Design and Development of a Low-Cost Open-Source Robotics Educa-

tion Platform

Timothy Darrah, Nicole Hutchins, and Dr. Gautam Biswas

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Abstract

The impact of robotics has grown beyond research laboratories and industrial facilities into home environments and
primary and secondary school classrooms. Of particular interest to us are robots for education. In general, educational
robotics kits are expensive and proprietary, or cheap and unreliable. This research seeks to bridge that gap by providing
a hands on open-source robotics learning environment that is both inexpensive and reliable. In this paper, we review the
applicability of such environments to support the synergistic learning of computational thinking (CT) and STEM, with an
emphasis on Computer Science (CS) concepts and practices. The CT and Advanced Placement CS Principles frameworks
(from the US) govern the design and implementation of our system. We discuss the hardware system of the robot and the
accompanying software architecture that runs on Linux-based single board computers. We conclude with results from a
small pilot study analyzing the usability and curricular effectiveness of the system.

1 Introduction

Seymour Papert [12] called for the introduction of con-
structivist curricula with an emphasis on exploration, criti-
cal thinking, and problem solving tasks. We have adopted
this framework to implement a CS secondary school cur-
riculum using a robotics learning platform that combines
the physical and algorithmic aspects of model building and
problem solving. Our environment is learner-centered, em-
ploying supporting technology, resources, and scaffolding
to help students actively construct and use knowledge for
complex problem-solving tasks in CS.

Following Wing’s [16] call for applying fundamental
computational thinking (CT) concepts in other content do-
mains, there has been abundant evidence of the reciprocal
benefits of combining CT with STEM curricula [13]. The
pedagogical objective for the development of our robotics
platform is to implement a learning by problem-solving en-
vironment which enables the synergistic learning of STEM
+ CT content in a framework that is engaging and challeng-
ing for students and is applicable in multiple domains. Our
proposed approach is supported by the success of previous
robotics applications (e.g., [1]) that provide a well-defined
structure to scaffold and guide students with experimental
activities designed to enhance "personalized comprehen-
sion of the STEM concepts". Moreover, the twofold ben-
efit of such a robotics platform includes a more seamless
pedagogical integration of robotics as an aid to instruction
across multiple established curricular domains as well as
the provision of a robust, low cost and extendable environ-
ment as an alternative to expensive robotics kits currently
being used in schools.

Our previous work demonstrated synergistic STEM+CT
learning in a middle school geometry curriculum [5]. This
work aligns well with the new Advanced Placement Com-
puter Science Principles (APCSP) course [2]. The goal of
this research is to implement key CT standards required for
the APCSP course, and through this process, introduce stu-
dents to CS test items from the APCSP examination while
engaging students to create robotics experiments - a key
implementation factor recognized in successful robotics

applications [1]. We develop and present a robotics cur-
riculum designed to enhance CS learning. We demonstrate
using case studies the effectiveness of the new CS curricu-
lum, and conclude with a discussion on future implications
of this research.

2 Robots in Education

An extensive 8 year study completed in 2016 by Nu-
gent et al [11] found that "robotics summer camps, aca-
demic year clubs, and competitions promote STEM learn-
ing, particularly in engineering, engineering design, and
programming knowledge.” A recent study from 2015 [6]
sought to ascertain the level of CS learning gains of mid-
dle school students participating in the FIRST® LEGO®
League (FLL) robotics competition. In particular, they fo-
cused on two CS subtopics, interfacing with sensors and
utilizing input/output constructs (they are similar). These
directly correlate to system analysis and design, as well
as algorithm development and program troubleshooting.
Problem solving and understanding algorithms were the
foundations of that course. While student feedback was
mixed (partially due to many students still not knowing if
they like CS to begin with) a number of students found the
approach engaging and beneficial.

The majority of robotics camps/courses offered in many
American cities use proprietary hardware and software
from companies like VEX® and LEGO®(for a review see
[3, 5]), along with forums that enable them to be widely
used in informal learning environments. They all report
positive outcomes and experiences in school settings, but
the cost of the systems are huge barriers toward adoption
for individualized instruction in formal and informal learn-
ing environments [10]. Our system will help overcome
these barriers, and provide a framework to assess the ef-
fectiveness of robotics in CT and STEM + CS education.

A summer camp ran in 2017 [3] served as a pilot
program for the preliminary version of our open-source
robotics learning environment. The CS concepts covered
during the course included Python programming and pro-
gramming fundamentals, algorithm development, as well
as code analysis and troubleshooting. The pre/post gains

were substantial, pre-test scores increased from between
15% and 25% to between 80% to 90% (average post-test
score was 82%). These are promising results even though
the students were unable to fully assemble their robots due
to lack of supplies.

3 Pedagogical Framework

Our curriculum uses components of the established APCSP
curriculum implemented in a robotics application. The
APCSP curriculum was developed to increase CT class-
room opportunities and to provide an introduction to a
number of CS topics not covered in the AP Computer
Science course. We have developed a predominantly
programming-based course focusing on concepts such as
networking, sensors, and algorithms. Table 1 details the
CT and CS learning objectives targeted in our curriculum
as well as reference to the total number of pre-post ques-
tions designed to target knowledge of those learning objec-
tives.

Dom. Learning Objective Ques.

Find patterns and test hypotheses about
digitally processed information to gain | 1
insight and knowledge.

Using abstraction to manage complex-

CT ity in programs. 2
Develop an algorithm for implementa- 312
tion in a program. ’
Evaluate algorithms analytically and

.. . 4,5, 6,
empirically for efficiency, correctness, 7
and clarity.
Explain characteristics of the Internet 3 9

and the systems built on it.

Explain how the characteristics of the
CS Internet influence the systems built on
it.

10, 11

Develop a correct program to solve a | {5
problem.

Table 1 APCSP learning objectives targeted in the robotics
pre-posttests.

3.1 Computational Thinking (CT)

A key curricular component involves the application of
CT concepts and practices. CT has been defined as "the
process of recognizing aspects of computation in the world
that surrounds us and applying tools and techniques from
Computer Science to understand and reason about both
natural and artificial systems and processes" [15]. While
we have targeted CT learning objectives described in Table
1, an assortment of CT practices outlined by Grover and
Pea, including flow of control, symbol systems and rep-
resentations, conditional logic, efficiency and performance
constraints, and debugging [4] are also part of the curricu-
lum. Students can use these to extend the robot movements
and functions as they progress with the CS education mile-
stones. In addition, studying the physical movements of
the robot in relation to the code developed by the student
provides a multi-modal approach to analyzing code and de-
bugging if the robot does not perform as desired.

4 Problem Solving Tasks

To gauge student learning, we conducted identical pre- and
post-tests. We implemented an evidence-centered design
approach [7] for the creation of our pre-post assessments.
As shown in Table 1, each question administered in the pre-
post has an associated learning objective(s), of which, the
majority were pulled directly from the established APCSP
curriculum framework.

4.1 Lesson Plan

A sample curricular unit was developed to assess the
usability and effectiveness of the learning environment in
helping students learn the CT and CS concepts discussed
in Section 3. The students develop a maze navigation al-
gorithm to learn CT concepts. To help the student learn
CS concepts, the unit begins with a short introduction to
IP addresses and the internet protocol, and how the inter-
net works (routing, DNS). Then, the student is asked to
connect to the robot. Information about private IP address
/ private network and how to determine the IP address of
the host computer is derived through a short introduction
and successful completion of this task demonstrates their
understanding.

For Task 1, prior to connecting, the student must select
the color of their robot (used for overhead tracking), and
the correct IP address for their robot. They are allowed to
scan one of three networks (nmap back-end) and need to
use the information attained from the video to help them
determine the appropriate network to select. Then they
must go through the results (displayed in the output box)
to find the robot’s IP address, which has a hostname of
"robot". For Task 2, they must navigate through the maze
using short (3 to 5) command sequences. Currently, there
is nothing to prevent the student from ignoring the virtual
barriers, but this will be addressed before we implement
this system in a classroom study. After the student com-
pletes the implementation of the maze algorithm, they are
prompted to investigate the range sensor and its incorrect
reading, this is Task 3 (in figure 2, the reading is correct).
On the second monitor a remote desktop session with the
robot is active and the Sense module is displayed in an ed-
itor, and they must go through the code to find the error in
the distance formula. These three different tasks were cho-
sen because they cover different aspects of the broad cate-
gories of CS and CT-related concepts and practices that we
wish to deliver, and to show how different problems can be
given together to form one continuous experience.

5 Learning Platform Design

Figure 1 depicts a basic system configuration. The stu-
dent interfaces with the robot using a GUI application to
develop their algorithms for accomplishing the assigned
tasks. For more advanced learning, students can work with
the robot through a terminal, remote desktop connection,
or a direct connection with a keyboard, mouse, and HDMI
monitor.

The environment is designed to be a multimodal learn-
ing environment (MLE), which comprises of a virtual
workspace and a physical workspace that provide students
with a rich learning experience. A project in 2013 designed

TCP Socket.
1 — =
e | g—
[|
Terminal

Camera
. Range

Sensor

Serial port

I Serial port I

designed a tangible environment in conjunction with a
robotic teachable agent to deliver geometry instruction to
middle school students [9]. They found the environment
facilitated collaborative learning and increased student mo-
tivation and engagement. The cognitive-affective theory
of multimodal learning [8] supports these findings and ex-
plains how these environments facilitate the acquisition of
both semantic and episodic knowledge.

5.1 Virtual Environment

II| TCP Socket
m“

Figure 1 Basic System Overview

I- IR Sensors

Motors

The virtual environment shown in Figure 2 includes the
webcam feed with a basic overlay (grid marks, bounding
rectangle over the robot) as well as a second imagebox that
can be used for a variety of applications, in this case, a
maze. The blue dots represent waypoints that the student
can use to aid in generating their command sequences.

Command History

Command input

submit | |

v—

LowRange:(45,52,145) Highk:

Figure 2 Virtual Interface

The right side of the figure includes the problem descrip-
tion, robot output, scrollable command history, and the
command input box. Below the main feed is information
about the robot’s location and actions within the environ-
ment that also aid in solution formulation.

5.2 Physical Environment

The physical environment consists of 7’x7° coordinate
plane that contains a 10x10 grid space. The floor of the
plane was made from a piece of laminate flooring and 1"
tape, and is connected to 4 2"x2"x7’ pieces of wood at the
base. 2 of these pieces detach from one side and fold in, so
that the complete base of the structure can be rolled up and
easily transported. At the top of the plane is a wide angle
webcam that is held in place with a simple structure made
from PVC tubing. This comes apart as well for transport,
and is easily reassembled. The cost to build this was around
$80.00. Ideally, the student sits at a computer so that he
or she can see and interact with the coordinate plane (see
Figure 3).

Figure 3 Physical Workspace

5.3 Robotic System

In order to deliver effective instruction in the CS domain,
the robot software package has been designed to incorpo-
rate a software engineering education perspective, utilizing
components from the APCSP Course [2]. Best practices in
software engineering as summarized in [14] are followed,
which allows the student to examine the robot as a tangible
case study when learning about object-oriented program-
ming and the software development life cycle. In addition,
we include key activities linked to the Networking and Al-
gorithms components of the APCSP course. These learn-
ing objectives include student’s abilities to "explain prop-
erties of IP addresses" and to "develop an algorithm for
implementation in a program" [2].

The robot software is written in Python and contains 6
classes that provide all the functionality necessary for the
robot to operate. Python was chosen primarily because it
is the language of choice for programming on the Rasp-
berry Pi®, and it is easy to learn. We also adopted design
principles that makes it easier for learners to program the
robot and learn the relevant STEM and CT concepts. The
core software components include: (1) the Hardware class
that specifies the GPIO connections; (2) the Behavior Class
that defines several functions that control a buzzer, several
LEDs, and the pan/tilt unit to simulate behaviors; (3) the
Sense class that extends the robots capabilities to include
the use of sensors (currently the sonic range sensor and
an IMU are supported); (4) the Communicate Class which
manages the serial and TCP connections used; (5) the Vi-
sion class which interfaces with the on-board camera and
contains basic computer vision functions such as shape and
color detection, object tracking, or face detection to name
a few; and (6) the RobotControlModule class brings all of
these functionalities together with student input (as a se-
quence of commands) to form an interactive robot. Over-
all, the software functionality and capabilities provide an
engaging method for students to learn CT and CS concepts.

The student enters commands one sequence at a time,
where "forward 2, left, forward 3, stop" is an example of
a valid sequence. This is converted into a byte string and
sent to the Arduino, which converts the string into an array
of commands and distances that are then executed sequen-
tially. Throughout the execution of a sequence, 3 IR sen-
sors are sampled to ensure a straight line course. A separate
function handles the control of the motors when an inter-
rupt is received (such as when the camera or sonic range
sensor detects an object), and returns control to the main

function when the event has passed. Together, these com-
ponents provide reliable operations that are not found in
many cheaper robotics products.

6 Case Studies

As an initial usability study, we worked with two students.
Student 1 indicated that she had no prior experience in CS.
Student 2 had prior CS experience. We describe their work
on the system below.

6.1 Student 1: Synergistic Learning

The first student indicated no prior CS course experi-
ence. We discuss the student’s performance on the APCSP
CT learning objectives that included analyzing problems
and artifacts and creating computational artifacts, as well
as the CS learning objective of programming the robot’s
sensors to determine distance away from objects.

During the experiment with some instructional guidance
from a researcher, this student identified and corrected the
coding errors associated with the robot determining the dis-
tance away from an object accurately. In the related pre-
post questions, the student showed gains in CT concepts.
Her score increased from 1/4 in the pre-test to 3/4 in the
post-test. In the CS portion of the pre- post- test, the stu-
dent was able to identify that the total pulse time was im-
portant in calculating the distance using the robot’s sensor
in the pre-test; however, her remaining calculations were
incorrect. For the post test, the student calculated the total
pulse time and accurately utilized the given speed of sound
as well as the knowledge that the total pulse times includes
the travel to and from the object in order to arrive at the
correct post-test solution .

6.2 Student 2: Experienced in CS

This student achieved a perfect score on the CT compo-
nent of the pre-test and post-test. Therefore, we will study
her learning of CS concepts, primarily by analyzing her
answers to a networking question: "Why do multiple web-
sites at your school and the computers in your classroom
all have IP addresses that start with the same two set of
numbers?" and the robot sensor question.

In the pre-test, this student was able to state that the web-
sites and computers at the school "are part of the same net-
work." In the post-test, she provided more elaborate an-
swers, and, therefore, improved her scores on this ques-
tion. For the robot sensor question, this student calculated
the total pulse time and multiplied the pulse time by the
speed of sound (in cm per second) to get the total distance,
but she did not divide this distance by two in the pre-test.
This calculation error was resolved in the post-test.

7 Conclusions and Further Work

This work demonstrates the feasibility and attractiveness
of using a robot-centric approach to CS and CT concepts,
however a complete curricular unit needs to be developed
before an in-depth analysis of classroom effectiveness can
be conducted. Following the same approach as the sample
unit (introduction to several topics and demonstration of
their interconnectedness), the networking section will be
expanded to include ports and communication protocols;
the CS portion will be expanded to include developing high

level image processing algorithms to detect a "goal" object;
and the CT portion will be expanded to include a short-
est path problem with various conditions, physical barriers,
and the goal object.

The robotic setup discussed here is an attractive alter-
native to the more expensive kits commercially available,
and is capable of aiding the instruction of multiple STEM
+ CS topics. This approach to instruction is directly linked
to increasing CT strategies among students in high school
computer science courses. With such an approach, a school
or school district can incorporate a single robotics system
across grades, saving money and teacher time spent learn-
ing about the different systems. We hope to expand the
curricular potential and inspire increased CT education in
classrooms across the board.

8 Literature

[1] BENITTI, F., AND BARETTO, V. Exploring the educational po-
tential of robotics in schools: A systematic review. Computers &
Education 58 (2012), 978-988.

[2] COLLEGEBOARD. Ap computer science principles: Exam and
course description, 2017.

[3] DARRAH, T., KURYLA., E., BOND, A., AND HARGROVE, S. K.
Improving stem education with an open-source robotics learning en-
vironment. In Proceedings of the 2018 Hawaii International Con-
ference on Education (2018). Authors previous work.

[4] GROVER, S., AND PEA, R. Computational thinking in k-12: A
review of the state of the field. Educational Researcher 42, 1 (2013),
38-43.

[5] HUTCHINS, N., DARRAH, T., ZARE, H., AND BISWAS, G. Devel-
opment of robotics dsml to support middle school mathematics cur-
riculum. In Proceedings of the International Conference on Com-
putational Thinking (To Appear) (2018).

[6] KALOTI-HALLAK, F., ARMONI, M., AND MORDECHAI, B.-A.
The effectiveness of robotics competitions on students’ learning
of computer science. In Olympiads in Informatics (2015), vol. 9,
pp. 89-112.

[7] MISLEVY, R. J., ALMOND, R. G., AND LUKAS, J. F. A brief in-
troduction to evidence-centered design. ETS Research Report Series
2003, 1 (2003).

[8] MORENO, R., AND MAYER, R. Interactive multimodal learning
environments. Educational Psychology Review 19, 3 (2007), 309—
326.

[9] MULDNER, K., LozaNo, C., GIROTTO, V., BURLESON, W.,
AND WALKER, E. Designing a tangible learning environment with
a teachable agent. In Artificial Intelligence in Education (2013),
pp. 299-308.

[10] NEHRA, V., AND TYAGI, A. Free open source software in elec-
tronics engineering education: A survey. International Journal of
Modern Education and Computer Science 5 (2014), 15-25.

[11] NUGENT, G., BARKER, B., GRANDGENETT, N., AND WELCH,
G. Robotics camps, clubs, and competitions: Results from a us
robotics project. Robotics and Autonomous Systems 75 (2016), 686—
691.

[12] PAPERT, S. Mindstorms: Children, computers, and powerful ideas,
2nd. ed. Basic Books, New York, NY, 1993.

[13] SENGUPTA, P., KINNEBREW, J., BASU, S., BIswASs, G., AND
CLAR, D. Integrating computational thinking with k-12 science
education using agent-based computation: A theoretical framework.
Education and Information Technologies 18, 2 (2013).

[14] SINGH, H., AND HASSAN, S. Effect of solid design principles on
quality of software: An empirical assessment. International Journal
of Scientific & Engineering Research 6, 4 (2015).

[15] SOCIETY, R. Shut down or restart: The way forward for computing
in uk schools, 2012.

[16] WING, J. Computational thinking. Communications of the ACM
(2006).

