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ABSTRACT 
Synergistic learning of computational thinking (CT) and 
STEM has proven to be an effective method for enhancing 
CT education as well as advancing learning in many STEM 
domains. Domain Specific Modeling Languages (DSML) 
facilitate the building of computational modeling 
frameworks that are directly linked to STEM content, thus 
making it easier for students to focus on concepts and 
practices. At the same time, teachers can more easily relate 
curricular content to the model building tasks. This paper 
discusses the design, development, and implementation of 
a robotics DSML to support a middle school geometry 
curriculum. 
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1. INTRODUCTION 
Recent developments show how computational tools have 
influenced research and practices in mathematics and 
science education (National Research Council, 2012). In 
parallel, rapidly evolving educational technologies have 
influenced pedagogy and curriculum development, 
primarily by integrating computational tools into the study 
of STEM disciplines (Grover & Pea, 2013, Hutchins, 
Zhang, & Biswas, 2017). While the limited availability of 
skilled teachers, financial constraints on educational 
institutions, and the inertia in changing current curricular 
practices has impeded the introduction of Computer 
Science (CS) courses into middle and high school 
classrooms, curricula supported by educational software 
that exploit the synergies between STEM and CT and 
integrate with current K-12 curricula have found success 
(Basu, Biswas, & Kinnebrew, 2017; Jona et. al., 2014, 
Sengupta, et. al., 2013; Weintrop, et. al., 2016). 

In the past, model-based design has been employed to 
facilitate a necessary convergence among physical 
processes and software control design, thus supporting 
many Cyber Physical System (CPS) applications (Jackson 
& Sztipanovits, 2008; Jensen, Chang, & Lee, 2011). In this 
paper, we extend this design process to Open Ended 
Learning Environments (OELEs) and focus on the design 
and integration of curricular scaffolding in OELEs to 
support student learning in STEM and CS domains.  

This paper outlines the development of a WebGME design 
studio centered on the application of a domain specific 
modeling language (DSML) for robotics to support a 
middle school mathematics curriculum. To do so, we 
analyze the literature and establish curricular and software 
requirements, describe the design and development of our 
WebGME design studio, and conclude with case studies 
from a usability study. 

2. BACKGROUND 
To implement a set of learning tasks, while assuring well-
formed model realizations (Jackson & Sztipanovits, 2008), 
we conducted a thorough analysis on the DSML design 
requirements in combination with the curricular needs of a 
middle school mathematics classroom. Here we cover four 
topic areas that directly relate to our research.  

2.1. Computational Thinking (CT) 
Following Wing’s call for the increased introduction of CT 
in classrooms (2006), significant work was completed 
towards an applicable definition as well as an outline of 
key concepts and practices that can be used to assess 
learning gains in CT. The Royal Society defined CT as “the 
process of recognizing aspects of computation in the world 
that surrounds us and applying tools and techniques from 
Computer Science to understand and reason about both 
natural and artificial systems and processes” (Royal 
Society, 2012). In Grover and Pea’s systematic review 
(2013), the authors listed essential CT constructs and, for 
the purposes of our work, we focused on flow of control, 
decomposition, efficiency and performance constraints, 
and debugging. 

To facilitate CT and the acquisition of basic geometry 
skills, appropriate scaffolding must be incorporated into 
the design of the DSML. Significant success with 
synergistic learning of CT and STEM disciplines through 
the use of block-based DSMLs (Hasan & Biswas, 2017) 
has supported increased integration of this style of 
programming at the K-12 level and we seek to extend this 
effort through the use of a DSML created in a model-based 
design environment such as WebGME. In our platform, CT 
provides the framework for building computational models 
or algorithms to define and debug the movement of robots. 
The metamodel and model building visualizer described in 
Section 5 provide a level of curricular abstraction that 
eliminates many of the burdens of text-based 
programming. In addition, our model-based design 
environment is supported by a necessary utilization of CT 
constructs such as debugging and problem decomposition.  

Furthermore, our robotics platform provides multiple 
representations with the utilization of a physical robot (as 
opposed to a virtual sprite), a physical coordinate plane, 
and a bird’s eye view of the grid space with several 
overlays (e.g., movement traces, lines, points, etc). 
Abstraction is provided in the model building visualizer 
that the student uses to construct their command sequence. 
As pointed out above this combination of representations 
and abstractions is desired so that a student is fully capable 
of systematically processing their solution or debugging a 
problem utilizing a CT approach (Basu, Biswas, & 
Kinnebrew, 2016). 



CTE2018 

2.2. General Robotics Courses 
Many schools offer after school programs or summer 
camps using VEX® or LEGO Mindstorms® robotic kits. 
These kits come with a substantial amount of supporting 
information and resources including forums, tutorials, and 
fully executable curriculum sets. Hendricks et al. (2012) 
and Panadero et al. (2010) report an increase in 
computational thinking activities and learning outcomes 
when students use these kits.  Other robotics courses 
offered as summer camps have been successful in 
increasing student engagement, motivation, teamwork, 
critical thinking, and problem solving (Darrah, Kuryla, & 
Bond, 2018; Goldman, Eguchi, & Sklar, 2004; Ansorge & 
Barker, 2007), all directly related to the application of CT 
constructs in a STEM domain.  

2.3. Robotics in Mathematics 
Barreto & Benitti (2012) noted that activities which 
integrate robotics into a math or science classroom should 
“possess a high-level of structure that helps the robot to 
correctly guide the activities and the students through 
them,” and that self-directed activities that “promote 
personalized comprehension of STEM concepts through 
experimentation” showed significant success - and added 
support for our approach in this domain as design space 
exploration activity. Our DSML has been highly 
scaffolded as a means of supporting these robotic 
integration requirements. In addition, the experimentation 
requirement is further supported through the display of 
curricular feedback following the execution of a robot 
sequence, to be described in Section 6. 

Two recent studies were carried out by researchers from 
NYU that explored the use of a robotic agent to teach 
geometry to middle school students (Muldner, et. al., 2013; 
Girotto, et. al., 2016).  Their environment consisted of a 
projector, a LEGO Mindstorms® robot, and two iPods for 
communication. These studies highlight the effectiveness 
of a tangible learning environment (TLE) in terms of 
delivering a much richer learning experience than 
traditional classroom methods. Moreover, TLEs have 
found considerable success in fostering creativity 
(Goldman, Eguchi, & Sklar, 2004), a benefit to our design 
space exploration approach, while also increasing 
motivation (Windham, 2007). 

2.4. Domain Specific Modeling Language (DSML) 
Van Deursen defines a domain specific language as “a 
programming language or executable specification 
language that offers, through appropriate notations and 
abstractions, expressive power focused on, and usually 
restricted to, a particular problem domain” (2000). 
Typically, DSMLs are developed to facilitate the work of 
domain experts in application tasks. But they can also play 
an important role in helping learners focus on domain 
concepts when building models and solving problems in 
the domain. In our work, the DSML developed allows a 
student to define a set of instructions for a robot to solve 
middle school mathematics problems that are centered on 
concepts derived from coordinate geometry and solving 
path planning problems.  

The benefit of developing a DSML is the affordability it 
creates in curricular implementation and expansion. 

Students can “express and develop solutions … at the level 
of abstraction of the target domain,” “build programs that 
are concise and self-documenting,” and “verify and 
validate models and results generated from the models” 
(Hasan & Biswas, 2017). This provides a highly structured 
environment that enables the student to experiment with 
various solutions in a self-directed manner. This structure 
comes in part by how the model building environment is 
presented to the student (visualizer), how the model blocks 
themselves appear (decorator), and how the model is 
executed on the robot (communication plugin), to be 
detailed in Section 5. 

Jackson and Sztipanovitz (2008) highlight three 
applications of DSML syntax: model transformations, 
correct-by-construction, and design space exploration. In 
the context of an educational setting, students engage with 
a robotics-based design studio to learn mathematics and 
CT concepts by performing tasks with their robots. The 
syntax our DSML most closely supports is the notion of 
design space exploration. This enhances “the 
expressiveness of metamodeling constraints” and the 
ability “to project behavioral properties on the syntactic 
level” (2008). Our robotics DSML supports model building 
and problem solving with robotics in a way that students 
can seamlessly learn domain and CT concepts and 
practices.  

As it relates to our DSML development, we aimed to 
simplify the interactions between the robot and the 
students, so they may focus on learning the required 
mathematics and geometry concepts and applying them to 
planning and problem-solving tasks. An added goal is to 
provide for easy exploration within the domain, so that the 
open-ended nature of the learning is retained, and students 
can learn through the direct application of CT practices 
such as model construction and algorithm development.  

Finally, as an educational product, it is imperative to 
understand the ramifications this implementation has on 
teacher curriculum development and productivity in the 
classroom. In Tennessee, the licensure and examination 
process does not require any assessment of computer 
science or CT knowledge (The Praxis Study Companion, 
2017). As such, we assume limited CS experience of 
middle school mathematics teachers. To account for this, 
our DSML can be tailored at the classroom level to account 
for the capabilities of the teacher. This flexibility eases the 
transition from learning the system to learning the 
instructional material the system delivers. 

3. CURRICULUM DEVELOPMENT 
Understanding how students conceptualize, acquire, and 
retain geometric concepts must be understood in sufficient 
detail before designing a curriculum in conjunction with a 
TLE. Burger and Shaughnessy (1986) concluded that there 
are five major stages to student’s understanding of 
geometric concepts: visualization (pure visual reasoning), 
analysis (based on visualization), abstraction 
(understanding the properties), deduction (formal 
reasoning), and rigor (comparing different systems). 
Students are not typically exposed to deduction or rigor 
until a high school geometry course.  
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We focus primarily on visualization, analysis, and 
abstraction by introducing a new concept with a 
description, graphic, and how this topic is relevant in a 
student’s everyday life. Then we provide a set of problems 
in which the student must give the robot the correct 
information so it can achieve its goal. Geometric properties 
and definitions are introduced with their respective 
problems, and students are required to not only 
demonstrate mastery by generating the correct command 
sequences, but also with summative assessments at the end 
of each module. Below is a sample curriculum outline that 
is well suited for middle school geometry: 

1) Coordinate Plane (Axis definitions, Points) 
2) Lines (Properties, Line segments, Slope, Midpoints) 
3) Shapes (Properties, Squares, Rectangles, Triangles) 
4) Path Planning (Shortest path reasoning, Manhattan 

distances, Straight line distances) 
 

As described in the introduction and requirements, our goal 
with the development of a robotics DSML was to provide 
the basis to enable an engaging, applicable curricular unit 
for a middle school mathematics classroom that connects 
the computational modeling task to modeling and problem 
solving in geometry. Our new learning environment 
promotes knowledge acquisition through a hands-on, 
visual-feedback approach that is consistent with the design 
of TLEs (Darrah, Kuryla, & Bond, 2018) and linked to the 
visualization, analysis, and abstraction stages of geometry 
understanding described by Burger and Shaughnessy. Our 
development of a model via WebGME (given the 
abstraction afforded in the DSML) with the added benefit 
of watching a real-life robot complete the programmed 
paths allows for easy applications of CT and geometry 
constructs and students will be more motivated by the 
experience. 

As it pertains to CT learning gains, our curriculum is most 
applicable to the assessment of students’ knowledge and 
abilities in implementing algorithms, understanding and 
addressing efficiency and performance constraints, and 
debugging. These practices, as defined by Grover and Pea 
(2013), are utilized in each curricular task designed to 
target the elements provided in the curriculum outline, 
above, as students are required to use our scaffolded 
DSMLs in a sequential order given physical and command 
constraints of the robot in order to complete each task. We 
surmise that the repetitive use of these practices to solve 
geometry problems will enhance students CT abilities for 
these practices. 

4. ENVIRONMENT 
With the establishment of our system requirements, the 
second step in our process was the design and development 
of our system environment. Our robot sits on a 7ft by 7ft 
platform that has been sectioned into a 10x10 grid. The 
robot is equipped with sensors that allow it to track its 
location on the grid. As such, if it is told to move forward 
by 3, the robot will travel forward until it has reached the 
third black line that is perpendicular to the direction the 
robot is moving. A video camera set-up is centered above 
the grid as shown in the figure. The video feed generated 

can be used by the student or a teacher to track the robot as 
it moves along a path and verify the correctness of the path.  

4.1. Robot 
When activated, the robot starts a TCP server to 
communicate with the WebGME plugin and opens a serial 
port to communicate with the Arduino MCU. It manages 
these processes on separate threads.  The main thread 
manages the various modes the user can utilize to control 
the robot, such as manual mode, sequence mode, or GME 
mode (the mode used in conjunction with this paper). The 
MCU runs one program that takes input from 3 IR tx/rx 
modules (line following sensor) and its output controls the 
motors.  It communicates with the SBC as well to provide 
feedback for received commands and for mode switching.. 
Figure 2 provides an overview of the modular system 
architecture. 

The robot communicates with WebGME using the cross-
platform socketio library. The plugin generates a JSON 
formatted string that is parsed within a minimal Flask web 
server running on the robot. Upon receipt, the Arduino 
MCU executes the command sequence and signals to the 
RCM when it is finished. 

 
Figure 2. System Architecture 

5. META-MODEL 
As previously described, the utilization of a DSML 
provides curricular benefits in that it is constructed at a 
suitable level of abstraction to allow the learner to focus on 
what is important, and abstract away other CS details (e.g. 
syntax concerns). Through the analysis of geometry and 
CT requirements, our meta-model (Figure 3) was 
developed based on the implementation of four goals:  

1. a scaffolded, curricular driven approach that focuses 
student actions on the concept(s) being addressed;  

2. a simplified integration of robotics and mathematics 
that makes it easier for the teacher to follow the 
student work and assess it; 

3. scalability in the classroom context; and 
4. a systematic, stable connection between the robot 

environment and modeling environment that is easy 
to understand. 

The students’ problem-solving tasks (e.g., building shapes, 
following paths) are scaffolded, as exemplified through the 
four available commands. The reduced set of commands 
allows students to focus on the planning and computational 
components of their activities.  In addition, the 
organization of the commands and sequences showcases 
the model’s potential scalability and ease-of-use for the 
teacher.   
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Figure 3. Robotics Meta-Model 

5.1. Decorator 
The target audience for this activity includes middle school 
students that may not have any programming experience. 
As such, the visual component of the environment may 
play a role in the motivation and buy-in of students, 
regardless of their capabilities, which is directly linked to 
positive learning outcomes. A Decorator is a component of 
the WebGME Design Studio that alters the way a node in 
the model looks in composition view (the student’s view). 
Figure 5 provides a zoomed-in image of relevant decorator 
components. Students can select the next command in their 
sequence via a drop-down menu located on the current 
node. When a command is selected, the transition between 
the two nodes is automatically created. In addition, each 
node contains the command name, attribute value, and an 
image - not only allowing for multimodal learning 
acquisition, but also easing the debugging process 
described in Section 2.2. 

 
Figure 5. Model Decorator 

5.2. Plugin 
The final component needed to configure our WebGME 
design studio is the plugin that coordinates the compilation 
and delivery of the sequence of commands implemented by 
the student to be executed by the robot. In other words, the 
JavaScript plugin sends the visually represented sequence 
of commands to the robot in a machine-readable format. In 
the making of the plugin, we defined three requirements: 
Parsing the student defined command sequences into a 
standard structure, validating the sequence alongside 
reporting the errors, and finally, sending the commands to 
the robot.  

Upon starting a session, the plugin connects the editor 
environment with the robot using the parameters defined in 
the “Connection Parameters” node. This is achieved 
through a one-to-one socket connection, which remains 
open until the user ends the session. To make sense of the 
visual chain of commands the plugin starts by querying the 
sequence to find the start node. It then records this block 
and its relevant attributes. Next, the outgoing connection is 
followed to similarly parse the next blocks until the stop 

command is reached. This information is then stored in 
JavaScript Object Notation (JSON) format and sent to the 
robot by emitting a submission event that the robot is 
listening for. The robot then parses the sequence and 
executes the commands as detailed above.  

6. Implementation 
Following the development and design of the robotics 
studio and accompanying geometry curriculum, we had 
three middle school students complete the designed tasks 
as a means of testing the system and getting feedback on 
ease-of-use and system benefits or drawbacks. In this 
section, we present an application of our system in a 
classroom environment and demonstrate the use of the 
robotics design studio as a tool to complete a sample path 
planning module at the middle school level. 

6.1. Sample Problem Set 
A subset of the curriculum described in Section 3 includes 
three general problems: 

1) Identifying the axes and positive or negative values 
2) Plotting points given (x,y) and deriving (x,y) from a 

set of points 
3) Path planning with multiple points, calculating the 

shortest Manhattan distance  

Figure 6 illustrates the visual interface that provides the 
instructions for each task along with the overhead webcam 
feed in conjunction with the WebGME design studio. In 
this assignment, students are tasked with finding the most 
efficient path the robot can take ensuring stops at the police 
station, the fire station, and the courthouse prior to ending 
its trip at the post office. Typically, this type of assignment 
at the introductory level is distributed as on paper, limiting 
the multi-modal approach to learning that may benefit 
certain students.  

 
Figure 6. Virtual Interface for Example Path Planning Problem 

The direction the robot is facing, its current location, and 
number of spaces moved are displayed at the top of the 
information section which helps the student during the 
solution construction process. The problem is given below 
that, along with various hints that are given at 
predetermined times. 

In the scenario shown in Figure 6, the student first 
identified the coordinates of all locations the robot must 
visit. When all points are correctly located, their 
coordinates are shown on the video feed. From the image 
provided, it can be seen that the student then completed a 
shortest path problem in which they generated the correct 
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command sequence for the robot to visit all locations, 
starting at the Amazon warehouse (2, -2). The automatic 
feedback response of “Nice Work!” is shown – 
demonstrating the successful completion of the task 

In Figure 7, the solution to the above problem is shown. 
Upon closer inspection, the distance values can be seen as 
well. Sequences can become significantly long, making the 
debugging process difficult should an error occur in the 
robot’s path. The availability of the command name and 
attribute value as text on the node as well as images of 
blocks allow for an easier analysis of the complete path 
during the debugging process.  

 
Figure 7. Student Solution to the Path Planning Problem 

6.2. Case Study: CT Gains  
For our usability study, students were asked to complete a 
pre- and post- challenge. The challenge contained two 
parts: the first included a debugging task in which they 
were asked to analyze a given robot sequence and improve 
the efficiency of the sequence while also ensuring the end 
location was correct. This challenge component was 
designed to assess student abilities in the CT constructs of 
flow of control and debugging. The second task involved 
the development of a sequence that would allow the robot 
to draw a given shape with the minimum commands 
possible in the grid space depicted in Figure 1, thereby 
assessing student understanding of efficiency and 
performance constraints as well as another application of 
flow of control. This pre- and post- nature of the challenge 
was implemented to identify potential improvements in 
applying these CT constructs.   

S1 is a 13-year-old middle school male student and S2 is a 
14-year-old middle school female student. Both students 
identified as having little to no experience with the listed 
geometry concepts and practices and both identified as 
having some previous programming experience using 
block-based programming languages. For the purpose of 
this case study, we will focus on student work in part 1 of 
the challenge.  

In the pre-challenge, S1 and S2 failed to debug the given 
path in Part 1 in a manner that provided the fastest path for 
the robot to complete the task. In addition, both S1 and S2’s 
robot sequences could not make the robot arrive at the 
correct location, indicating that both students struggled to 
debug the entire algorithm. However, S1 and S2 were able 
to identify two of the five identified errors indicating that 
they had a preliminary understanding of flow of control.  

Following the geometry assignments, S1 and S2 completed 
the robotics post-challenge. This time, S1 was able to 
identify three of the five identified errors and the final 
sequence allowed the robot to finish at the desired location. 

It should be noted that the student drew a path on the given 
image of the grid that accounted for the two missing errors 
in the algorithm, but those errors were not identified in the 
algorithm. As S1 was able to identify the most efficient 
path in the image, we believe it may be necessary for us to 
assess how we described the challenge in order to be as 
clear as possible on how each student should define his or 
her response.  

S2’s approach to Part 1 of the post-challenge changed 
significantly from the pre-challenge. In Part 1 of the post-
challenge, S2 drew her robot’s shortest path sequence on 
the grid provided, with dots along the grid indicating that 
she was counting various path options (an action she 
commonly did with her finger via the virtual interface 
during the geometry assignments). While her new path 
followed the expert model path between a few specified 
target points, a few sub-paths were significantly different 
than the expert model path. However, her final path was 
shorter than the given problem to debug and one away from 
the shortest path possible. Given her search-based, 
debugging approach in the post-challenge, it can be seen 
that her utilization of CT constructs improved.  

6.3. Case Study: Geometry Gains 
Our final student, S3, reported significant experience with 
block-based programming environments like Scratch and 
Netsblox. S3 achieved a perfect score on the CT related 
questions of the pre-challenge. A key point here should be 
made - S3 is younger than both S1 and S2, who report no 
experience with DSMLs, and outperformed them both on 
the pre-challenge, supporting our hypothesis that DSMLs 
are linked to the utilization of CT strategies when solving 
problems. During the geometry tasks, S3 initially struggled 
with the coordinate plane unit, including the identification 
of quadrants and moving the robot to desired x,y points on 
the plane. However, this student made use of the system 
feedback given. After repeating similar tasks, the time 
spent solving coordinate plane tasks decreased. Based on 
these observations, it can be seen that while learning gains 
in CT could not be measured due to the perfect pre-
challenge score; abilities in geometry improved.  

7. Results and Future Implications 
This paper details the theoretical and systematic design and 
development process of a robotics DSML for use in a 
middle school mathematics classroom. Through an 
analysis of curricular and software requirements, our group 
implemented a robotics design studio using WebGME that 
allows for an applicable and scalable robotics activity to 
support CT and STEM learning. In addition, our usability 
studies indicate potential CT learning gains acquired 
through the completion of the geometry curriculum in our 
environment. The potential benefits of integrating robotics 
into other STEM classrooms has not been actualized to the 
extent that it was theorized by renowned educational 
theorist Seymour Papert (1993). The application of this 
highly scaffolded DSML in a middle school classroom 
may allow for a fruitful analysis on the level or extent of 
programming needed to not only advance CT learning and 
understanding, but also ensure the successful delivery of 
relevant STEM content.  
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