providing WMATA with
predictive and passenger-associative knowledge that they have
never had available to high accuracy.

10 FUTURE WORK AND NEXT STEPS TO
DEPLOYMENT

Further research regarding delay propagation could investigate a
more accurate depiction that either simultaneously applies a shift
in both directions based on a passenger’s direction of travel or
investigates the correlations by direction. This should increase cor-
relations because if a single train is delayed it should primarily
affect only customers traveling in that direction. Certain delays like
single-tracking (where trains traveling in both directions have to
share a single section of track) and over-crowding can still propa-
gate across both directions which is why we saw the results we did
in our analysis.

WMATA is interested in utilizing the prediction models opera-
tionally in practice. Some remaining steps to deployment include
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Table 1: Table Performance of Binary Classifiers Versus Threshold Value.

Threshold | Accuracy Recall Precision
3NN 5NN  SVC 3NN 5NN SVC 3NN 5NN  SVC
0.200 0.8393 0.8730 0.8760 | 0.8915 0.9757 0.9855 0.9157 0.8853 0.8814
0.250 0.7804 0.7848 0.7932 | 0.7612 0.8350 0.9336 0.9037 0.8490 0.7990
0.300 0.8003 0.8066 0.8111 | 0.7384 0.7569 0.7618 0.9006 0.8945 0.8982
0.350 0.8593 0.8570 0.8496 | 0.7855 0.8017 0.7681 0.9175 0.8974 0.9132
0.400 0.9081 0.9068 0.8871 | 0.8018 0.8078 0.8111 0.9831 0.9726  0.9190
0.450 0.9396 0.9385 0.9118 | 0.8583 0.8627 0.8681 0.9827 0.9745 0.8993
0.500 0.9540 0.9531 0.9100 | 0.8807 0.8799 0.8900 0.9797 0.9776  0.8482

automating the data cleaning systems described here and integrat-
ing incident data. WMATA has records for about 10,000 incidents
a year. These incidents range from personal breaks by a train con-
ductor to entire lines being shutdown to regularly scheduled main-
tenance. Integrating maintenance records is crucial to ensure that
the forecasting ability mentioned here dovetails with operational
planning processes seamlessly.

The system as described in this paper could be applied to any rail
network that collects Tap-In/Tap-Out data and/or Train Movement
Data (departure time from stations, i.e., HDW). Additional datasets
described in Section 3.3 and Fig. 6 are typically maintained by most
transit authorities and could be created manually if not.
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