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ABSTRACT

In this review article, we present and discuss recent mesoscale modeling studies

of slip transmission of dislocations through biphase interfaces. Specific focus is

given to fcc/fcc material systems. We first briefly review experimental, ato-

mistic, and continuum-scale work that has helped to shape our understanding

of these systems. Then several mesoscale methods are discussed, including

Peierls–Nabarro models, discrete dislocation dynamics models, and phase field-

based techniques. Recent extensions to the mesoscale mechanics technique

called phase field dislocation dynamics are reviewed in detail. Results are

compiled and discussed in terms of the proposed guidelines that relate com-

posite properties to the critical stress required for a slip transmission event.

Introduction

Nanolayered (NL) composites, consisting of two or

more dissimilar phases, have great potential to achieve

many outstanding structural properties simultane-

ously. Initially, many earlier works were motivated to

reach exceptionally high strengths with these materi-

als [37, 44, 65, 67, 80, 86]. However, in more recent

years, they have been shown to possess not only

enhanced strength but also better stability in harsh

environments than is possible with their coarser-

grained composite counterparts [13, 19, 68, 70, 104].

The constituents of NL composites are polycrys-

talline materials that, under an applied strain, deform

by the motion of dislocations. They owe much of their

high strength to the ability of the biphase interfaces to

hinder the glide of dislocations through the phases.

Dislocations usually move in arrays, containing many

seemingly identical dislocations, gliding on the same

plane or closely spaced neighboring parallel planes.

When a dislocation or dislocation array meets a

boundary, it can no longer continue to glide. To

transmit slip across the bimetal interface a series of

events needs to occur, starting with the absorption of

the dislocations into the interface. The disturbance in

the structure of the interface caused by the newly

absorbed dislocations can trigger nucleation of a

dislocation into the adjoining crystal. This sequence

of events is collectively called slip transmission

(Fig. 1). The same dislocation has not actually trans-

mitted in slip transmission, but the action of slip has

been transmitted. The critical stress that must be

overcome for slip transmission is referred to as a

critical transmission stress scrit. Its value is relatively
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large compared to that for dislocation glide in the

phases, and hence, the strength of the NL composite

can be related to scrit.
Slip transmission can occur across the grain

boundaries and biphase interfaces in coarse-grained

polycrystalline materials (with crystals bearing

diameters in the tens to hundreds of microns), but its

contribution toward strength is much greater in

nanocrystalline materials (with crystal diameters on

the order of 100 nm or less). In large-grained mate-

rials, slip transmission across a boundary is enabled

by the development of dislocation pile-ups at the

boundary (or interface). The first (or lead) dislocation

of the pile up, facing the boundary, experiences the

greatest stress concentration and, therefore, requires

the least applied work to overcome scrit. When the

grains in the layers (or the layer thickness) become

sufficiently fine that only a single dislocation can

travel through the grain at a time, then more applied

work is required to enable the lone dislocation to

overcome the same value of scrit. In NL composites

with layer thicknesses on the order of tens of

nanometers, it would be expected that the number of

dislocations in the array contains one to a few dislo-

cations. Hence, scrit would be the primary material

variable determining the limit of strength in NL

materials.

Many experimental studies have helped to identify

the primary interface characteristics that govern scrit
for grain boundaries [15, 21, 50, 51, 98] and bimetal

interfaces [14, 57, 59, 75, 78, 81, 91, 93, 94]. These

analyses were primarily structured around the geo-

metric criteria of Werner and Prantl [98], Lee–

Roberston–Birnbaum (LRB) [50, 51], and Clark et al.

[21], which favors slip transmission to/from slip

systems that are well aligned across the interface.

Better alignment results in a smaller value for the

Burgers vector of the residual dislocation left in the

interface after a transmission event [56, 59, 66].

Transmission may also be aided by high resolved

shear stresses at the boundary that are sufficient to

push dislocations into the interface from one side and

nucleate them out of the other side [50, 51, 66].

Compared to grain boundaries, bimetal (hetero-

phase) interfaces seem to require much higher stres-

ses for slip transmission [99, 100]. Bimetal NL

composites can achieve much higher strengths and

hardnesses than their nanocrystalline counterparts

bearing the same crystalline size scales (grain size

versus layer thickness) due to high densities of

bimetal interfaces. Generally, for these NL compos-

ites, ‘‘smaller is stronger,’’ as demonstrated via

hardness measurements [65, 68, 80, 86] and in a some

cases strength measurements [37, 60, 70, 71]. Among

the same bimetal systems, the defect structure of the

interface can affect its ability to block slip transfer

and in turn, strength. In multilayer deposited films

containing low-energy interfaces formed after depo-

sition, slip transfer appeared to prevail only at the

very finest nanolayer thicknesses (2–5 nm), when

sufficiently high stresses are achieved [67]. However,

for bimetal sheets fabricated by a metal forming

technique called accumulative roll bonding (ARB)

[19, 72] containing interfaces with a distinctly differ-

ent interface structure and energy, slip transfer can

occur at larger length scales, suggesting that slip

transfer is easier in ARB NLs compared to the

deposited films.

Many of the detailed mechanisms involved in the

transfer of slip across boundaries are challenging to

directly observe experimentally. To aid in under-

standing, several numerical studies have been carried

out to simulate slip transmission in bimetal interfaces

with an emphasis on applications to fcc/fcc or fcc/bcc

systems [10, 33, 47, 69, 74, 90, 91, 103]. These systems

were usually simulated either at the atomic-scale,

through molecular dynamics (MD) simulations, or the

continuum-scale, treating the material as a homoge-

neous continuum [10, 33, 47, 69, 74, 90, 91, 103]. Some

works have treated the mesoscale, but these works are

typically concerned with crystallographic relation-

ships between slip systems across an interface or

boundary and hence are largely based on geometry.

Taken together, these studies over this broad range of

length scales have contributed to understanding

Figure 1 Schematic representation of a slip transmission event.

J Mater Sci (2018) 53:5584–5603 5585



certain aspects of the problem of slip transmission

across a biphase interface.

In this review article we discuss and compile recent

activity inmesoscalemodeling efforts directed toward

modeling slip transmission across biphase interfaces.

We begin by briefly reviewing continuum-scale and

atomistic methods for addressing slip transfer across

biphase boundaries (‘‘Analytical elastic approaches for

modeling slip transfer’’ and ‘‘Atomistic simulations

addressing slip transfer’’ sections, respectively). From

this work, several general guidelines on the relation-

ship between intrinsic material parameters and the

stress required for transmission have emerged, and

these are presented in the ‘‘Guidelines for slip transfer’’

section. We focus the majority of this article on

mesoscale modeling techniques that have previously

demonstrated value and future potential in helping to

bridge some gaps in the understanding of deformation

mechanisms operating at intermediate scales, that is,

above the atomistic scale and below the continuum-

scale. Mesoscale modeling of slip transmission across

biphase interfaces is discussed in detail starting in the

‘‘Mesoscale mechanics simulations of slip transfer’’

section. This will include recently published develop-

ments in Peierls–Nabarro (PN) models, discrete dis-

location dynamics (DDD) modeling, and phase field

(PF)-based techniques.We then followwith a reviewof

the phase field dislocation dynamics (PFDD) formu-

lation [11, 102] and recent advances to include the

image fields due to a mismatch in moduli across the

interface (‘‘Phase field dislocation dynamics (PFDD)’’

section). As done with other approaches, this capabil-

ity was first demonstrated on modeling dislocation

interactions with a coherent Cu–Ni interface [102].

These results along with others reported in the litera-

ture are presented and compared in the ‘‘The Cu–Ni

bicrystal system’’ section. Following this, in the ‘‘Ex-

tending to other fcc/fcc systems’’ section, we extend

the discussion to include results from several fcc/fcc

systems, making comparisons to experimental and

numerical data reported in the literature when possi-

ble. We then discuss key findings related to under-

standing the variables that govern transitions from full

dislocation slip to partial dislocation slip and defor-

mation twinning in nanosized fcc crystals. Such stud-

ies help define the dominant deformationmechanisms

active for a given material and loading condition, and

determine the impact of such transitions on the

macroscopic stress–strain response. Finally, we con-

cludewith a discussion of problemsworth addressing,

such as alternate crystal structures (bcc or hcp metals)

and heterogeneous material systems, which includes

both free surface and voids, and phase

transformations.

Analytical elastic approaches for modeling
slip transfer

Continuum models for slip transmission across

biphase interfaces have played an important role

determining the key aspects, such as image forces

due to moduli mismatch, misfit strain fields due to

lattice mismatch, and effect of the residual dislocation

that has been left behind following slip transmission.

Early continuum mechanics models studied the effect

of image forces on scrit [69, 74] by predicting the stress

fields on dislocations within a few Burgers vectors

from the interface. The interfaces modeled were

nearly coherent so that the lattice mismatch and

resulting misfit strains were negligible. In two-phase

bimaterial systems, the difference in line energy of

the dislocation between the two phases can cause an

asymmetry in scrit, such that dislocations prefer to

transmit to the material with the lower line energy.

By considering the stress state when a dislocation

interacts with these image forces, Koehler estimated

the stress required to move the dislocation to the

interface against these forces [44] and then argued

that the scrit for a dislocation to transmit would scale

in the same way.

Guidelines for slip transfer

For several decades, models have been developed

that provide general guidelines on the relationship

between intrinsic material parameters and the trans-

mission stress between dissimilar metals. A series of

dislocation mechanics models focused on the effect of

elastic moduli mismatch [7, 47, 74]. This aspect leads

to an asymmetry in the transmission stress, in which

the transmission stress differs depending on which

material the dislocation originates and to which it

transmits. The moduli mismatch generates image

forces at the interface that attract a dislocation to the

interface if it lies in the material with the larger

modulus and repels it if it lies in the material with the

smaller one. One of the first models of this type was

developed by Head [32], who additionally consid-

ered the distance between the dislocation and the
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interface, c0. The critical transmission stress scrit for
the transmission of a screw dislocation from the

softer material was proposed to scale as

scrit � � ðG2 � G1ÞG1

2pðG2 þ G1Þc
; ð1Þ

where c ¼ 2=bc0 is a non-dimensional distance from

the interface following [74], and G1 and G2 is the

shear modulus in the donor material (material 1) and

the recipient material (material 2), respectively.

However, because Head considered a Volterra dis-

location, for small values of c, scrit increases without

bound resulting in a singularity as the dislocation

meets the interface. This was noted by Dundurs [24]

who suggested that this is due to the idealization of a

singular dislocation within the formulation.

Shortly thereafter, a model by Pacheco and Mura

[74] was developed that built upon the Peierls model

[76] for a continuously distributed dislocation rather

than a Volterra dislocation. According to this model,

scrit for the transmission of a screw dislocation that

transmits from the material of lower to higher mod-

ulus scales as

scrit � � ðG2 � G1ÞG1

G2 þ G1

1

c2 þ 1
þ tan�1 c

c

� �
; ð2Þ

where for sufficiently large c, we retrieve the same

scaling in the shear moduli as initially presented by

Head [32]. Differences between the two models are

most notable when the dislocation is approximately

three lattice spacings or less from the interface [74].

Similarly, Koehler [44] also concentrated on modulus

mismatch and retrieved a similar relationship to

calculate the scrit needed to transmit a screw dislo-

cation starting in the softer material

scrit �
ðG2 � G1ÞG1b

4pðG2 þ G1Þc0
; ð3Þ

where b is the Burgers vector magnitude. Koehler

also predicted a weak dependence of the image forces

on the character of the dislocation, which is not

explicitly included in the relationship shown in Eq. 3.

Furthermore, he found that when a full dislocation

splits into partials, the elastic repulsion of partial

dislocations may be significantly reduced because the

leading partial and trailing partial are not equally

repelled by the image forces. Thus, when choosing

the softer material, one should also consider materi-

als which have perfect dislocations or higher intrinsic

stacking fault energies. Hence, the stacking fault

energy may be an important consideration in devel-

oping general guidelines to predict transmission

stresses because it determines the relative ease with

which a dislocation may split into partials. This idea

is supported by more recent work from Xin and

Anderson [7], who found that when the unsta-

ble stacking fault energy on the slip planes is reduced

so is scrit.
Krzanowski [47] pursued a sightly different

approach considering the transmission of a Volterra

dislocation across a diffuse interface, with an elastic

shear modulus that varies linearly over a finite

interface width w,

scrit �
ðG2 � G1Þb

4pw
ln

w

2b
: ð4Þ

This suggests that interfaces are strong barriers to slip

transmission when the interfaces are chemically

sharp with large, abrupt changes in elastic moduli.

scrit also scales with the difference in moduli, pre-

suming again that the material from where the dis-

location originates has the lower modulus.

More recent work by Anderson and Xin [7] made

use of numerical simulation and presented a rela-

tionship between scrit and the moduli mismatch that

includes the unstable stacking fault energy, cus, given
by:

scrit �
G2 � G1

G2 þ G1

cus
Gb=2p2

: ð5Þ

In this case, the Burgers vector value b and unsta-

ble stacking fault energy cus, apply to both the donor

and recipient crystals.

A distinctly different concept relates scrit to the

energy penalty incurred by the residual dislocation

that remains in the interface after dislocation trans-

mission by equating the energy penalty for forming a

residual dislocation with the work done by the dis-

location to traverse the interface region

[56, 59, 66, 78]. The length of the Burgers vector of the

residual dislocation br scales with the lattice mis-

match at the interface and its self-energy can be

expressed approximately as

Er � Gjbrj2 � scritðwÞ ð6Þ

where G is the shear modulus of either material or

can be an effective modulus value. Since the value of

the br is the same whether the dislocation transmits

from material 1 to 2 or vice versa, the effect on scrit
would not be path dependent. This result is distinct
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from the coherency strains created by the lattice

misfit at the interface, which would create equal and

oppositely signed coherency strains and hence

change the attractive/repulsive nature of the inter-

face with the impinging dislocation.

Atomistic simulations addressing slip
transfer

To contrast with continuum-scale modeling, at the

other end of the length-scale spectrum are atomistic

models. Over the years, atomistic models have been

used to capture effects at smaller length scales that

more accurately describe the complexities and inter-

play between various phenomena during slip trans-

fer. Atomic-scale simulations are known for their

ability to account for atomic based processes that can

occur within the interface, which include spreading

of the absorbed dislocation, rearrangement of the

atomic interface configuration, and sliding of the

interface prior to impingement. Advantageously,

many important material aspects, such as elastic

anisotropy and dislocation dissociation, are auto-

matically taken into account in the mechanical cal-

culation. The mechanisms that take place at such fine

atomic scales are undoubtedly valuable; however, it

is well known that temperature and strain rate

effects, characteristic of laboratory conditions (e.g.,

77–423 K and 10�3–103=s), are not well represented in

such simulations.

There have been many notable works investigating

slip transfer in systems such as Cu–Nb, Cu–Ag, Cu–

Ni, and Ni–Al among others using atomistic meth-

ods. In atomistic simulations, perfect dislocations will

dissociate into Shockley partial dislocations during

glide as they approach the biphase interface in fcc

metals. Typically, the partial dislocations will enter

the interface region one at a time, which is a different

mechanism than what is modeled in continuum

models and mesoscale models. Hence, many ato-

mistic studies have focused on and carefully ana-

lyzed the transmission of a single dislocation, and in

particular, the local disruption of the interface atomic

structure after a single transmission event due to the

residual dislocation that is left behind [90, 91].

Besides affecting the interface structure, the presence

of a residual dislocation in the interface has also been

shown to hinder subsequent slip transmission events

due to interactions with the next oncoming glide

dislocation [33]. In addition, many atomistic studies

have aimed to elucidate the relationship between the

slip transfer mechanism and either Koehler image

forces (forces present due to the elastic moduli mis-

match across the interface), or coherency stresses

(coherent interfaces) or misfit dislocations (semi-co-

herent and incoherent interfaces) in both bilayers and

multilayered materials. Such work is much more

relevant, and perhaps even necessary, for multiscale

modeling activities on the mesoscale and above. In

early works [25, 53], atomistic stress tensor calcula-

tions were used to show that altering the elastic

constants of the individual lamellae resulted in

changes in the Koehler/image barrier. More recently,

Rao and Hazzledine [77] studied the effects of both

Koehler stresses, which are stresses required for a

dislocation to transmit against its own elastic image

to cross an interface, and coherency stresses on bar-

rier strength for oncoming dislocations in Cu–Ni

bilayers and multilayers. As one may expect, the

Koehler stress was found to be an effective barrier to

dislocation glide. More interestingly, this work also

showed that the Koehler stresses were essentially

independent of the character of the oncoming glide

dislocation. In short, this means that ledge formation

in the interface region (occurring in the case of edge

dislocation transmission but not screw dislocation

transmission) is not a significant barrier for slip

transmission [77]. This study also highlighted that

coherency stresses impact the barrier strength of a

bimetal interface in two ways: (1) coherency stresses

can impart Escaig stresses (non-gliding stresses

experienced by the dislocation that can alter the dis-

location core size) on incoming dislocations per-

turbing their core structure (and the amount of

perturbation can depend on the interface orientation),

and (2) coherency stresses can change the Koehler

stress by altering the elastic constants in the interface.

In the case of a Cu–Ni transmission pathway, the

latter effect of coherency stresses was shown to

notably increase the Koehler stress [77]. The former

effect supported earlier studies by Duesbery [23] and

Escaig [27], who also showed that coherency stresses

could alter the size and structure of the dislocation

core resulting in a change in their core energy.

These ideas have also been extended from bilayer

to multilayer systems. Experimental evidence

[65, 68, 86] shows a tendency for scrit to plateau or

even drop when layer thicknesses decreased below

10 nm in multilayers. Using an image model, Kamat
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et al. [43] explained the decrease in scrit as a result of

the interactions of the gliding dislocation with more

than one interface. Approximately, image forces from

three interfaces produced a result that matched val-

ues reported in literature. However, other atomistic

work, such as Rao and Hazzledine [77], have argued

that overlapping image forces contribute very little to

the decrease in scrit and instead, attribute the cause to

spreading of dislocation cores into neighboring

layers.

Moving to perhaps more complex interface struc-

tures, Dikken et al. [22] recently studied a semi-co-

herent interface in a Ni–Al system. This system has a

relatively large lattice mismatch (13%), and hence,

frequent misfit dislocations are present in the inter-

face region. This study investigated several potential

pathways, including both the forward and reverse

pathways (i.e., Ni–Al and Al–Ni), and whether a

dislocation impinges on the interface where a misfit

dislocation is located or in between them where there

is perfect fcc crystallography. This work shows that

the gliding dislocation is absorbed when it intersects

the interface where a misfit dislocation is present, and

does not get absorbed when the dislocation intersects

the interface between the misfit dislocations due to

augmentation in the stress state. A similar study was

completed by Martinez et al. [61] in Cu–Nb. Simu-

lations showed that if the approaching dislocation

and misfit dislocation are of opposite sign and

attractive, the impinging dislocation will be absorbed

into the interface. Conversely, if the gliding disloca-

tion interacts with a misfit dislocation that is of like

sign, the dislocations will repel making absorption

and transmission difficult.

Finally, we mention work in which changes in the

propensity of slip transmission as plastic deformation

developed were studied by Zhang et al. [103]. They

found that transmission can become increasingly

more difficult with strain for many reasons, such as:

accumulated changes in interface structure, back-

stresses caused by dislocations stored in the interface,

and changes in interface character due to crystal

reorientation during deformation. MD simulations of

deformed microstructures containing both grain

boundaries and biphase interfaces found that slip

transfer occurs across interfaces only after consider-

able deformation has taken place [38].

Mesoscale mechanics simulations of slip
transfer

A few modeling techniques have been introduced to

treat dislocation-based phenomena at an intermedi-

ate time and length-scale regime, called the mesos-

cale. At this scale, plasticity is realized as a collection

of individual dislocations, closely interacting with

each other and internal material boundaries, such as

free surfaces, grain boundaries and heterophase

interfaces. Examples are discrete dislocation dynam-

ics (DDD) [9, 16, 28, 48, 92, 96, 97] and phase field (PF)

based methods [36, 45, 54, 55, 58, 83, 95], such as

atomistic phase field microelasticity (APFM) [63, 64],

phase field dislocation dynamics (PFDD) [11, 17], and

phase field model of dislocations (PFMD) [79]. In

these techniques, interactions between dislocations

are based on continuum linear elastic dislocation

theory. Hence, atomic motions and interactions are

not explicitly calculated and much larger crystal sizes

and longer timescales (on the order of seconds) can

be assessed. In addition, the crystallography of slip

and the type of slip systems operating are provided

as input and not predicted as in atomic-scale calcu-

lations. In DDD, dislocation motion is determined by

a balance of forces on nodes that lie on the dislocation

line. In the PF-based techniques, the motion and

configuration of individual dislocations are found by

minimizing the total system energy at every strain or

time increment.

It is also worth mentioning that in the category of

mesoscale techniques, a few groups have used crystal

plasticity based modeling to study slip transfer across

grain boundaries [1, 8, 20, 26, 56, 59, 89] and bimetal

interfaces [62]. For the interface, these models have

adopted specialized elements at the interface or rules

for slip transmission based on the LRB criteria.

Although there is less activity in this type of model-

ing for biphase interfaces, they bear a distinct

advantage of accounting for the change in interface

character during deformation due to the lattice

reorientation of the adjoining crystals. These models

can capture the coupling between interface-affected

dislocation slip in the adjoining crystals and the effect

of slip on the evolution of interface character during

deformation. The effect that this coupling has during

deformation on the alignment of slip across an

interface has been simulated in a few recent works for

the Cu–Nb interface [12, 18].
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A few atomically informed mesoscale microme-

chanical models have also been employed to study

slip transmission across a bimetal interface

[4–6, 33, 35, 82, 85]. For instance, Peierls–Nabarro

(PN)-based models have been advanced to study

screw dislocation transmission through both sliding

and bonded coherent or semi-coherent interfaces in

fcc bicrystals [5, 6, 84, 85]. Interface slipping was

found to hinder dislocation transmission relative to

the case when slipping within the interface is not

allowed [6, 84]. It was further shown by Shehadeh

et al. [82], who used ab initio methods to calculate

generalized stacking fault energy (GSFE) curves to

describe dislocation dissociation in both Cu and Ni,

that allowing the impinging dislocations to dissociate

lowers the critical stress for transmission.

DDD models have been applied to grain bound-

aries in single-phase materials. Many excellent

developments in both dislocation reactions, harden-

ing mechanisms like latent hardening, dislocation

substructure formation, and behavior of high-velocity

dislocations have been made with DDD codes

[9, 16, 28, 48, 92, 96, 97]. Less work, however, has

treated the interaction of dislocations with biphase

interfaces. A few notable examples are applications to

multilayers with impenetrable boundaries

[2, 3, 29, 31]. The focus of these works has been on

modeling confined layer slip (CLS), in which dislo-

cations gliding on crystallographic slip planes in the

layer must thread in between two neighboring, clo-

sely spaced interfaces. CLS is a slip mechanism pro-

posed to operate in fine NL composites, particularly

as the spacing reduces below 100 nm [67]. In the DDD

models, the interface was comprised of pre-deposited

dislocations or misfit dislocations and interactions

between these interfacial dislocations and threading

ones were found to be the key strengthening mech-

anism. When the layers become too fine, say 10 nm or

below, CLS is assumed not to predominate and slip

transmission prevails in determining strength. Later

DDD models by Zbib and coworkers [101] have been

developed to consider interfaces that are penetrable

or shearable and used to relate atomic structure (co-

herency vs incoherency) with the response to inter-

secting gliding dislocations.

In recent years, investigations of dislocation inter-

actions, motion, and structure using phase field

methods have increased in number. In this arena,

however, there have been only a few studies

addressing interfaces (particularly biphase interfaces)

[58] and slip transmission through these interfaces

[102, 105]. Louchez et al. [58] investigated fcc/hcp

interfaces that formed via the glide of partial dislo-

cations. Zheng et al. [105] modeled slip transmission

events across Ni–Ni interfaces, allowing for the

impinging dislocations to be extended into partials

and the interface to slide. However, since the material

was the same on both sides of the interface, differ-

ences in elastic moduli and lattice parameters

between two metals and any residual dislocations

formed in the interface after transmission would not

need to be taken into account. Last, Zeng et al. [102]

made an attempt at considering slip transmission of

perfect dislocations across several bimetal systems.

Their formulation included several aspects of bimetal

interfaces in the phase field model, including Koehler

forces, coherency stresses, and residual dislocations

in the interface. Furthermore, the study described by

Zeng et al. addresses both edge and screw trans-

mission in five fcc/fcc material systems. To the

authors’ knowledge, this is the broadest study of slip

transfer in bimaterial systems at the mesoscale. For

this reason, we have chosen to summarize this model

in some detail in the next section. We will also use the

results presented in this article as a benchmark for

comparison with other results available in the litera-

ture later in the ‘‘The critical transmission stress’’

section.

Phase field dislocation dynamics (PFDD)

In this section we briefly review the PFDD formula-

tion for a bimetal interface, first presented in [102].

We then discuss results for several fcc/fcc systems

and compare the trends to guidelines provided by

continuum models and calculations from other

mesoscale methods. The system of interest is com-

prised of two fcc materials joined at a single interface.

The two crystals have a cube-on-cube orientation

relationship and are joined at their mutual (001)

plane, which defines the interface normal.

PFDD bimetal interface formulation

In the PFDD methodology, evolution of the system

variables is dictated by minimizing the total energy

of the system. In the case of a bimaterial system, the

total energy has three key terms: the elastic strain

energy, Estrain, the core energy, Ecore, and the energy
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required to form a residual dislocation in the inter-

face region following a slip transmission event, Eres,

which is explicitly expressed as:

Eðf; �vijÞ ¼ Estrainðf; �vÞ þ EcoreðfÞ þ EresðfÞ : ð7Þ

Each energy term in Eq. 7 is a function of the order

parameters or phase field variables, f. The order

parameters are scalar-valued, and they track the

location of the dislocation and the regions that have

been slipped. In the case of PFDD, each order

parameter is associated with a perfect dislocation slip

system (although this is not the case of all phase field

approaches directed toward modeling dislocation

dynamics, see [64]). Hence, nonzero, integer values of

an order parameter indicate regions that have been

slipped by one or more perfect dislocations associ-

ated with that order parameter (through slip direc-

tion and slip plane normal). The order parameters

can have both positive and negative values, distin-

guishing between positive and negative dislocations.

Regions, where the order parameter transitions

between integer values (e.g., 0–1, or 1–2), indicate

where the dislocation line itself is. The order

parameters are not restricted to only integer values,

and can represent fractional amounts of dislocation.

Linear combinations of multiple active order

parameters on a single slip plane can produce and

represent partial dislocations. In the case of fcc met-

als, 12 active order parameters are needed to fully

describe dislocation activity in a crystal.

The strain energy Estrain is a function of the plastic

strain �pij and an eigenstrain �vij since this system

contains an inhomogeneity. The motion and interac-

tion of dislocations in the crystal control the plastic

strain, �pij, and thus, �pij can be expressed as a direct

function of the active phase field variables, as follows

[45]:

�
p
ijðx; tÞ ¼

1

2

XN
a¼1

faðx; tÞda sai m
a
j þ saj m

a
i

� �
; ð8Þ

where N is the number of slip systems, sa is the

direction of the Burgers vector, ma is the slip plane

normal, and da is a Dirac distribution supported on

slip plane a.
The virtual or eigenstrain, �vij is calculated with the

viewpoint that one material in the bimetal system is

the matrix (material 1) and the other an inhomo-

geneity (material 2) bearing different elastic moduli.

The image stresses (or Koehler forces) due to the

differences in the elastic moduli between the two

materials are modeled using the Eshelby inclusion

method [69]. Using this concept, the strain, �0ij is

introduced as:

�0ij xð Þ ¼
�
p
ij xð Þ if x 2 material 1

�
p
ij xð Þ þ �vij xð Þ if x 2 material 2:

(
ð9Þ

Using stress equilibrium and the principle of

superposition provides the following expression for

the total strain �ij xð Þ [52]:

�ij xð Þ ¼�0ij þ
Z
� Ĝjk kð ÞkiklCð1Þ

klmn�̂
0
mn kð Þeikx d3k

2pð Þ3

þ S
ð1Þ
ijklr

app
kl þ �mis

ij xð Þ:
ð10Þ

where the superscript ^ð Þ stands for the Fourier

transformation, Gki xð Þ is the elastic Green’s function,

ki is the wave number vector,
R
� represents the prin-

cipal value of the integral, �0ij ¼ 1
V

R
�0ij xð Þd3x is the

average stress-free strain and V is the volume of the

computational domain, S
ð1Þ
ijkl is the compliance tensor

in material 1, and rappij is the externally applied stress.

We also define C
ð1Þ
ijkl and C

ð2Þ
ijkl as the stiffness tensors

in materials 1 and 2, respectively, DSmnpq xð Þ ¼

Cmnpq xð Þ � C
ð1Þ
mnpq

� ��1
is only defined in material 2,

and Cmnpq xð Þ is a stiffness tensor defined as:

Cmnpq xð Þ ¼
C
ð1Þ
mnpq if x 2 material 1

C
ð2Þ
mnpq if x 2 material 2

(
ð11Þ

Under the assumption of additive decomposition

of strain, the misfit strain, �mis
ij can also be seen in

Eq. 10. These misfit strains (or coherency strains) are

present at the interface due to differences in the lat-

tice parameters between the two materials. The

material with the larger lattice parameter will be in

compression, while the material with the smaller

lattice parameter will have an equal and opposite

tensile field. These strains preserve coherency at the

interface.

Application of this formulation is restricted to the

study to coherent interfaces or semi-coherent inter-

faces where the misfit dislocation is spread apart with

large regions of coherent interface in between them.

This assumption corresponds to systems with a lat-

tice mismatch of 3.5% or less. In this case the misfit

strains are calculated by assuming plane stress within
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the local interface coordinate system and then trans-

forming the strain tensor into the global coordinate

system. In principle, however, the expression in

Eq. 10 need not be limited to coherent interfaces. For

instance, the misfit strains can be informed using

experiment or atomistic simulations [102], or calcu-

lated with different analytical methods.

Using Eqs. 10 and 9, the elastic strain energy can be

defined as [102]:

Estrain ¼ Eeq þ DE ¼ 1

2

Z
� ÂmnuvðkÞ �̂vmnðkÞ

�

þ �̂pmnðkÞÞ �̂v�uvðkÞ þ �̂
p�
uvðkÞ

� � d3k

ð2pÞ3

� 1

2

Z
�C

ð1Þ
ijkl�

mis
ij xð Þ�mis

kl xð Þd3x

� C
ð1Þ
ijkl

Z
� �vij xð Þ þ �pij xð Þ
� �

�mis
kl xð Þd3x

þ
Z

S
ð1Þ
ijklr

app
ij C

ð1Þ
mnkl�

mis
mn xð Þd3x� V

2
S
ð1Þ
ijklr

app
ij rappkl

� rappij

Z
�vijðxÞ þ �pijðxÞ

� �
d3x

� 1

2

Z
2

C
ð1Þ
ijmnDSmnpqðxÞCð1Þ

pqkl þ C
ð1Þ
ijkl

� �
�vijðxÞ�vklðxÞd3x:

ð12Þ

where ÂmnuvðkÞ ¼ C
ð1Þ
mnuv � C

ð1Þ
kluvC

ð1Þ
ijmnĜki kð Þkjkl. The

first integral describes the internal strain energy due

to elastic interactions between the plastic and virtual

strains. The second, third, and fourth terms describe

the internal strain energy due to the presence of

misfit strains at the interface including interactions

between the misfit strains with the plastic and virtual

strains, and also the applied stress. Like the fourth

term, the fifth and sixth terms also depend on the

externally applied stress and describe interactions

with the plastic and virtual strains, and any addi-

tional internal strain energy. The final integral

accounts for elastic strain energy due to the presence

of the inhomogeneity, which generates an internal

stress state due to the difference in elastic moduli

between the two bicrystals.

The energy term Ecore represents the energy

expended as a single dislocation glides through the

crystal lattice by breaking and reforming atomic

bonds. In other words, there is some increase in

energy, which is often referred to as the Peierls

potential, associated with moving the dislocation

through the crystal lattice. Consequently, the core

energy term is nonzero in regimes where the phase

field variables are nonzero, non-integer values (e.g.,

when it changes from 0 to 1), which also represent the

location of dislocation lines. In contrast, when the

order parameters are (nonzero) integer values, the

dislocation(s) have already traversed the slip plane

leaving restored crystallography behind and the core

energy term is zero.

As in prior works [46, 52, 95], this energy barrier is

represented with a sinusoidal function. A sinusoidal

function conveniently exhibits a periodicity that fol-

lows the regular atomic lattice of a cubic crystal

structure. This model resembles the shape of the

change in energy with global displacement of half the

crystal with respect to the other half on the 111f g
plane in the \110[ direction. Its general form fol-

lows well that predicted by DFT and MD [39–42]. It

corresponds to the local shift a perfect dislocation

causes as it glides on the 111f g plane in the \111[
direction. This approximation is best applied to per-

fect dislocations, but should be replaced by a full 2D

c-surface in the event that partials are modeled [42].

Furthermore, because this term accounts for nonlin-

ear effects near the dislocation core region, it is only

dependent on the active phase field variables and has

no dependency on the virtual strains. The expression

for Ecore is then given by:

Ecore ¼
XN
a¼1

Z
Bsin2 pfa xð Þð Þdad3x ; ð13Þ

where B defines the magnitude of the energy barrier.

This magnitude can be informed or calculated in

various ways including through the use of atomistic

methods. In this work, we have chosen to use a

model from [73], which relates B to the properties of

the material as follows:

B ¼ 1

2p

� �21

d
C0
ijklbibkmjml; ð14Þ

where b is Burgers vector, m is slip plane normal and

C0
ijkl is the stiffness tensor in the local coordinate

system of the slip system of the active phase field

variable. In the PFDD results, presented in the fol-

lowing sections, elastic isotropy is assumed; hence,

C0
ijkl bears no directional dependence and equals the

stiffness tensor in the global coordinate system, Cijkl.

It is noted that because of the material dependence of

B through the stiffness tensor, the values of Ecore will

depend on whether the dislocation is moving in

material 1 or material 2.
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The final energy term needed to calculate the total

system energy shown in Eq. 7 is the energy required

to form a residual dislocation in the interface fol-

lowing a slip transmission event, Eres. A residual

dislocation remains in the interface due to the dif-

ferent Burgers vectors in each material. Once a dis-

location transmits into the recipient material, a

fractional dislocation will remain to accommodate

the change in Burgers vector that the dislocation has

undergone. Hence, Eres is nonzero only in the event

that a dislocation transmits from material 1 to mate-

rial 2 across the interface. Therefore, Eres is only

dependent upon the phase field variables and not the

virtual strains, similar to the core energy in Eq. 13.

In the PFDD model, the interface is comprised of

two planes, one donated by material 1 and the other

from material 2. Within this interface region, the

presence of the residual dislocation will cause a net

displacement, ur ¼ fð2Þbð2Þ � fð1Þbð1Þ, where the nota-

tion fð1;2Þ indicates the value of the order parameter

on the interface plane contributed by material 1 and

2, respectively. Consequently, the displacement ur

will give rise to distortions, bð1;2Þij , on either side of the

interface. These distortions can be expressed in terms

of the order parameter similar to the plastic strain

shown in Eq. 8

bð1;2Þij ¼ fð1;2Þsð1;2Þi m
ð1;2Þ
j ; ð15Þ

where once again it is noted that fð1;2Þ indicates the

value of the order parameter on the interface plane

contributed by material 1 and 2, respectively. As

before, s and m are the slip direction and slip plane

normal. These distortions can be related to a stress

tensor using Hooke’s Law, rð1;2Þij ¼ C
�ð1;2Þ
ijkl � �ð1;2Þkl , where

�
ð1;2Þ
kl is the symmetric part of bð1;2Þij . In expressing rð1;2Þij

using Hooke’s Law, the assumption is made that

these quantities are related through a nonlinear

modulus for the interface C
�ð1;2Þ
ijkl . Unfortunately, val-

ues for C
�ð1;2Þ
ijkl are not generally known for interfaces.

In light of this, C
�ð1;2Þ
ijkl is chosen to be the elastic

moduli of the donor material (C
ð1Þ
ijkl) on the interface

plane contributed by material 1 and, likewise, the

moduli of the recipient material (C
ð2Þ
ijkl) on the interface

plane contributed by material 2. The tractions on

either side of the interface due to the presence of a

residual dislocation can then be determined as

sð1;2Þi ¼ rð1;2Þij � nj; ð16Þ

where n is the interface normal. Finally, the energy

associated with formation of the residual is given by

[102]:

Eres ¼
Z
S
sð1Þ � uð1Þr � sð2Þ � uð2Þr

�� ��dS: ð17Þ

With the total system energy formulated, the key

parameters in the model, namely the phase field

variables and the virtual strain tensor, can be calcu-

lated as they evolve in time. Here, the evolution of

the phase field variables and virtual strains is deter-

mined by minimization of the total system energy in

Eq. 7. As in prior work [45, 52, 95, 102], minimization

is carried out using the following set of time-depen-

dent Ginzburg-Landau (TDGL) kinetic equations

[30, 49]:

ofa x; tð Þ
ot

¼� L
dEðf; �vÞ
dfa x; tð Þ in materials 1 and 2;

o�vij x; tð Þ
ot

¼� K
dEðf; �vÞ
d�vij x; tð Þ in material 2 ;

ð18Þ

where L is a kinetic coefficient that defines the time-

scale of the simulation, and K is a material constant

related to material 2. Although Eq. 18 shows the

time-dependent form of the GL kinetic equations, in

results discussed in subsequent sections the system is

evolved to an equilibrium state; that is, when the left-

hand sides of Eq. 18 become zero. Consequently, the

equilibrium state is independent of parameters L and

K and the results best apply to quasi-static loading

conditions. Equation 18 shows that through the total

system energy these two TDGL equations are cou-

pled and must be evolved together. This coupling is

most obvious in the case where a dislocation in

moving within the inhomogeneous region (i.e.,

material 2). Solution of the coupled TDGL equations

is achieved through a nested iterative loop scheme,

which first explicitly evolves the virtual strains in the

system, followed by an explicit evolution of the order

parameters (or dislocation network). The iteration

over the order parameters is sub-cycled until con-

vergence is achieved, before the virtual strains are

evolved again. In all cases convergence is achieved

when the change in the total system energy is less
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than 10�7. We also note that the virtual strains only

need to be evolved in material 2 (where the inho-

mogeneity exists), while the order parameters are

evolved in both material 1 and 2. In material 1, the

virtual strains are zero since this is considered the

matrix material.

The critical transmission stress

In this section the application of the bicrystal PFDD

model to study the energetics of slip transmission

across biphase interfaces is reviewed. Of the fcc/fcc

bimetal systems with relatively low lattice mismatch,

Cu–Ni is on of the most commonly modeled systems.

Hence, the example of a Cu–Ni bicrystal is first pre-

sented to discuss some interesting details in path

dependence and also for initial comparison with

critical transmission stress values calculated with

other mesoscale approaches available in the litera-

ture. Some additional calculations for a broad range

of systems to elucidate material effects then follow.

The Cu–Ni bicrystal system

In this first example problem, the Cu and Ni fcc

crystals are joined at a mutual (001) plane, which

forms the interface between the two materials. Both

crystals exhibit cubic elastic anisotropy and the cor-

responding stiffness tensor Cijkl could be incorpo-

rated in a straightforward manner in the PFDD

calculation. However, to ease in computation and to

enable direct comparisons with the guidelines pre-

sented previously in the ‘‘Guidelines for slip transfer’’

section, elastic isotropy is assumed. Qualitatively the

trends will be the same but quantitatively, the elastic

energies will be in error by 20–30% [34, 87, 88]. Cu

and Ni also differ in lattice parameters by about 2.5%,

which will generate nonzero misfit strains at the

coherent interface. All simulations were completed in

a computational cell with periodic boundary condi-

tions and a size of 64að1;2Þ � 2að1;2Þ � 64að1;2Þ where a is

the lattice parameter of material 1 or material 2 when

appropriate. Due to the periodic boundary condi-

tions, image stresses from neighboring cells must be

considered. For the case of dislocation transmission

across a bimetal interface, we are focused only on a

local interface region, particularly where the coher-

ency stresses and formation of a residual dislocation

can impact the transmission process. In this case, the

simulation cell size of 64að1;2Þ � 2að1;2Þ � 64að1;2Þ is

sufficient so that the presence of image dislocations in

neighboring periodic cells do not affect the disloca-

tion motion or the calculation of the critical trans-

mission stress. In addition, the interface inside the

computational cell was the only one considered for

modeling slip transmission events. Additional inter-

faces between materials present at the computational

cell boundaries were considered as impenetrable.

Simulations were completed to determine the crit-

ical transmission stress, scrit, required for the slip

transmission of both an edge and screw perfect dis-

location. For these simulations, the initial (either edge

or screw) dislocation was placed in the donor mate-

rial (material 1) and driven toward the interface with

an applied shear stress. Figure 2a presents the sim-

ulation configuration for edge dislocation transmis-

sion with a Burgers vector of [�110] and a line

direction of [11�2]. Similarly, Fig. 2b shows the con-

figuration for slip transmission of a perfect screw

dislocation with a Burgers vector and line direction of

[1�10]. We note that in the case of edge dislocation

transmission there is an additional rotation of the

interface (shown in Fig. 2a) with respect to the dis-

location line direction due to the fcc crystal structure

that is not present in the screw dislocation configu-

ration. Rather in the screw dislocation case, the line

direction is parallel to the interface. Once the dislo-

cation impinged on the interface, the applied shear

stress was incrementally increased until the disloca-

tion fully pushed through the interface exiting into

material 2. The applied stress at this point of trans-

mission resolved onto the slip plane of the gliding

dislocation defines the critical transmission stress,

scrit. In other words, the critical transmission stress

corresponds to the resolved shear stress on the slip

system when the applied stress just reaches a level

that allows the dislocation to push through the

interface. In addition, simulations were performed

for two pathways for slip transmission: (1) the dis-

location initially glides in Cu and transmits through

the interface into Ni, and (2) the reverse pathway

where the dislocation initially glides in Ni and

transmits into the Cu layer. For these cases the fol-

lowing critical transmission stresses where calculated

for edge dislocation slip transmission: scrit ¼ 2:58 GPa

(Cu–Ni) and scrit ¼ 5:36 GPa (Ni–Cu) [102]. Similarly

in the case of screw dislocation slip transmission:
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scrit ¼ 2.22 GPa (Cu–Ni) and scrit ¼ 4:69 GPa (Ni–Cu)

[102].

The first point to note from the calculated critical

transmission stress values is the pronounced asym-

metry in the values between the forward and reverse

transmission pathways (e.g., Cu–Ni and Ni–Cu). This

asymmetry is seen in both the edge and screw

transmission simulations. The resistance to slip

transmission is larger when slip attempts to transmit

into a recipient material with a lower shear modulus

and a larger lattice parameter.

A second feature, seen in the Cu–Ni critical trans-

mission stress results, is that for all pathways,

transmission of a screw dislocation is slightly easier

than transmission of an edge dislocation. This is

likely due to the lower self-energy of the screw dis-

location in comparison to an edge dislocation [34].

The residual dislocation left in the interface region

following a screw dislocation transmission event will

also be of screw type and, hence, have a lower self-

energy than a residual dislocation left from an edge

dislocation transmission, which will be of edge type.

Transmission of a screw dislocation could be slightly

easier than that of an edge dislocation as shown in

the Cu–Ni data due to this difference in self-energy.

As mentioned, we can compare these values to

those determined using the guidelines presented

previously in the ‘‘Guidelines for slip transfer’’ sec-

tion. For this comparison, we use isotropic, effective

shear moduli for Cu and Ni, which are GCu ¼ 23:5

GPa and GNi ¼ 49:6 GPa, respectively. A complete

comparison is not possible since many prior studies

consider only the case in which a screw dislocation is

moving from a donor material with a lower shear

modulus to a recipient material with a higher shear

modulus, which is true for the Cu–Ni transmission

pathway. Using Eq. 3, we calculate scrit � 2.1396 GPa.

In contrast, using Eq. 4, we calculate scrit � 0.2391

GPa for an interface of width w ¼ 20b. This is sig-

nificantly lower than the value calculated with Eq. 3.

The PFDD value is actually quite close with a value

scrit ¼ 2.22 GPa to that using Eq. 3. Both PFDD and

Eq. 3 assume a sharp interface rather than a diffuse

interface as Krzanowski did. One would expect that

scrit would decrease with increasing interface diffu-

sivity. This was also noted by Anderson et al. [6],

who did a similar exercise for the Cu–Ni material

system but with slightly different (larger) moduli

values than those used here.

Anderson et al. [6, 85] also studied the effect of

interface slip using a Peierls approach and atomic-

scale calculations using Embedded Atom Model

(EAM) potentials. This work particularly focused on

the Cu–Ni material system with ratio of the shear

moduli, G2=G1, having values of 1.1, 1.25 and 1.8 [85].

For the Cu–Ni system analyzed with PFDD,

GNi=GCu � 2:11, which is notably larger than the val-

ues studied by Anderson et al., but closest to 1.8 for

which they report critical transmission stresses

ranging from 0:032 �G� 0:045 �G depending on the

(a) (b)

Figure 2 Schematic representation of the initial PFDD simulation

setup for transmission of a perfect a edge dislocation and b screw

dislocation through a bimaterial interface. A shear stress is applied

that drives the dislocation toward a [001] interface. Once the

dislocation impinges on the interface the applied stress is

incrementally increased until the dislocation transmits through

the interface. Figure taken with permission from [102].
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coherency stresses [85], where �G ¼ 0:5ðG2 þ G1Þ as is

used in [6]. Calculating �G with moduli values listed

above and normalizing the scrit value calculated with

PFDD, we get scrit= �G ¼ 0:061. This is slightly larger

than the range reported by Shen and Anderson in

[85], but reasonably close considering the larger shear

moduli ratio.

Extending to other fcc/fcc systems

Following Cu–Ni, simulations were completed for

several fcc/fcc systems with coherent boundaries

(i.e., lattice mismatch of \3:5%) using PFDD. Table 1

gives the PFDD calculated critical transmission

stresses for both edge and screw dislocation trans-

mission. Again, similar to the Cu–Ni case, scrit for

screw dislocation transmission is slightly less than

that of edge dislocation transmission for all cases.

Interestingly, all systems show a significant trans-

mission pathway asymmetry in the critical trans-

mission stresses. Even the Ag–Au system, which has

the least amount of moduli and lattice mismatch, has

some dependence of the critical transmission stresses

on the pathway of transmission.

As discussed previously in the ‘‘Guidelines for slip

transfer’’ section, it has been proposed that scrit will

scale with the shear modulus when the modulus of

the recipient material is larger than that of the donor

material [44, 74]. This scaling seems to agree with the

PFDD calculations for several fcc systems and is

shown in Fig. 3.

Table 2 compares calculated scrit values from the

PFDD model with those calculated using with Eqs. 3

and 4 using the same elastic moduli. As expected, the

values calculated with Eq. 4 are much lower than

those calculated with PFDD. As discussed in the Cu–

Ni case, this is due to the assumption of a diffuse

interface made by Krzanowski in Eq. 4 versus the

sharp interface modeled by PFDD. The scrit values

calculated with PFDD compare well to values calcu-

lated with Eq. 3, especially in systems with larger

moduli mismatch.

Thus far in comparing to many proposed guideli-

nes, we have been only able to rely on a subset of our

data. There are two other proposed guidelines, which

allows us to also include calculations for edge dislo-

cation transmission. The first of these is that scrit
scales with the self-energy of the system. In other

words, one might think that transmission will be

easier if the dislocation can lower its self-energy

which scales as �Gb2. If we take Cu–Ni as an

example, the transmission pathway Ni–Cu should

have the lower critical transmission stress since the

self-energy of a dislocation in Cu is less than that in

Ni. However, Table 1 shows us this is not the case. As

mentioned previously in the ‘‘Guidelines for slip

Table 1 Critical transmission

stresses calculated with the

PFDD model for edge and

screw dislocation slip

transmission in several

bimaterial systems

System (a1 [ a2) Edge Screw System (a2 [ a1) Edge Screw

Al/Pt 2.34 2.19 Pt/Al 5.33 4.54

Cu/Ni 2.58 2.22 Ni/Cu 5.36 4.69

Ag/Al 1.70 1.45 Al/Ag 2.48 2.20

Au/Al 1.64 1.38 Al/Au 2.55 2.20

Ag/Au 1.70 1.40 Au/Ag 2.20 1.47

The critical transmission stress is calculated as the resolved shear stress on the dislocation above which

the dislocation can push through the interface. The threshold value is found by incrementing the

applied stress until the dislocation can fully traverse the interface into material 2

τcrit(GPa)

G(1) G
(2) − G(1)

G(2) + G(1) (GPa)

Figure 3 Critical transmission stresses for perfect screw disloca-

tion transmission as calculated by the PFDD model and compared

to the guideline proposed by Koehler and Pacheco and Mura that

highlights the effect of moduli mismatch at the interface [44, 74].

Figure taken with permission from [102].
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transfer’’ section, several groups [56, 59, 66, 78] have

proposed that the critical transmission stress scales

with the self-energy of the residual dislocation left in

the interface (see Eq. 6). In Fig. 4, this is tested for the

scrit associated with the easier slip transmission

pathway, which would be expected to be the more

likely pathway for a slip transmission event to occur.

This critical transmission stress is denoted as seasycrit in

Fig. 4. As shown, the critical transmission stress

increases with the self-energy of the residual dislo-

cation left in the interface. It is also seen that the

resistance to transmission is generally higher when

lattice mismatch is higher.

In employing this criterion, difficultly lies in

choosing the shear modulus in the interface. This

shear modulus would depend on the shear moduli in

the surrounding two materials and is not readily

available. In Fig. 4, the shear modulus selected was

that of the material into which the Burgers vector of

the residual points following transmission of an edge

dislocation. The results of the PFDD calculated values

against this scaling are shown in Fig. 4.

Based on the energy to form a residual dislocation

in the interface region, a scaling was proposed that

depended on the lattice parameters and shear moduli

of both the donor and recipient materials and sug-

gested a path dependence on scrit. The scaling goes as:

scrit �
a2G2

a1 þ a2

a1
a2

� G1

G2

� �
: ð19Þ

Figure 5 compares the PFDD calculated scrit values
with the scaling factor in Eq. 19 for a number of

bimetal systems. Overall the factor captures well the

trends produced by the calculations, especially con-

sidering that it is applied the entire PFDD data set

including both edge and screw dislocation transfer

for both the forward and reverse transmission path-

ways. The consistency suggests that transmission of

slip is more difficult when occurring from the mate-

rial with the smaller lattice parameter to the larger

one. It also indicates that slip transmission would

become increasingly more difficult with increasing

differences between the lattice and elastic moduli of

the two materials. We also note that the scaling factor

slightly under-predicts the critical transmission stress

for systems with less moduli and lattice mismatch

(e.g., Ag–Au, Au–Al, and Ag–Al). This may show

Table 2 Critical transmission

stresses (in GPa) calculated

with PFDD and available

continuum models

(specifically those developed

by: Kohler (Eq. 3),

Krzanowski (Eq. 4), and

Anderson et al. [6]) for

transmission of a perfect screw

dislocation

System G1 G2 G2=G1 scrit PFDD [102] scrit (Eq. 3) scrit (Eq. 4) sPFDD
crit = �G [6, 85]

Al/Pt 23.2 48.0 2.07 2.19 2.311 0.2272 0.062

Cu/Ni 23.5 49.6 2.11 2.22 2.1396 0.2391 0.061

Ag/Al 15.3 23.2 1.52 1.45 0.9073 0.0724 0.075

Au/Al 14.6 23.2 1.59 1.38 0.9566 0.0788 0.073

Au/Ag 14.6 15.3 1.05 1.47 0.0984 0.0064 0.098

In Eq. 4 an interface width of w ¼ 20b was used in all cases. Isotropic effective shear moduli values

are taken from [102], and �G ¼ 0:5ðG2 þ G1Þ. In the PFDD model, the critical transmission stress is

calculated as the resolved shear stress on the dislocation above which the dislocation can push through

the interface. The threshold value is found by incrementing the applied stress until the dislocation can

fully traverse the interface into material 2

τeasy
crit (GPa )

Gpoint(br)2

Figure 4 Critical transmission stresses for the easier transmission

pathway (seasycrit ) for both perfect edge (green circles) and screw (red

squares) dislocation transmission as calculated by the PFDD

model plotted against the self-energy of the residual dislocation

left in the interface following a transmission event, where br is the

Burgers vector of the residual dislocation and Gpoint is the shear

modulus of the material into which a an edge residual dislocation

points to. Several works [56, 59, 66, 78] have proposed that the

critical transmission stress scales with this measure. Figure taken

with permission from [102].
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that in systems where the lattice and moduli mis-

match are less significant, there are other considera-

tions, such as core energy terms or elastic

interactions, that can impact scrit. These additional

terms would be accounted for in the PFDD model,

but not the analytical scaling factor.

Summary and future recommendations

In this work we have summarized several mesoscale

approaches that have been used to investigate and

study slip transfer in heterophase interfaces. More

specifically, we presented a detailed review of a

PFDD model for interactions between dislocations

and bimaterial interfaces that was used to calculate

the energy and critical stress, scrit required to transmit

a dislocation across interfaces comprised of a wide

range of material combinations. These calculations

involved simulations of slip transmission of a straight

dislocation, of either screw or edge orientation, across

interfaces created by two dissimilar crystals with an

fcc crystal structure, such as Cu/Ni, Ag/Au, Al/Au,

and Al/Pt, with a cube-on-cube orientation relation-

ship. It is shown that scrit for screw oriented disloca-

tions is lower than that for edge dislocations. Another

interesting finding is an asymmetry in scrit with

respect to the direction of transmission. As differ-

ences in lattice and moduli mismatch increase, the

differences in scrit between the two paths, from A to B

versus B to A, increase. Generally scrit is larger when

the dislocation transmits from a stiffer material with a

smaller lattice parameter to a softer material with a

larger lattice parameter. These results were presented

and discussed in terms of other values available in

the literature and proposed guidelines used to

determine the ease of dislocation transmission. These

guidelines aim to connect scrit to material properties

such as mismatch in moduli, mismatch in lattice

parameters, or changes in the dislocation self-energy

as it moves from one material to the other.

The demonstrations discussed here included full

(or perfect) dislocations that were not extended with

a stacking fault width as part of their core. In prior

work, the PFDD formulation has been extended to

incorporate the energetics of dislocation cores from

density functional theory (DFT) calculations,

enabling studies of partial dislocation formation,

expansion, and deformation twinning [39–42]. The

PFDD framework is capable of studying the

dynamics and energetics of slip transmission of par-

tial dislocations across biphase interfaces. Investiga-

tions into the effect of stacking fault energies on the

critical thresholds for and key events involved in slip

transmission would be possible. Thus far, calcula-

tions have not considered additional mechanisms

that may be active in the interface plane, such as

dislocation spreading in the interface. The addition of

partial dislocations would be a first step in address-

ing such mechanisms and would enable more direct

comparisons to atomistic results, which inherently

take into account such dislocation dissociation reac-

tions in fcc metals. However, even with the

enhancement of the core energy in PFDD to account

for partial dislocations, this term will not account for

complex dislocation core behavior, such as changes

in the core of the dislocation while in the interface.

Rather, the expression of the core energy itself can be

further developed to be more directly informed by

atomistics (e.g., via a look-up table) or expanded to

account for additional physics (e.g., pressure depen-

dence of the material c-surface). The latter case, in

particular, is subject for future work.

In this article, we have focused on a particular

material system, including an interface with a rela-

tively simple crystallographic character, one that is

low in energy and frequently occurring in nature. The

τcrit(GPa)

a2G2

a1 + a2

a1

a2
− G1

G2
(GPa)

Figure 5 Calculated critical transmission stresses using the PFDD

model for both perfect edge (green circles) and screw (red squares)

dislocation transmission compared against the scaling guideline

proposed by Zeng et al. [102]. This guideline assumes that the

critical transmission stress scales with the energy required to form

the residual dislocation in the interface region. Figure taken with

permission from [102].
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energetics and events involved in the slip transmis-

sion, however, would be sensitive to changes in

boundary plane and orientation relationship. These

degrees of freedom can alter the atomic and defect

structure of the interface, and the introduction of

such interface defects would affect the interactions

with incoming dislocations and in particular the path

dependence of scrit. In these mesoscale PFDD calcu-

lations, the asymmetry in scrit is due to lattice and

moduli mismatch. Only coherent interfaces, contain-

ing no misfit dislocations, were considered. Prior

atomistic works have shown that misfit dislocations

can also alter the critical transmission stress scrit and
the associated pathway asymmetry. An atomistic

simulation study on Al–Ni by Dikken et al. [22]

observed that when the dislocation moved from Al to

Ni, it was absorbed into the interface. In the reverse

pathway, Ni–Al, the dislocation was absorbed and

then transferred into Al. The reason for the path

dependence in scrit is different since PFDD cannot

capture the atomic-scale processes involved in dis-

location absorption. Similarly, Anderson et al. [6]

studied the Al–Ni system using an atomistic

approach. They reported a value of scrit = 0.05GAl and

also found that the presence of misfit dislocations

could play a significant roll in slip prevention across

interfaces.

Following these ideas, biphase interfaces between

crystals of dissimilar crystal structure, such as bcc/

fcc or bcc/hcp combinations, would open an entirely

new set of interfaces, differing not only in defect

structure but also the slip systems preferred on either

side of the interface. The fundamental framework of

the PFDD model introduced here can, in principle,

treat these cases. Not many phase field dislocation

models, however, have treated alternate crystal

structures apart from fcc. One notable exception is

the work by Louchez et al. [58] who model the

transformation from fcc to hcp via the motion of

Shockley partials. In addition, a small effort toward

extension to bcc metals was outlined in [11]. Thus,

fundamental future extensions of the PFDD tech-

nique would include treating crystals of alternate

atomic structures. Further, the length and timescales

of the phase field technique would be capable of

studying the effects of two or more dislocations

transmitting in sequence, accumulated residual dis-

locations in the interface, or pile-ups in the crystal

interacting with an interface.
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