
1 INTRODUCTION  
 
Recent disasters severely impacting both infrastruc-
ture systems and communities emphasize the need to 
prepare for more effective response and recovery. 
Communities have especially struggled in under-
standing the aspects of recovery patterns for differ-
ent systems. Therefore, there is a strong need to de-
velop models that are able to measure and estimate 
what are the recovery prospects for a certain com-
munity or infrastructure network given system char-
acteristics and event information. In addition, the 
models need to account for uncertainty underlying 
the information that has been or being gathered be-
fore, during, and after the disruption. 
 Prior work on recovery rate modeling of infra-
structure systems focuses on the time to recovery 
from power outages as a function of event attributes 
and impact of the disaster (Mackenzie & Barker 
2013, Barker & Baroud 2014, Barabadi & Ayele 
2018). In this research, the goal is to incorporate the 
uncertainty in estimating the resilience of systems 
after disruption. More specifically, the objective of 
the study is to analyze the recovery rate of a system 
or a community that has been impacted by a disaster. 
The response variable considered in this work is the 
average recovery rate computed based on the impact 
of the event and the total time to network recovery 
as well as other variables.  
 In order to integrate information from experts with 
data on the disruptive event and recovery process, 
this work proposes the use of a Poisson Bayesian 
kernel model which accommodates count data while 

accounting for prior information and uncertainty in 
the estimates. The model has been developed and 
tested using sample data in earlier work (Floyd et al. 
2014) and has been applied to a risk analysis case 
study to predict the frequency of disruptive events in 
inland waterway (Baroud et al. 2013). However, the 
method has never been implemented in post-disaster 
scenarios, more specifically to model recovery rate. 
In this paper, the model is implemented and tested 
on a resilience modeling case study of power sys-
tems. More specifically, the recovery rate of a com-
munity from power outages is represented by a pa-
rameter following a Gamma distribution. This prior 
distribution is updated using historical data of dis-
ruptive events as well as a set of attributes that are 
represented by the kernel function, a measure of 
similarity between the new data point and the train-
ing set. The model performance is evaluated in com-
parison to other count data models such as the Pois-
son generalized linear model and the negative 
binomial generalized linear model. 
 Section 2 provides background literature on com-
munity resilience modeling and count data methods 
with an outline of the paper’s contributions. Section 
3 briefly describes the Poisson Bayesian kernel 
method and provides a structure to the model com-
parison and performance measures. Section 4 de-
scribes the case study with an overview of the data 
and a summary of the results of the models used in 
this work. Finally, concluding remarks are provided 
in section 5.  
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 ABSTRACT: With the increasing frequency and severity of disasters resulting especially from natural 
hazards and impacting both infrastructure systems and communities, thus challenging their timely recovery, 
there is a strong need to prepare for more effective response and recovery. Communities have especially 
struggled to understand the aspects of recovery patterns for different systems and prepare accordingly. There-
fore, it is essential to develop models that are able to measure and estimate the recovery trajectory for a cer-
tain community or infrastructure network given system characteristics and event information. The objective of 
the study is to deploy the Poisson Bayesian kernel model developed and tested in earlier work in risk analysis 
to measure the recovery rate of a system. In this paper, the model is implemented and tested on a resilience 
modeling case study of power systems. The model is validated using a comparison to other count data models 
such as Poisson generalized linear model and the negative binomial generalized linear model.  



2 BACKGROUND AND CONTRIBUTION 

2.1 Community Resilience Modeling 
The ultimate goal of recovery measures after a disas-
ter is to insure the society is able to bounce back 
from the losses incurred and reach normalcy as fast 
as possible, in recent studies this has been termed as 
“community resilience.” One common definition for 
community resilience refers to the ability for a social 
system to respond and recover from a disaster. 
While vulnerability was previously used as an indi-
cator, researchers and government policy have real-
ized the advantages of utilizing resilience as an indi-
cator to measure the ability of a community to not 
only recover during the post-disaster phase, but also 
advance beyond the pre-disaster state and adapt or 
transform to improve preparedness to future events. 
Furthermore, resilient communities are also less vul-
nerable to hazards than an equivalent less resilient 
community. Initially, community resilience model-
ing research focused on qualitative approaches 
founded in a set of metrics and indicators that de-
scribe the resilience of a community (Johansen et al. 
2016). The concept of resilience can be useful when 
quantified and used as a decision-making tool, how-
ever, this can be challenging due to the uncertainty 
in many factors impacting resilience as well as the 
lack of data in recovery measures. As such, a num-
ber of research initiatives have focused on quantify-
ing resilience ranging from stochastic modeling to 
simulation and data-driven approaches, among oth-
ers.  

Models of community resilience often include a 
variety of social factors. In one study, community 
resilience was modeled as categorical variables 
based on four primary sets of adaptive capacities-
Economic Development, Social Capital, Information 
and Communication, and Community competence 
(Norris et al. 2008). It is proposed in this work that 
advancements within each category will aim to cre-
ate a community that is more resilient to disasters as 
a whole.  More specifically, one example of the hy-
pothesis proposed in Norris et al. (2008) is the abil-
ity to measure infrastructure and economic resilience 
in terms of power restoration time which can there-
fore be used as a proxy to understand community re-
silience.  

A more robust model for community resilience 
uses a composite index of social and geographical 
factors, the Baseline Resilience Indicators for Com-
munities (BRIC) (Cutter et al. 2014). This relative 
value measure of resilience can point to counties and 
tracts within a specific geographic location that are 
particularly vulnerable to disasters and require more 
attention and more time to fully recover. This meas-
ure was found to have significant negative correla-
tion with the previously established Social Vulnera-
bility Index (SoVI).  

Analysis has been performed to identify recovery 
rate specifically following a disaster. However, two 
relevant primary issues are dealing with missing data 
as well as homogeneity and heterogeneity across the 
data set and the fact that some models are so specific 
that they need to be adapted for different situations. 
In addition, most studies have aimed to provide res-
toration curves that give information on the number 
of customers with service over time. A lack of litera-
ture exists to model recovery rate specifically. One 
study focuses on the need to not only develop recov-
ery rate plots but to be able to select the appropriate 
models based on the characteristics of a specific data 
set (Barabadi & Ayele 2018).  

2.2 Methods for Modeling Count Data 
Modeling the recovery rate requires methods that 
can accommodate count data as the response varia-
bles in this case constitutes the number of recovered 
subjects per unit of time. 
 Generalized Linear Models (GLM) are widely 
used within regression models when count data is 
present. Within this class of models, the Poisson 
density function is often used with a log-link func-
tion, if the variance of the counts is higher than the 
mean of the counts, it is common to also use a nega-
tive binomial GLM. In certain special cases, exten-
sions of these models can accommodate specific sit-
uations. For example, zero-truncated models and 
zero-inflated models can be used when there are ex-
cess zero counts (Shankar & Mannering, 1997), and 
both use an underlying Poisson distribution.  
 However, both Poisson and negative binomial 
lack the flexibility to handle data that is, for exam-
ple, both underdispersed and overdispersed. As such, 
other models have been developed. One example is 
the Conway-Maxwell Poisson (COM) distribution 
GLM (Guikema & Goffelt, 2008). The model func-
tions by having underdispersed data yield a Bernoul-
li distribution, overdispersed data yield a geometric 
distribution, and a Poisson distribution when the var-
iance is equal to the mean.  
 Using a Bayesian framework to account for the 
uncertainty in the regression parameters, it is possi-
ble to improve on their accurate estimation by updat-
ing the parameter distributions with new data. Other 
approaches of analyzing count data using a Bayesian 
framework are conjugate priors. These methods are 
quite attractive as they offer the benefit of uncertain-
ty modeling using Bayesian techniques without add-
ing any computational cost. Given a specific prior 
distribution and a specific likelihood function, the 
posterior distribution will have the same form as the 
prior distribution but with updated posterior parame-
ters. There are different forms of conjugate priors, 
one of which is the Gamma conjugate prior used to 
model count data in the model presented in this pa-
per. The method assumes that the rate of occurrence 



follows a Gamma prior and updates the distribution 
using information represented by a Poisson likeli-
hood. The Gamma conjugate prior is the foundation 
of the Poisson Bayesian kernel model used in this 
paper and will be further discussed in the following 
section. This method allows the user to model and 
understand the uncertainty around each variable and 
estimate them by considering their probability dis-
tributions as opposed to point estimate 

2.3 Contributions 
This paper presents new analysis for data-driven 
community resilience modeling. A Bayesian ap-
proach developed and tested in prior work is imple-
mented and tested in a case study of community re-
covery from power outages. The work presented 
here constitutes a first step in advancing data-driven 
methods for applications in infrastructure and com-
munity resilience. 

3 METHODOLOGY 

3.1 Poisson Bayesian Kernel Model 
Poisson Bayesian kernel methods estimate the rate 
of occurrence of the event rather than estimating a 
deterministic value for the number of times the event 
is estimated to occur. A common distribution to 
model count data within a Bayesian framework is 
the Gamma-Poisson conjugate prior. The develop-
ment of the Poisson Bayesian kernel method dis-
cussed can be found in Baroud et al. (2013) and 
Floyd et al. (2014). The approach uses the Gamma 
conjugate prior as the basis of the model. 

It is assumed that the parameter to be esti-
mated is the rate of occurrence, 𝜆 > 0, which fol-
lows a Gamma prior distribution with parameters 
𝛼 > 0 and 𝛽 > 0, as shown in Eq. (1). 

 

 𝑃(𝜆) =
𝛽𝛼

Γ(𝛼)
𝜆𝛼−1e(−𝛽𝜆) 

 
(1) 

For the likelihood function, the product of the 
Poisson density function, shown in Eq. (2), is used, 
since this is a Gamma-Poisson conjugate prior ap-
proach. 

 

 

𝐿 = ∏ 𝑃(𝑦𝑖)

𝑚

𝑖=1

= ∏
(𝜆𝑖

𝑦𝑖𝑒−𝜆𝑖)

𝑦𝑖!

𝑚

𝑖=1

=
𝜆𝑖

∑ 𝑦𝑖
𝑚
𝑖=1 𝑒−𝑚𝜆𝑖

∏ 𝑦𝑖!
𝑚
𝑖=1 

 

(2) 

 
Thus, the posterior distribution is the product of 

Eqs. (1) and (2). Rearranging the product of the like-

lihood function and the prior distribution function 
results in a Gamma posterior distribution where 
𝛼∗ = ∑ 𝑥𝑖

𝑚
𝑖=1 + 𝛼 and 𝛽∗ = 𝑚 + 𝛽. 
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= Gamma (𝛼∗,  𝛽∗) 

(3) 

This result is the basic Gamma conjugate prior 
approach used in Bayesian analysis. This approach 
assumes the notion of exchangeability meaning that 
for different sets of training and testing data, the re-
sulting posterior parameters will be similar since 
they are a function of the prior parameter, the size of 
the dataset, and the summation of all the data points. 
The characteristics of each outcome are not taken in-
to consideration in this case, but rather the overall 
property of the dataset (MacKenzie et al., 2014).  

The Poisson Bayesian kernel approach extends 
the notion of the conjugate prior such that the poste-
rior parameters computation not only depends on the 
prior parameters and the historical data but also on 
the attributes through the kernel matrix.  The param-
eters for the Bayesian kernel model for counts are 
expressed in Eqs. (4) and (5). 𝐊 is the 𝑚 ×  𝑚 ker-
nel matrix, 𝐘 is an 𝑚 ×  1 vector containing the 
output data associated with the 𝑚 observations of 𝐗, 
and 𝐕 is an 𝑚 ×  1 vector containing ones. Each en-
try in the kernel matrix represents the similarity 
measure between the attributes of the testing set and 
the training set, respectively. As such, the new data 
point is compared with the training set and accord-
ing to the similarities of the attributes, new values 
for the parameter of the posterior distribution are 
computed. Note that in this case, the training and 
testing sets are assumed to have the same size, 𝑚. 
However, when the model is deployed, the sets can 
be of different sizes, and in some cases, the testing 
set could include only one data point such as in a 
leave-one-out analysis.  

 
 𝛼∗ = 𝐊𝐘 + 𝛼 (4) 

 

 𝛽∗ = 𝐊𝐕 + 𝛽 (5) 
 

 As with other statistical and mathematical mod-
els, there are a few assumptions underlying the de-
ployment of such modeling approach. Even though 
the form of the prior distribution is known from the 
conjugate prior, the model user would still need to 
identify the values of the prior parameters. While 
there are formal ways to determine the prior parame-



ters (Kass & Wasserman, 1996), the selection of 
such parameters might not always be considered 
(Montesano & Lopes, 2009; Mason & Lopes, 2011). 
Oftentimes, the priors are either assumed to be 
known or are assigned such that the prior distribu-
tion is non informative.  In other cases, these param-
eters are estimated using data and prior knowledge 
by matching the sample mean and variance to those 
of the prior distribution (MacKenzie et al. 2014; 
Carlin & Louis, 2008). Another assumption to con-
sider is the choice of the kernel function which de-
pends on the application and the model user. This 
research uses the most popular kernel function, the 
radial basis function (RBF) in Eq. (6), 
where 𝑘(𝐱𝑖, 𝐱𝑗) is one entry in the matrix 𝐊 repre-
senting the kernel function between the attributes of 
the 𝑖𝑡ℎ and 𝑗𝑡ℎ data points. 

 

𝑘(𝐱𝑖, 𝐱𝑗) = exp (−
‖𝐱𝑖−𝐱𝑗‖

2

2𝜎2 )                       (6) 

 

In addition to being commonly used in kernel 
methods, RBF has nice properties. The function has 
only one parameter, 𝜎, to be tuned to an optimal 
value. This reduces computation efforts significantly 
in comparison to other kernel functions with two or 
more parameters requiring a grid search to estimate 
them. Also, the structure of the function is based on 
the Euclidean distance, whereby similar data points 
are closer to each other in the feature space. Finally, 
the kernel matrix of the RBF has full rank and the 
entries fall between zero and one resulting in kernel 
functions of the data points acting as weights in the 
computation of the posterior parameters (Schölkopf 
& Smola, 2002). More discussion on the impact of 
the RBF parameter, 𝜎, on the performance of the 
model will follow in the case study presented in sec-
tion 4. 

The estimated rate for the new data point follows 
then a Gamma distribution with parameters 𝛼∗ and 
𝛽∗.  As a point estimate for this parameter, the ex-
pected value of the posterior distribution is consid-
ered, shown in Eq. (7) as the ratio of the Gamma dis-
tribution parameters 𝛼∗ and 𝛽∗.  

 

 �̂� =
𝛼∗

𝛽∗
 (7) 

 
Note that a different point estimate for the rate 

can be used such as the median, the mode, or the 
variance, depending on the type of problem and the 
model users. 

3.2 Predictive Accuracy Measures 
The ultimate objective of developing and identifying 
predictive models is their application in risk and re-

silience analysis problems, such as predicting the 
frequency of disruptions in a particular network sys-
tem or the recovery rate of infrastructure and com-
munities. While the goodness of fit is important to 
assess whether the model is capturing the pattern 
and variability in the data, is it equally important to 
analyze the prediction power of a statistical model if 
it is going to be used for forecasting purposes. Pre-
diction accuracy is assessed by the out-of-sample er-
ror, which accounts for the discrepancy between the 
estimated parameter and the actual observation of 
data points that were not in the set used to train the 
model. In order to validate the prediction power of 
the models, several metrics are evaluated to assess 
the out-of-sample error, and they are summarized in 
Table 1. 

 
Table I: Prediction Accuracy Metrics Formulae 

Prediction accuracy 
metrics Formula 

Root Mean Square 
Error (RMSE) 

               

1

𝑛
√∑ (𝑌𝑖 − �̂�𝑖)

2
 𝑛

𝑖=1  

Normalized Root 
Mean Square Error 

(NRMSEM & NRM-
SED) 

1

𝑛
√∑ (𝑌𝑖−�̂�𝑖)

2
 𝑛

𝑖=1

𝑠𝑑(𝑌𝑖)
          

       
1

𝑛
√∑ (𝑌𝑖−�̂�𝑖)

2
 𝑛

𝑖=1

𝑌𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑌𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 

Mean Absolute Er-
ror (MAE) 

         1

𝑛
∑ |𝑌𝑖 − �̂�𝑖|

𝑛
𝑖=1  

 
While RMSE and MAE are the most commonly 

used measurements of error, the normalized RMSE 
is also considered to account for the variability 
across different samples of training sets generated by 
the multi-iteration validation process. NRMSE can 
either be normalized based on the standard deviation 
of the observed values, 𝑠𝑑(𝑌𝑖), or the range of val-
ues in the testing set, 𝑌𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑌𝑚𝑖𝑛𝑖𝑚𝑢𝑚, and 
both cases are considered in this paper. 

3.3 Comparative Analysis 
In order to assess the performance of the models, the 
predictive accuracy measures are used to evaluate 
the models. More specifically, Poisson Bayesian 
kernel model is compared to a Poisson generalized 
linear model and a negative binomial generalized 
linear model (Cameron & Trivedi, 1986, 2013). 
 



 
The Poisson GLM assumes that the rate to be esti-
mated has an exponential relationship with a set of 
covariates representing coefficients for the different 
attributes, �̂�𝑃𝐺𝐿𝑀 = 𝑒𝛽𝑖𝑋, while the predicted rate for 
the PBK is equal to the expected value of the poste-
rior probability distribution, �̂�𝑃𝐵𝐾 =

𝐊𝐘+α

𝐊𝐕+β
 . 

4 CASE STUDY 

A case study is presented in this paper to demon-
strate the use of the Poisson Bayesian kernel model 
in assessing the resilience of communities. More 
specifically, the study is focused on major power 
outage events that happened in the US between 1999 
and 2016. The goal is to compare the performance of 
the model against classical methods and assess its 
ability to predict, with a high level of accuracy, the 
recovery rate after these major events. 

The ability to accurately measure and predict the 
recovery rate from power outages allows responders 

and recovery crews to improve their strategies and 
resource allocations before, during, and after a dis-
ruption. 

4.1 Data  
The data used in the case study is collected from the 
Energy Information Administration and includes in-
formation on the time, date and length of an outage 
occurred, the magnitude of the power outage (Meg-
awatt Loss & Customers Affected) and the disturb-
ance type (severe weather, equipment failure, among 
others). The dependent variable to be modeled is re-
covery rate which is the number of customers affect-
ed divided by the duration of outage. To model the 
rate using a Poisson linear model, an offset of dura-
tion was used. Recovery rate is modeled based on 10 
regression coefficients that represent information on 
the cause of the outage, the severity, the location, the 
duration, and the time of the day and month.  
 Figure 1 is a scatterplot of all variables in the data 
set, each square represents a pairwise plot between 
the corresponding pair of variables on the x-axis and 

Figure 1. Pairwise Scatter Plots for all the Variables in the data 



the y-axis, the red line represents a local regression 
line of the two variables. The numbers shown in the 
upper side of the scatterplot represent correlations of 
the pairs of variables which, in this data set, are not 
significant with the exception of a couple of varia-
bles. Examining Figure 1, it is difficult to identify 
visually any particular relationships beyond the ex-
pected linear correlations due to multicollinearity 
such as start date and time with restoration time. The 
plot provides histograms for the different variables 
and it can be seen that there is a large variance for 
many predictors.  
 Further examination of the patterns in the data fo-
cus on the impact of seasonal variations and types of 
disturbance on the recovery process from power out-
ages. Rates of recovery are generally slower in the 
winter than in the summer months (Figure 2).  

  
 

 
 
While wide variations are observed in the recovery 
rate by the type of disturbance, outages due to load 
shed and fire/extreme heat experience the highest 
average recovery rate. Disasters such as flooding 
and hurricane, however, have much slower recovery 
rates (Figure 3). Also, Severe Weather events result 
in the largest number of outliers in the data. 

4.2 Results 
The Poisson Bayesian kernel model referred to as 
PBK, the Poisson GLM referred to as PGLM, and 
the negative binomial GLM referred to as NBGLM 
were used to model the data and predict the recovery 
rate as a function of the predictors related to the 
time, location, disruption, and other characteristics. 
The error measures discussed earlier and presented 
in Table I were calculated for each model and sum-
marized in Table II.  
 Across all predictive accuracy measures, PBK 
performs yields small errors overall. PGLM results 
in very large errors that could be driven by the ex-
treme values under Severe Events for instance, 
whereas PBK is able to control for that and provide 
more stable estimates. For two of the predictive error 
measures, NRMSED and MAE, the PBK outper-
forms the NBGLM.  
 

Table II: Prediction Error Values for all the Models 

Model RMSE NRMSED NRMSEM MAE 

PBK 2435 2.03 0.25 1258 

PGLM 12961 10.88 1.34 5579 

NBGLM 1706 2.06 0.17 2039 
 
Overall the performance of PBK and NBGLM is 
comparable from a predictive accuracy standpoint. 
However, using PBK would provide an assessment 
of the uncertainty in the estimates through the prior 
and posterior distributions of the recovery rate, the 
outcome is a probability distribution of a compre-
hensive range of possible values for the recovery 
rate. As a result, it is possible for a decision maker to 
identify multiple point estimates based on their risk 
preference. For example, if the decision maker or in-
frastructure operator is risk averse, he/she will rely 
on a more extreme (lower) value than the expected 
value of the recovery rate posterior distribution since 
a more conservative mitigation and recovery strate-
gy is preferred. However, if the decision maker is 
risk taking, the preference would be to save on cost 
of mitigation and recovery and the upper tail of the 
distribution will be considered as an optimistic 
measure of the recovery rate. The choice of the pos-
terior point estimate is not the only way a decision 
maker is involved in this process. Stakeholders play 
an important role in identifying multiple initial pa-
rameters in the model. 
 As mentioned earlier, the definition of the prior is 
an important consideration for any Bayesian ap-
proach. In this case, a non-informative prior was as-
sumed. However, another important consideration is 
the value of the parameter in the kernel function. 
The results in the table above were obtained based 
on an arbitrary value of sigma. In order to under-

Figure 3. Recovery Rate by Disturbance Type 

Figure 2. Recovery Rate as a Function of Month 



stand the effect of this parameter on the predictive 
accuracy, Figure 4 shows the value of the root mean 
squared error as a function of 1/𝜎.  

 

 There is clearly an optimal value for this parame-
ter valued at approximately 12. It would be ideal if 
the parameter is tuned to minimize the error during 
the training process. The drawback of doing so is the 
additional computation time for tuning which would 
exponentially increase as more parameters are con-
sidered in other forms of the kernel function. 

5 CONCLUSION 

The work presented in this paper evaluates the use of 
Poisson Bayesian kernel models to measure and pre-
dict the rate of recovery. The ultimate goal of the re-
search is to be able to quantify community resilience 
in order to inform resource allocation before, during, 
and after a disruption. The proposed approach to 
model the rate of recovery was compared to tradi-
tional count data models such as Poisson and nega-
tive binomial generalized linear models. 

The advantage of using Bayesian techniques is 
their ability to provide probability distribution of the 
estimates, accounting for the uncertainty in resili-
ence metrics. Another important benefit is the ability 
to update predictions as new information on the 
evolvement of the disaster and the corresponding re-
sponse of the community becomes available. 

An initial comparison to other methods shows 
that PBK provides a higher accuracy than traditional 
models with the added benefit of accounting for un-
certainty and the decision maker’s opinion and prior 
knowledge. 
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