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Abstract—Natural hazards, such as hurricanes and winter
storms, computer glitches and technical flaws, and man-made ter-
ror or cyber-physical attacks, can lead to localized perturbations
of the U.S. national airspace system airport network (NASAN),
which can in turn percolate across the interconnected system.
Here we develop and demonstrate an approach to quantitatively
characterize the robustness of NASAN, defined as loss of critical
functions owing to perturbations, and a quantitative framework
to select the most efficient and effective post-hazard recovery
strategies. The system-level robustness and recovery strategies
rely on network science methods and associated attributes.
New insights include the central role of network attributes
to robustness and optimal recovery sequences. Characteriza-
tions of robustness and fragility can inform what-if plans and
proactive design, while recovery strategies developed in advance
can support systematic, reliable, and timely bounce-back from
hazard-related perturbations. The framework can serve as a
baseline over which local information or cost optimization can
be superposed.

Index Terms—U.S. national airspace, robustness, recovery,
hazards resilience, network science

I. INTRODUCTION

ULTI-MODAL transportation systems are part of the
critical infrastructure which serve an important role in
ensuring essential societal functions [1], [2]. The National
Airspace System (NAS) is a spatial multi-layered system of
sectors, and altitude blocks built on a network of airports and
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Air Traffic Control (ATC) facilities. As a system, it is one of
the most important driving forces of economic and business
changes, justifying constant global investments in operational
upgrades. Airports are vulnerable to adverse events which
impact public and private industry operations, budgets, and
business attraction. While reducing the impact in most cases
is difficult due to unforeseen and turbulent nature of these
adverse events, resilience framework with risk as the central
component can potentially inform infrastructure managers to
plan-for and recover from these events in an efficient way [3].
As highlighted in the correspondence piece [4, p. 70], more
than 70 definitions has been proposed in the literature, which
makes characterization of resilience a non-trivial task.

National Academy of Sciences define resilience as an ability
of the system to “plan and prepare for, absorb, respond to,
and recover from disasters and adapt to new conditions” [5].
In the context of air transportation system, resilience is the
ability to prevent or mitigate impact to air traffic operations.
The Federal Aviation Administrator’s (FAA) efficiency target
is to achieve 90% of normal operations after a disruptive
event within 24 hours at core airports, or 96 hours at en-route
ATC Centers. The NAS’s ability to tolerate the disruptive event
and transition and adapt defines its robustness.

After the events of September 111, 2001, following con-
siderable restructuring, the U.S. airline industry recovered
but with slightly reduced demand [6]. Profitability for both
the airlines and airports can be traced to the introduction of
fuel-efficient aircraft, diversified hubs, and flexible routing.
System perturbations caused by expected and unexpected
‘disruptive events’ drastically cut in to these profits. We define
a ‘disruptive event’ as any off-nominal occurrence, which
effects airport and air traffic operations. In terms of NAS
robustness, it defines a threshold where below a specific
value, further capacity loss brings critical functionality (airport
operations & air traffic flow) into an unacceptable region.
NAS interdependency and unpredictability, intensified by rapid
technology change, is urging the need for new quantitative
approaches for quantitative description of resilience.

As an introduction to the concept, we model the airport
system as a network with nodes and edges. In present study,
the commercial, General Aviation (GA), and military airports,
which constitute the important elements of the NAS, constitute
the nodes, and a pair of nodes are connected if there is at least
one direct flight between them. We have chosen combined
network for study as General aviation, military and commer-
cial airports are all part of the NAS. As past events have
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shown, their resilience and sustainability supports robustness
and recovery. True they may serve different customers but
during disruptive events, the components that characterize a
Commercial from a GA airport may be required to change.
During 9/11, ATC Command Center restricted all flights over
the U.S. and cleared the airspace, diverting aircraft to the
closest suitable airport.

Risk vulnerability analysis methods rarely map the event
data to preparation or operationalize concepts beyond the
theoretical. Even with the demonstrated influence of disruptive
events on airport operations and capacity, there has been little
research into the impact on demand within the scope of the
NAS of the future where the need for understanding complex
system relationships that cut across domains will be necessary
to provide adaptive resilience when dealing with uncertainty.
Even under nominal conditions it is important to address
why certain airports experience demand exceeding its capacity.
Researchers who study resilience across infrastructure sectors
draw a similar distinction between metrics and lessons learned.
Data suggest the highest gains in resilience comes when
managers are able to integrate lessons learned from passed
extreme events. Still more real world-based empirical research
needs to be done to validate theoretical concepts such as
predictive approaches to mitigating uncertainty.

The findings from our network analysis characterize the
U.S. Airport Network in terms of robustness [7], and identify
useful measures for recovery prioritization [8]. A time series
analysis is used to depict the cascading impact of an event and
its far reach from region of origin.

A. Literature Review

Researchers have used complex network description to
understand the topological characteristics of air transportation
systems [9], [10], making network science as a tool of choice
to describe resilience of the NASAN. Houssain et al. [11]
(2013) presented research based on network analysis of
Australian airport network (AAN). This investigation focused
on the assessment of level of vulnerability to which AAN
can be exposed through random and targeted failures. Their
disruption scenario and cost analysis was based on standard
flight schedule. Although sufficient, it doesn’t allow for loca-
tion and volume dynamic manipulation which provides more
realistic economic analysis and impact as our model will show.
Utne et al. [12] (2011) simulated a class of connected
infrastructures to measure to what extent disruptions ripple
through complex networks, with the goal of displaying a
process for evaluating mutually reliant critical infrastruc-
tures, based on cross domain risk and vulnerability analy-
sis (RVA). A challenge in his work was identifying key
stakeholder responsibilities, interests, and contributions to the
analysis. In addition, difficulties with access and use of propri-
etary or classified data could hindered RVA of issues relating
to societal changes. Gopalakrishnan ef al. (2016) considered
clustering air traffic delay networks. [12] Their approached
identified delay states and a methodology for characterizing
these states in the NAS. Their use of directed networks was
unique in that the edge weights used were departure delays.
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The findings showed their approach could helped identify
airports driving network delays.

Fleurquin et al. [13] (2013) analyzed the delay propaga-
tion in U.S. airport network as a consequence of technical,
operational or meteorological issues. They noted that there
is “non-negligible” risk of systematic instability not only
under disruption scenarios but also under normal operat-
ing conditions, highlighting the need to have predetermined
post-hazard restoration strategies for immediate response and
service recovery after cascading failure across the network.
Furthermore, multiple previous studies have hypothesized that
optimal recovery strategy should be the mirror image of the
sequence of nodes loss that generated the maximum damage to
the network [14]. However, as noted in [8], while the sequence
of recovery may or may not be same as optimal path for
disruption, the rate of recovery is not the mirror image of
rate of collapse.

Wauellner et al. [14] (2010) evaluated the relationship
between network attributes and robustness and introduced
network rewiring scheme to boost resilience to different levels
of perturbation. While rewiring and restructuring schemes can
aid in informing the design of new facilities, implementation of
the same is non-trivial task in day-to-day operations for Large
scale infrastructure systems such as U.S National Airport
System [15]. While researchers have proposed the qualitative
description of resilience centric framework with risk as a
central component [3], and formulation of various models
to quantify resilience [7], [16], we argue that comprehensive
description of resilience for infrastructure systems require
understanding of underlying dynamics and operational char-
acteristics [17]. In present study, we attempt to bridge the gap
that exists in identifying and understanding specific geometric
properties and configurations which drive the comprehensive
resilience of critical infrastructures and highlight the asymme-
try that exists between robustness and recovery of NASAN.

B. Motivation

In January 2014, in the space of four weeks, the U.S was
hit by a Nor’easter, two polar vortexes, record cold tem-
peratures, and heavy snow. 49000 flights were canceled by
U.S airlines, and another 300 000-delayed affecting 30 million
passengers. The delays and cancelations ranged in cost to
the industry from $75 million to $150 million. The cost to
traveling passengers was estimated at $2.5 billion. It should
be noted that regional airlines accounted for about two thirds
of the cancellations. On September 26, 2014, the Chicago
Air Route Traffic Control Center (ARTCC) went offline for
seventeen days due to a fire set by a disgruntled contractor,
to ARTCC’s intricate communications network that controls
some of the busiest airspace in the country. 1,750 flights were
canceled and ninety-one thousand square miles of airspace
were affected as workers scrambled around the clock to restore
functionality to the center [18]. A daily time series comparison
of flight operation for 8 major hubs around the U.S. during
both these events is presented in Figure 1, for the snow
event, note the dip in operations in January for New York
and how it cascades to Atlanta and Chicago airports. From
observation, the amplitude and frequency of the event drive
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Fig. 1.

Time Series of 2014 Flight operations at selected hub airports are shown. Flight operations, defined as aircraft arrivals and departures, are shown

along Y-axis. The red box for New York’s JFK airport (Row 4, Column 1) signifies a major snow storm that struck the airport in January. There is a significant
reduction in number of flight operations. Although the storm strikes New York’s JFK, we see a sub sequential drop in flight operation during the same time

period at Atlanta and Chicago.

the duration and spread of a symmetric ripple in airport flight
operations. In contrast, the fire event at Chicago ARTCC in
September, although it caused major disruptions at Chicago’s
O’Hara airport, it did not appear to cause a ripple effect to
other hubs. In general terms following a disruptive event,
the interaction of many periodic (totally predictable) airport
flight schedules make a chaotic (unpredictable) system. Our
metrics (connection and traffic volume behavior) are outcomes
of interactions among the airports, and not from their average
behavior. Therefore, resolving uncertainty in predicting and
planning for natural and man-made disruptions to airports
require research to develop effective risk models that sup-
port design and implementation of resilient infrastructures.
As evident, there is a research requirement to quantifiably mea-
sure and characterize the interactions and couplings between
infrastructures. As fixed assets, an airport hub consisting of
physical infrastructure and ATC facilities are highly exposed,
vulnerable, expensive to replace, and hard to repair if dam-
aged. In 2008, the Office of Inspector General (OIG) reported
that 59% of FAA ATC facilities were over 30 years old,
and identified structural deficiencies and maintenance-related
issues at many facilities [19]. Therefore, the potential for an
unwanted outcome resulting from a disruptive event could
elevate a hazard to a disaster.

On August 8, 2016, failure in electrical component in
Atlanta rippled through the entire system as a consequence
of loss of power to a transformer that provided power to
the airport data center of one of the major carriers [20].
The situation didn’t get any better after backup systems were

engaged because not all the servers were connected to this
power source amplifying the problem. 2,100 flights were
canceled and it took four days to restore operations to normal
levels.

Given the importance of air transportation system of The
United States to both global and regional transportation of
freight and passengers [9], [15], efficient recovery response
after disturbance in the operations is imperative. In present
study, we demonstrate the application of network science
based framework to illustrate response of hazards and effec-
tiveness of proposed recovery strategies for US National
Airspace System Airport Network.

C. Methodology and Datasets

1) Airport and Air Traffic Flow Data: For this study,
city pair traffic flow data is obtained from Federal Aviation
Administration (FAA) open-source database [21], to verify
origin to destination airport connection and flight counts for
calendar year 2015. Since network science based frameworks
and metrics have been used to understand the structure of
transportation systems operating at various spatial scales [7],
[9]1, [10], [14], [15], we model United States National Airspace
System Airport Network (USNASAN) as origin-destination
network with airports representing the nodes and a pair of
nodes are considered to be connected if there is at least one
flight between the pair. (i.e., a flight originates at one airport
and terminates at the other) With the exception of three Cana-
dian and one Puerto Rican airport, the airport network consists
of domestic airports and is modeled as an origin-destination
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Fig. 2. Complex network visualization of The United State National Airspace
System Airport Network (USNASAN)Connectivity map of USNASAN for
year 2014. 7 largest communities, identified through modularity based Louvain
algorithm, each of which map to a color, capture about 95% of the airports.
Communities are clustered together geographically with the community mem-
bers with high betweenness centrality maintaining connections with the nodes
of other communities.

network, meaning the traffic volume (strength) and number
of connections (degree) of each airport network “node as the
number of aircraft that originate and terminate at an airport.

We considered commercial, military, and general avia-
tion (GA) airports with at least one originating or terminating
flight, resulting in 1261 airports. Based on FAA and airline
data, close to 90000 flights are in the sky over the U.S.
On a typical day, Air Traffic Control (ATC) manages nearly
30000 commercial flights, 27000 General Aviation flights,
24000 air taxi flights, 5,000 military flights, and 2,000 air
cargo flights [22] . To build our model, we make these
assumptions:

o Flights are scheduled at a series of airports during a
given period (i.e., standard operations and procedures vs.
ad hoc);

« Duration and intensity of adverse events are unpredictable
and uncontrollable in advance;

o Hub failure (collapse) at one or more airport may or may
not cause consequential proportional flight service issues
such as delays, diverts, or cancelations at other airports;

« Based on specific cases, an adverse event may impact
full utilization of major airports and surrounding
airspace.

2) Airport Network Topology: Figure 2 depicts our net-
work model. For our network, all flight connections are
bi-directional. Here note, a symmetric matrix for aircraft
flow is feasible without substantial distortion of the network,
by choosing the higher non-zero quantity per airport pair.
Thus, our airport network is evaluated as an undirected
weighted network. Since our network is undirected, the inter-
dependent connection can point in two possible directions.

To understand the topology of the NAS airport network we
determine the distributions for degree and strength of airports.

The cumulative degree distribution P(k>K) provides the
proportion that an airport has more than K links to other
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airports, and is defined as :

Ph>K)=1-3  »p® M

here p(k) is the number of airports having degree k divided
by total number of airports, and k;,;, is the minimum degree
found over all nodes in the network. Likewise, the cumulative
strength distribution P(S>s) gives the probability that an
airport has more than s originating (or terminating) aircraft,
i.e., traffic volume. Nodal degree indicates the number of edges
shared with other nodes, in our case airports

n
k,‘ = Za,‘j (2)
j=1

Where a;; is the element of adjacency matrix, A, which
is equal to 1 if two airports are directly connected and
0 otherwise.

The average degree of a network is the average number of
neighbors a node has which is denoted by <k>:

1 n
< k; >:;lek,- (3)
=

The weighted counterpart of degree is strength, here indicated
by the traffic volume between two connected airports. It is
represented as:

n
Si =D aijw “)
=1

where w;; is the weighted adjacency matrix representing
the traffic volume between airport i and j for calendar
year 2014-2015.

a) Centrality Measures: Understanding the importance
an airport in the network is vital to design for enterprise
level resiliency development. Here, we apply measures of
centrality to help us quantify airport importance [23]. Several
centrality measures are available but relevant for our purposes
are closeness, betweenness, and eigenvector centrality.

Closeness centrality measures the concept an airport (i) is
‘central’ if it is ‘close’ to several other airports. Mathemati-
cally, it is expressed as

ccL (i) = 57— : ®)
> dist (i, j)
jev
where dist(i,j) is the network distance between the airports j,
and i in our network graph. For comparison with other
centrality measures, Ccy, is normalized to lie between [0,1].
Betweenness centrality measures allow us to surmise the
degree such that an airport is located ‘between’ other pairs
of airports. The idea here ‘significance’ ties to where an
airport is positioned in relation to paths in the network graph.
We depict these paths as traffic lanes that allow air traffic flow,
airports that sit on many routes are more likely more critical
to air traffic flow. For our calculations we used betweenness
introduced by defined as

. — o(s,1]i)
cp (i) = ALY ©)
S#éev o(s,t)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CLARK et al.: RESILIENCE OF THE U.S. NASAN

where o (s, t]i) is the total number of shortest paths between
s and ¢ that pass through i, and o (s, t) is the total number of
shortest paths between s and r regardless of whether or not
these pass through i.

Eigenvector centrality is based on ‘status’ or ‘prestige’
or ‘rank’. Here it captures the notion, the more central the
neighbors of an airport are, the more central the airport itself
is. Park et al. [17] defined this centrality measure of the form
of:

n

cei()=0a D crili) @)
{i,j}eE
The vector cg; = (cgi(1), ...cE,-(Nj))T is the solution to

the eigenvalue problem Acg; = a’lcEi where A is the
adjacency matrix for our airport network graph [24], [25].
We use network science based centrality measures as multiple
researches have attempted to assess the importance of nodes
in infrastructure systems using centrality metrics for both
weighted and unweighted networks [9], [14], [25].

To understand the patterns in connectivity, we use the mod-
ularity based Louvain community detection [26]. Through-
out the manuscript, “communities” and “modules” are used
interchangeably.

b) Robustness and recovery metrics: For air transporta-
tion systems, we perform the robustness and recovery analysis
of USNASAN. We assume that multiple rerouting options are
available between a pair of airport since no physical infrastruc-
ture is involved (other than ATC centers) between take-off
and landing, and primary cause of delays and cancellation in
most of the cases are ground delay problems at airports which
lead to flight delays and cancellations. Hence, we restrict our
analysis to node vulnerability.

Evaluating resilience requires measuring collapse and recov-
ery processes. The first step is identifying a measure for
critical functionality. Utilizing the giant component (most
linked group of airports in our network) we define Total
Functionality (TF) as the number of airports in the giant
component when the airport network is completely functional.
For our network TF = 1261. Fragmented functionality (FF)
is the number of airports in the giant component at any given
time after one or more airports collapse due to disruptions.
We calculate the state of critical functionality (SCF) for our
airport network as SCF = FF/TF. This methodology is based
on percolation theory. Immediately after the disruptive event
the SCF is calculated, and a prioritization order is determined
for the progression of airports to fully recovery or regain total
functionality [27], [28]. We apply the network regrowth model
proposed in [8], according to which a priority list of restoration
is obtained by looking at various flow and topological metrics
such as traffic volume, connectivity, and network centrality
measures [29]. The node which has higher rank receives the
priority for restoration. The selected node is then restored to
its full functionality by restoring all its outgoing and incoming
connections. It is noted that to restore the full functionality
of a node, all other nodes at one network distance from that
node should at least be partially functional to accommodate
the connections to fully functional node. This process of
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Fig. 3.  Average nearest neighbor Degree and Degree Distribution (Left)
Robustness of United States National Airspace System Airport Network in
response to targeted disruptions in order of decreasing degree (# connec-
tions) and strength (traffic volume). State of Critical Functionality (SCF)
is measured using relative size of largest connected cluster in the network.
(Right) Recovery response of USNASAN. Airport recovery prioritization is
done using centrality measures such as strength, betweenness, closeness,
eigenvector, degree centrality. Grey bounds on right side represent the 99%
confidence interval for recovery scores obtained from 1000 ensembles of
random recovery.

prioritization and restoration is repeated until network regains
the desired level of functionality (which is equal to 100% in
present case) .The time reversal asymmetry in recovery, that
was observed for the recovery of systems such as financial
systems [30] and railroad systems [8] is also evident in the
present case (Figure 3), which happens to be a consequence
of the recovery model. Recovery after disruption is done in
the following steps:

1. State of Critical Functionality (SCF) is computed for the
unperturbed network.

2. A prioritization sequence of airports is determined using
traffic volume, connectivity and topological measures.
Restoring an airport A to full functionality requires
restoring all connections to the airport by partially restor-
ing the hosts airport to accept the incoming connections.
Airports that are partially activated may not have full
functionality since for these airports, only the edges that
directly lead to functional airports are recovered.

3. The process of full and partial restoration is continued
till SCF reaches 1.

The recovery in airport network is different than subway
networks in a sense that in a subway network with stations
connected serially, say “A” , “B” , and “C”, requires “B” to
be functional for “A” to connect to “C”. However, If A, B,
and C are airports and B loses functionality A can still connect
to C by bypassing the collapsed node. For the purposes of this
evaluation however, we sustain that an order of recovery must
follow the sequence of connections to restore airports to a hub
in the network. For large airport hubs like Chicago, Atlanta,
and Denver, this logic holds true for certain stakeholders that
deal with cargo versus passenger movement. In general, all
carriers develop operations and business strategies based on
a sequential order of flight initiation and termination to hold
down cost and optimize profits.
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II. RESULTS

A. Robustness and Recovery

As discussed earlier, the analysis of robustness of our net-
work has mainly focused on visualizing loss and recovery of
critical functionality based on strength and degree. These given
performance metrics are affected when airports are removed
according to random and targeted attack. Figure 3 demon-
strates the networks tolerance to airport loss. We quantify
robustness of our airport network as it reacts to random
and targeted disruptions. That is, airports are systematically
removed based on their number of connections and traffic
volume. Here targeted disruptions are driven by either airport
degree or strength. We note that removing nodes in descending
order of number of connections and traffic volume computed
for the intact network may not be the fastest way to damage
the network. Many researches in the past have explored
the optimal way to efficiently damage the network using
percolation theory [27], influence maximization approach and
non-greedy algorithms [31]. However, in this study, our focus
is to illustrate the application of recovery framework for
US National Airspace System Airport Network subjected to
disparate hazards. We note that node removal according to
dynamic centrality measures can result in even faster collapse
rate, but we have used intuitive measures (such as connectivity,
and traffic volume) that can be judged through preliminary
analysis of traffic maps and open-source datasets. Secondly,
for natural hazards, we have used random sequence to trigger
the collapse because natural hazards, such as Tsunami, do not
affect the airports/facilities in any specific order but impact
the facilities falling within effected area.

Based on random removal of nodes, close to 99% of
the airports would need to be disrupted for loss of total
functionality. For degree and strength based targeting loss of
total functionality occurs at 27% and 29% respectively. Note
that nearly 30% of the airports must be disrupted for the
complete collapse of airport network.

The right section of Figure 3 depicts recovery rates com-
puted using multiple strategies with random recovery as bench-
mark. Here, these are analyzed for the scenario in which
the airport network status is at SCF = 0, i.e., complete
failure or no connections, traffic flow. Although Figure 3 pro-
vides the quantitative description of resilience of the USNAS,
it may not be realistic for a real-life network to begin recovery
from state of complete collapse. This motivates the testing of
framework on realistic hazards that only partially incapacitates
the USNASAN.

We evaluate three categories of recovery strategies.
To begin, a baseline of 1000 random ensemble sequences
is established for comparison. We note that while total of
N! recovery sequences are possible. However, we consider
1000 ensembles as a baseline as generating N! sequences is
time and computational cost prohibitive. Moreover, the results
from random recovery are used as baseline to compare
performance of various strategical restoration against each
other. Hence, increasing size of random recovery ensembles
would not change key insights of the experiments. The next
strategy is founded on airport profiles and characteristics
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TABLE I

ToP 20 AIRPORTS BY DEGREE, STRENGTH,
CLOSENESS, AND BETWEENNESS
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including connectivity and traffic volume. The final strategy is
based on network centrality measures, specifically eigenvector,
closeness, and betweenness. The results show that for our
airport network, the path to optimal recovery for most phases
of partial and full recovery takes place when betweenness
centrality is selected as for generating a recovery order.
Performance of each recovery strategy is measured by the rate
of change of SCF with respect to the airports restored to full
functionality. Table 1 summarizes the rank of airport facilities
according to multiple strategies considered in this study.

B. Topological Sensitivities

Delineation of hubs and their connectivity characteristics is
crucial to understand resilience of infrastructure systems [32].
Figure 4A depicts log average of the neighbor’s degree vs
the degree in airport network, and suggest that while there
is a tendency for airports of higher degree to connect to
comparable airports, airports of lower degree show a tendency
to connect to airports of both lower and higher degrees.
Given the presence of hub and spoke arrangement for the
airports with large degree, these higher degree nodes, although
disproportionately less in number in comparison to the airports
with average degree less than 100 [33].

A cumulative probability distribution of node degree, on a
log- log scale, profile the distributional properties of the
airports. The distributions follow truncated power law models,
wherein most airports have a small number of connections,
except for a few hubs.

Figure 4B depicts the cumulative probability distribution
of airport degree (connectivity) on log-log scale. The plot
depicts linear decay in the log-frequency as a function of log-
degree. The distribution follows a truncated power law model,
indicating airports such as Richmond and Fort Walton Beach
having fewer connections with similar and larger airports come
more closely to the fitted line plot showing a scale-free power
law degree distribution slope, in contrast to the airports having
several connections, such as Atlanta follow an exponential
decay. Hossain et al. (2013) showed that the AAN cumulative
strength distribution indicated the presence of a right-skewed
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Fig. 4. Average nearest neighbor Degree and Degree Distribution (A)

Average nearest neighbor degree exhibits the negative trend with increase
in degree with high variability for airports with less than degree of 100.
Airports with degree greater than 300 have tendency to connect too many
small airports giving rise to hub and spoke arrangement for these nodes. Nodes
with degreeless than 100 have tendency to connect to both large and small
airports resulting in amplified fluctuation along the negative trend. Given the
presence of hub and spoke arrangement for the airports with large degree,
these higher degree nodes, although disproportionately less in number in
comparison to the airports with average degree less than 100 (Fig 4B), have
considerable impact on robustness and recovery characteristics of the network.
Figure C, cumulative probability distribution of node degree and strength of
commercial airport only, on a log-log scale, profile the distribution properties
of the airports.

distribution which signals a high level of heterogeneity in the
network. It was a phenomenon also found in [34] and [35].
The Average degree <k> for our network is calculated
to 75.32. Figure 4C displays a cumulative probability distrib-
ution of commercial airport degree and strength. For commer-
cial airports, the average degree is 14.1 and the average path
length 2.276

Since researchers in the past have hypothesized that net-
work centrality measures such as Betweenness, Closeness and

Variation of Centrality Measures with Degree
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Fig. 5. Relationship between centrality measures and node degree shows

that while degrees and centrality measures are strongly correlated, certain
anomalies (such as Anchorage, Alaska exhibiting high betweenness centrality
despite moderate degree) results in varying recovery rates under different
strategies. Note the sharp increase in betweenness centrality as degree
increases beyond 550 which also drives the state of critical functionality during
recovery according to betweenness centrality.

Eigenvector centralities exhibit significant positive correlation
with the degree centrality [36], it gives rise to another question:
if the centrality measures are indeed correlated, then why
various recovery strategies yield different recovery rates?
To understand this, we plot the variation of average measure of
the three centrality measures with degree centrality (Figure 5).
We observe that centrality measures are indeed strongly cor-
related to degree. While this positive correlation is clear for
higher degree nodes, certain airports exhibit anomalously high
(or low) centrality measures in comparison to their degree.
For example, airport in Anchorage, Alaska is ranked 62 out
of total of 1261 airports per degree (# of connections) but its
betweenness centrality is ranked second among all the airports.
Furthermore, airports with degree 320 or less exhibit large
deviation from the linear relationship and hence are ranked
differently by different recovery strategies.

Many decisions in the airline industry depend on the for-
mation of traffic demand and development of connections.
Whether an airport becomes an important hub in the net-
work may be driven by competition, but as we have shown,
an airports centrality characterization can play a crucial role
in understanding resilience and the airport’s criticality to
the network. Even without disruptions, ATC managers are
concerned with airport criticality. Recent observation of pro-
cedures applied by FAA and airport managers aim to lessen
the impact of severe weather on airport performance by pre-
empting the severe weather by reducing arrival and departure
volume, and taking non-critical systems off-line until the storm
passes.

Congestion in almost all parts of the U.S. have created
higher interest in the airport network route problems. The
relative importance of various airports in the NAS allows
for better planning and mitigation of traffic conflicts. Unlike
surface and maritime transportation networks that develop
gradually for commercial and other social/geographical rea-
sons, air transportation networks are based on hub networks
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lines) overlap with each other. This overlap is shown by thicker lines. B. Same
as 6A but for cyber-physical attacks.

more aligned with economic markets
centers [37].

and population

C. Tolerance and Recovery

As discussed earlier, the U.S. airport network is robust
needing approximately 30% of airports to be removed in order
for total loss of SCF. That said, given a larger scale loss, such
as west coast airports from the Seattle-Tacoma (SEA) to San
Diego (SAN) the perturbations to the network would be severe.
A tsunami hitting the coast trigged by the Cascadia or San
Andreas faults could implement such a scenario. Returning
to our network model we simulate this event by removing
those nodes with the highest probability of being impacted.
The resulting airport network fragments into 14 components of
which six large components make up 98.04% of the network.
The remaining eight components comprise less than 2%.
Translating this into recovery, we see our centrality results
concur with our earlier plot; i.e., restoring airports in order of
betweenness would provide the quickest recovery for restor-
ing SCF. Figure 6A depicts the airport network robustness
and recovery plot based on our simulated Tsunami. The
x-axis describes: Fractions of stations recovered. The y-axis
for left plot describes: SCF and for right plot: percent random
< Chosen metric. Figure 6B depicts the recovery plot based on
a Cyber-attack on the 10 largest hub airports in the Midwest.
Comparing plots of both scenarios, note the slightly larger
Impact Area for the Cyber-attack. As with the full collapse and
recovery, betweenness centrality out performs other measures
for recovery of network. Although there are far less airports
removed after the Cyber-attack, due to their attributes, number
of connections and traffic volume, the impact on the entire
airport network is more severe.
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III. CONCLUSION

A. Summary

Evaluation of the dynamic response of the NAS to airport
disruptions allows for assessment of system robustness and
resiliency, and measuring resilience is the first step in improv-
ing it. This paper presented a methodology to describe and
analyze the functional relationships between the airports in
terms of air traffic flow. The proposed approach to airport
system resilience characterization following a disruptive event
provides key metrics for stakeholders to better understand
vulnerabilities.

The knowledge gained in a network analysis context
demonstrated that centrality measures are a good platform for
supporting restoration. It allows researchers and system devel-
opers to manage and apply disruptive scenarios to pre-existing
data and network structures for predictive analysis. It supports
an integrated and interoperable way of stepping through phases
of an event based on fragmentation and recovery. This is clean
separation from risk based and probabilistic methods of the
past.

Interesting to note that two general aviation airports,
Teterboro and Van Nuys Airports, had the highest number of
connections. Teterboro is in the New Jersey Meadowlands,
12 miles (19 km) from the middle of Manhattan, making it
efficient and in demand for corporate and private aircraft.
Globally and nationally it is the primary hub for several
charter aviation companies severing the private sector. Van
Nuys Airport located in the San Fernando is one of the
busiest general aviation airports in the world. While the net-
work science based framework proposed here was originally
developed in the recent paper [8], the new adaptation to the
US airspace system generates novel engineering and policy
relevant insights, besides offering further evidence for the
general applicability.

B. Future Study

In addition to informing decision makers about the resource
prioritization, the proposed strategy also highlight how recov-
ery will propagate which can then be translated into “$ saved”
by computing the revenues generated restored operations.
While demonstration of the same for US Airlines require
ticketing data for various passenger and freight carriers, our
group has demonstrated the applicability of similar algorithm
for post Sandy recovery of New York’s Mass Transit System to
compute how measure of State of Critical Functionality (SCF)
can be translated to revenue saved in operations [38].

Analysis of dynamic responses with high accuracy is
an important factor in developing methodologies, process
improvements, and designs that enhance system resiliency.
Particularly, in the case of airport networks and NAS service
threads, a new concept will be introduced characterizing
system resilience and performance at the local and global
level by the change in capacity ratio over a given time.
Future directions to network resilience quantification needs
to go beyond heuristic measures such as network central-
ities and account for the optimal recovery strategies such
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as influence maximization approaches and dynamic resource
allocations [31].
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