
CTE2018

A DSML for a robotics environment to support
 synergistic learning of CT and geometry

Nicole Hutchins1, Timothy Darrah1, Hamid Zare1, Gautam Biswas1

1Institute for Software Integrated Systems, Vanderbilt University
Nashville, TN USA

nicole.m.hutchins@vanderbilt,edu, timothy.s.darrah@vanderbilt.edu, hamid.zare@vanderbilt.edu, gautam.biswas@vanderbilt.edu

ABSTRACT
Synergistic learning of computational thinking (CT) and
STEM has proven to be an effective method for enhancing
CT education as well as advancing learning in many STEM
domains. Domain Specific Modeling Languages (DSML)
facilitate the building of computational modeling
frameworks that are directly linked to STEM content, thus
making it easier for students to focus on concepts and
practices. At the same time, teachers can more easily relate
curricular content to the model building tasks. This paper
discusses the design, development, and implementation of
a robotics DSML to support a middle school geometry
curriculum.

KEYWORDS
DSML, robotics, STEM, geometry

1. INTRODUCTION
Recent developments show how computational tools have
influenced research and practices in mathematics and
science education (National Research Council, 2012). In
parallel, rapidly evolving educational technologies have
influenced pedagogy and curriculum development,
primarily by integrating computational tools into the study
of STEM disciplines (Grover & Pea, 2013, Hutchins,
Zhang, & Biswas, 2017). While the limited availability of
skilled teachers, financial constraints on educational
institutions, and the inertia in changing current curricular
practices has impeded the introduction of Computer
Science (CS) courses into middle and high school
classrooms, curricula supported by educational software
that exploit the synergies between STEM and CT and
integrate with current K-12 curricula have found success
(Basu, Biswas, & Kinnebrew, 2017; Jona et. al., 2014,
Sengupta, et. al., 2013; Weintrop, et. al., 2016).

In the past, model-based design has been employed to
facilitate a necessary convergence among physical
processes and software control design, thus supporting
many Cyber Physical System (CPS) applications (Jackson
& Sztipanovits, 2008; Jensen, Chang, & Lee, 2011). In this
paper, we extend this design process to Open Ended
Learning Environments (OELEs) and focus on the design
and integration of curricular scaffolding in OELEs to
support student learning in STEM and CS domains.

This paper outlines the development of a WebGME design
studio centered on the application of a domain specific
modeling language (DSML) for robotics to support a
middle school mathematics curriculum. To do so, we
analyze the literature and establish curricular and software
requirements, describe the design and development of our
WebGME design studio, and conclude with case studies
from a usability study.

2. BACKGROUND
To implement a set of learning tasks, while assuring well-
formed model realizations (Jackson & Sztipanovits, 2008),
we conducted a thorough analysis on the DSML design
requirements in combination with the curricular needs of a
middle school mathematics classroom. Here we cover four
topic areas that directly relate to our research.

2.1. Computational Thinking (CT)
Following Wing’s call for the increased introduction of CT
in classrooms (2006), significant work was completed
towards an applicable definition as well as an outline of
key concepts and practices that can be used to assess
learning gains in CT. The Royal Society defined CT as “the
process of recognizing aspects of computation in the world
that surrounds us and applying tools and techniques from
Computer Science to understand and reason about both
natural and artificial systems and processes” (Royal
Society, 2012). In Grover and Pea’s systematic review
(2013), the authors listed essential CT constructs and, for
the purposes of our work, we focused on flow of control,
decomposition, efficiency and performance constraints,
and debugging.

To facilitate CT and the acquisition of basic geometry
skills, appropriate scaffolding must be incorporated into
the design of the DSML. Significant success with
synergistic learning of CT and STEM disciplines through
the use of block-based DSMLs (Hasan & Biswas, 2017)
has supported increased integration of this style of
programming at the K-12 level and we seek to extend this
effort through the use of a DSML created in a model-based
design environment such as WebGME. In our platform, CT
provides the framework for building computational models
or algorithms to define and debug the movement of robots.
The metamodel and model building visualizer described in
Section 5 provide a level of curricular abstraction that
eliminates many of the burdens of text-based
programming. In addition, our model-based design
environment is supported by a necessary utilization of CT
constructs such as debugging and problem decomposition.

Furthermore, our robotics platform provides multiple
representations with the utilization of a physical robot (as
opposed to a virtual sprite), a physical coordinate plane,
and a bird’s eye view of the grid space with several
overlays (e.g., movement traces, lines, points, etc).
Abstraction is provided in the model building visualizer
that the student uses to construct their command sequence.
As pointed out above this combination of representations
and abstractions is desired so that a student is fully capable
of systematically processing their solution or debugging a
problem utilizing a CT approach (Basu, Biswas, &
Kinnebrew, 2016).

CTE2018

2.2. General Robotics Courses
Many schools offer after school programs or summer
camps using VEX® or LEGO Mindstorms® robotic kits.
These kits come with a substantial amount of supporting
information and resources including forums, tutorials, and
fully executable curriculum sets. Hendricks et al. (2012)
and Panadero et al. (2010) report an increase in
computational thinking activities and learning outcomes
when students use these kits. Other robotics courses
offered as summer camps have been successful in
increasing student engagement, motivation, teamwork,
critical thinking, and problem solving (Darrah, Kuryla, &
Bond, 2018; Goldman, Eguchi, & Sklar, 2004; Ansorge &
Barker, 2007), all directly related to the application of CT
constructs in a STEM domain.

2.3. Robotics in Mathematics
Barreto & Benitti (2012) noted that activities which
integrate robotics into a math or science classroom should
“possess a high-level of structure that helps the robot to
correctly guide the activities and the students through
them,” and that self-directed activities that “promote
personalized comprehension of STEM concepts through
experimentation” showed significant success - and added
support for our approach in this domain as design space
exploration activity. Our DSML has been highly
scaffolded as a means of supporting these robotic
integration requirements. In addition, the experimentation
requirement is further supported through the display of
curricular feedback following the execution of a robot
sequence, to be described in Section 6.

Two recent studies were carried out by researchers from
NYU that explored the use of a robotic agent to teach
geometry to middle school students (Muldner, et. al., 2013;
Girotto, et. al., 2016). Their environment consisted of a
projector, a LEGO Mindstorms® robot, and two iPods for
communication. These studies highlight the effectiveness
of a tangible learning environment (TLE) in terms of
delivering a much richer learning experience than
traditional classroom methods. Moreover, TLEs have
found considerable success in fostering creativity
(Goldman, Eguchi, & Sklar, 2004), a benefit to our design
space exploration approach, while also increasing
motivation (Windham, 2007).

2.4. Domain Specific Modeling Language (DSML)
Van Deursen defines a domain specific language as “a
programming language or executable specification
language that offers, through appropriate notations and
abstractions, expressive power focused on, and usually
restricted to, a particular problem domain” (2000).
Typically, DSMLs are developed to facilitate the work of
domain experts in application tasks. But they can also play
an important role in helping learners focus on domain
concepts when building models and solving problems in
the domain. In our work, the DSML developed allows a
student to define a set of instructions for a robot to solve
middle school mathematics problems that are centered on
concepts derived from coordinate geometry and solving
path planning problems.

The benefit of developing a DSML is the affordability it
creates in curricular implementation and expansion.

Students can “express and develop solutions … at the level
of abstraction of the target domain,” “build programs that
are concise and self-documenting,” and “verify and
validate models and results generated from the models”
(Hasan & Biswas, 2017). This provides a highly structured
environment that enables the student to experiment with
various solutions in a self-directed manner. This structure
comes in part by how the model building environment is
presented to the student (visualizer), how the model blocks
themselves appear (decorator), and how the model is
executed on the robot (communication plugin), to be
detailed in Section 5.

Jackson and Sztipanovitz (2008) highlight three
applications of DSML syntax: model transformations,
correct-by-construction, and design space exploration. In
the context of an educational setting, students engage with
a robotics-based design studio to learn mathematics and
CT concepts by performing tasks with their robots. The
syntax our DSML most closely supports is the notion of
design space exploration. This enhances “the
expressiveness of metamodeling constraints” and the
ability “to project behavioral properties on the syntactic
level” (2008). Our robotics DSML supports model building
and problem solving with robotics in a way that students
can seamlessly learn domain and CT concepts and
practices.

As it relates to our DSML development, we aimed to
simplify the interactions between the robot and the
students, so they may focus on learning the required
mathematics and geometry concepts and applying them to
planning and problem-solving tasks. An added goal is to
provide for easy exploration within the domain, so that the
open-ended nature of the learning is retained, and students
can learn through the direct application of CT practices
such as model construction and algorithm development.

Finally, as an educational product, it is imperative to
understand the ramifications this implementation has on
teacher curriculum development and productivity in the
classroom. In Tennessee, the licensure and examination
process does not require any assessment of computer
science or CT knowledge (The Praxis Study Companion,
2017). As such, we assume limited CS experience of
middle school mathematics teachers. To account for this,
our DSML can be tailored at the classroom level to account
for the capabilities of the teacher. This flexibility eases the
transition from learning the system to learning the
instructional material the system delivers.

3. CURRICULUM DEVELOPMENT
Understanding how students conceptualize, acquire, and
retain geometric concepts must be understood in sufficient
detail before designing a curriculum in conjunction with a
TLE. Burger and Shaughnessy (1986) concluded that there
are five major stages to student’s understanding of
geometric concepts: visualization (pure visual reasoning),
analysis (based on visualization), abstraction
(understanding the properties), deduction (formal
reasoning), and rigor (comparing different systems).
Students are not typically exposed to deduction or rigor
until a high school geometry course.

CTE2018

We focus primarily on visualization, analysis, and
abstraction by introducing a new concept with a
description, graphic, and how this topic is relevant in a
student’s everyday life. Then we provide a set of problems
in which the student must give the robot the correct
information so it can achieve its goal. Geometric properties
and definitions are introduced with their respective
problems, and students are required to not only
demonstrate mastery by generating the correct command
sequences, but also with summative assessments at the end
of each module. Below is a sample curriculum outline that
is well suited for middle school geometry:

1) Coordinate Plane (Axis definitions, Points)
2) Lines (Properties, Line segments, Slope, Midpoints)
3) Shapes (Properties, Squares, Rectangles, Triangles)
4) Path Planning (Shortest path reasoning, Manhattan

distances, Straight line distances)

As described in the introduction and requirements, our goal
with the development of a robotics DSML was to provide
the basis to enable an engaging, applicable curricular unit
for a middle school mathematics classroom that connects
the computational modeling task to modeling and problem
solving in geometry. Our new learning environment
promotes knowledge acquisition through a hands-on,
visual-feedback approach that is consistent with the design
of TLEs (Darrah, Kuryla, & Bond, 2018) and linked to the
visualization, analysis, and abstraction stages of geometry
understanding described by Burger and Shaughnessy. Our
development of a model via WebGME (given the
abstraction afforded in the DSML) with the added benefit
of watching a real-life robot complete the programmed
paths allows for easy applications of CT and geometry
constructs and students will be more motivated by the
experience.

As it pertains to CT learning gains, our curriculum is most
applicable to the assessment of students’ knowledge and
abilities in implementing algorithms, understanding and
addressing efficiency and performance constraints, and
debugging. These practices, as defined by Grover and Pea
(2013), are utilized in each curricular task designed to
target the elements provided in the curriculum outline,
above, as students are required to use our scaffolded
DSMLs in a sequential order given physical and command
constraints of the robot in order to complete each task. We
surmise that the repetitive use of these practices to solve
geometry problems will enhance students CT abilities for
these practices.

4. ENVIRONMENT
With the establishment of our system requirements, the
second step in our process was the design and development
of our system environment. Our robot sits on a 7ft by 7ft
platform that has been sectioned into a 10x10 grid. The
robot is equipped with sensors that allow it to track its
location on the grid. As such, if it is told to move forward
by 3, the robot will travel forward until it has reached the
third black line that is perpendicular to the direction the
robot is moving. A video camera set-up is centered above
the grid as shown in the figure. The video feed generated

can be used by the student or a teacher to track the robot as
it moves along a path and verify the correctness of the path.

4.1. Robot
When activated, the robot starts a TCP server to
communicate with the WebGME plugin and opens a serial
port to communicate with the Arduino MCU. It manages
these processes on separate threads. The main thread
manages the various modes the user can utilize to control
the robot, such as manual mode, sequence mode, or GME
mode (the mode used in conjunction with this paper). The
MCU runs one program that takes input from 3 IR tx/rx
modules (line following sensor) and its output controls the
motors. It communicates with the SBC as well to provide
feedback for received commands and for mode switching..
Figure 2 provides an overview of the modular system
architecture.

The robot communicates with WebGME using the cross-
platform socketio library. The plugin generates a JSON
formatted string that is parsed within a minimal Flask web
server running on the robot. Upon receipt, the Arduino
MCU executes the command sequence and signals to the
RCM when it is finished.

Figure 2. System Architecture

5. META-MODEL
As previously described, the utilization of a DSML
provides curricular benefits in that it is constructed at a
suitable level of abstraction to allow the learner to focus on
what is important, and abstract away other CS details (e.g.
syntax concerns). Through the analysis of geometry and
CT requirements, our meta-model (Figure 3) was
developed based on the implementation of four goals:

1. a scaffolded, curricular driven approach that focuses
student actions on the concept(s) being addressed;

2. a simplified integration of robotics and mathematics
that makes it easier for the teacher to follow the
student work and assess it;

3. scalability in the classroom context; and
4. a systematic, stable connection between the robot

environment and modeling environment that is easy
to understand.

The students’ problem-solving tasks (e.g., building shapes,
following paths) are scaffolded, as exemplified through the
four available commands. The reduced set of commands
allows students to focus on the planning and computational
components of their activities. In addition, the
organization of the commands and sequences showcases
the model’s potential scalability and ease-of-use for the
teacher.

CTE2018

Figure 3. Robotics Meta-Model

5.1. Decorator
The target audience for this activity includes middle school
students that may not have any programming experience.
As such, the visual component of the environment may
play a role in the motivation and buy-in of students,
regardless of their capabilities, which is directly linked to
positive learning outcomes. A Decorator is a component of
the WebGME Design Studio that alters the way a node in
the model looks in composition view (the student’s view).
Figure 5 provides a zoomed-in image of relevant decorator
components. Students can select the next command in their
sequence via a drop-down menu located on the current
node. When a command is selected, the transition between
the two nodes is automatically created. In addition, each
node contains the command name, attribute value, and an
image - not only allowing for multimodal learning
acquisition, but also easing the debugging process
described in Section 2.2.

Figure 5. Model Decorator

5.2. Plugin
The final component needed to configure our WebGME
design studio is the plugin that coordinates the compilation
and delivery of the sequence of commands implemented by
the student to be executed by the robot. In other words, the
JavaScript plugin sends the visually represented sequence
of commands to the robot in a machine-readable format. In
the making of the plugin, we defined three requirements:
Parsing the student defined command sequences into a
standard structure, validating the sequence alongside
reporting the errors, and finally, sending the commands to
the robot.

Upon starting a session, the plugin connects the editor
environment with the robot using the parameters defined in
the “Connection Parameters” node. This is achieved
through a one-to-one socket connection, which remains
open until the user ends the session. To make sense of the
visual chain of commands the plugin starts by querying the
sequence to find the start node. It then records this block
and its relevant attributes. Next, the outgoing connection is
followed to similarly parse the next blocks until the stop

command is reached. This information is then stored in
JavaScript Object Notation (JSON) format and sent to the
robot by emitting a submission event that the robot is
listening for. The robot then parses the sequence and
executes the commands as detailed above.

6. Implementation
Following the development and design of the robotics
studio and accompanying geometry curriculum, we had
three middle school students complete the designed tasks
as a means of testing the system and getting feedback on
ease-of-use and system benefits or drawbacks. In this
section, we present an application of our system in a
classroom environment and demonstrate the use of the
robotics design studio as a tool to complete a sample path
planning module at the middle school level.

6.1. Sample Problem Set
A subset of the curriculum described in Section 3 includes
three general problems:

1) Identifying the axes and positive or negative values
2) Plotting points given (x,y) and deriving (x,y) from a

set of points
3) Path planning with multiple points, calculating the

shortest Manhattan distance

Figure 6 illustrates the visual interface that provides the
instructions for each task along with the overhead webcam
feed in conjunction with the WebGME design studio. In
this assignment, students are tasked with finding the most
efficient path the robot can take ensuring stops at the police
station, the fire station, and the courthouse prior to ending
its trip at the post office. Typically, this type of assignment
at the introductory level is distributed as on paper, limiting
the multi-modal approach to learning that may benefit
certain students.

Figure 6. Virtual Interface for Example Path Planning Problem

The direction the robot is facing, its current location, and
number of spaces moved are displayed at the top of the
information section which helps the student during the
solution construction process. The problem is given below
that, along with various hints that are given at
predetermined times.

In the scenario shown in Figure 6, the student first
identified the coordinates of all locations the robot must
visit. When all points are correctly located, their
coordinates are shown on the video feed. From the image
provided, it can be seen that the student then completed a
shortest path problem in which they generated the correct

CTE2018

command sequence for the robot to visit all locations,
starting at the Amazon warehouse (2, -2). The automatic
feedback response of “Nice Work!” is shown –
demonstrating the successful completion of the task

In Figure 7, the solution to the above problem is shown.
Upon closer inspection, the distance values can be seen as
well. Sequences can become significantly long, making the
debugging process difficult should an error occur in the
robot’s path. The availability of the command name and
attribute value as text on the node as well as images of
blocks allow for an easier analysis of the complete path
during the debugging process.

Figure 7. Student Solution to the Path Planning Problem

6.2. Case Study: CT Gains
For our usability study, students were asked to complete a
pre- and post- challenge. The challenge contained two
parts: the first included a debugging task in which they
were asked to analyze a given robot sequence and improve
the efficiency of the sequence while also ensuring the end
location was correct. This challenge component was
designed to assess student abilities in the CT constructs of
flow of control and debugging. The second task involved
the development of a sequence that would allow the robot
to draw a given shape with the minimum commands
possible in the grid space depicted in Figure 1, thereby
assessing student understanding of efficiency and
performance constraints as well as another application of
flow of control. This pre- and post- nature of the challenge
was implemented to identify potential improvements in
applying these CT constructs.

S1 is a 13-year-old middle school male student and S2 is a
14-year-old middle school female student. Both students
identified as having little to no experience with the listed
geometry concepts and practices and both identified as
having some previous programming experience using
block-based programming languages. For the purpose of
this case study, we will focus on student work in part 1 of
the challenge.

In the pre-challenge, S1 and S2 failed to debug the given
path in Part 1 in a manner that provided the fastest path for
the robot to complete the task. In addition, both S1 and S2’s
robot sequences could not make the robot arrive at the
correct location, indicating that both students struggled to
debug the entire algorithm. However, S1 and S2 were able
to identify two of the five identified errors indicating that
they had a preliminary understanding of flow of control.

Following the geometry assignments, S1 and S2 completed
the robotics post-challenge. This time, S1 was able to
identify three of the five identified errors and the final
sequence allowed the robot to finish at the desired location.

It should be noted that the student drew a path on the given
image of the grid that accounted for the two missing errors
in the algorithm, but those errors were not identified in the
algorithm. As S1 was able to identify the most efficient
path in the image, we believe it may be necessary for us to
assess how we described the challenge in order to be as
clear as possible on how each student should define his or
her response.

S2’s approach to Part 1 of the post-challenge changed
significantly from the pre-challenge. In Part 1 of the post-
challenge, S2 drew her robot’s shortest path sequence on
the grid provided, with dots along the grid indicating that
she was counting various path options (an action she
commonly did with her finger via the virtual interface
during the geometry assignments). While her new path
followed the expert model path between a few specified
target points, a few sub-paths were significantly different
than the expert model path. However, her final path was
shorter than the given problem to debug and one away from
the shortest path possible. Given her search-based,
debugging approach in the post-challenge, it can be seen
that her utilization of CT constructs improved.

6.3. Case Study: Geometry Gains
Our final student, S3, reported significant experience with
block-based programming environments like Scratch and
Netsblox. S3 achieved a perfect score on the CT related
questions of the pre-challenge. A key point here should be
made - S3 is younger than both S1 and S2, who report no
experience with DSMLs, and outperformed them both on
the pre-challenge, supporting our hypothesis that DSMLs
are linked to the utilization of CT strategies when solving
problems. During the geometry tasks, S3 initially struggled
with the coordinate plane unit, including the identification
of quadrants and moving the robot to desired x,y points on
the plane. However, this student made use of the system
feedback given. After repeating similar tasks, the time
spent solving coordinate plane tasks decreased. Based on
these observations, it can be seen that while learning gains
in CT could not be measured due to the perfect pre-
challenge score; abilities in geometry improved.

7. Results and Future Implications
This paper details the theoretical and systematic design and
development process of a robotics DSML for use in a
middle school mathematics classroom. Through an
analysis of curricular and software requirements, our group
implemented a robotics design studio using WebGME that
allows for an applicable and scalable robotics activity to
support CT and STEM learning. In addition, our usability
studies indicate potential CT learning gains acquired
through the completion of the geometry curriculum in our
environment. The potential benefits of integrating robotics
into other STEM classrooms has not been actualized to the
extent that it was theorized by renowned educational
theorist Seymour Papert (1993). The application of this
highly scaffolded DSML in a middle school classroom
may allow for a fruitful analysis on the level or extent of
programming needed to not only advance CT learning and
understanding, but also ensure the successful delivery of
relevant STEM content.

CTE2018

8. Acknowledgements
We would like to thank Patrik Meijer, Tamás Kecskés, and
other collaborators from Vanderbilt University for their
numerous contributions. This research is supported by NSF
grant # IIS 1735909.

9. REFERENCES
Anderson, J.R., Boyl, C.F., Corbett, A.T., Lewis, M.W.

(1990). Cognitive Modeling and Intelligent Tutoring.
Artificial Intelligence - Special issue, 42-1.

Ansorge, J., Barker, B. (2007). Robotics as a Means to
Increase Achievement Scores in an Informal Learning
Environment. Journal of Research on Technology in
Education, 39-3.

Basu, S., Biswas, G., Kinnebrew, J.S. (2017). Learner
modeling for adaptive scaffolding in a Computational
Thinking-based science learning environment. User
Modeling and User-Adapted Interaction, 27(1), 5-53.

Basu, S., Biswas, G., Kinnebrew, J. (2016). Using multiple
representations to simultaneously learn computational
thinking and middle school science. Proceedings of the
30th AAAI Conference on Artificial Intelligence.

Benitti, F. & Barreto, V. (2012). Exploring the educational
potential of robotics in schools: A systematic review.
Computers & Education, 58(3), 978-988.

Burger, William F., Shaughnessy, J. Michael:
Characterizing the van Hiele levels of development in
geometry. Journal for research in mathematics education,
p. 31-48. (1986)

Darrah, T., Kuryla, E., & Bond, A. (2018). Improving
STEM Education with an Open-Source Robotics
Learning Environment. Proceedings of the Hawaii
International Conference on Education.

Girotto, V., Lozano, C., Muldner, K., Burleson, W.,
Walker, E. (2016). Lessons Learned from In-School Use
of rTag: A Robo-Tangible Learning Environment.
Proceedings of the ACM Conference on Human Factors
in Computing Systems.

Goldman, R., Eguchi, A., Sklar, E. Using Educational
Robotics to Engage Inner-City Students with
Technology. (2004). Proceedings of the 6th International
Conference on Learning Sciences, 214-221.

Grover, S. & Pea, R. (2013). Computational Thinking in
K-12: A Review of the State of the Field. Educational
Researcher, 42(1), 38-43.

Hasan, A. & Biswas, G. (2017). Domain Specific
Modeling Language Design to support Synergistic
Learning of STEM and Computational Thinking. In
Proceedings of the International Conference on
Computational Thinking Education.

Hendricks, C., Alemdar, M., Olgetree, T. (2012). The
Impact of Participation in Vex(R) Robotics Competition
on Middle and High School Students’ Interest in
Pursuing STEM Studies and STEM-Related Careers.
American Society for Engineering Education.

Hutchins, N, Zhang, N, & Biswas, G (2017). The Role
Gender Differences in Computational Thinking
Confidence Levels Plays in STEM Applications. In
Proceedings of the International Conference on
Computational Thinking Education.

Jackson, E. & Sztipanovits, J. (2008). Formalizing the
Structural Semantics of Domain-Specific Modeling
Languages. Software & Systems Modeling, 8(4), 451–
478.

Jensen, J. C., Chang, D. H. Lee, E. A. (2011). A Model-
Based Design Methodology for Cyber-Physical Systems.
Proceedings of the IEEE Workshop on Design,
Modeling, and Evaluation of Cyber-Physical Systems.

Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton,
K., Weintrop, D., & Beheshti, E. (2014). Embedding
computational thinking in science, technology,
engineering, and math (CT-STEM). In future directions
in computer science education summit meeting, Orlando,
FL.

Muldner, K., Lozano, C., Girotto, V., Burleson, W.,
Walker, E. (2013). Designing a Tangible Learning
Environment with a Teachable Agent. Artificial
Intelligence in Education.

National Research Council. (2012). A framework for K-12
science education: Practices, crosscutting concepts, and
core ideas. National Academies Press.

Panadero, C., Villena-Roman, J., Delgado-Kloos, C.
(2010). Impact of Learning Experiences Using LEGO
Mindstorms(R) in Engineering Courses. Proceedings of
the IEEE Global Engineering Education Conference.

Papert, S. (1993). Mindstorms: Children, computers, and
powerful ideas (2nd ed.). New York, NY: Basic Books.

Royal Society. (2012). Shut down or restart: The way
forward for computing in UK schools. Retrieved
February 4, 2017, from https://royalsociety.org/topics-
policy/projects/computing-in-schools/report/

Sengupta, P., Kinnebrew, J.S., Basu, S., Biswas, G., &
Clar, D. (2013). Integrating computational thinking with
K-12 science education using agent-based computation:
A theoretical framework. Education and Information
Technologies, 18(2), 351-380.

The Praxis Study Companion - Mathematics: Content
Knowledge. ETS, 2017.

Van Deursen, A., Klint, P., & Visser, J. (2000). Domain-
specific languages: An annotated bibliography. Sigplan
Notices, 35(6), 26-36.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,
Trouille, L., & Wilensky, U. (2016). Defining
Computational Thinking for Mathematics and Science
Classrooms. Journal of Science Education and
Technology, 1–21.

Windham, C.: Why Today’s Students Value Authentic
Learning. (2007). Educause Learning Initiative -
Advancing Learning Through IT Innovation.

Wing, J. (2006). Computational thinking. Communications
of the ACM, 49(3), 33-36.

	1. INTRODUCTION
	2. BACKGROUND
	2.1. Computational Thinking (CT)
	2.2. General Robotics Courses
	2.3. Robotics in Mathematics
	2.4. Domain Specific Modeling Language (DSML)
	3. CURRICULUM DEVELOPMENT
	4. ENVIRONMENT
	4.1. Robot
	5. META-MODEL
	5.1. Decorator
	5.2. Plugin
	6. Implementation
	6.1. Sample Problem Set
	6.2. Case Study: CT Gains
	6.3. Case Study: Geometry Gains
	7. Results and Future Implications
	8. Acknowledgements
	9. REFERENCES

