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FIG. 2: Energy per ion, ε(N) = U(N)/N as a function of N
for small values of 2 ≤ N ≤ 15. The energy is given in units
of k q2/a. The solid line is a guide for the eye.

The proof of the results in Eq.(3) and Eq.(4), though
lengthy, involves standard mathematical transforma-
tions. For instance, in order to prove the result in Eq.(3),
one starts from the expression of the total energy of a sys-
tem of N = 2n+ 1 ions in terms of the total energy of a
system of N = 2n ions as follows:

U(2n+ 1) = U(2n) +
k q2

a
S2n+1 , (6)

where

S2n+1 =

2n
∑

i=1

(−1)(2n+1−i)

(2n+ 1− i)
=

2n
∑

i=1

(−1)i

i
, (7)

and n = 1, 2, . . . is a positive integer. By noting that
1/(2n + 1) = 1/(2n) − 1/[(2n)(2n + 1)], one modifies
Eq.(6) to write:

U(2n+ 1)

2n+ 1
=

U(2n)

2n
+

1

2n+ 1

[

k q2

a
S2n+1 −

U(2n)

2n

]

.

(8)
With some care, on can prove/verify that
∑2n

i<j(−1)j−i/(j − i) = (2n)
∑2n

i=1(−1)i/i, which

immeditely leads to:

U(2n)

2n
=

k q2

a
S2n+1 . (9)

One obtains the formula in Eq.(3) by substituting the re-
sult from Eq.(9 into Eq.(8). The result in Eq.(4), though
more challenging to derive, is proved by using a simi-
lar approach. The result in the thermodynamic limit is
well-known [see page 64 of Ref. 2]:

ε(N → ∞) = − ln(2)
k q2

a
. (10)

Note that our energy expression is per ion. It is cus-
tomary in the literature [2] to calculate the energy per
ion pair, rather than per ion. If there are N ions like
in the current case, then there will be N/2 ion pairs.
A reader can easily write all the results for the energy
whichever way it prefers (either per ion, or per ion pair).
Differently from the electron gas model where the overall
charge neutrality of the system is guranteed by includ-
ing a uniformly charged background [3–6], a 1D ionic
crystal of the sort considered here has a built-in charge-
neutrality in the thermodynamic limit.
To conclude, in this work we derived exact expressions

[see Eq.(3) and Eq.(4)] for the energy of a finite 1D ionic
crystal with an arbitrary number of ions. These results
allow one to start from the simplest system with N = 2
ions and obtain the exact energy per ion at any arbitrary
N with just a little bit of book-keeping. It is found that,
each time we increase the size of the system by one ion,
the energy per ion remains constant if addition of such an
ion leads to a nonzero total charge. However, the energy
per ion of the system always decreases if addition of such
an ion makes the system charge neutral (the case when
the system has an even N at the end). The peculiar
dependence of the energy per ion as a function of the
number of ions can be useful to experimental scientists
since it appears to be a unique feature of this particular
1D model.
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