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Modern studies of societal phenomena rely on the availability of large datasets capturing attributes and

activities of synthetic, city-level, populations. For instance, in epidemiology, synthetic population datasets are

necessary to study disease propagation and intervention measures before implementation. In social science,

synthetic population datasets are needed to understand how policy decisions might affect preferences and

behaviors of individuals. In public health, synthetic population datasets are necessary to capture diagnostic

and procedural characteristics of patient records without violating confidentialities of individuals. To generate

such datasets over a large set of categorical variables, we propose the use of the maximum entropy principle

to formalize a generative model such that in a statistically well-founded way we can optimally utilize given

prior information about the data, and are unbiased otherwise. An efficient inference algorithm is designed

to estimate the maximum entropy model, and we demonstrate how our approach is adept at estimating

underlying data distributions. We evaluate this approach against both simulated data and US census datasets,

and demonstrate its feasibility using an epidemic simulation application.
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1 INTRODUCTION

Many research areas, e.g., epidemiology, public health, social science, study the behavior of large
populations of individuals under natural scenarios as well as under human interventions. A key
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need across these domains is the ready availability of realistic synthetic datasets that can capture
key attributes and activities of large populations.

For instance, in epidemiology, synthetic populations are necessary to study disease propagation
and intervention measures before implementation. Information from the US census is typically used
to model such synthetic datasets. In social science, synthetic populations are necessary to under-
stand how policy decisions might affect preferences and behaviors of individuals. Finally, in public
health, synthetic populations are necessary to capture diagnostic and procedural characteristics of
patient records without violating confidentialities of individuals.
Typically, the constraints underlying synthetic population generation are assumptions on the

supporting marginal or conditional distributions. Although there exist prior studies in estimating
probability distributions subject to constraints (e.g., Monte Carlo methods), they are primarily
focused on continuous-valued data. Many domains on the other hand, such as those studied here,
feature the need for multi-dimensional categorical datasets.

As a case in point, in epidemiology, one important task is to simulate disease spread and potential
outbreaks on the city- or nation-level, and provide useful information to public health officials to
support policy and decision making. To make such simulations as accurate as possible, synthetic
populations that have the same structural and behavioral properties as the real population are
needed. In domains like health care, privacy is an additional issue motivating the design of synthetic
populations. In these applications, the necessary datasets to be generated can be represented as
tuples with categorical data attributes.

Motivated by these emerging needs, we focus our attention on constructing a generative model
that captures given characteristics of categorical population attributes, and best estimates the
underlying data generation distribution. However, modeling multi-dimensional categorical data
and estimating distributions can be quite challenging due to the exponential possibilities of data
spaces in terms of the number of dimensions of categorical data tuples. Although many dimension
reduction techniques [29] and pattern recognition algorithms [12, 28] have been proposed and
studied in many other machine learning and data mining research areas, it is difficult to simply
apply them here in our problem setting. To address these challenges and difficulties, we take the
first step here to study this problem. To model categorical data with statistical constraints, we apply
the classical and statistically well-founded maximum entropy model. We construct a generative
maximum entropy model, which takes the data schema (the set of all categorical attributes that
appear in the data) and a set of constraint categorical patterns (a subset of categorical attributes with
corresponding probabilities of appearance in the data), as shown in Fig. 1, wherein the probabilities
of certain categorical patterns are required to satisfy given constraints. In this way, the maximum
entropy model maintains the selected characteristics of the underlying categorical data distribution.
By sampling the categorical tuples from the maximum entropy model, synthetic population datasets
can be generated as illustrated by Fig. 1.
Generally, solving maximum entropy models can be infeasible in practice. In this paper, we

show that by leveraging the structure of the categorical data space in our setting, the maximum
entropy model could be inferred quite efficiently. We also propose a heuristic together with the
Bayesian information criterion (BIC) to select a simple as well as informative model. To summarize
our approach in a nutshell, our contributions are:

(1) We formalize the problem of generating synthetic population datasets via a generative
maximum entropy model for categorical data, which captures the statistical features of the
underlying categorical data distributions.
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Fig. 1. Process of generating realistic synthetic data with our proposed approach.

(2) By exploring the structure of the categorical data space, we propose a partition scheme to
make the maximum entropy model inference more efficient than the general case. We also
present an efficient graph-based model inference algorithm.

(3) We propose a BIC-based heuristic to perform model selection wherein the simple and
informative maximum entropy model will be chosen.

(4) Using results on both synthetic datasets and real US census data, we demonstrate that the
proposed maximum entropy model is capable of recovering the underlying categorical data
distribution and generating relevant synthetic populations.

2 PRELIMINARIES

Let A = {A1,A2, . . . ,Aq} denote a set of categorical random variables (or attributes), and R(Ai ) =
{a(i)1 ,a(i)2 , . . . ,a(i)ki } represent the set of ki possible values for random variable Ai . Here, | · |, e.g.
|R(Ai )|, is used to represent the cardinality of a set.
By a random categorical tuple, we mean a vector of categorical random variables, e.g. T =

(A1,A2, . . . ,Aq), which is generated by some unknown probability distribution. The notation
of T (Ai ) is used to represent the value of attribute Ai in tuple T . The space of all the possible
categorical tuples is denoted by S = �q

i=1 R(Ai ), where � · represents a series of Cartesian
product over the given sets. Given a categorical pattern, which is defined as an ordered set
X = (Ai | Ai ∈ C,C ⊆ A) over a subset of random variables C ⊆ A, let SX =

�
Ai ∈C R(Ai )

represent the space that contains all the possible values of pattern X . An instantiation of pattern X

is defined as x =
(
a(i)j | a(i)j ∈ R(Ai ),Ai ∈ C,C ⊆ A

)
, and X (Ai ) is used to represent the value of

attribute Ai in the pattern X .
For any pattern value x associated with pattern X , we use the notation of T = x if the corre-

sponding random variables in T equal to the values in x and p(T = x) to denote the probability of
T = x . Given a categorical dataset D, p̃(T = x | D) is used to denote the empirical probability of
T = x in the dataset D. An indicator function IX (T = x) : S → {0, 1} of pattern X , which maps a
categorical tuple to a binary value, is defined as:

IX (T = x) =
{
1, if T = x ,
0, otherwise.
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Table 1. Summary of frequently used notation.

Ai categorical random variable A a set of categorical random variable

a(i) value for random variable Ai R(Ai ) set of possible values for Ai

| · | set cardinality T random categorical tuple
T (Ai ) value of random variable Ai in T X categorical pattern
X (Ai ) value of Ai in pattern X x value instantiation of pattern X
S entire categorical tuple space SX categorical tuple space spanned by pattern X
p probability distribution p̃ empirical probability distribution
D categorical dataset H (p) entropy of probability distribution p

IX (·) indicator function of pattern X u,v maximum entropy model parameters

Given a probability distribution p over the categorical tuple space S, the entropy H (p) with
respect to p is defined as:

H (p) = −
∑
T ∈S

p(T ) logp(T ) .

The maximum entropy principle states that among a set of probability distributions P that comply
with the given prior information about the data, the maximum entropy distribution

p∗ = argmax
p∈P

H (p)

will optimally use the current prior information and best summarize the data. Otherwise, it is fully
unbiased. Table 1 summarizes the frequently used notations in this paper.

Problem Statement. Given a set of categorical patterns X with associated empirical probabilities
as the prior information of a dataset, find a probabilistic model p that best utilizes the given prior
information and helps regenerate categorical datasets that conform to the given prior information.

3 CATEGORICAL MAXIMUM ENTROPY MODEL

3.1 Model Specification

Suppose we have a set of categorical patterns X = {Xi | i = 1, 2, . . . ,n} and an associated set of

empirical probabilities P̃ = {p̃(T = x i, j | D) | x i, j ∈ SXi
, i = 1, 2, . . . ,n} as prior information about

dataset D. Here, x i, j denotes the jth value of the pattern Xi . Notice that it is not necessary that
every possible value of pattern Xi in SXi

is provided as part of the prior information here. Such
prior information identifies a group of probability distributions P over S which agree with the
empirical probabilities of the given categorical patterns. That is:

P = {
p | p(T = x i, j ) = p̃(T = x i, j | D),∀Xi ∈ X, p̃(T = x i, j | D) ∈ P̃

}
. (1)

Following the maximum entropy principle [5], for all p ∈ P, we are particularly interested in the
maximum entropy distribution which optimally represents the given prior information. The famous
theorem proved by Csiszár [5] (Theorem 3.1) shows that the maximum entropy distribution has an
exponential form. In our categorical scenario, the maximum entropy distribution could be written
as

p∗(T ) = u0
∏
Xi ∈X

∏
x i, j ∈SXi

(
ui, j

) IXi (T=x i, j ) , (2)

where ui, j ∈ R are the model parameters associated with each model constraint specified in
Equation (1), and u0 is the normalizing constant.
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ALGORITHM 1: Sampling random categorical tuples

input :Maximum Entropy model p∗.
output :A random categorical tuple T .

1 T ← ∅;

2 foreach Ai ∈ A do

3 foreach a
(i)
j ∈ R(Ai ) do

4 compute the conditional probability p∗(a(i)j | T );
5 T (Ai ) ← Sample(R(Ai ), {p∗(a(i)j | T )});
6 return T ;

3.2 Incorporating Individual Attribute Frequencies

The frequencies of individual attributes play an important role in the pattern analysis and discovery.
Such frequencies characterize the attribute marginal distributions which convey basic information
about the data currently under investigation, and yet are relatively easy to calculate from the data.
Incorporating such individual attribute frequencies will enrich the categorical maximum entropy
model, and make it more informative.

Although such individual attribute frequencies can be treated as part of the categorical pattern set
X, considering the computation efficiency which will be explained in detail in the next section, the
categorical maximum entropy model treats them separately. Let vi, j denote the model parameters
corresponding to the individual attribute constraints, then, the maximum entropy distribution can
be factorized as:

p∗(T ) = u0
∏
Xi ∈X

∏
x i, j ∈SXi

(
ui, j

) IXi (T=x i, j ) × ∏
Ai ∈A

∏
aj ∈R(Ai )

(
vi, j

) IAi (T=aj ) . (3)

Notice that the second component involved with vi, j also follows the exponential form described
in Equation (2). By introducing a normalizing constant v0, an independent maximum entropy
distribution pA(T ) that only involves individual attribute constraints could be defined as:

pA(T ) = v0
∏
Ai ∈A

∏
aj ∈R(Ai )

(
vi, j

) IAi (T=aj ) . (4)

Combining Equation (3) and (4), the maximum entropy distribution that incorporates individual
attribute frequencies would be specified as:

p∗(T ) = pA(T )u0
v0

∏
Xi ∈X

∏
x i, j ∈SXi

(
ui, j

) IXi (T=x i, j ) . (5)

3.3 Sampling Categorical Tuples from the Model

The ideal way to sample categorical tuples from the model would be first computing the probabilities
for each tuple T ∈ S under the maximum entropy distribution p∗, and then sampling the tuples
from the complete tuple space S based on their probabilities. However, such straightforward
approach is not feasible in practice when S is large enough.

Instead, we propose an attribute-wise sampling approach. Algorithm 1 summarizes the procedure
that generates random categorical tuples from the maximum entropy model p∗. To sample random
tuples, we take the following steps. Starting with a empty categorical tuple T (line 1), for each

categorical attribute Ai ∈ A, we compute the probability of each possible value a(i)j ∈ R(Ai )
conditioned on those attribute values we have already sampled in tuple T (line 3 – 4). Based on
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ALGORITHM 2: Iterative Scaling for Categorical Maximum Entropy Model

input :A set of categorical patterns X, and associated empirical probabilities P̃ .
output :The maximum entropy model p∗.

1 Initialize p(T ) = 1
|S | ,∀T ∈ S;

2 while p is not converged do

3 foreach Xi ∈ X do

4 foreach x i, j ∈ SXi
s.t. p̃(T = x i, j ) ∈ P̃ do

5 Compute p(T = x i, j );
6 ui, j ← ui, j · p̃(T=x i, j |D)

p(T=x i, j ) · 1−p(T=x i, j )
1−p̃(T=x i, j |D) ;

7 u0 ← u0 · 1−p̃(T=x i, j |D)
1−p(T=x i, j ) ;

8 return p;

the conditional probability distribution just calculated for attribute Ai , the value of Ai in tuple T is
randomly sampled from its range R(Ai ) (line 5). Notice that the order of selecting attributes could
be random, and from statistical point of view, this should not affect the sampling result.

4 MODEL INFERENCE

In this section, we develop an efficient algorithm to infer the categorical maximum entropy model.
To infer the categorical maximum entropy model, we need to find the values of model parameters
u0 and ui, j (also v0 and vi, j if individual attribute constraints are involved). Our algorithm is built
on the well-known Iterative Scaling [6] framework, which is described in Algorithm 2. The general
idea of the algorithm is that starting from the uniform distribution, it iteratively updates each model
parameter to make the distribution satisfy the corresponding constraint until it converges to the
maximum entropy distribution. The proof of convergence for the Iterative Scaling algorithm is out
of the scope for this paper. Readers who are interested in the proof of convergence can refer to the
paper by Darroch and Ratcliff [6] for details. A crucial step in the Iterative Scaling algorithm is to
compute the probability of every categorical pattern Xi = x i, j ∈ X under the current estimation of
maximum entropy distribution p, which could be simply calculated as p(T = x i, j ) = ∑

p(T ) where
IXi

(T = x i, j ) = 1. However, such straightforward strategy is infeasible in our problem setting since
it will result a computational complexity of

∏
Ai ∈A |R(Ai )| for a single model parameter update.

In fact, querying maximum entropy models has been shown to be PP-hard [30]. To overcome such
challenge, we present our proposed efficient model inference algorithm in the rest of this section.

4.1 Efficient Model Inference

In order to efficiently query the maximum entropy model during the iterative updates of the model
parameters, we need to explore the particular structure of the tuple space S determined by the
given pattern set X. We will start with the simpler case where individual attribute constraints
are not involved. After examining the exponential form of the maximum entropy distribution in
Equation (2), we observe that for any two categorical tuplesT1 andT2 in S, if they contain the same
subset of categorical patterns inX, they will have the same probability under the maximum entropy
distribution inferred based on X. In other words, ∀T1,T2 ∈ S, if IXi

(T1 = x i, j ) = IXi
(T2 = x i, j )

holds true for all Xi ∈ X and p̃(T = x i, j | D) ∈ P̃ , then p∗(T1) = p∗(T2). Based on such observation,
we have the following definition of tuple block.

Definition 4.1. A tuple block B is a set categorical tuples such that ∀T1,T2 ∈ B, IXi
(T1 = x i, j ) =

IXi
(T2 = x i, j ) holds true for all Xi ∈ X, x i, j ∈ SXi

,and p̃(T = x i, j | D) ∈ P̃ .
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ALGORITHM 3: Constructing the tuple block graph

input :A set of categorical patterns X, and associated empirical probabilities P̃ .
output : tuple block graph G.

1 Let G ← {∅};
2 foreach Xi ∈ X,x i, j ∈ SXi

s .t . p̃(T = x i, j ) ∈ P̃ do

3 foreach Bk ∈ G do

4 Bnew ← createBlock(Bk ,Xi);

5 if Bnew � Null then

6 findPosition(∅, Null, Bnew);

7 return G;

With the definition of tuple block, we could partition the entire categorical tuple space into
several tuple blocks. When |X| � |A|, the partition scheme introduced here could greatly reduce
the dimensionality of the space we are working on. Here, we use BX to denote the tuple block space
generated based on pattern set X. Also, the definition of tuple block let us extend the indicator
function defined over tuple space to the domain of tuple block, which is defined as:

IXi
(B | x i, j ) = IXi

(T = x i, j ), ∀Xi ∈ X,T ∈ B.

By introducing tuple blocks, we transfer the problem of computing categorical pattern probability
p(T = x i, j ) on tuple space to the block space, which makes it possible to calculate p(T = x i, j ) in a
reasonable time. In the context of tuple blocks, the pattern probability p(T = x i, j ) would be

p(T = x i, j ) =
∑

B∈BX,
IXi (B |x i, j )=1

p(B) ,

where p(B) is the probability for tuple block B. Since the probabilities for the categorical tuples
within the same block are all the same, the probability for the tuple block B is defined as:

p(B) =
∑
T ∈B

p(T ) = |B | × u0
∏
Xi ∈X

∏
x i, j ∈SXi

(ui, j )IXi (B |x i, j ) .

Now, our problem comes down to how to organize the tuple block space BX and efficiently
compute the number of categorical tuples in each block, or in other words, the size |B | of each tuple
block B. In order to achieve that, we introduce a partial order on BX . Let

attr(B) =
⋃

Xi ∈X,
IXi (B |x i, j )=1

Xi ,

which represents the set of attributes involved by the categorical patterns that tuple block B contain.
Then, we have the definition about the partial order over BX as described below.

Definition 4.2. Given any tuple blocks B1,B2 ∈ BX , B1 ⊆ B2 if and only if the following conditions
hold true:

(1) attr(B1) ⊆ attr(B2);
(2) B1(Ak ) = B2(Ak ), ∀Ak ∈ attr(B1) ∩ attr(B2).

Here, B(Ak ) denotes the value of attribute Ak in the tuple block B. It is easy to verify that Defini-
tion 4.2 satisfies the property of reflexivity, antisymmetry and transitivity.
With the partial order ⊆ defined on BX here, it is natural to organize the tuple blocks into a

hierarchical graph structure. That is, if tuple block Bk ⊆ Bl , block Bl is organized as the child
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ALGORITHM 4: findPosition procedure

input :Current block Bcurr , last visited block Blast , new block Bnew .
output :Success or Fail.

1 if Bnew and Bcurr are the same then

2 return Success;

3 else if Bnew ⊆ Bcurr then
4 child(Blast ) ← child(Blast ) \ {Bcurr };
5 child(Bnew) ← child(Bnew) ∪ {Bcurr };
6 child(Blast ) ← child(Blast ) ∪ {Bnew};
7 return Success;

8 else if Bcurr ⊆ Bnew then

9 if child(Bcurr ) = ∅ then

10 child(Bcurr ) ← child(Bcurr ) ∪ {Bnew};
11 return Success;

12 else

13 failBlock ← InsertDescendant(Bnew, Bcurr);

14 checkDescendant(failBlock, Bnew);

15 return Success;

16 return Fail;

17 Procedure InsertDescendant(Bnew, Bcurr):
18 failBlock ← ∅, accu ← Fail;

19 foreach Bk ∈ child(Bcurr ) do
20 r ← findPosition(Bk , Bcurr , Bnew);

21 if r = Success then

22 accu ← Success;

23 else

24 failBlock ← failBlock ∪ {Bk };
25 if accu = Fail then

26 child(Bcurr ) ← child(Bcurr ) ∪ {Bnew};
27 return failBlock;

of block Bk . Algorithm 3 illustrates how such block graph is constructed and maintained. The
algorithm starts with the graph that has only one block represented by ∅ indicating that none
of the categorical patterns is involved in this block (line 1). We will refer this block as root block
in the rest of this section. Then, for each of the categorical pattern Xi ∈ X and its possible value
x i, j , we attempt to create a new tuple block by merging it with every existing block Bk from
root level to leaf level (without child blocks) in the current block graphG if they are compatible
(line 4). A categorical pattern Xi is not compatible with tuple block Bk if attr(Bk ) ∩ Xi � ∅, and
∃Ai ∈ attr(Bk ) ∩ Xi such that Bk (Ai ) � Xi (Ai ). If a new tuple block Bnew is created, it is obvious
that for all Xl ∈ X, IXl

(Bk | x l, j ) = 1, we have IXl
(Bnew | x l, j ) = 1 and also IXi

(Bnew | x i, j ) = 1.
Finally, the new tuple block Bnew will be added into the current block graph G based on the partial
order described in Definition 4.2 (line 6).
To be more specific, Algorithm 4 illustrates how the procedure findPosition inserts a new tuple

block into the block graph G in a recursive manner. Depending on the relationship between the
current block Bcurr we are visiting and the new block Bnew , the insertion operation could be classified
into four scenarios.
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XXXX|  

Attributes:  
Number of values: 2, 3, 2, 2, 3, 4 

Pattern sets & their values: 
    
    
    

XXXXXX|  Empty model: 

Adding : XXXXXX|  XXXX|  merge with 

XXXX|  XXXX|  

XXXXXX|  

XXXX|  XXXX|  

Adding : 
X XXX|  

X XXX|  merge with 

X XXX|  X XXX|  

XXX|  XXX|  

Adding : XXXXXX|  

XXXX|  XXXX|  X XXX|  X XXX|  

XXX|  XXX|  

XX XX|  merge with 

XX XX|  

XX|  

XX|  

XX|  X XX|  

Fig. 2. Example of constructing the tuple block graph on a toy dataset with 6 attributes and 3 categorical

patterns. The blocks marked with red denote the new tuple blocks created in each iteration by adding new

categorical patterns.

Case 1: Bnew and Bcurr are the same tuple block. Two tuple block Bk and Bl are considered to be the
same if they cover the same set of categorical patterns, e.g. ∀Xi ∈ X,x i, j ∈ SXi

s .t . p̃(T = x i, j ) ∈ P̃ ,
we have IXi

(Bk | x i, j ) = IXi
(Bl | x i, j ). Since block Bnew and Bcurr are the same and Bcurr is already

part of the block graph, inserting Bnew into block graph is not necessary any more. Thus, we simply
return Success in this scenario (line 1 – 2).
Case 2: Bnew ⊆ Bcurr . In this case, the new tuple block Bnew should be inserted between block Blast

and Bcurr , where Blast is the last visited tuple block. To achieve this, block Bcurr is first removed
from the child block set of Blast , and added as a child block of Bnew . Finally, the new block Bnew is
inserted as a child block of Blast , and Success is returned (line 3 – 7).
Case 3: Bcurr ⊆ Bnew . In this scenario, the new tuple block Bnew should be inserted as a descendant
of the current block Bcurr . Depending on whether the block Bcurr has any child blocks, the insertion
operation can be further divided into two sub-cases:

• Case 3.1: block Bcurr has no child block. In this scenario, the new block Bnew is directly
inserted as a new child of Bcurr (line 9 – 11);

• Case 3.2: block Bcurr has child blocks. Then, for each child block of Bcurr , the findPosition
procedure is recursively performed to find the correct position to insert block Bnew (line 19
– 24). If none of these operations succeeds, block Bnew will be inserted as a new child block
of Bcurr (line 25 – 26). At last, the descendants of the child blocks of Bcurr on which the
findPosition procedure failed to insert the block Bnew are further examined to see whether
any of them could satisfy the partial order with block Bnew and be added as a child block of
Bnew (line 14, checkDescendant procedure).

Case 4: Bnew does not have any particular relationship with Bcurr . In this case, nothing needs to
done with the tuple blocks Bcurr and Bnew , and Fail is simply returned to indicate that the attempt
to insert block Bnew is failed.

Figure 2 shows an example of constructing such hierarchical block graph on a small toy dataset
with 6 attributes and 3 categorical patterns. With the block graph G, the size of the tuple block
could be easily calculated using the set inclusion-exclusion principle. We first define the cumulative
size of a tuple block B, which is given by

cum(B) =
∏

Ai ∈A\attr(B)
|R(Ai )| .
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ALGORITHM 5: computeBlockSize procedure

input : tuple block graph G, current visited block Bcurr .
output :Block size for each B ∈ BX .

1 cum(Bcurr ) ← ∏
Ai ∈A\attr(Bcurr )

|R(Ai )|;
2 if child(Bcurr ) = ∅ then

3 |Bcurr | ← cum(Bcurr );
4 return;

5 foreach Bk ∈ child(Bcurr ) do
6 computeBlockSize(G, Bk);

7 |Bcurr | ← cum(Bcurr ) − ∑
Bk ∈desc(Bcurr )

|Bk |;
8 return;

Then the actual block size for block B could be computed as

|B | = cum(B) −
∑

Bk ∈BX,B⊆Bk
|Bk | .

In the block graph G, the tuple blocks that satisfy Bk ∈ BX,B ⊆ Bk are simply those descendant
blocks of B. Algorithm 5 describes the procedure of computing block size for each tuple block in
BX with the block graphG , where desc(B) represents the set of descendant blocks of B in the graph
G.

When individual attribute constraints are taken into account, the problem becomes a little more
complicated. However, it is obviously not feasible to combine the individual attribute constraints
with the categorical pattern constraints together and construct the tuple block graph. This will make
the tuple block space blow up. Instead, as we mentioned previously in Section 3, the individual
attribute constraints are modeled with a separate maximum entropy distribution pA , defined in
Equation (4), which only considers these constraints. The block graph G is still constructed based
on the categorical patterns in X, which will exactly have the same structure as before. In this case,
following the same logic, the probability for tuple block B becomes

p(B) = pA(B) · u0
v0

·
∏
Xi ∈X

∏
x i, j ∈SXi

(ui, j )IXi (B |x i, j ) ,

where pA(B) = ∑
T ∈B pA(T ) denotes the probability of tuple block B under the separate maximum

entropy distribution pA . Thus, the problem of computing the probability p(T = x i, j ) becomes
calculating probabilities of tuple blocks pA(B) for each B ∈ BX . Since pA only takes the individual
attribute constraints into account, every attribute is independent of each other under the maximum
entropy distribution pA . Similar to the cumulative size of a tuple block, we define the cumulative
probability of a tuple block under pA as

p(c)A (B) =
∏

Ai ∈attr(B)
pA

(
T = a(i)j

)
,

where a(i)j is the value of attribute Ai associated with tuple block B. With the exponential form

described in Equation (4), it is not difficult to verify that the probability ofT = a(i)j under maximum

entropy distribution pA is:

pA
(
T = a(i)j

)
=

vi, j∑ki
l=1

vi,l
.
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Again, to compute pA(B) for all B ∈ BX with the set inclusion-exclusion principle, we could

directly apply the computeBlockSize procedure with |B | and cum(B) replaced by pA(B) and p(c)A (B)
respectively.

Notice that the model parameters vi, j also need to be updated in the Iterative Scaling framework.
However, the block graphG is constructed without considering individual attribute patterns, which
makes it difficult to compute the probabilities of these individual attribute patterns under the
maximum entropy model directly from the block graphG. In order to get these probabilities, we
treat these individual attribute patterns as arbitrary categorical patterns and query their probabilities
from the maximum entropy model. The detail of querying the maximum entropy model will be
described in the next section.

Finally, the model inference algorithm could be further optimized in the following way. Suppose
the categorical patterns in X could be divided into two disjoint groups, e.g. X1,X2 ⊂ X and
X1 ∪ X2 = X such that ∀X1 ∈ X1,∀X2 ∈ X2 we have X1 ∩ X2 = ∅. In this case, the maximum
entropy model p∗X over X could be factorized into two independent components p∗X1

and p∗X2
such

that p∗X = p∗X1
· p∗X2

. Furthermore, p∗X1
and p∗X2

only rely on pattern set X1 and X2, respectively.

Such decomposition greatly reduces the sizes of tuple block spaces BX1 and BX2 compared to the
original BX , and could also be extended to the scenario when there are multiple such disjoint
pattern groups. Due to the independence between these maximum entropy components, they can
also be inferred parallelly to further speed up the model inference process.

4.2 Querying the Model

Given an arbitrary categorical patternX ′ � X with associated valuex ′, to query its probability under
the maximum entropy distribution p∗, we perform the following operations. LetX′ = X∪{X ′}, and
a temporary tuple block graphG ′ is constructed by applying the procedure described in Algorithm 3
over categorical pattern set X′. Then the size of each tuple block in graphG ′ is computed by calling
computeBlockSize procedure, and the probability of categorical pattern X ′ is given by

p∗(T = x ′) =
∑

B∈BX′
IX ′ (B |x ′)=1

p∗(B) .

4.3 Computational Complexity

Constructing the tuple block graph (Algorithm 3) requires |BX | insertion operations. Since the
block graph has a hierarchical structure, let’s define the depth of the tuple block graph as the
maximum number of hops (parent-child relationship) from the root block∅ to the leaf block. Notice
that the parent-child relationship between tuple blocks in the graph is based on the partial order
described in Definition 4.2, which indicates that the maximum possible depth of the tuple block
graph would be |A|. Thus, the complexity of constructing the tuple block graph in the worst case
would be O(|A| · |BX |). When inferring the maximum entropy model, the probability of each
tuple block needs to be calculated for each model parameter update (Algorithm 5), which results
a complexity of O(|BX |). If we let N denote the number of model parameters, the complexity
of inferring the maximum entropy model would be O(K · N · |BX |), where K is the number of
iterations required for the proposed inferring algorithm to converge.

5 MODEL SELECTION

In order to discover the most informative prior information from the pattern set X, we adopt the
Bayesian Information Criterion (BIC), defined as:

BICX = −2 logLX + N · log |D | ,
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where logLX denotes the log-likelihood of the maximum entropy model inferred over the pattern
set X, N represents the number of model parameters, and |D | is the number categorical tuples
in the dataset D. With the exponential form of the maximum entropy distribution specified in
Equation (2), its log-likelihood given dataset D is equal to

logLX =
∑
T ∈D

logp∗(T ) = |D |
(
logu0 +

∑
Xi ∈X

∑
x i, j ∈SXi

p̃(T = x i, j | D) · logui, j
)
.

The ideal approach to select the most informative categorical patterns from the pattern set X
would be finding a subset of X that minimizes the BIC score of the model. However, notice that this
approach involves a number of model inference operations which is proportional to the number of
subsets of X. Considering the computation required for the model inference, this method may be
infeasible in practice. Hence, we resort to heuristics. Basically, what we desire are the patterns
whose empirical probabilities diverge most from their probabilities under current maximum entropy
model. In this case, they will contain the most new information compared to what the model
already knows. Thus, we borrow the idea from Kullback-Leibler (KL) divergence, where we make
the probability of the categorical pattern X under consideration as one term and the rest of the
probability mass as the other term. To be more specific, the heuristic we use is defined as

h(α , β) = α log
α

β
+ (1 − α) log 1 − α

1 − β
.

Instead of directly searching in the space of power set of X, we adopt an iterative search strategy.
Starting from the empty model without any prior information, in each iteration, we choose the
pattern X ∈ X that maximizes the heuristic h(p∗(T = x), p̃(T = x | D)) to update the current
maximum entropy model. Here, p∗(T = x) and p̃(T = x | D) denote the probability of pattern
X under current maximum entropy model and its empirical probability in the given dataset D,
respectively. As the model incorporates more and more patterns in X, it becomes more certain
about the data, and the negative log-likelihood decreases. However, the model becomes more
complicated at the same time, and the penalty term in BIC becomes large. This procedure continues
until the BIC score does not decrease any more.

6 EXPERIMENTAL RESULTS

6.1 Synthetic Data Generation

To evaluate the proposed maximum entropy model against the true generating distribution of
categorical data, we generate synthetic datasets. Usually when the entire categorical data space
is large, it is infeasible to specify an exact generating distribution for categorical data. Thus, we
generate the synthetic data D with the following approach.
A set of categorical attributes A is first generated, and the number of possible values for

each attribute Ai ∈ A is randomly sampled from a given range. Each categorical attribute Ai is
associated with a random generated probability distribution (marginal distribution) that specifies
the probability of each possible value of Ai . In order to enforce dependencies between attributes, a
set of categorical patterns X is generated and each of these patterns is associated with a probability.
To generate a categorical tuple in the synthetic dataset, we sample from a Bernoulli distribution
parameterized by the pattern frequency of each X ∈ X to determine whether this tuple should
contain this pattern or not. If conflicts occur, the current pattern X will not be added into the
tuple. For the rest of the attributes that are not covered by any of these patterns in X, their values
in the generated categorical tuple are sampled independently from their corresponding marginal
distributions respectively. Such process is repeated to obtain the desired number of categorical
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Fig. 3. The gain of the log-likelihood of the full model and heuristic model compared to the base line model.

The blue line and orange line are so close that they overlap with each other in some iterations. Also notice

that orange line for heuristic model stops early due to the model selection with BIC.

tuples in the synthetic dataset. In our experiments, we set |A| = 100, |X| = 50, and |D | = 10, 000.
All the experiments were conducted on a 80-core Xeon 2.4 GHz machine with 1 TB memory, and
the results were averaged across 40 independent runs.

6.2 Results on Synthetic Data

We first verify that the heuristic function h(α , β) proposed in Section 5 could discover the most
informative patterns from X based on the current knowledge that the model already knows. We
refer the maximum entropy model inferred with entire pattern set X and all the individual attribute
frequencies as full model, and the maximum entropy model selected by the heuristic and BIC as
heuristic model. Notice that in the heuristic model, individual attribute frequencies are also taken
into account. In this experiment, we iteratively updated the model with the patterns in X, and
measured the log-likelihood in each iteration. However, using BIC to select the model may result
different number of patterns incorporated over different synthetic datasets. Thus, we report the
results over a single synthetic dataset here. For the full model, the pattern in X that maximized the
log-likelihood in each iteration was selected and added to the model.
Figure 3 illustrates the gain of the log-likelihood as the model incorporates more and more

patterns in X. As expected, the gain of the log-likelihood of the full model is larger in some
iterations since it identifies the optimal pattern in each iteration with respect to the likelihood. We
also observe that although not optimal, the log-likelihood of the heuristic model approximates
that of the full model quite well, which demonstrates that the proposed heuristic successfully
identifies the relatively informative patterns in each iteration. In the last few iterations, the gain of
log-likelihood of the full model barely changes. This indicates that the patterns selected in these
iterations are less informative or even redundant.

To assess the quality of the reconstruction, we aim to apply the KL divergence measure. However,
in practice, it is very difficult to compute the KL divergence between the entire maximum entropy
distribution and data generating distribution for the categorical data due to the large categorical
tuple space. As a trade off, we use the probabilities of patterns in pattern set Y to characterize the
probability distributions for categorical data in both scenarios, and define the following approximate
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Table 2. Comparison of the approximate KL-divergence measure between full model, heuristic model and

baseline model. Standard errors are shown in the parentheses.

full model heuristic baseline

All
K̂L(p∗,p ′) 0.006013 0.009344 1.8126

(0.01983) (0.02516) (0.3534)

K̂L(p̃ ,p ′) 0.1767 0.1840 1.9823
(0.02404) (0.02805) (0.3600)

Multi-attribute
K̂L(p∗,p ′) 0.005871 0.009204 1.8126

(0.01974) (0.02501) (0.3534)

K̂L(p̃ ,p ′) 0.02837 0.03322 1.8330
(0.01685) (0.02339) (0.3579)

Table 3. Comparison of model preparation time (tpre), model inference time (tinfer ) and data sampling time

(tsample) between full model and heuristic model (in seconds). Standard Errors are shown in the parentheses.

tpre tinfer tsample

full model
2750.432 22.553 1.828
(1512.416) (14.341) (1.002)

heuristic model
15.103 11.150 0.488

(7.844) (6.549) (0.234)

KL-divergence measure:

K̂L(p∗,p ′) =
∑
X ∈Y

[
p∗(X ) log p

∗(X )
p ′(X ) + (1 − p∗(X )) log 1 − p∗(X )

1 − p ′(X )
]
.

Here, p∗ and p ′ denote the maximum entropy distribution and data generating distribution respec-
tively, and pattern set Y could be only categorical pattern set X or X ∪ A if individual attribute

frequencies are considered. We also compute the K̂L(p̃,p ′) to compare the empirical probability
distribution, say p̃, in the samples generated by the categorical maximum entropy model with the

true data generating distribution. In this experiment, we computed K̂L(p∗,p ′) and K̂L(p̃,p ′) for both
full model and heuristic model. For comparison purpose, we used independent attribute model
pA where each categorical attribute is independent of each other as the baseline model. For each
of these models under consideration, 1000 categorical data samples were generated to compute
empirical probability distribution p̃.

Table 2 compares these approximate KL-divergence measures for the scenarios whereY = X∪A
(row All in Table 2) and Y = X (row Multi-attribute in Table 2). In Table 2, the small approximate
KL-divergence values for the full model and the heuristic model in the row All indicate that the
categorical maximum entropy distributions converge to the underlying data generation distribution,
and the samples generated by these two models successfully maintain the properties of the data
generation distribution. More important, the small approximate KL-divergence values in the row
Multi-attribute of Table 2 also indicate that the inferred categorical maximum entropy models
successfully capture the various multivariate dependencies among multiple categorical attributes.
All these results demonstrate that our model is capable of recovering the true categorical data
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Fig. 4. The gain of the negative log-likelihood of the model compared to the baseline model (model at iteration

0) over the Virginia ACS summary data. The data point marked with cross denotes the negative log-likelihood

of the full model where all the categorical patterns in Virginia ACS summary data are considered.

distribution and maintaining its dependency structures. When compared to the baseline model,
our model outperforms several magnitudes in term of estimation accuracy.

We also measure the time required to prepare the pattern set that serves as prior information of
the model tpre , the time to infer the maximum entropy model tinfer , and the time to sample a single
categorical tuple from the model tsample . Here, for the full model, tpre refers to the time required
to arrange the pattern set X into the same order used in the iterative model update procedure in
the first experiment where the categorical pattern that maximizes the log-likelihood is chosen in
each iteration. Table 3 compares the runtime performance between the full model and the heuristic
model. With the informative as well as simple model selected by the heuristic function h(α , β) and
BIC, the heuristic model requires much less time to infer the maximum entropy distribution and
sample categorical tuples from the model.

6.3 Results on Real Data

To evaluate the performance of the proposed categorical maximum entropy model on real data, we
study the problem of generating synthetic populations with US census data. Specifically, we use the
2012 American Community Survey (ACS) 1-year summary data [33], which contains aggregated
statistics about age, sex, race, income, and many other features. Some of these features, e.g. sex and
race, are perfect categorical attributes for the proposed maximum entropy model. Although some
other features, e.g. age and income, are numerical, they are binned into several ranges based on
their values, and treated here as categorical attributes.
In our experiments, we chose the state of Virginia as our study case. Among all the features

in the ACS summary data, we selected sex, age, race, income, occupation, marital status, means

of transportation to work, education level, and health insurance coverage as the set of categorical
attributes. We converted the corresponding aggregated statistics in the ACS summary data into
categorical patterns, and inferred the heuristic model over these patterns. Figure 4 describes the
gain of the log-likelihood of the heuristic model, and the approximate KL-divergence measure
between the inferred maximum entropy distribution and the empirical data distribution in the
Virginia ACS summary data is 0.0001975. Notice that in Figure 4, the last data point marked with
a cross indicates the gain of the log-likelihood of the full model where all the categorical patterns
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Table 4. Top categorical patterns selected by the heuristic model from the Virginia ACS summary data.

patterns number of possible values number of selected values

{means of transportation
to work, occupation} 49 34

{sex, income} 8 2
{sex, marital status} 10 2

{sex, age} 8 1

Fig. 5. Comparison of single attribute marginal distributions between the true statistics in Virginia ACS

summary data and samples generated by the categorical maximum entropy model for the attributes Sex and

Income.

Fig. 6. Comparison of single attribute marginal distributions between the true statistics in Virginia ACS

summary data and samples generated by the categorical maximum entropy model for the attributes Age,

Marital status, and Health insurance coverage status.

in the Virginia ACS summary data are taken into account. As we can see from the figure, the gain
of the log-likelihood of the final heuristic model is quite close to that of the full model, which
indicates that the heuristic model discovers and incorporates the majority of the knowledge in the
Virginia ACS summary data. Combined with the small value of the approximate KL-divergence
measure, these results demonstrate that the proposed categorical maximum entropy model is able
to well estimate the categorical data distribution from real data. Table 4 shows the most informative
patterns selected by the proposed heuristic.
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Fig. 7. Comparison of single attribute marginal distributions between the true statistics in Virginia ACS

summary data and samples generated by the categorical maximum entropy model for the attributes Race,

Means of transportation to work, Occupation, and Education level. Y-axis is in log scale.

We also sampled 3, 000 synthetic individuals with the inferred heuristic model for Virginia, and
calculated the empirical marginal distributions for all of the individual attributes and all of the
multi-attribute categorical patterns that appear in the Virginia ACS summary data. Notice that
for attributes Marital status, Means of transportation to work, Occupation and Education level, the
population considered in the ACS summary data is not the entire population of Virginia state. Thus,
we add an additional value for these attributes, e.g. the value Others under 15 years old for the
attribute Marital status, to denote the proportion of the entire population that is not taken into
account in the ACS summary data. Figure 5, 6, 7 and 8 show single-attribute and multi-attribute
marginal distributions and compare them with the true distributions in the Virginia ACS summary
data. We can see that the empirical distributions calculated from the synthetic individuals are very
close to those in the Virginia ACS summary data. Such results demonstrate that our categorical
maximum entropy model well maintains the statistical characteristics of real world datasets, and is
capable of generating synthetic data for real applications.

6.4 Application: Epidemic Simulation

In this section, we apply our proposed categorical maximum entropy model to generate synthetic
population for the city of Portland, OR in the United States, and use this model for an epidemiological
simulation. We first take a synthetic contact network dataset of Portland [20] that is publicly
available. The Portland dataset contains both individual demographic and contact information of
residents in the city of Portland. The demographic information in this dataset contains gender,
age and household income. We first group the values of age and household income into several
ranges and change them into categorical features, similar to our ACS dataset analysis in Section 6.3.
Then we compute the statistics, e.g. frequencies, of the single and pairwise demographic features,
convert them into categorical patterns, and infer the categorical maximum entropy model over these
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Fig. 8. Comparison of two-attribute marginal distributions between true statistics in the Virginia ACS

summary data and samples generated by the categorical maximum entropy model for the categorical patterns

{sex, age} (left), {sex, income} (middle), and {sex, marital status} (right). For pattern {sex, marital status},
the pattern values whose marital status is Others under 15 years old is not displayed here since for those

individuals, their marital statuses are unavailable.

Fig. 9. The simulated weekly flu new infection counts compared to the estimated weekly new infection

counts from Google Flu Trends. The simulation results are averaged across 10 independent runs.

patterns. The Portland dataset contains 1, 575, 861 connected individuals, where each individual
performs at least one activity with others. To generate our synthetic population, we draw 1, 575, 861
samples from the inferred categorical maximum entropy model.
To construct the contact network for the synthetic population, we first match the generated

synthetic individuals to the real ones involved in the contact activities described in the Portland
dataset based on their demographical feature values. Then the contact network can be naturally
created by connecting the synthetic individuals according to the contact activities they involve in.
In this application, we choose to study the flu season in the city of Portland during the period from
June 2013 to June 2014. We retrieve the estimated weekly counts of flu new infections for the city
of Portland from Google Flu Trends [9], and apply the Susceptible-Infectious (SI) epidemic model
over the contact network to fit the curve of weekly flu new infection counts. Figure 9 illustrates the
fitted curve using the SI epidemic model. As the figure shows, the simulation results of the SI model
over the synthetic population capture the trend and the peak of the weekly flu new infections in
the city of Portland. These results demonstrate that the synthetic population generated by the
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Table 5. Comparison of our proposed approach (MaxEnt) with the existing synthetic population generation

methods.

IPF FBS PeGS SFG DMS BayeNet MaxEnt

Directly capture depen-
dencies beyond two at-
tributes

� � � � �

Directly estimate popu-
lation joint distribution � � �

Don’t require seeding

population
� � �

Support iterative model

inference
�

categorical maximum entropy model is a useful model of population-level activities in cities. Here,
we would like to mention that there are also many other issues, e.g. distance measuring [27, 36, 37],
that are relevant when studying disease transmission. However, these topics are beyond the scope
of this paper, thus, we will not discuss them in detail here.

7 RELATEDWORK

The problem of generating synthetic data that maintain the structures and dependencies in actual
data has been studied by researchers from various realms. Iterative proportional fitting (IPF) tech-
nique [2] and its variants [18, 38], which generally operate over contingency tables, have been
applied to generate synthetic population to study large social contact networks, land use and trans-
portation microsimulation. The NDSSL at Virginia Tech released synthetic datasets of population
in the city of Portland [20] generated by a high-performance simulation system Simfrastructure

which adopts IPF techniques. Such IPF based approaches usually do not directly estimate the joint
probability distribution of the data, and sometimes, they require seeding populations as a part of the
input. Fitness-based synthesis (FBS) approaches [15] define fitness measures based on control tables
to directly generate synthetic populations with seeding data. Sample-free generators (SFG) [3] were
proposed to generate synthetic populations using the joint data distribution defined with the data
at the most disaggregated level Namazi-Rad et al. [19] applied a dynamic micro-simulation model
(DMS) to project dynamics over the synthetic population generated by combinational optimization
approaches. Recently, a non-parametric perturbed Gibbs sampler (PeGS) [21] which requires esti-
mating all of the full conditional distributions to represent the joint data distribution was proposed
to generate large-scale privacy-safe synthetic health data. Sun and Erath [26] proposed a Bayesian
network (BayeNet) based approach to estimate the joint distribution of populations, which is then
used to generate synthetic populations. While, our proposed maximum entropy model additionally
supports iterative model inference, which makes it easy to update our proposed model with new
knowledge about the data. Compared to the proposed categorical maximum entropy model, these
existing approaches described above either do not directly capture the dependencies beyond two
attributes or do not directly estimate the full joint data distribution. Table 5 compares the proposed
maximum entropy approach (MaxEnt) with the related existing synthetic population generation
methods in detail.
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Maximum entropy models have drawn much attention recently in the pattern mining community,
especially in the realm of discovering subjectively interesting patterns. De Bie [7] formalized an
information theoretical framework for data mining by applying the maximum entropy principle.
In recent research works [8, 23, 32], maximum entropy models were developed to discover and
evaluate interesting patterns from binary datasets, and they were also adopted together with the
principle of Minimum Description Length to summarize and compress binary datasets [16, 31, 34].
Besides the binary data, maximum entropy modeling was also extended to the multi-relational
data and real-valued data [14, 24, 35]. However, all these previous works focus on discovering
informative patterns or assessing subjective interestingness of patterns from binary, real-valued, or
multi-relational data, and none of them involves categorical data.

In the database community, Gray et al. [10] surveyed several database generation techniques that
generate large scale synthetic datasets, and Bruno and Chaudhuri [4] proposed a Data Generation
Language (DGL) that allows individual attribute distributions to be specified. A database generation
tool that could handle complex inter- and intra-table relationships was proposed by Houkjær
et al. [11]. Arasu et al. [1] proposed an efficient, linear programming based algorithm to generate
synthetic relational databases that satisfy a given set of declarative constraints. Compared to
the proposed approach, these works focus on structured data in relational databases, while our
proposed method is generally applicable to categorical data including unstructured categorical
data. The maximum entropy principle is also adopted in database query optimization. The sizes
of database queries were estimated by modeling complicated database statistics using maximum
entropy probability distributions [13, 17]. Ré and Suciu [22] studied the problem of cardinality
estimation using the entropy maximization technique with peak approximation. An algorithm
called ISOMER was proposed by Srivastava et al. [25] to approximate the true data distribution
by applying the maximum entropy principle over database query feedbacks. These works aim to
utilize the maximum entropy principle to optimize database queries, while in our method, we are
focused on estimating a probabilistic generative model so that synthetic data could be generated.

8 CONCLUSION

In this paper, we have demonstrated a generative probabilistic model for categorical data by
employing the maximum entropy principle. By introducing categorical tuple blocks and the
corresponding partial order over them, we have presented an efficient model inference algorithm
based on the well-known iterative scaling framework. Experiment results on both synthetic data
and real US census data show that the proposed model well estimates the underlying categorical
data distributions. The application to the problem of epidemic simulation demonstrates that our
proposed model can be applied to support research in a variety of applicatin areas.
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