J Mater Sci (2018) 53:5584-5603

Interface Behavior

@ CrossMark

A review of slip transfer: applications of mesoscale
techniques

Abigail Hunter'* @, Brandon Leu?, and Irene J. Beyerlein?

"Los Alamos National Laboratory, P.O. Box 1663, MS T086, Los Alamos, NM 87545, USA
2 University of California, Santa Barbara, Engineering Il Building 1355, Santa Barbara, CA 93106-5050, USA

ABSTRACT

In this review article, we present and discuss recent mesoscale modeling studies
of slip transmission of dislocations through biphase interfaces. Specific focus is
given to fcc/fcc material systems. We first briefly review experimental, ato-
mistic, and continuum-scale work that has helped to shape our understanding
of these systems. Then several mesoscale methods are discussed, including
Peierls-Nabarro models, discrete dislocation dynamics models, and phase field-
based techniques. Recent extensions to the mesoscale mechanics technique
called phase field dislocation dynamics are reviewed in detail. Results are
compiled and discussed in terms of the proposed guidelines that relate com-
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posite properties to the critical stress required for a slip transmission event.

Introduction

Nanolayered (NL) composites, consisting of two or
more dissimilar phases, have great potential to achieve
many outstanding structural properties simultane-
ously. Initially, many earlier works were motivated to
reach exceptionally high strengths with these materi-
als [37, 44, 65, 67, 80, 86]. However, in more recent
years, they have been shown to possess not only
enhanced strength but also better stability in harsh
environments than is possible with their coarser-
grained composite counterparts [13, 19, 68, 70, 104].
The constituents of NL composites are polycrys-
talline materials that, under an applied strain, deform
by the motion of dislocations. They owe much of their
high strength to the ability of the biphase interfaces to
hinder the glide of dislocations through the phases.
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Dislocations usually move in arrays, containing many
seemingly identical dislocations, gliding on the same
plane or closely spaced neighboring parallel planes.
When a dislocation or dislocation array meets a
boundary, it can no longer continue to glide. To
transmit slip across the bimetal interface a series of
events needs to occur, starting with the absorption of
the dislocations into the interface. The disturbance in
the structure of the interface caused by the newly
absorbed dislocations can trigger nucleation of a
dislocation into the adjoining crystal. This sequence
of events is collectively called slip transmission
(Fig. 1). The same dislocation has not actually trans-
mitted in slip transmission, but the action of slip has
been transmitted. The critical stress that must be
overcome for slip transmission is referred to as a
critical transmission stress 7. Its value is relatively
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Figure 1 Schematic representation of a slip transmission event.

large compared to that for dislocation glide in the
phases, and hence, the strength of the NL composite
can be related to ..

Slip transmission can occur across the grain
boundaries and biphase interfaces in coarse-grained
polycrystalline materials (with crystals bearing
diameters in the tens to hundreds of microns), but its
contribution toward strength is much greater in
nanocrystalline materials (with crystal diameters on
the order of 100 nm or less). In large-grained mate-
rials, slip transmission across a boundary is enabled
by the development of dislocation pile-ups at the
boundary (or interface). The first (or lead) dislocation
of the pile up, facing the boundary, experiences the
greatest stress concentration and, therefore, requires
the least applied work to overcome 7yi. When the
grains in the layers (or the layer thickness) become
sufficiently fine that only a single dislocation can
travel through the grain at a time, then more applied
work is required to enable the lone dislocation to
overcome the same value of 7. In NL composites
with layer thicknesses on the order of tens of
nanometers, it would be expected that the number of
dislocations in the array contains one to a few dislo-
cations. Hence, 7o would be the primary material
variable determining the limit of strength in NL
materials.

Many experimental studies have helped to identify
the primary interface characteristics that govern .
for grain boundaries [15, 21, 50, 51, 98] and bimetal
interfaces [14, 57, 59, 75, 78, 81, 91, 93, 94]. These
analyses were primarily structured around the geo-
metric criteria of Werner and Prantl [98], Lee—
Roberston—Birnbaum (LRB) [50, 51], and Clark et al.
[21], which favors slip transmission to/from slip
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systems that are well aligned across the interface.
Better alignment results in a smaller value for the
Burgers vector of the residual dislocation left in the
interface after a transmission event [56, 59, 66].
Transmission may also be aided by high resolved
shear stresses at the boundary that are sufficient to
push dislocations into the interface from one side and
nucleate them out of the other side [50, 51, 66].

Compared to grain boundaries, bimetal (hetero-
phase) interfaces seem to require much higher stres-
ses for slip transmission [99, 100]. Bimetal NL
composites can achieve much higher strengths and
hardnesses than their nanocrystalline counterparts
bearing the same crystalline size scales (grain size
versus layer thickness) due to high densities of
bimetal interfaces. Generally, for these NL compos-
ites, “smaller is stronger,” as demonstrated via
hardness measurements [65, 68, 80, 86] and in a some
cases strength measurements [37, 60, 70, 71]. Among
the same bimetal systems, the defect structure of the
interface can affect its ability to block slip transfer
and in turn, strength. In multilayer deposited films
containing low-energy interfaces formed after depo-
sition, slip transfer appeared to prevail only at the
very finest nanolayer thicknesses (2-5 nm), when
sufficiently high stresses are achieved [67]. However,
for bimetal sheets fabricated by a metal forming
technique called accumulative roll bonding (ARB)
[19, 72] containing interfaces with a distinctly differ-
ent interface structure and energy, slip transfer can
occur at larger length scales, suggesting that slip
transfer is easier in ARB NLs compared to the
deposited films.

Many of the detailed mechanisms involved in the
transfer of slip across boundaries are challenging to
directly observe experimentally. To aid in under-
standing, several numerical studies have been carried
out to simulate slip transmission in bimetal interfaces
with an emphasis on applications to fcc/fcc or fcc/bec
systems [10, 33, 47, 69, 74, 90, 91, 103]. These systems
were usually simulated either at the atomic-scale,
through molecular dynamics (MD) simulations, or the
continuum-scale, treating the material as a homoge-
neous continuum [10, 33, 47, 69, 74, 90, 91, 103]. Some
works have treated the mesoscale, but these works are
typically concerned with crystallographic relation-
ships between slip systems across an interface or
boundary and hence are largely based on geometry.
Taken together, these studies over this broad range of
length scales have contributed to understanding
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certain aspects of the problem of slip transmission
across a biphase interface.

In this review article we discuss and compile recent
activity in mesoscale modeling efforts directed toward
modeling slip transmission across biphase interfaces.
We begin by briefly reviewing continuum-scale and
atomistic methods for addressing slip transfer across
biphase boundaries (“Analytical elastic approaches for
modeling slip transfer” and “Atomistic simulations
addressing slip transfer” sections, respectively). From
this work, several general guidelines on the relation-
ship between intrinsic material parameters and the
stress required for transmission have emerged, and
these are presented in the “Guidelines for slip transfer”
section. We focus the majority of this article on
mesoscale modeling techniques that have previously
demonstrated value and future potential in helping to
bridge some gaps in the understanding of deformation
mechanisms operating at intermediate scales, that is,
above the atomistic scale and below the continuum-
scale. Mesoscale modeling of slip transmission across
biphase interfaces is discussed in detail starting in the
“Mesoscale mechanics simulations of slip transfer”
section. This will include recently published develop-
ments in Peierls—Nabarro (PN) models, discrete dis-
location dynamics (DDD) modeling, and phase field
(PF)-based techniques. We then follow with a review of
the phase field dislocation dynamics (PFDD) formu-
lation [11, 102] and recent advances to include the
image fields due to a mismatch in moduli across the
interface (“Phase field dislocation dynamics (PFDD)”
section). As done with other approaches, this capabil-
ity was first demonstrated on modeling dislocation
interactions with a coherent Cu-Ni interface [102].
These results along with others reported in the litera-
ture are presented and compared in the “The Cu-Ni
bicrystal system” section. Following this, in the “Ex-
tending to other fcc/fcc systems” section, we extend
the discussion to include results from several fcc/fcc
systems, making comparisons to experimental and
numerical data reported in the literature when possi-
ble. We then discuss key findings related to under-
standing the variables that govern transitions from full
dislocation slip to partial dislocation slip and defor-
mation twinning in nanosized fcc crystals. Such stud-
ies help define the dominant deformation mechanisms
active for a given material and loading condition, and
determine the impact of such transitions on the
macroscopic stress—strain response. Finally, we con-
clude with a discussion of problems worth addressing,
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such as alternate crystal structures (bcc or hcp metals)
and heterogeneous material systems, which includes
both free surface and voids, and phase
transformations.

Analytical elastic approaches for modeling
slip transfer

Continuum models for slip transmission across
biphase interfaces have played an important role
determining the key aspects, such as image forces
due to moduli mismatch, misfit strain fields due to
lattice mismatch, and effect of the residual dislocation
that has been left behind following slip transmission.
Early continuum mechanics models studied the effect
of image forces on 1. [69, 74] by predicting the stress
fields on dislocations within a few Burgers vectors
from the interface. The interfaces modeled were
nearly coherent so that the lattice mismatch and
resulting misfit strains were negligible. In two-phase
bimaterial systems, the difference in line energy of
the dislocation between the two phases can cause an
asymmetry in 7., such that dislocations prefer to
transmit to the material with the lower line energy.
By considering the stress state when a dislocation
interacts with these image forces, Koehler estimated
the stress required to move the dislocation to the
interface against these forces [44] and then argued
that the 1. for a dislocation to transmit would scale
in the same way.

Guidelines for slip transfer

For several decades, models have been developed
that provide general guidelines on the relationship
between intrinsic material parameters and the trans-
mission stress between dissimilar metals. A series of
dislocation mechanics models focused on the effect of
elastic moduli mismatch [7, 47, 74]. This aspect leads
to an asymmetry in the transmission stress, in which
the transmission stress differs depending on which
material the dislocation originates and to which it
transmits. The moduli mismatch generates image
forces at the interface that attract a dislocation to the
interface if it lies in the material with the larger
modulus and repels it if it lies in the material with the
smaller one. One of the first models of this type was
developed by Head [32], who additionally consid-
ered the distance between the dislocation and the
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interface, ¢’. The critical transmission stress 7. for
the transmission of a screw dislocation from the
softer material was proposed to scale as

(G2 = G1)Gy
crit N — R 1
Forit 27‘[(G2 -+ G1)C ( )

where ¢ = 2/bc’ is a non-dimensional distance from
the interface following [74], and G; and G; is the
shear modulus in the donor material (material 1) and
the recipient material (material 2), respectively.
However, because Head considered a Volterra dis-
location, for small values of ¢, 1 increases without
bound resulting in a singularity as the dislocation
meets the interface. This was noted by Dundurs [24]
who suggested that this is due to the idealization of a
singular dislocation within the formulation.

Shortly thereafter, a model by Pacheco and Mura
[74] was developed that built upon the Peierls model
[76] for a continuously distributed dislocation rather
than a Volterra dislocation. According to this model,
Tee for the transmission of a screw dislocation that
transmits from the material of lower to higher mod-
ulus scales as

(G2 — G1)G1 ( 1 n tan—1 C)’

2
Gy + Gy 2+1 c @)

Terit = —

where for sufficiently large c, we retrieve the same
scaling in the shear moduli as initially presented by
Head [32]. Differences between the two models are
most notable when the dislocation is approximately
three lattice spacings or less from the interface [74].
Similarly, Koehler [44] also concentrated on modulus
mismatch and retrieved a similar relationship to
calculate the 7.y needed to transmit a screw dislo-
cation starting in the softer material

(G2 — G1)Gyb

Terit = m , (3)

where b is the Burgers vector magnitude. Koehler
also predicted a weak dependence of the image forces
on the character of the dislocation, which is not
explicitly included in the relationship shown in Eq. 3.
Furthermore, he found that when a full dislocation
splits into partials, the elastic repulsion of partial
dislocations may be significantly reduced because the
leading partial and trailing partial are not equally
repelled by the image forces. Thus, when choosing
the softer material, one should also consider materi-
als which have perfect dislocations or higher intrinsic
stacking fault energies. Hence, the stacking fault
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energy may be an important consideration in devel-
oping general guidelines to predict transmission
stresses because it determines the relative ease with
which a dislocation may split into partials. This idea
is supported by more recent work from Xin and
Anderson [7], who found that when the unsta-
ble stacking fault energy on the slip planes is reduced
SO 1S Tert-

Krzanowski [47] pursued a sightly different
approach considering the transmission of a Volterra
dislocation across a diffuse interface, with an elastic
shear modulus that varies linearly over a finite
interface width w,
—(Gz _ Gl)blnﬂ.

4dnw 2b

This suggests that interfaces are strong barriers to slip
transmission when the interfaces are chemically
sharp with large, abrupt changes in elastic moduli.
Teit also scales with the difference in moduli, pre-
suming again that the material from where the dis-
location originates has the lower modulus.

More recent work by Anderson and Xin [7] made
use of numerical simulation and presented a rela-
tionship between 74 and the moduli mismatch that
includes the unstable stacking fault energy, 7,,, given
by:

(4)

Terit ~

G2 - G] Yus (5)
Go + G, Gb/2m2”

Terit =

In this case, the Burgers vector value b and unsta-
ble stacking fault energy y,,, apply to both the donor
and recipient crystals.

A distinctly different concept relates 7. to the
energy penalty incurred by the residual dislocation
that remains in the interface after dislocation trans-
mission by equating the energy penalty for forming a
residual dislocation with the work done by the dis-
location to traverse the interface region
[56, 59, 66, 78]. The length of the Burgers vector of the
residual dislocation b, scales with the lattice mis-
match at the interface and its self-energy can be
expressed approximately as

E = G|br|2 ~ Tcrit(w) (6)

where G is the shear modulus of either material or
can be an effective modulus value. Since the value of
the b, is the same whether the dislocation transmits
from material 1 to 2 or vice versa, the effect on 7.4
would not be path dependent. This result is distinct
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from the coherency strains created by the lattice
misfit at the interface, which would create equal and
oppositely signed coherency strains and hence
change the attractive/repulsive nature of the inter-
face with the impinging dislocation.

Atomistic simulations addressing slip
transfer

To contrast with continuum-scale modeling, at the
other end of the length-scale spectrum are atomistic
models. Over the years, atomistic models have been
used to capture effects at smaller length scales that
more accurately describe the complexities and inter-
play between various phenomena during slip trans-
fer. Atomic-scale simulations are known for their
ability to account for atomic based processes that can
occur within the interface, which include spreading
of the absorbed dislocation, rearrangement of the
atomic interface configuration, and sliding of the
interface prior to impingement. Advantageously,
many important material aspects, such as elastic
anisotropy and dislocation dissociation, are auto-
matically taken into account in the mechanical cal-
culation. The mechanisms that take place at such fine
atomic scales are undoubtedly valuable; however, it
is well known that temperature and strain rate
effects, characteristic of laboratory conditions (e.g.,
77-423 K and 1073-10°/s), are not well represented in
such simulations.

There have been many notable works investigating
slip transfer in systems such as Cu-Nb, Cu-Ag, Cu-
Ni, and Ni-Al among others using atomistic meth-
ods. In atomistic simulations, perfect dislocations will
dissociate into Shockley partial dislocations during
glide as they approach the biphase interface in fcc
metals. Typically, the partial dislocations will enter
the interface region one at a time, which is a different
mechanism than what is modeled in continuum
models and mesoscale models. Hence, many ato-
mistic studies have focused on and carefully ana-
lyzed the transmission of a single dislocation, and in
particular, the local disruption of the interface atomic
structure after a single transmission event due to the
residual dislocation that is left behind [90, 91].
Besides affecting the interface structure, the presence
of a residual dislocation in the interface has also been
shown to hinder subsequent slip transmission events
due to interactions with the next oncoming glide
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dislocation [33]. In addition, many atomistic studies
have aimed to elucidate the relationship between the
slip transfer mechanism and either Koehler image
forces (forces present due to the elastic moduli mis-
match across the interface), or coherency stresses
(coherent interfaces) or misfit dislocations (semi-co-
herent and incoherent interfaces) in both bilayers and
multilayered materials. Such work is much more
relevant, and perhaps even necessary, for multiscale
modeling activities on the mesoscale and above. In
early works [25, 53], atomistic stress tensor calcula-
tions were used to show that altering the elastic
constants of the individual lamellae resulted in
changes in the Koehler/image barrier. More recently,
Rao and Hazzledine [77] studied the effects of both
Koehler stresses, which are stresses required for a
dislocation to transmit against its own elastic image
to cross an interface, and coherency stresses on bar-
rier strength for oncoming dislocations in Cu-Ni
bilayers and multilayers. As one may expect, the
Koehler stress was found to be an effective barrier to
dislocation glide. More interestingly, this work also
showed that the Koehler stresses were essentially
independent of the character of the oncoming glide
dislocation. In short, this means that ledge formation
in the interface region (occurring in the case of edge
dislocation transmission but not screw dislocation
transmission) is not a significant barrier for slip
transmission [77]. This study also highlighted that
coherency stresses impact the barrier strength of a
bimetal interface in two ways: (1) coherency stresses
can impart Escaig stresses (non-gliding stresses
experienced by the dislocation that can alter the dis-
location core size) on incoming dislocations per-
turbing their core structure (and the amount of
perturbation can depend on the interface orientation),
and (2) coherency stresses can change the Koehler
stress by altering the elastic constants in the interface.
In the case of a Cu-Ni transmission pathway, the
latter effect of coherency stresses was shown to
notably increase the Koehler stress [77]. The former
effect supported earlier studies by Duesbery [23] and
Escaig [27], who also showed that coherency stresses
could alter the size and structure of the dislocation
core resulting in a change in their core energy.
These ideas have also been extended from bilayer
to multilayer systems. Experimental evidence
[65, 68, 86] shows a tendency for 7. to plateau or
even drop when layer thicknesses decreased below
10 nm in multilayers. Using an image model, Kamat
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et al. [43] explained the decrease in 7. as a result of
the interactions of the gliding dislocation with more
than one interface. Approximately, image forces from
three interfaces produced a result that matched val-
ues reported in literature. However, other atomistic
work, such as Rao and Hazzledine [77], have argued
that overlapping image forces contribute very little to
the decrease in 7. and instead, attribute the cause to
spreading of dislocation cores into neighboring
layers.

Moving to perhaps more complex interface struc-
tures, Dikken et al. [22] recently studied a semi-co-
herent interface in a Ni-Al system. This system has a
relatively large lattice mismatch (13%), and hence,
frequent misfit dislocations are present in the inter-
face region. This study investigated several potential
pathways, including both the forward and reverse
pathways (i.e., Ni-Al and AI-Ni), and whether a
dislocation impinges on the interface where a misfit
dislocation is located or in between them where there
is perfect fcc crystallography. This work shows that
the gliding dislocation is absorbed when it intersects
the interface where a misfit dislocation is present, and
does not get absorbed when the dislocation intersects
the interface between the misfit dislocations due to
augmentation in the stress state. A similar study was
completed by Martinez et al. [61] in Cu-Nb. Simu-
lations showed that if the approaching dislocation
and misfit dislocation are of opposite sign and
attractive, the impinging dislocation will be absorbed
into the interface. Conversely, if the gliding disloca-
tion interacts with a misfit dislocation that is of like
sign, the dislocations will repel making absorption
and transmission difficult.

Finally, we mention work in which changes in the
propensity of slip transmission as plastic deformation
developed were studied by Zhang et al. [103]. They
found that transmission can become increasingly
more difficult with strain for many reasons, such as:
accumulated changes in interface structure, back-
stresses caused by dislocations stored in the interface,
and changes in interface character due to crystal
reorientation during deformation. MD simulations of
deformed microstructures containing both grain
boundaries and biphase interfaces found that slip
transfer occurs across interfaces only after consider-
able deformation has taken place [38].
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Mesoscale mechanics simulations of slip
transfer

A few modeling techniques have been introduced to
treat dislocation-based phenomena at an intermedi-
ate time and length-scale regime, called the mesos-
cale. At this scale, plasticity is realized as a collection
of individual dislocations, closely interacting with
each other and internal material boundaries, such as
free surfaces, grain boundaries and heterophase
interfaces. Examples are discrete dislocation dynam-
ics (DDD) [9, 16, 28, 48, 92, 96, 97] and phase field (PF)
based methods [36, 45, 54, 55, 58, 83, 95], such as
atomistic phase field microelasticity (APFM) [63, 64],
phase field dislocation dynamics (PFDD) [11, 17], and
phase field model of dislocations (PFMD) [79]. In
these techniques, interactions between dislocations
are based on continuum linear elastic dislocation
theory. Hence, atomic motions and interactions are
not explicitly calculated and much larger crystal sizes
and longer timescales (on the order of seconds) can
be assessed. In addition, the crystallography of slip
and the type of slip systems operating are provided
as input and not predicted as in atomic-scale calcu-
lations. In DDD, dislocation motion is determined by
a balance of forces on nodes that lie on the dislocation
line. In the PF-based techniques, the motion and
configuration of individual dislocations are found by
minimizing the total system energy at every strain or
time increment.

It is also worth mentioning that in the category of
mesoscale techniques, a few groups have used crystal
plasticity based modeling to study slip transfer across
grain boundaries [1, 8, 20, 26, 56, 59, 89] and bimetal
interfaces [62]. For the interface, these models have
adopted specialized elements at the interface or rules
for slip transmission based on the LRB criteria.
Although there is less activity in this type of model-
ing for biphase interfaces, they bear a distinct
advantage of accounting for the change in interface
character during deformation due to the lattice
reorientation of the adjoining crystals. These models
can capture the coupling between interface-affected
dislocation slip in the adjoining crystals and the effect
of slip on the evolution of interface character during
deformation. The effect that this coupling has during
deformation on the alignment of slip across an
interface has been simulated in a few recent works for
the Cu-Nb interface [12, 18].
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A few atomically informed mesoscale microme-
chanical models have also been employed to study
slip transmission across a bimetal interface
[4-6, 33, 35, 82, 85]. For instance, Peierls—Nabarro
(PN)-based models have been advanced to study
screw dislocation transmission through both sliding
and bonded coherent or semi-coherent interfaces in
fcc bicrystals [5, 6, 84, 85]. Interface slipping was
found to hinder dislocation transmission relative to
the case when slipping within the interface is not
allowed [6, 84]. It was further shown by Shehadeh
et al. [82], who used ab initio methods to calculate
generalized stacking fault energy (GSFE) curves to
describe dislocation dissociation in both Cu and Ni,
that allowing the impinging dislocations to dissociate
lowers the critical stress for transmission.

DDD models have been applied to grain bound-
aries in single-phase materials. Many excellent
developments in both dislocation reactions, harden-
ing mechanisms like latent hardening, dislocation
substructure formation, and behavior of high-velocity
dislocations have been made with DDD codes
[9, 16, 28, 48, 92, 96, 97]. Less work, however, has
treated the interaction of dislocations with biphase
interfaces. A few notable examples are applications to
multilayers ~ with  impenetrable = boundaries
[2, 3, 29, 31]. The focus of these works has been on
modeling confined layer slip (CLS), in which dislo-
cations gliding on crystallographic slip planes in the
layer must thread in between two neighboring, clo-
sely spaced interfaces. CLS is a slip mechanism pro-
posed to operate in fine NL composites, particularly
as the spacing reduces below 100 nm [67]. In the DDD
models, the interface was comprised of pre-deposited
dislocations or misfit dislocations and interactions
between these interfacial dislocations and threading
ones were found to be the key strengthening mech-
anism. When the layers become too fine, say 10 nm or
below, CLS is assumed not to predominate and slip
transmission prevails in determining strength. Later
DDD models by Zbib and coworkers [101] have been
developed to consider interfaces that are penetrable
or shearable and used to relate atomic structure (co-
herency vs incoherency) with the response to inter-
secting gliding dislocations.

In recent years, investigations of dislocation inter-
actions, motion, and structure using phase field
methods have increased in number. In this arena,
however, there have been only a few studies
addressing interfaces (particularly biphase interfaces)
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[58] and slip transmission through these interfaces
[102, 105]. Louchez et al. [58] investigated fcc/hcp
interfaces that formed via the glide of partial dislo-
cations. Zheng et al. [105] modeled slip transmission
events across Ni-Ni interfaces, allowing for the
impinging dislocations to be extended into partials
and the interface to slide. However, since the material
was the same on both sides of the interface, differ-
ences in elastic moduli and lattice parameters
between two metals and any residual dislocations
formed in the interface after transmission would not
need to be taken into account. Last, Zeng et al. [102]
made an attempt at considering slip transmission of
perfect dislocations across several bimetal systems.
Their formulation included several aspects of bimetal
interfaces in the phase field model, including Koehler
forces, coherency stresses, and residual dislocations
in the interface. Furthermore, the study described by
Zeng et al. addresses both edge and screw trans-
mission in five fcc/fcc material systems. To the
authors’ knowledge, this is the broadest study of slip
transfer in bimaterial systems at the mesoscale. For
this reason, we have chosen to summarize this model
in some detail in the next section. We will also use the
results presented in this article as a benchmark for
comparison with other results available in the litera-
ture later in the “The critical transmission stress”
section.

Phase field dislocation dynamics (PFDD)

In this section we briefly review the PFDD formula-
tion for a bimetal interface, first presented in [102].
We then discuss results for several fcc/fcc systems
and compare the trends to guidelines provided by
continuum models and calculations from other
mesoscale methods. The system of interest is com-
prised of two fcc materials joined at a single interface.
The two crystals have a cube-on-cube orientation
relationship and are joined at their mutual (001)
plane, which defines the interface normal.

PFDD bimetal interface formulation

In the PFDD methodology, evolution of the system
variables is dictated by minimizing the total energy
of the system. In the case of a bimaterial system, the
total energy has three key terms: the elastic strain
energy, ES™", the core energy, E, and the energy
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required to form a residual dislocation in the inter-
face region following a slip transmission event, E™,
which is explicitly expressed as:

E(g, GZ) — Estrain(c’ EZI) + ECOI‘C(C) + EreS(é’) . (7)

Each energy term in Eq. 7 is a function of the order
parameters or phase field variables, {. The order
parameters are scalar-valued, and they track the
location of the dislocation and the regions that have
been slipped. In the case of PFDD, each order
parameter is associated with a perfect dislocation slip
system (although this is not the case of all phase field
approaches directed toward modeling dislocation
dynamics, see [64]). Hence, nonzero, integer values of
an order parameter indicate regions that have been
slipped by one or more perfect dislocations associ-
ated with that order parameter (through slip direc-
tion and slip plane normal). The order parameters
can have both positive and negative values, distin-
guishing between positive and negative dislocations.
Regions, where the order parameter transitions
between integer values (e.g., 0-1, or 1-2), indicate
where the dislocation line itself is. The order
parameters are not restricted to only integer values,
and can represent fractional amounts of dislocation.
Linear combinations of multiple active order
parameters on a single slip plane can produce and
represent partial dislocations. In the case of fcc met-
als, 12 active order parameters are needed to fully
describe dislocation activity in a crystal.

The strain energy ES™" is a function of the plastic
strain 63‘ and an eigenstrain ¢ since this system
contains an inhomogeneity. The motion and interac-
tion of dislocations in the crystal control the plastic
f}, and thus, cg- can be expressed as a direct
function of the active phase field variables, as follows
[45]:

strain, €

N
D(x,H) = ;2 x5 (st + ), (8)
where N is the number of slip systems, s* is the
direction of the Burgers vector, m* is the slip plane
normal, and J, is a Dirac distribution supported on
slip plane o.

The virtual or eigenstrain, €; is calculated with the
viewpoint that one material in the bimetal system is
the matrix (material 1) and the other an inhomo-
geneity (material 2) bearing different elastic moduli.
The image stresses (or Koehler forces) due to the
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differences in the elastic moduli between the two
materials are modeled using the Eshelby inclusion
0

method [69]. Using this concept, the strain, ¢ is

introduced as:
0 e’igj(x) if x € material 1
Q=1 , " 9)

€;(x) + € (x) if x € material 2.

Using stress equilibrium and the principle of
superposition provides the following expression for
the total strain ¢;(x) [52]:

= A e A%k
ei(x) =0 + ][ Gk Cl & (el 25
] Ul ] kI (27'[)3 (10)
1) a mis
+ ngk)lak;w + € (%)

where the superscript (°) stands for the Fourier
transformation, G;(x) is the elastic Green’s function,
ki is the wave number vector, f represents the prin-

cipal value of the integral, :2- =y [e(x)d’x is the
average stress-free strain and V is the volume of the
computational domain, Sl% is the compliance tensor

in material 1, and a?].p ¥ is the externally applied stress.

We also define ijlkz and Cf/i)l as the stiffness tensors
in materials 1 and 2, respectively, AS;;(x)=

-1
(Cmnpq(x) - C%m) is only defined in material 2,

and Cpupy(x) is a stiffness tensor defined as:

Ci,l,lm if x € material 1

(11)
Cop if

Connpg(x) = {

x € material 2

Under the assumption of additive decomposition
of strain, the misfit strain, e}}-ﬂs can also be seen in

Eq. 10. These misfit strains (or coherency strains) are
present at the interface due to differences in the lat-
tice parameters between the two materials. The
material with the larger lattice parameter will be in
compression, while the material with the smaller
lattice parameter will have an equal and opposite
tensile field. These strains preserve coherency at the
interface.

Application of this formulation is restricted to the
study to coherent interfaces or semi-coherent inter-
faces where the misfit dislocation is spread apart with
large regions of coherent interface in between them.
This assumption corresponds to systems with a lat-
tice mismatch of 3.5% or less. In this case the misfit
strains are calculated by assuming plane stress within
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the local interface coordinate system and then trans-
forming the strain tensor into the global coordinate
system. In principle, however, the expression in
Eq. 10 need not be limited to coherent interfaces. For
instance, the misfit strains can be informed using
experiment or atomistic simulations [102], or calcu-
lated with different analytical methods.

Using Egs. 10 and 9, the elastic strain energy can be
defined as [102]:

strain 1 A i
Estrain _ peq + AE = E][Amnuv(k) (Gmn <k)

Pk
(2n)°

+ & (K) (6 (K) + € (K))

Cl,k, (EX(X) + (%) ) ()’
/ Suklaappcmnklerritl;zs(x)d X __qul pr o
- UZFP/(eIVj(X) +e}}(x))d3x

1 ) DY sy
2 /2 (CllmﬂASmﬂW( ) C;(qu(l + ngk)l) 6ij<x)€kl(x)d3x-

(12)
where Amnw(k) = Cﬁ,ﬁuv — Ci}ﬁvCﬁ,ﬁani(k)k]’kz- The
first integral describes the internal strain energy due
to elastic interactions between the plastic and virtual
strains. The second, third, and fourth terms describe
the internal strain energy due to the presence of
misfit strains at the interface including interactions
between the misfit strains with the plastic and virtual
strains, and also the applied stress. Like the fourth
term, the fifth and sixth terms also depend on the
externally applied stress and describe interactions
with the plastic and virtual strains, and any addi-
tional internal strain energy. The final integral
accounts for elastic strain energy due to the presence
of the inhomogeneity, which generates an internal
stress state due to the difference in elastic moduli
between the two bicrystals.

The energy term E°° represents the energy
expended as a single dislocation glides through the
crystal lattice by breaking and reforming atomic
bonds. In other words, there is some increase in
energy, which is often referred to as the Peierls
potential, associated with moving the dislocation
through the crystal lattice. Consequently, the core
energy term is nonzero in regimes where the phase

mls( )d3x
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field variables are nonzero, non-integer values (e.g.,
when it changes from 0 to 1), which also represent the
location of dislocation lines. In contrast, when the
order parameters are (nonzero) integer values, the
dislocation(s) have already traversed the slip plane
leaving restored crystallography behind and the core
energy term is zero.

As in prior works [46, 52, 95], this energy barrier is
represented with a sinusoidal function. A sinusoidal
function conveniently exhibits a periodicity that fol-
lows the regular atomic lattice of a cubic crystal
structure. This model resembles the shape of the
change in energy with global displacement of half the
crystal with respect to the other half on the {111}
plane in the <110 > direction. Its general form fol-
lows well that predicted by DFT and MD [39-42]. It
corresponds to the local shift a perfect dislocation
causes as it glides on the {111} plane in the <111 >
direction. This approximation is best applied to per-
fect dislocations, but should be replaced by a full 2D
y-surface in the event that partials are modeled [42].
Furthermore, because this term accounts for nonlin-
ear effects near the dislocation core region, it is only
dependent on the active phase field variables and has
no dependency on the virtual strains. The expression
for E°°* is then given by:

N
Eeore — ; / Bsin?(n{*(x))d,d%x, (13)

where B defines the magnitude of the energy barrier.
This magnitude can be informed or calculated in
various ways including through the use of atomistic
methods. In this work, we have chosen to use a
model from [73], which relates B to the properties of
the material as follows:

1\, 14
B = % ECijklb,-bkmjmh ( )

where b is Burgers vector, m is slip plane normal and
Ci is the stiffness tensor in the local coordinate
system of the slip system of the active phase field
variable. In the PFDD results, presented in the fol-
lowing sections, elastic isotropy is assumed; hence,
Cljy bears no directional dependence and equals the
stiffness tensor in the global coordinate system, Cjj.
It is noted that because of the material dependence of
B through the stiffness tensor, the values of E“ will
depend on whether the dislocation is moving in
material 1 or material 2.
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The final energy term needed to calculate the total
system energy shown in Eq. 7 is the energy required
to form a residual dislocation in the interface fol-
lowing a slip transmission event, E®. A residual
dislocation remains in the interface due to the dif-
ferent Burgers vectors in each material. Once a dis-
location transmits into the recipient material, a
fractional dislocation will remain to accommodate
the change in Burgers vector that the dislocation has
undergone. Hence, E™ is nonzero only in the event
that a dislocation transmits from material 1 to mate-
rial 2 across the interface. Therefore, E™ is only
dependent upon the phase field variables and not the
virtual strains, similar to the core energy in Eq. 13.

In the PFDD model, the interface is comprised of
two planes, one donated by material 1 and the other
from material 2. Within this interface region, the
presence of the residual dislocation will cause a net
2) C(l)b(l), where the nota-
tion {1? indicates the value of the order parameter
on the interface plane contributed by material 1 and
2, respectively. Consequently, the displacement u,

displacement, u, = C(Z)b<

will give rise to distortions, [31(]-] ’2), on either side of the
interface. These distortions can be expressed in terms
of the order parameter similar to the plastic strain

shown in Eq. 8
ﬁ(l 2) ¢ 2)51(,1’2>m](1’2), (15)

where once again it is noted that (! indicates the
value of the order parameter on the interface plane
contributed by material 1 and 2, respectively. As
before, s and m are the slip direction and slip plane
normal. These distortions can be related to a stress

tensor using Hooke’s Law, oll? = C;EVZ) . 6}({}.2)

i
e,(c} 2 is the symmetric part of BEJ

where

12)
- In expressing a;;

using Hooke’s Law, the assumption is made that
these quantities are related through a nonlinear

modulus for the interface C.*-Sl). Unfortunately, val-

ues for qul are not generally known for interfaces.
In light of this, z*]k1’2> is chosen to be the elastic
moduli of the donor material (Cl%) on the interface
plane contributed by material 1 and, likewise, the
moduli of the recipient material (Cf;()l) on the interface

plane contributed by material 2. The tractions on
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either side of the interface due to the presence of a
residual dislocation can then be determined as

12 12
‘ES ):agj')-nj, (16)
where n is the interface normal. Finally, the energy
associated with formation of the residual is given by

[102]:
E* = / e ult) — @) ul?)|ds. (17)

With the total system energy formulated, the key
parameters in the model, namely the phase field
variables and the virtual strain tensor, can be calcu-
lated as they evolve in time. Here, the evolution of
the phase field variables and virtual strains is deter-
mined by minimization of the total system energy in
Eq. 7. As in prior work [45, 52, 95, 102], minimization
is carried out using the following set of time-depen-
dent Ginzburg-Landau (TDGL) kinetic equations
[30, 491

o é?’t) = (;?X((C’ )) in materials 1 and 2,
Oc%(x, t

’]( ) S LE(C’G ) in material 2 ,

ot dei(x, t)

(18)

where L is a kinetic coefficient that defines the time-
scale of the simulation, and K is a material constant
related to material 2. Although Eq. 18 shows the
time-dependent form of the GL kinetic equations, in
results discussed in subsequent sections the system is
evolved to an equilibrium state; that is, when the left-
hand sides of Eq. 18 become zero. Consequently, the
equilibrium state is independent of parameters L and
K and the results best apply to quasi-static loading
conditions. Equation 18 shows that through the total
system energy these two TDGL equations are cou-
pled and must be evolved together. This coupling is
most obvious in the case where a dislocation in
moving within the inhomogeneous region (.e.,
material 2). Solution of the coupled TDGL equations
is achieved through a nested iterative loop scheme,
which first explicitly evolves the virtual strains in the
system, followed by an explicit evolution of the order
parameters (or dislocation network). The iteration
over the order parameters is sub-cycled until con-
vergence is achieved, before the virtual strains are
evolved again. In all cases convergence is achieved
when the change in the total system energy is less
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than 10~7. We also note that the virtual strains only
need to be evolved in material 2 (where the inho-
mogeneity exists), while the order parameters are
evolved in both material 1 and 2. In material 1, the
virtual strains are zero since this is considered the
matrix material.

The critical transmission stress

In this section the application of the bicrystal PFDD
model to study the energetics of slip transmission
across biphase interfaces is reviewed. Of the fcc/fcc
bimetal systems with relatively low lattice mismatch,
Cu-Ni is on of the most commonly modeled systems.
Hence, the example of a Cu—-Ni bicrystal is first pre-
sented to discuss some interesting details in path
dependence and also for initial comparison with
critical transmission stress values calculated with
other mesoscale approaches available in the litera-
ture. Some additional calculations for a broad range
of systems to elucidate material effects then follow.

The Cu-Ni bicrystal system

In this first example problem, the Cu and Ni fcc
crystals are joined at a mutual (001) plane, which
forms the interface between the two materials. Both
crystals exhibit cubic elastic anisotropy and the cor-
responding stiffness tensor Cjy could be incorpo-
rated in a straightforward manner in the PFDD
calculation. However, to ease in computation and to
enable direct comparisons with the guidelines pre-
sented previously in the “Guidelines for slip transfer”
section, elastic isotropy is assumed. Qualitatively the
trends will be the same but quantitatively, the elastic
energies will be in error by 20-30% [34, 87, 88]. Cu
and Ni also differ in lattice parameters by about 2.5%,
which will generate nonzero misfit strains at the
coherent interface. All simulations were completed in
a computational cell with periodic boundary condi-
tions and a size of 644 5) X 2a(15) X 64417 where a is
the lattice parameter of material 1 or material 2 when
appropriate. Due to the periodic boundary condi-
tions, image stresses from neighboring cells must be
considered. For the case of dislocation transmission
across a bimetal interface, we are focused only on a
local interface region, particularly where the coher-
ency stresses and formation of a residual dislocation
can impact the transmission process. In this case, the
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simulation cell size of 64a(1y) X 2a(2) X 64a. ) is
sufficient so that the presence of image dislocations in
neighboring periodic cells do not affect the disloca-
tion motion or the calculation of the critical trans-
mission stress. In addition, the interface inside the
computational cell was the only one considered for
modeling slip transmission events. Additional inter-
faces between materials present at the computational
cell boundaries were considered as impenetrable.
Simulations were completed to determine the crit-
ical transmission stress, 7., required for the slip
transmission of both an edge and screw perfect dis-
location. For these simulations, the initial (either edge
or screw) dislocation was placed in the donor mate-
rial (material 1) and driven toward the interface with
an applied shear stress. Figure 2a presents the sim-
ulation configuration for edge dislocation transmis-
sion with a Burgers vector of [110] and a line
direction of [112]. Similarly, Fig. 2b shows the con-
figuration for slip transmission of a perfect screw
dislocation with a Burgers vector and line direction of
[110]. We note that in the case of edge dislocation
transmission there is an additional rotation of the
interface (shown in Fig. 2a) with respect to the dis-
location line direction due to the fcc crystal structure
that is not present in the screw dislocation configu-
ration. Rather in the screw dislocation case, the line
direction is parallel to the interface. Once the dislo-
cation impinged on the interface, the applied shear
stress was incrementally increased until the disloca-
tion fully pushed through the interface exiting into
material 2. The applied stress at this point of trans-
mission resolved onto the slip plane of the gliding
dislocation defines the critical transmission stress,
Tait- In other words, the critical transmission stress
corresponds to the resolved shear stress on the slip
system when the applied stress just reaches a level
that allows the dislocation to push through the
interface. In addition, simulations were performed
for two pathways for slip transmission: (1) the dis-
location initially glides in Cu and transmits through
the interface into Ni, and (2) the reverse pathway
where the dislocation initially glides in Ni and
transmits into the Cu layer. For these cases the fol-
lowing critical transmission stresses where calculated
for edge dislocation slip transmission: 7.4 = 2.58 GPa
(Cu-Ni) and i = 5.36 GPa (Ni—Cu) [102]. Similarly
in the case of screw dislocation slip transmission:
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Figure 2 Schematic representation of the initial PFDD simulation
setup for transmission of a perfect a edge dislocation and b screw
dislocation through a bimaterial interface. A shear stress is applied
that drives the dislocation toward a [001] interface. Once the

Terit = 2.22 GPa (Cu-Ni) and 1.5 = 4.69 GPa (Ni-Cu)
[102].

The first point to note from the calculated critical
transmission stress values is the pronounced asym-
metry in the values between the forward and reverse
transmission pathways (e.g., Cu-Ni and Ni-Cu). This
asymmetry is seen in both the edge and screw
transmission simulations. The resistance to slip
transmission is larger when slip attempts to transmit
into a recipient material with a lower shear modulus
and a larger lattice parameter.

A second feature, seen in the Cu-Ni critical trans-
mission stress results, is that for all pathways,
transmission of a screw dislocation is slightly easier
than transmission of an edge dislocation. This is
likely due to the lower self-energy of the screw dis-
location in comparison to an edge dislocation [34].
The residual dislocation left in the interface region
following a screw dislocation transmission event will
also be of screw type and, hence, have a lower self-
energy than a residual dislocation left from an edge
dislocation transmission, which will be of edge type.
Transmission of a screw dislocation could be slightly
easier than that of an edge dislocation as shown in
the Cu-Ni data due to this difference in self-energy.

As mentioned, we can compare these values to
those determined using the guidelines presented
previously in the “Guidelines for slip transfer” sec-
tion. For this comparison, we use isotropic, effective
shear moduli for Cu and Ni, which are G¢, = 23.5
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(b) [111]

Donor

Recipient

[110] [112]
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[112] [110]

dislocation impinges on the interface the applied stress is
incrementally increased until the dislocation transmits through
the interface. Figure taken with permission from [102].

GPa and Gn; =49.6 GPa, respectively. A complete
comparison is not possible since many prior studies
consider only the case in which a screw dislocation is
moving from a donor material with a lower shear
modulus to a recipient material with a higher shear
modulus, which is true for the Cu-Ni transmission
pathway. Using Eq. 3, we calculate 7.4 ~ 2.1396 GPa.
In contrast, using Eq. 4, we calculate 7.4 ~ 0.2391
GPa for an interface of width w = 20b. This is sig-
nificantly lower than the value calculated with Eq. 3.
The PFDD value is actually quite close with a value
Teit = 2.22 GPa to that using Eq. 3. Both PFDD and
Eq. 3 assume a sharp interface rather than a diffuse
interface as Krzanowski did. One would expect that
Tit would decrease with increasing interface diffu-
sivity. This was also noted by Anderson et al. [6],
who did a similar exercise for the Cu-Ni material
system but with slightly different (larger) moduli
values than those used here.

Anderson et al. [6, 85] also studied the effect of
interface slip using a Peierls approach and atomic-
scale calculations using Embedded Atom Model
(EAM) potentials. This work particularly focused on
the Cu-Ni material system with ratio of the shear
moduli, G,/Gy, having values of 1.1, 1.25 and 1.8 [85].
For the Cu-Ni system analyzed with PFDD,
Gni/Gey = 2.11, which is notably larger than the val-
ues studied by Anderson et al., but closest to 1.8 for
which they report critical transmission stresses
ranging from 0.032G — 0.045G depending on the
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coherency stresses [85], where G =0.5(Gy + Gy) as is
used in [6]. Calculating G with moduli values listed
above and normalizing the 7. value calculated with
PFDD, we get et/ G = 0.061. This is slightly larger
than the range reported by Shen and Anderson in
[85], but reasonably close considering the larger shear
moduli ratio.

Extending to other fcc/fcc systems

Following Cu-Ni, simulations were completed for
several fcc/fcc systems with coherent boundaries
(i.e., lattice mismatch of <3.5%) using PFDD. Table 1
gives the PFDD calculated critical transmission
stresses for both edge and screw dislocation trans-
mission. Again, similar to the Cu-Ni case, 7¢i for
screw dislocation transmission is slightly less than
that of edge dislocation transmission for all cases.
Interestingly, all systems show a significant trans-
mission pathway asymmetry in the critical trans-
mission stresses. Even the Ag—Au system, which has
the least amount of moduli and lattice mismatch, has
some dependence of the critical transmission stresses
on the pathway of transmission.

As discussed previously in the “Guidelines for slip
transfer” section, it has been proposed that 7. will
scale with the shear modulus when the modulus of
the recipient material is larger than that of the donor
material [44, 74]. This scaling seems to agree with the
PFDD calculations for several fcc systems and is
shown in Fig. 3.

Table 2 compares calculated 7. values from the
PFDD model with those calculated using with Egs. 3
and 4 using the same elastic moduli. As expected, the
values calculated with Eq. 4 are much lower than
those calculated with PFDD. As discussed in the Cu-
Ni case, this is due to the assumption of a diffuse
interface made by Krzanowski in Eq. 4 versus the
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Figure 3 Critical transmission stresses for perfect screw disloca-
tion transmission as calculated by the PFDD model and compared
to the guideline proposed by Koehler and Pacheco and Mura that
highlights the effect of moduli mismatch at the interface [44, 74].
Figure taken with permission from [102].

sharp interface modeled by PFDD. The 1. values
calculated with PFDD compare well to values calcu-
lated with Eq. 3, especially in systems with larger
moduli mismatch.

Thus far in comparing to many proposed guideli-
nes, we have been only able to rely on a subset of our
data. There are two other proposed guidelines, which
allows us to also include calculations for edge dislo-
cation transmission. The first of these is that .
scales with the self-energy of the system. In other
words, one might think that transmission will be
easier if the dislocation can lower its self-energy
which scales as ~Gb?. If we take Cu-Ni as an
example, the transmission pathway Ni-Cu should
have the lower critical transmission stress since the
self-energy of a dislocation in Cu is less than that in
Ni. However, Table 1 shows us this is not the case. As
mentioned previously in the “Guidelines for slip

Table 1 Critical transmission

stresses calculated with the System (a1 > a2) Edge Screw System (a2 > a1) Edge Screw
oo dlosaton an A 234 219 PUAI 533 ass
transmission in several Cu/Ni 2.58 2.22 Ni/Cu 5.36 4.69
bimaterial systems Ag/al 1.70 1.45 Al/Ag 2.48 2.20
Au/Al 1.64 1.38 Al/Au 2.55 2.20
Ag/Au 1.70 1.40 Au/Ag 2.20 1.47

The critical transmission stress is calculated as the resolved shear stress on the dislocation above which

the dislocation can push through the interface. The threshold value is found by incrementing the

applied stress until the dislocation can fully traverse the interface into material 2
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Table 2 Critical transmission

stresses (in GPa) calculated System  Gg G2 G2/G1 Terit PFDD [102] e (Eq. 3)  Terit (Eq. 4) ‘L'EriD D /G 16, 85]
with PFDD and available
. Al/Pt 232 480 2.07 2.19 2.311 0.2272 0.062
continuum models .
. Cu/Ni 235 49.6 211 2.22 2.1396 0.2391 0.061
(specifically those developed
by: Kohler (Eq. 3) Ag/Al 153 232 1.52 1.45 0.9073 0.0724 0.075
] S Au/Al 146 232 1.59 1.38 0.9566 0.0788 0.073
Krzanowski (Eq. 4), and
Au/Ag 146 153 1.05 1.47 0.0984 0.0064 0.098

Anderson et al. [6]) for

transmission of a perfect screw
dislocation

In Eq. 4 an interface width of w = 20b was used in all cases. Isotropic effective shear moduli values
are taken from [102], and G = 0.5(G, + Gi1). In the PFDD model, the critical transmission stress is

calculated as the resolved shear stress on the dislocation above which the dislocation can push through

the interface. The threshold value is found by incrementing the applied stress until the dislocation can
fully traverse the interface into material 2

transfer” section, several groups [56, 59, 66, 78] have
proposed that the critical transmission stress scales
with the self-energy of the residual dislocation left in
the interface (see Eq. 6). In Fig. 4, this is tested for the
Teit associated with the easier slip transmission
pathway, which would be expected to be the more
likely pathway for a slip transmission event to occur.
This critical transmission stress is denoted as 7.y, in
Fig. 4. As shown, the critical transmission stress
increases with the self-energy of the residual dislo-
cation left in the interface. It is also seen that the

easy
TuT'it (GPU,)
3
°
25 CuMNi o
- BAVPt
2| Awal
>Xe
©" Agial
1.5 ]
.\I
11 Ag/Au
0.5
@Edge
B Screw
0

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045
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Figure 4 Critical transmission stresses for the easier transmission
o) for both perfect edge (green circles) and screw (red
squares) dislocation transmission as calculated by the PFDD
model plotted against the self-energy of the residual dislocation

left in the interface following a transmission event, where b; is the

pathway (t

Burgers vector of the residual dislocation and Gpgine is the shear
modulus of the material into which a an edge residual dislocation
points to. Several works [56, 59, 66, 78] have proposed that the
critical transmission stress scales with this measure. Figure taken
with permission from [102].

resistance to transmission is generally higher when
lattice mismatch is higher.

In employing this criterion, difficultly lies in
choosing the shear modulus in the interface. This
shear modulus would depend on the shear moduli in
the surrounding two materials and is not readily
available. In Fig. 4, the shear modulus selected was
that of the material into which the Burgers vector of
the residual points following transmission of an edge
dislocation. The results of the PFDD calculated values
against this scaling are shown in Fig. 4.

Based on the energy to form a residual dislocation
in the interface region, a scaling was proposed that
depended on the lattice parameters and shear moduli
of both the donor and recipient materials and sug-
gested a path dependence on 7. The scaling goes as:

MGy (a1 G
ay +ap <a2 G2> ’

Figure 5 compares the PFDD calculated 7. values
with the scaling factor in Eq. 19 for a number of
bimetal systems. Overall the factor captures well the
trends produced by the calculations, especially con-
sidering that it is applied the entire PFDD data set
including both edge and screw dislocation transfer
for both the forward and reverse transmission path-
ways. The consistency suggests that transmission of
slip is more difficult when occurring from the mate-
rial with the smaller lattice parameter to the larger
one. It also indicates that slip transmission would
become increasingly more difficult with increasing
differences between the lattice and elastic moduli of
the two materials. We also note that the scaling factor
slightly under-predicts the critical transmission stress

for systems with less moduli and lattice mismatch
(e.g., Ag—Au, Au-Al, and Ag-Al). This may show

(19)

Terit ~~
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Figure 5 Calculated critical transmission stresses using the PFDD
model for both perfect edge (green circles) and screw (red squares)
dislocation transmission compared against the scaling guideline
proposed by Zeng et al. [102]. This guideline assumes that the
critical transmission stress scales with the energy required to form
the residual dislocation in the interface region. Figure taken with
permission from [102].

that in systems where the lattice and moduli mis-
match are less significant, there are other considera-
tions, such as core energy terms or elastic
interactions, that can impact 7.5. These additional
terms would be accounted for in the PFDD model,
but not the analytical scaling factor.

Summary and future recommendations

In this work we have summarized several mesoscale
approaches that have been used to investigate and
study slip transfer in heterophase interfaces. More
specifically, we presented a detailed review of a
PFDD model for interactions between dislocations
and bimaterial interfaces that was used to calculate
the energy and critical stress, 7 required to transmit
a dislocation across interfaces comprised of a wide
range of material combinations. These calculations
involved simulations of slip transmission of a straight
dislocation, of either screw or edge orientation, across
interfaces created by two dissimilar crystals with an
fcc crystal structure, such as Cu/Ni, Ag/Au, Al/Au,
and Al/Pt, with a cube-on-cube orientation relation-
ship. It is shown that 7. for screw oriented disloca-
tions is lower than that for edge dislocations. Another
interesting finding is an asymmetry in 7. with
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respect to the direction of transmission. As differ-
ences in lattice and moduli mismatch increase, the
differences in 7i; between the two paths, from A to B
versus B to A, increase. Generally 7. is larger when
the dislocation transmits from a stiffer material with a
smaller lattice parameter to a softer material with a
larger lattice parameter. These results were presented
and discussed in terms of other values available in
the literature and proposed guidelines used to
determine the ease of dislocation transmission. These
guidelines aim to connect 7 to material properties
such as mismatch in moduli, mismatch in lattice
parameters, or changes in the dislocation self-energy
as it moves from one material to the other.

The demonstrations discussed here included full
(or perfect) dislocations that were not extended with
a stacking fault width as part of their core. In prior
work, the PFDD formulation has been extended to
incorporate the energetics of dislocation cores from
density functional theory (DFT) calculations,
enabling studies of partial dislocation formation,
expansion, and deformation twinning [39-42]. The
PFDD framework is capable of studying the
dynamics and energetics of slip transmission of par-
tial dislocations across biphase interfaces. Investiga-
tions into the effect of stacking fault energies on the
critical thresholds for and key events involved in slip
transmission would be possible. Thus far, calcula-
tions have not considered additional mechanisms
that may be active in the interface plane, such as
dislocation spreading in the interface. The addition of
partial dislocations would be a first step in address-
ing such mechanisms and would enable more direct
comparisons to atomistic results, which inherently
take into account such dislocation dissociation reac-
tions in fcc metals. However, even with the
enhancement of the core energy in PFDD to account
for partial dislocations, this term will not account for
complex dislocation core behavior, such as changes
in the core of the dislocation while in the interface.
Rather, the expression of the core energy itself can be
further developed to be more directly informed by
atomistics (e.g., via a look-up table) or expanded to
account for additional physics (e.g., pressure depen-
dence of the material y-surface). The latter case, in
particular, is subject for future work.

In this article, we have focused on a particular
material system, including an interface with a rela-
tively simple crystallographic character, one that is
low in energy and frequently occurring in nature. The
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energetics and events involved in the slip transmis-
sion, however, would be sensitive to changes in
boundary plane and orientation relationship. These
degrees of freedom can alter the atomic and defect
structure of the interface, and the introduction of
such interface defects would affect the interactions
with incoming dislocations and in particular the path
dependence of 7. In these mesoscale PFDD calcu-
lations, the asymmetry in .4 is due to lattice and
moduli mismatch. Only coherent interfaces, contain-
ing no misfit dislocations, were considered. Prior
atomistic works have shown that misfit dislocations
can also alter the critical transmission stress 7; and
the associated pathway asymmetry. An atomistic
simulation study on AI-Ni by Dikken et al. [22]
observed that when the dislocation moved from Al to
Ni, it was absorbed into the interface. In the reverse
pathway, Ni-Al, the dislocation was absorbed and
then transferred into Al. The reason for the path
dependence in 7.y is different since PFDD cannot
capture the atomic-scale processes involved in dis-
location absorption. Similarly, Anderson et al. [6]
studied the AI-Ni system wusing an atomistic
approach. They reported a value of 7 = 0.05GA; and
also found that the presence of misfit dislocations
could play a significant roll in slip prevention across
interfaces.

Following these ideas, biphase interfaces between
crystals of dissimilar crystal structure, such as bec/
fcc or bec/hep combinations, would open an entirely
new set of interfaces, differing not only in defect
structure but also the slip systems preferred on either
side of the interface. The fundamental framework of
the PFDD model introduced here can, in principle,
treat these cases. Not many phase field dislocation
models, however, have treated alternate crystal
structures apart from fcc. One notable exception is
the work by Louchez et al. [58] who model the
transformation from fcc to hcp via the motion of
Shockley partials. In addition, a small effort toward
extension to bcc metals was outlined in [11]. Thus,
fundamental future extensions of the PFDD tech-
nique would include treating crystals of alternate
atomic structures. Further, the length and timescales
of the phase field technique would be capable of
studying the effects of two or more dislocations
transmitting in sequence, accumulated residual dis-
locations in the interface, or pile-ups in the crystal
interacting with an interface.
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