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a b s t r a c t 

We provide an efficient method to approximate the covariance between decision variables and uncertain 

parameters in solutions to a general class of stochastic nonlinear complementarity problems. We also de- 

velop a sensitivity metric to quantify uncertainty propagation by determining the change in the variance 

of the output due to a change in the variance of an input parameter. The covariance matrix of the solu- 

tion variables quantifies the uncertainty in the output and pairs correlated variables and parameters. The 

sensitivity metric helps in identifying the parameters that cause maximum fluctuations in the output. The 

method developed in this paper optimizes the use of gradients and matrix multiplications which makes 

it particularly useful for large-scale problems. Having developed this method, we extend the deterministic 

version of the North American Natural Gas Model (NANGAM), to incorporate effects due to uncertainty in 

the parameters of the demand function, supply function, infrastructure costs, and investment costs. We 

then use the sensitivity metrics to identify the parameters that impact the equilibrium the most. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Complementarity models arise naturally out of various real life

roblems. A rigorous survey of their application is available in

erris and Pang (1997) . Authors in Abada, Gabriel, Briat, and Mas-

ol (2013) ; Christensen and Siddiqui (2015) ; Feijoo, Huppmann,

akiyama, and Siddiqui (2016) ; Huppmann and Egging (2014) ;

artín, Smeers, and Aguado (2015) ; Oke, Huppmann, Marshall,

oulton, and Siddiqui (2016) use complementarity problems to

odel markets from a game theoretic perspective ( Anderson &

u, 2004; Siddiqui & Christensen, 2016 ), where the complemen-

arity conditions typically arise between the marginal profit and

he quantity produced by the producer. In the field of mechanics,

hey typically arise in the context of frictional contact problems 

 Kwak & Lee, 1988 ), where there is a complementarity relation 

etween the frictional force between a pair of surfaces and the

istance of separation between them. With a wide range of appli-

ations, understanding the characteristics of solutions to comple-

entarity problems becomes important for advancing the field. In
∗ Corresponding author. 
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his paper, we focus on studying the characteristics of solutions to

omplementarity problems under uncertainty. 

The behavior of a solution to a complementarity problem with

andom parameters was first addressed in Gürkan and Robin-

on (1999) , where such problems were referred to as stochastic

omplementarity problems (SCP). Authors in Chen and Fukushima

2005) ; Egging, Pichler, Kalvø, and WalleHansen (2016) ; Gabriel,

huang, and Egging (2009) ; Jiang and Xu (2008) ; Shanbhag

2013) define various formulations of SCP for different applica-

ions and have devised algorithms to solve the problem. Authors in

amm, Lu, and Budhiraja (2016) compute confidence intervals for

olution of the expected value formulation of the problem, how-

ver they do not have efficient methods to find the second-order

tatistics for large-scale complementarity problems. 

Large-scale problems, those with over 10,0 0 0 decision variables

nd uncertain parameters arise naturally out of detailed market

odels and there is considerable interest in studying, understand-

ng and solving such models. For example, Chen, Cowling, Po-

ack, Remde, and Mourdjis (2017) discuss a case of urban drainage

ystem with large number of variables. Yumashev and Johnson

2017) discuss a case of deciding under large-scale nuclear emer-

encies. In line with the area of application used in this paper,

abriel, Kydes, and Whitman (2001) discuss a case of an energy

odel with large number of variables and parameters. Naturally,

https://doi.org/10.1016/j.ejor.2017.11.003
http://www.ScienceDirect.com
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developing methods to solve such large-scale problems gained in-

terest. Authors in Kopanos, Méndez, and Puigjaner (2010) ; Luo,

Hong, Nelson, and Wu (2015) discuss various tools ranging from

mathematical techniques (decomposition based) to computational

techniques (parallel processing) for solving large-scale optimization

problems. Ohno, Boh, Nakade, and Tamura (2016) uses an approx-

imate algorithm for a large-scale Markov decision process to op-

timize production and distribution systems. In this paper, we do

not present a new method to solve stochastic complementarity 

problems, but an efficient algorithm to generate second-order in-

formation that is flexible enough to be coupled with any existing

algorithm that provides a first-order solution. 

The objective of this paper is to efficiently obtain second-order

statistical information about solution vectors of large-scale stochas-

tic complementarity problems. This gives us information about

variability of the equilibrium obtained by solving a nonlinear com-

plementarity problem (NCP) and the correlation between various

variables in the solution. Authors in Hyett, Podosky, Santamaria,

and Ham (2007) and Benedetti-Cecchi (2003) provide examples in

the area of clinical pathways and ecology respectively, about the

utility of understanding the variance of the solution in addition to

the mean. They also show that a knowledge of variance aids better

understanding and planning of the system. Agrawal, Ding, Saberi,

and Ye (2012) emphasize the necessity to understand covariance

as a whole rather than individual variances by quantifying “the

loss incurred on ignoring correlations” in a stochastic programming

model. 

In addition, we also introduce a sensitivity metric which quan-

tifies the change in uncertainty in the output due to a perturba-

tion in the variance of uncertain input parameters. This helps us

to directly compare input parameters by the amount of uncertainty

they propagate to the solution. 

In attaining the above objectives, the most computationally ex-

pensive step is to solve a system of linear equations. We choose

approximation methods over analytical methods, integration, or

Monte Carlo simulation because of the computational hurdle in-

volved while implementing those methods for large-scale prob-

lems. The method we describe in this paper achieves the follow-

ing: 

• The most expensive step has to be performed just once, irre-

spective of the covariance of the input parameters. Once the

linear system of equations is solved, for each given covariance

scenario, we only perform two matrix multiplications. 
• Approximating the covariance matrix and getting a sensitivity

metric can be obtained by solving the above mentioned linear

system just once. 

The methods developed in this paper can also be used for

nonlinear optimization problems with linear equality constraints.

We prove stronger results on error bounds for special cases of

quadratic programming. 

Having developed this method, we apply it to a large-scale

stochastic natural gas model for North America, an extension of

the deterministic model developed in Feijoo et al. (2016) and de-

termine the covariance of the solution variables. We then proceed

to identify the parameters which have the greatest impact on the

solution. A Python class for efficiently storing and operating on

sparse arrays of dimension greater than two is created. This is use-

ful for working with high-dimensional problems which have an in-

herent sparse structure in the gradients. 

We divide the paper as follows. Section 2 formulates the prob-

lem and mentions the assumptions used in the paper. It then de-

velops the algorithm used to approximate the solution covariance

and provides proofs for bounding the error. Section 3 develops a

framework to quantify the sensitivity of the solution to each of

the random variables. Section 4 shows how the result can be 
pplied for certain optimization problems with equality con-

traints. Having obtained the theoretical results, Section 5 gives

n example of a oligopoly where this method can be applied and

ompares the computational time of the approximation method

ith a Monte-Carlo method showing the performance improve-

ent for large-scale problems. Section 6 describes the Natural Gas

odel to which the said method is applied. Section 7 discusses

he possible enhancements for the model and its limitations in the

urrent form. 

. Approximation of covariance 

For the rest of the paper, all bold quantities are vectors. A sub-

cript i for those quantities refer to the i -th component of the vec-

or in Cartesian representation. 

.1. Definitions 

We define a complementarity problem and a stochastic com-

lementarity problem which are central to the results obtained in

his paper. We use a general definition of complementarity prob-

ems and stochastic complementarity problems as stated below. 

efinition 1. ( Facchinei & Pang, 2007 ) Given F : R 

n ×m �→ R 

n , and

arameters θ ∈ R 

m , the parametrized nonlinear complementarity

roblem (NCP) is to find x ∈ R 

n such that 

 � x ⊥ F (x ; θ ) ∈ K 

∗ (2.1)

here K 

∗, the dual cone of K is defined as 

 

∗ = 

{
x ∈ R 

n : v T x ≥ 0 ∀ v ∈ K 

}
(2.2)

efinition 2. Given a cone K ∈ R 

n a random function F : K × � �→
 

n , the stochastic complementarity problem (SCP) is to find x ∈ R 

n 

uch that 

 � x ⊥ E F (x ;ω) ∈ K 

∗ (2.3)

We assume that we can explicitly evaluate the expectation in

2.3) using its functional form, and that the SCP can be solved us-

ng an existing algorithm. 

We now make assumptions on the form of K in (2.1) . This form

f K helps in establishing an equivalence between a complemen-

arity problem and a minimization problem which is key to derive

he approximation method in this paper. 

ssumption 1. K in (2.1) is a Cartesian product of half spaces and

ull spaces, i.e., for some I ⊆ { 1 , 2 , . . . , n } 
 = { x ∈ R 

n : x i ≥ 0 if i ∈ I } (2.4)

We now propose a lemma about the form of the dual cone of K

o understand the special form that it has. This will help us convert

he complementarity problem into an unconstrained minimization

roblem. 

emma 3. The dual cone K 

∗ of the set assumed in Assumption 1 is 

 

∗ = K 

′ = 

{
x ∈ R 

n : 
x i ≥ 0 if i ∈ I 
x i = 0 if i / ∈ I 

}
(2.5)

roof. Check Appendix A �

.2. Preliminaries for approximation 

In this subsection, we prove two preliminary results. Firstly, we

rove our ability to pose an NCP as an unconstrained minimization

roblem. Then we prove results on twice continuous differentiabil-

ty of the objective function, thus enabling us to use the rich lit-

rature available for smooth unconstrained minimization. Follow-

ng that, Propositions 5 and 6 help in achieving the former while
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roposition 7 along with its corollaries help us in achieving the

atter. 

We now define C-functions, which are central to pose the com-

lementarity problem into an unconstrained optimization problem.

he equivalent formulation as an unconstrained optimization prob-

em assists us in developing the algorithm. 

efinition 4. ( Facchinei and Pang, 2007 , pg. 72) A function ψ :

 

2 �→ R is a C-function when 

(x, y ) = 0 ⇔ x ≥ 0 y ≥ 0 xy = 0 (2.6) 

e consider the following commonly used C-functions. 

 F B (x, y ) = 

√ 

x 2 + y 2 − x − y (2.7) 

 min (x, y ) = min (x, y ) (2.8) 

Under our assumptions on K , the following two propositions

stablish the equivalence of the complementarity problem and an

nconstrained minimization problem. 

roposition 5. Suppose Assumption 1 holds. Then every solution

 

∗( θ) of the parameterized complementarity problem in (2.1) , is a

lobal minimum of the following function f(x ; θ ) , 

i (x , θ ; F ) = 

{
F i (x , θ ) if i / ∈ I 
ψ i (x i , F i (x , θ )) if i ∈ I (2.9) 

(x ; θ ) = 

1 

2 

‖ �(x ; θ ; F ) ‖ 

2 
2 (2.10) 

ith an objective value 0, for some set of not necessarily identical C-

unctions ψ i . 

roof. Check Appendix A �

roposition 6. Suppose Assumption 1 holds. If a solution to the prob-

em in (2.1) exists and x ∗( θ) is an unconstrained global minimizer of

(x ; θ ) defined in (2.10) , then x ∗( θ) solves the complementarity prob-

em in (2.1) . 

roof. Check Appendix A �

Now given a function F , and a set K which satisfies

ssumption 1 , and a solution of the NCP x ∗( ̂  θ ) for some fixed θ =
ˆ , we define a vector valued function � : R 

n ×m �→ R 

n component-

ise as follows. 

i (x , θ ; F ) = 

⎧ ⎨ ⎩ 

F i (x , θ ) if i / ∈ I 
ψ 

2 (x i , F i (x , θ )) if i ∈ Z 

ψ(x i , F i (x , θ )) otherwise 

(2.11) 

(x ; θ ) = 

1 

2 

‖ �(x ; θ ; F ) ‖ 

2 
2 (2.12) 

 = 

{ 
i ∈ I : x 

∗
i ( ̂  θ ) = F i ( x 

∗( ̂  θ ) ; ˆ θ ) = 0 

} 
(2.13) 

ote that if ψ is a C-function, ψ 

2 is also a C-function since ψ 

2 =
 ⇐⇒ ψ = 0 . We observe from Propositions 5 and 6 that mini-

izing f(x ; θ ) over x is equivalent to solving the NCP in (2.1) . 

Now we assume conditions on the smoothness of F so that the

olution to a perturbed problem is sufficiently close to the original

olution. 

ssumption 2. F (x ; θ ) is twice continuously differentiable in x

nd θ over an open set containing K . 

Given that the rest of the analysis is on the function f(x ; θ ) de-

ned in (2.12) , we prove that a sufficiently smooth F and a suitable

 ensure a sufficiently smooth f . 
roposition 7. With Assumption 2 holding, we state f(x ; ˆ θ ) defined

s in (2.12) is a twice continuously differentiable at x satisfying

(x ; ˆ θ ) = 0 for any C function ψ provided 

1. ψ is twice differentiable at 
{
(a, b) ∈ R 

2 : ψ(a, b) = 0 
} \ { (0 , 0) }

with a finite derivative and finite second derivative. 

2. ψ vanishes sufficiently fast near the origin. i.e., 

lim 

(a,b) → (0 , 0) 
ψ 

2 (a, b) 
∂ 2 ψ(a, b) 

∂ a∂ b 
= 0 (2.14) 

roof. Given that f is a sum of squares, it is sufficient to prove

ach term individually is twice continuously differentiable to prove

he theorem. Also since we are only interested where f vanishes, it

s sufficient to prove the above property for each term where it

anishes. 

Consider terms from i / ∈ I . Since F i is twice continuously differ-

ntiable, F 2 
i 

is twice continuously differentiable too. 

Consider the case i ∈ Z . This means i ∈ I and x ∗i ( ̂  θ ) =
 i 

(
x ∗i ( ̂  θ ) , ˆ θ

)
= 0 . These contribute a ψ 

4 term to f . With the no-

ation ψ i ≡ψ( x i , F i ( x ; θ)), and δi j = 1 ⇐⇒ i = j and 0 otherwise

e clearly have, 

∂ψ 

4 
i 

∂x j 

= 4 ψ 

3 
i 

(
∂ψ i 

∂a 
δi j + 

∂ψ i 

∂b 

∂F i 
∂x j 

)
= 0 (2.15) 

∂ 2 ψ 

4 
i 

∂x j x k 

= 12 ψ 

2 
i 

(
∂ψ i 

∂a 
δi j + 

∂ψ i 

∂b 

∂F i 
∂x j 

)(
∂ψ i 

∂a 
δik + 

∂ψ i 

∂b 

∂F i 
∂x k 

)
+4 ψ 

3 
i 

(
∂ 2 ψ i 

∂a 2 
δi j δik + 

∂ 2 ψ i 

∂ a∂ b 

∂F i 
∂x k 

+ other terms 

)
(2.16) 

= 0 (2.17) 

or the third case, i ∈ I \ Z, we have 

∂ψ 

2 
i 

∂x j 

= 2 ψ i 

(
∂ψ i 

∂a 
δi j + 

∂ψ i 

∂b 

∂F i 
∂x j 

)
= 0 (2.18) 

∂ 2 ψ 

2 
i 

∂x j x k 

= 

(
∂ψ i 

∂a 
δi j + 

∂ψ i 

∂b 

∂F i 
∂x j 

)
+ 2 ψ i 

(
∂ 2 ψ i 

∂a 2 
δi j δik + 

∂ 2 ψ i 

∂ a∂ b 

∂F i 
∂x k 

+ other terms 

)
(2.19) 

= 

∂ψ i 

∂a 
δi j + 

∂ψ i 

∂b 

∂F i 
∂x j 

(2.20) 

ontinuity of f at the points of interest follow the continuity of the

ndividual terms at the points. �

The following corollaries show the existence of C-functions ψ 

hich satisfy the hypothesis of Proposition 7 . 

orollary 8. With Assumption 2 holding, for the choice of C-function

 = ψ min defined in (2.8) , the function f is twice continuously differ-

ntiable at its zeros. 

orollary 9. With Assumption 2 holding, for the choice of C-function

 = ψ F B defined in (2.7) , the function f is twice continuously differ-

ntiable. 

We now define an isolated solution to a problem and assume

hat the problem of interest has this property. This is required to

nsure that our approximation is well defined. 

efinition 10. ( Nocedal & Wright, 2006 ) A minimum x ∗ of a prob-

em is said to be an isolated minimum , if there is a neighborhood

( x ∗; ε) of x ∗, where x ∗ is the only minimum of the problem. 
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Fig. 1. Intuitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Approximating covariance. 

Solve the complementarity problem in ( 2.1 ) for the mean value of 

θ = 

ˆ θ , or solve the stochastic complementarity problem in ( 2.3 ) 

and calibrate the value of the parameters θ = 

ˆ θ for this solution. 

Call this solution as x ∗. Choose a tolerance level τ . 

1: Evaluate F ∗ ← F ( x ∗; ˆ θ ) , G i j ← 

∂F i ( x 
∗; ˆ θ ) 

∂x j 
, L i, j ← 

∂F i ( x 
∗; ˆ θ ) 

∂θ j 
. 

2: Choose a C-function ψ such that the conditions in proposition 

7 are satisfied. 

3: Define the function ψ 

a (a, b) = 

∂ψ(a,b) 
∂a 

, ψ 

b (a, b) = 

∂ψ(a,b) 
∂b 

. 

4: Find the set of indices Z = { z ∈ I : | x ∗z | = | F ∗z | ≤ τ } . 
5: Define 

M i j ← 

{ 

G i j if i / ∈ I 
0 if i ∈ Z 

ψ 

a ( x 

∗
i , F 

∗
i 
) δi j + ψ 

b ( x 

∗
i , F 

∗
i 
) G i j otherwise 

(2 . 22) 

where δi j = 1 if i = j and 0 otherwise. 

6: Define 

N i j ← 

{ 

L i j if i / ∈ I 
0 if i ∈ Z (2 . 23) 

ψ 

b ( x 

∗
i , F 

∗
i 
) L i j otherwise 

7: Solve the linear systems of equations for T . 

MT = N (2 . 24) 

If M is non singular, we have a unique solution. If not, a least 

square solution or a solution obtained by calculating the Moore 

Penrose Pseudo inverse 26 can be used. 

8: Given C, a covariance matrix of the input random parameters, 

θ (ω) , return C ∗ ← T CT T . 

8  

e  

l  

n

 

a  

u  

t  

t  

t  

F  

t  

c  

p  
A counter-example for an isolated minimum is shown on

Fig. 1 (a). It is a plot of the function 

f (x ) = 5 x 2 + x 2 sin 

(
1 

x 2 

)
(2.21)

and the global minimum at x = 0 is not an isolated minimum as

we can confirm that any open interval around x = 0 has other min-

imum contained in it. Unlike this case, in this paper, we assume

that if we obtain a global-minimum of f, then it is an isolated

minimum. The existence of a neighborhood B( x ∗; ε) as required

in Definition 10 protects the approximation method from return-

ing to a local minimum in the neighborhood for sufficiently small

perturbations in problem parameters. 

Assumption 3. For some fixed value of θ = 

ˆ θ, there exists a

known solution x ∗( ̂  θ ) such that it is an isolated global minimum

of f(x ; θ ) . 

2.3. Approximation algorithm and error bounding 

This subsection achieves two primary results as follows. We

now propose Algorithm 1 to approximate the covariance of the

output given a covariance matrix for the input parameters. Follow-

ing that Theorem 11 gives a mathematical proof that the algorithm

indeed approximates the covariance matrix. The second key result

is Theorem 12 which bounds the error in the approximation. 

Given a deterministic shift in a parameters value, the sensitiv-

ity of the solution has been studied in Castillo, Conejo, Castillo,

Mínguez, and Ortigosa (2006) ; Fiacco (2009) for mathematical 

programming problems (e.g., nonlinear or large-scale programs).

Authors in Castillo, Conejo, and Aranda (2008) used a perturba-

tion technique to study the sensitivities in calculus of variations.

We aim to build on the research in Castillo et al. (2006) ; Fiacco

(2009) by proposing an approximation approach for large-scale

stochastic complementarity problems. In particular, the sensitiv-

ity analysis in Chapter 3 in Fiacco (2009) motivates the method 

developed in this paper, after converting the complementar-

ity problem into an unconstrained optimization problem with

sufficient smoothness properties. Chapters 4 and 5 in Fiacco

(2009) provide good context for computational approaches related

to the ideas of Chapter 3. Our approach is amenable to extensions

towards approximations for large-scale models, as we study the

sensitivity of the variance of the solution, to a perturbation in the

variance of input random parameters. We invite readers to refer to

these works on further context in standard optimization problems.

Chapter 2 of Fiacco (2009) provides interesting examples on how

small perturbations can lead to large changes in solutions. This is

good context in situations where Assumptions 2 (and Corollaries
 and 9) and 3 in our paper do not hold. The research in Castillo

t al. (2006) provides good context for standard optimization prob-

ems, including situations where we relax assumptions on smooth-

ess and active constraints. 

The intuition behind the approximation is shown on Fig. 1 (b)

nd can be summarized as follows. Having posed the NCP as an

nconstrained minimization of a function f, we now approximate

he change in the solution due to a perturbation of the parame-

ers. Keeping the smoothness properties of f in mind, we say that

he gradient of f vanishes at the solution before any perturbation.

ollowing the random perturbation of parameters, we approximate

he new value of the gradient of f at the old solution. Then we

ompute the step to be taken so that the gradient at the new

oint vanishes. We formalize this idea in Theorem 11 and use that
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o build Algorithm 1 with some features for increased efficiency.

he analysis builds on Dini’s implicit function theorem Krantz and

arks (2012) for deterministic perturbations and extends the re-

ults to predict covariance under random perturbations. 

heorem 11. Algorithm 1 generates Taylor’s first-order approximation

or the change in solution for a perturbation in parameters and com-

utes the covariance of the solution for a complementarity problem

ith uncertain parameters with small variances. 

roof. Consider the function f(x ; θ ) . From Theorem 5 , x ∗ ≡ x ∗( ̂  θ )

inimizes this function for θ = 

ˆ θ . From Proposition 7 , we have

(x ; θ ) is twice continuously differentiable at all its zeros. Thus we

ave, 

 x f ( x 

∗; ˆ θ ) = 0 (2.25) 

ow suppose the parameters ˆ θ are perturbed by �θ, then the

bove gradient can be written using the mean value theorem and

hen approximated up to the first order as follows. 

 x f ( x 

∗( ̂  θ ) , ˆ θ + �θ) = ∇ x f ( x 

∗( ̂  θ ) , ˆ θ ) 

+ ∇ ˆ θ
∇ x f ( x 

∗( ̂  θ ) , ̃  θ ) �θ (2.26) 

 x f ( x 

∗( ̂  θ ) , ˆ θ + �θ) − ∇ x f ( x 

∗( ̂  θ ) , ˆ θ ) ≈ J �θ (2.27) 

here, ˜ θ ∈ [ θ, θ + �θ ] (2.28) 

 i j = [ ∇ ˆ θ
∇ x f ( x 

∗( ̂  θ ) , ˆ θ )] i j (2.29) 

= 

∂[ ∇ x f ( x 

∗; ˆ θ )] i 

∂ ̂  θ j 

(2.30) 

ince J �θ is not guaranteed to be 0, we might have to alter x

o bring the gradient back to zero. i.e., we need �x such that

 x f ( x ∗( ̂  θ ) + �x , ˆ θ + �θ) = 0 . But by the mean value theorem, 

 x f ( x 

∗( ̂  θ ) + �x , ˆ θ + �θ) = ∇ x f ( x 

∗( ̂  θ ) , ˆ θ + �θ) 

+ ∇ 

2 
x f ( ̃  x , ˆ θ + �θ)�x (2.31) 

 ≈ J �θ + ∇ 

2 
x f ( ̃  x , ˆ θ )�x (2.32) 

≈ J �θ + ∇ 

2 
x f ( x 

∗( ̂  θ ) , ˆ θ )�x (2.33) 

�x ≈ −J �θ (2.34) 

here, ˜ x ∈ [ x 

∗( ̂  θ ) , x 

∗( ̂  θ ) + �x ] (2.35) 

 H] i j = [ ∇ 

2 
x f ( x 

∗( ̂  θ ) , ˆ θ )] i j (2.36) 

= 

∂[ ∇ x f ( x 

∗; ˆ θ )] i 
∂x j 

(2.37) 

ow from Nocedal and Wright (2006) , the gradient of the least

quares function f can be written as 

 x f ( x 

∗, ˆ θ ) = M 

T �( x 

∗, ˆ θ ) (2.38) 
 M ] i j = 

∂�i ( x 

∗, ˆ θ ) 

∂x j 

(2.39) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂F i ( x 

∗, ˆ θ ) 

∂x j 

if i / ∈ I 

∂ψ 

2 (x i , F i ( x 

∗, ˆ θ )) 

∂x j 

if i ∈ Z 

∂ψ(x i , F i ( x 

∗, ˆ θ )) 

∂x j 

otherwise 

(2.40) 

= 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

∂F i ( x 

∗, ˆ θ ) 

∂x j 

if i / ∈ I 

0 if i ∈ Z 

∂ψ i 

∂x j 

otherwise 

(2.41) 

hich is the form of M defined in Algorithm 1 . Also 

 = ∇ 

2 
x f ( x 

∗; ˆ θ ) = M 

T M + 

n ∑ 

i =1 

�i ( x 

∗; ˆ θ ) ∇ 

2 
x �i ( x 

∗; ˆ θ ) (2.42) 

= M 

T M (2.43) 

here the second term vanishes since we have from

heorem 5 that each term of � individually vanishes at the

olution. Now 

 = ∇ x θ f( x 

∗; ˆ θ ) (2.44) 

 i j = 

∂[ ∇ x f ( x 

∗; ˆ θ )] i 
∂θ j 

(2.45) 

= 

∂ 

∂θ j 

( 

n ∑ 

k =1 

[ ∇ x �( x 

∗; ˆ θ )] ki �k ( x 

∗; ˆ θ ) 

) 

(2.46) 

= 

n ∑ 

k =1 

(
∂[ ∇ x �( x 

∗; ˆ θ )] ki 

∂θ j 

�k ( x 

∗; ˆ θ ) + [ ∇ x �( x 

∗; ˆ θ )] ki 

∂�k ( x 

∗; ˆ θ ) 

∂θ j 

)
(2.47) 

= 

n ∑ 

k =1 

M ki N k j = M 

T N (2.48) 

here the first term vanished because �i are individually zeros,

nd we define 

 i j = 

∂�i ( x 

∗; ˆ θ ) 

∂θ j 

(2.49) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂F i 
∂x j 

if i / ∈ I 

2 ψ ( x 

∗
i ; F ∗

i 
) ψ 

b ( x 

∗
i ; F ∗

i 
) 
∂F i 
∂θ j 

if i ∈ Z 

ψ 

b ( x 

∗
i ; F ∗

i 
) 
∂F i ( x 

∗; ˆ θ ) 

∂θ j 

otherwise 

(2.50) 

= 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

∂F i 
∂θ j 

if i / ∈ I 

0 if i ∈ Z 

ψ 

b ( x 

∗
i ; F ∗

i 
) 
∂F i ( x 

∗; ˆ θ ) 

∂θ j 

otherwise 

(2.51) 
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which is the form of N defined in Algorithm 1 . By Assumption 3 ,

we have a unique minimum in the neighborhood of x ∗ where the

gradient vanishes. So we have from (2.34), (2.43) and (2.48) 

H�x = −J �θ (2.52)

M 

T M �x = −M 

T N �θ (2.53)

�x solves the above equation, if it solves 

M �x = −N �θ (2.54)

By defining T as the solution to the linear system of equations 

MT = N (2.55)

�x = −T �θ (2.56)

and we have the above first-order approximation. From Seber and

Lee (2012) , we know that if some vector x has covariance C , then

for a matrix A , the vector A x will have covariance A C A 

T . So we

have. 

Cov (�x ) ≈ T Cov ( �θ) T T (2.57)

Thus we approximate the covariance of �x in Algorithm 1 . �

The matrix M could potentially not have full rank, for example,

when Z is non-empty, i.e., when we have weak complementarity

terms. But we note that M 

T M is the Hessian of f and the null-

space of the Hessian corresponds to the directions where the gra-

dient does not change for small perturbations. So in a first-order

sence, small perturbations in those directions do not move the so-

lution, keeping the method robust even under weak complemen-

tarity. This is further confirmed by computational experiments de-

tailed in Section 5.2 and Appendix D where we have cases with

weak complementarity terms but no significant error. 

Further, when M is singular, we use Moore–Penrose pseudoin-

verse, M 

† to solve the system of Eq. (2.55) . Among possibly in-

finite solutions that minimize the error ‖ MT − N ‖ 2 , M 

† N gives

the solution that minimizes ‖ T ‖ 2 ( Ben-Israel & Greville, 2003 ).

This would lead us to identifying the smallest step �x that could

be taken to reach the perturbed solution, up to first-order approx-

imation and hence give the most conservative estimate of the un-

certainty. Uniqueness and existence of M 

† is guaranteed and it can

be computed efficiently. For computational purposes the matrix T 
in the above equation has to be calculated only once, irrespective

of the number of scenarios for which we would like to run for the

covariance of θ. Thus if x ∈ R 

n , θ ∈ R 

m and we want to test the

output covariance for k different input covariance cases, the com-

plexity is equal to that of solving a system of n linear equations

m times as in (2.55) , and hence is O ( mn 2 ). i.e., the complexity is

quadratic in the number of output variables, linear in the number

of input parameters and constant in the number of covariance sce-

narios we would like to run. 

In Theorem 12 below, we prove that the error in the approxi-

mation of Theorem 11 can be bounded using the condition number

of the Hessian. We need the following assumption that the con-

dition number of the Hessian of f is bounded and the Hessian is

Lipschitz continuous. 

Assumption 4. At the known solution of the complementarity

problem of interest ( θ = 

ˆ θ ), 

1. The condition number of the Hessian of f defined is finite and

equals to κH . 

2. The Hessian of f is Lipschitz continuous with a Lipschitz con-
∗
stant L ( x ; θ ) . d
heorem 12. With Assumption 4 holding, the error in the linear ap-

roximation ( 2.34 ) for a perturbation of ε is o ( ε) . 

roof. Since ∇ 

2 f is Lipschitz continuous on both x and θ, we can

rite for ̃  x near x ∗, 

∇ 

2 
x f ( x 

∗, ˆ θ ) − ∇ 

2 
x f ( ̃  x , ˆ θ ) 

∥∥∥ ≤ L ( x 

∗; θ ) ‖ 

x 

∗ −˜ x ‖ 

(2.58)

≤ L ( x 

∗; θ ) ‖ 

�x ‖ 

(2.59)

˜ 

 = ∇ 

2 
x f ( ̃  x , ˆ θ ) (2.60)

= H + ε H (2.61)

here ‖ ε H ‖ ≤ L ( x ∗; θ ) ‖ �x ‖ . Applying the Lipschitz continuity on

, 

∇ θ∇ x f ( x 

∗, ̃  θ ) − ∇ θ∇ x f ( x 

∗, ˆ θ ) 

∥∥∥ ≤ L ( x 

∗; θ ) 

∥∥∥˜ θ − ˆ θ
∥∥∥ (2.62)

≤ L ( x 

∗; θ ) ‖ 

�θ‖ 

(2.63)

˜ 

 = ∇ θ∇ x f ( x 

∗, ̃  θ ) (2.64)

= J + ε J (2.65)

here 
∥∥ε J ∥∥ ≤ L ( x ∗; θ ) ‖ �θ‖ . Thus the equation ˜ 

 �x = 

˜ J �θ (2.66)

s exact, even if we cannot compute ˜ H and 

˜ J exactly. Now the

rror in inverting ˜ H is bounded by the condition number ( Horn

nd Johnson, 2012 , Ch. 5). ∥∥H 

−1 − ˜ H 

−1 
∥∥∥∥˜ H 

−1 
∥∥ ≤

κH 
‖ ε H ‖ ‖ ̃

 H ‖ 

1 − κH 
‖ ε H ‖ ‖ ̃

 H ‖ 

(2.67)

ssuming κH ‖ ε H ‖ � ‖ H ‖ , the above equation becomes ∥∥H 

−1 − ˜ H 

−1 
∥∥∥∥˜ H 

−1 
∥∥ ≤ κH 

‖ 

ε H ‖ ∥∥˜ H 

∥∥ (2.68)

 

∥∥˜ H 

−1 − H 

−1 
∥∥ ≤ κH 

∥∥˜ H 

−1 
∥∥∥∥˜ H 

∥∥ ‖ 

ε H ‖ 

(2.69)

 

∥∥˜ H 

−1 ˜ J − H 

−1 J − H 

−1 ε J 
∥∥

≤ κH 

∥∥˜ H 

−1 
∥∥∥∥˜ H 

∥∥ ε H ‖ 

J ‖ 

+ κH 

∥∥˜ H 

−1 
∥∥∥∥˜ H 

∥∥ ‖ 

ε H ‖ 

∥∥ε J ∥∥ (2.70)

 

∥∥˜ H 

−1 ˜ J − H 

−1 J 

∥∥ ≤ k 1 ‖ 

�x ‖ 

+ k 2 ‖ 

�θ‖ 

(2.71)

ith 

 1 = κH L ( x 

∗; θ ) 

∥∥˜ H 

−1 
∥∥∥∥˜ H 

∥∥ ‖ 

J ‖ 

(2.72)

 2 = L ( x 

∗; θ ) 
∥∥H 

−1 
∥∥ (2.73)

hus we have from (2.71) , that the error in the approximation
one in Algorithm 1 is bounded. �
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. Stochastic sensitivity analyses 

In this section, we quantify the sensitivity of the variance of the

olution to variance in each of the input parameters. To achieve

his, we define total linear sensitivity and how it can be approx-

mated using the matrix T derived in (2.55) . We then proceed to

rove that these quantities also bound the maximum increase in

ncertainties of the output. 

efinition 13. Given a function f : R 

m �→ R 

n , the total linear sen-

itivity , βd ∈ R + of a dimension d ≤ m ; d ∈ N at a point x ∈ R 

m is

efined for δ > 0, sufficiently small, 

d = inf 

{ 
α : 

∣∣∣‖ 

f(x + δe d ) ‖ 2 − ‖ 

f(x ) ‖ 2 

∣∣∣ ≤ δα + o 
(
δ2 
)} 

(3.1) 

here e d is the d -th standard basis vector. 

This is a bound on the distance by which the function value can

ove for a small perturbation in the input. Now we look at the so-

ution to the parametrized complementarity problem in (2.1) as a

unction from the space of parameter tuples to the space of solu-

ion tuples and bound the change in solution for a small pertur-

ation. The next proposition shows how the total linear sensitivity

an be calculated from the linear approximation matrix T derived

arlier. 

roposition 14. Suppose we know, G ∈ R 

n ×m such that G i j = 

∂f i (x ) 

∂x j 
,

hen βd = 

√ (∑ n 
i =1 G 

2 
id 

)
roof. See Appendix A �

The above proposition proves that the T matrix obtained in

2.55) is sufficient to approximate the total linear sensitivity. The

ollowing result suggests how the total linear sensitivity can ap-

roximate the total variance in the output variables. 

heorem 15. Given a function f : R 

m �→ R 

n and βd , the increase in

he total uncertainty in the output, i.e., the sum of variances of the

utput variables, for a small increase of the variance of an input pa-

ameter, σ 2 
d 

of x d is approximated by β2 
d 
σ 2 

d 
. 

roof. Let E d be the matrix of size m × m with zeros every-

here except the d -th diagonal element, where it is 1. Given C =
ov (x (ω)) , for a small perturbation σ 2 in the variance of x d , the

ovariance of f(x ) changes as follows. 

 

∗ ≈ ∇ x f C ∇ x f 
T 

(3.2) 

 

∗ + �C ∗ ≈ ∇ x f (C + σ 2 E d ) ∇ x f 
T 

(3.3) 

= C ∗ + σ 2 ∇ x f E d ∇ x f 
T 

(3.4) 

�C ∗] i j ≈ σ 2 [ ∇ x f ] id [ ∇ x f ] jd (3.5) 

n 
 

i =1 

[�C ∗] ii ≈ σ 2 β2 
d (3.6) 

hich is the total increase in variance. The off-diagonal terms

o not affect the total uncertainty in the system because, the

ymmetric matrix C can be diagonalized as QDQ 

T , where Q is

 rotation matrix, and the trace is invariant under orthogonal

ransformations. �

With the above result, we can determine the contribution of

ach input parameter to the total uncertainty in the output. 
. Application to optimization 

To illustrate the application of this method explained in

lgorithm 1 , we use it to derive an approximation for the covari-

nce of the solution of certain canonical optimization problems.

he goal of this section is to walk the reader through a simple ap-

lication of the method to develop intuition of the analysis and

esults. 

To start with, we assume conditions on the differentiability and

onvexity of the objective function. 

ssumption 5. The objective function f(x ; θ ) is strictly convex in

 and is twice continuously differentiable in x and θ. 

In the theorem below, we approximate the covariance of the

ecision variables of a convex optimization with uncertainties in

he linear term and with only linear equality constraints. 

heorem 16. With Assumption 5 holding, the covariance of the pri-

al and dual variables at the optimum of the problem, 

inimize 
x 

f(x ; θ ) = g(x ) + c(θ ) T x (4.1) 

ubject to Ax = b(θ ) (y ) (4.2) 

here θ = θ (ω) are random parameters with covariance C , is first-

rder approximated by T CT T where 

 = 

(∇ 

2 
x g( x 

∗) A 

T 

A 0 

)−1 (−∇ θ c(θ ) 

∇ θ b(θ ) 

)
(4.3) 

roof. For the given optimization problem, because of

ssumption 5 and linear independence constraint qualifica-

ion (LICQ), the KKT conditions are necessary and sufficient for

ptimality. The KKT condition satisfied at a solution ( x ∗, y ∗) for

he problem are given by 

 x g( x 

∗) + c(θ ) + A 

T y ∗ = 0 (4.4) 

 x 

∗ = b(θ ) (4.5) 

or some vector y so that the equation is well defined. Suppose

rom there, θ is perturbed by �θ, we have 

 x g( x 

∗) + c(θ + �θ) + A 

T y ∗ ≈ ∇ θ c(θ ) �θ (4.6) 

 x 

∗ − b(θ + �θ) ≈ −∇ θ b(θ ) �θ (4.7) 

ow we need to find �x and �y such that 

 x g( x 

∗ + �x ) + c(θ + �θ) + A 

T ( y ∗ + �y ) ≈ 0 (4.8) 

 ( x 

∗ + �x ) − b(θ + �θ) ≈ 0 (4.9) 

 

2 
x g( x 

∗)�x + A 

T �y ≈ ∇ θ c(θ ) �θ (4.10) 

 �x ≈ −∇ θ b(θ ) �θ (4.11) 

he above conditions can be compactly represented as 

∇ 

2 
x g( x 

∗) A 

T 

A 0 

)(
�x 

�y 

)
= 

(∇ θ c(θ ) 
−∇ θ b(θ ) 

)
�θ (4.12) 

f A has full rank, then the above matrix is non-singular. So the

hange in the decision variables x and the duals y can be written
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as a linear transformation of the perturbation in the random pa-

rameters. And we now have 

Cov 
(

�x 

�y 

)
= T Cov (θ ) T T (4.13)

T = 

(∇ 

2 
x g( x 

∗) A 

T 

A 0 

)−1 (−∇ θ c(θ ) 
∇ θ b(θ ) 

)
(4.14)

�

In the corollary below, we show that the method suggested is

accurate (i.e. has zero error) for an unconstrained quadratic opti-

mization problem with uncertainty in the linear term. 

Corollary 17. For an optimization problem with uncertainty of objec-

tives of the form, 

f (x ; θ ) = 

1 

2 

x 

T G x + θ (ω) T x (4.15)

where G is positive definite, the approximation method has zero error.

In other words, the obtained covariance matrix is exact. 

Proof. See Appendix A �

5. Application to a general oligopoly market 

We now present an example of a complementarity problem in

a natural gas oligopoly and show how the methods developed in

this paper can be applied. 

5.1. Problem formulation and results 

Consider k producers competitively producing natural gas in a

Nash-Cournot game. Let the random unit costs of production be

γi (ω) , i ∈ { 1 , . . . , k } . Also, let us assume that the consumer be-

havior is modeled by a linear demand curve P ( ̃  Q ) as follows. 

P = a (ω) + b(ω) ̃  Q (5.1)

where P is the price the consumer is willing to pay, ˜ Q is the

total quantity of the natural gas produced and random variables

a ( ω) > 0, b ( ω) < 0 ∀ ω ∈ �. Suppose the producers are maximizing

their profits, then the Nash equilibrium can be obtained by solv-

ing the following complementarity problem ( Cottle, Pang, & Stone,

2009; Gabriel, Conejo, Fuller, Hobbs, & Ruiz, 2012 ). 

0 ≤ Q i ⊥ F i ( Q ) = γi − a − b 

( 

k ∑ 

j=1 

Q k 

) 

− bQ i ≥ 0 (5.2)

In this formulation, a , b , γ i correspond to θ and Q i correspond to

x in (2.1) with I = { 1 , 2 , . . . , k } . In the current numerical example,

let us consider a duopoly where k = 2 . Let 

E 

(
γ1 γ2 a b 

)T = 

(
2 1 15 −1 

)T 
(5.3)

Solving the complementarity problem deterministically with the

above parameter values, we get Q 1 and Q 2 to be 4 and 5, respec-

tively. We use the C-function ψ min (x, y ) = min (x, y ) for this exam-

ple to get 

M = 

(
2 1 

1 2 

)
N = 

(
1 0 −1 −13 

0 1 −1 −14 

)
(5.4)

Now we have from (2.52) 

T = M 

−1 N = 

1 

3 

(
2 −1 −1 −12 

−1 2 −1 −15 

)
(5.5)

Having obtained T , we attempt to get insight on how uncertainties

in various input parameters propagate through the model caus-

ing uncertainty in the equilibrium quantities. If we assume that all
hese parameters, viz. γ 1 , γ 2 , a , b have a 10% coefficient of vari-

tion and are all uncorrelated, then the covariance matrix of the

nput is 

 1 = 

⎛ ⎜ ⎝ 

0 . 04 0 0 0 

0 0 . 01 0 0 

0 0 2 . 25 0 

0 0 0 0 . 01 

⎞ ⎟ ⎠ 

(5.6)

hen the covariance matrix of the solution would be 

 

∗
1 = T C 1 T T = 

(
0 . 4289 0 . 4389 

0 . 4389 0 . 5089 

)
(5.7)

he standard deviation of the produced quantities are 0.65( =
 

0 . 4289 ) and 0.71( = 

√ 

0 . 5089 ), respectively. The produced quanti-

ies also have about 95% positive correlation as an increase in de-

and will cause both producers to produce more and a decrease

n demand will cause both producers to produce less. 

If we assume that we have perfect knowledge about the de-

and curve, and if the uncertainty is only in the production costs,

hen the new parameter covariance C 2 has the third and fourth di-

gonal term of C 1 as zero. In such a scenario, we would expect the

ecrease in the quantity of production of one player to cause an

ncrease in the quantity of production of the other and vice versa,

aused by re-adjustment of market share. We can see this effect

y computing the covariance of the solution as T C 2 T . The solu-

ion thus obtained shows that the produced quantities are nega-

ively correlated with a correlation of −85% . The uncertainties in

he produced quantities are 3% and 2% respectively of the quantity

roduced by each producer. We also note that the variances are

maller now, as we no longer have uncertainties stemming from

he demand side of the problem. 

Now if we assume a more realistic scenario of the produc-

ion costs being correlated (60% correlation), then we note that

he produced quantity are negatively correlated with −62% cor-

elation. The standard deviations in the produced quantities have

lso dropped to about 2.9% and 1.2%. Thus we not only ob-

ain insight about the uncertainties in the output, but also the 

orrelation between the output parameters. From an energy mar-

et policy maker’s perspective this is crucial information as it helps

dentifying the regions where increase or decrease in production,

onsumption, price, pipeline flows and infrastructural expansions

ccur simultaneously and where they change asynchronously. Now

e calculate the sensitivity of each of the input parameters to

dentify the parameter that causes maximum uncertainty in the

utput. The values for β for each of the four parameters γ 1 , γ 2 , a , b

re calculated below. 

= 

1 

3 

(√ 

5 

√ 

5 

√ 

2 

√ 

369 

)T 

= 

(
0 . 745 0 . 745 0 . 471 6 . 40 

)T 
(5.8)

hus we see that the solution is more sensitive to the slope of the

emand curve than to say production cost. Strictly speaking, if we

efine the variance in equilibrium as the sum of the variance of all

utput variables, this says, a unit increase in variance of the slope

f the demand curve will be magnified about 41 times (6.4 2 ) vari-

nce in the equilibrium. However, a unit increase in the variance

f the production cost only increases the variance in equilibrium

y 0.556 (0.745 2 ) units. 

.2. Computational complexity 

We used a Monte-Carlo based method as a comparison against

ur approximation method to compute covariance in the decision

ariables. To achieve this, we modeled the oligopoly complemen-

arity problem mentioned in (5.2) varying the number of play-

rs, and hence the number of random parameters and the de-

ision variables. For the Monte-Carlo simulation based approach,



S. Sankaranarayanan et al. / European Journal of Operational Research 268 (2018) 25–36 33 

Fig. 2. Computational experiments comparing Monte-Carlo methods and First-order approximation method. 

Fig. 3. Regional disaggregation of United States and Mexico. Source: AEO (2015) and U.S. Energy Information Administration http://www.eia.gov/todayinenergy/detail.php? 

id=16471 . 
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 symmetrically balanced stratified design ( Shields, Teferra, Hapij,

 Daddazio, 2015 ) is used with each dimension divided into two

trata. With increasing number of random parameters and equi-

ibrium variables, Monte-Carlo methods become increasingly inef-

cient as the number of simulations required grows exponentially.

 comparison of the time taken in an 8 gigabyte RAM 1600 mega-

ertz DDR3 2.5 gigahertz Intel Core i5 processor to solve the above

ligopoly problem with varying number of players is shown in

ig. 2 (a). Despite developments in algorithms to solve complemen-

arity problems, the said exponential growth in the number of

ample points required in a Monte-Carlo based approach deters

he computational speed. A problem with as few as 25 uncertain

ariables takes about 2 hours to solve and one with 30 uncertain

ariables takes about seven days to solve using Monte-Carlo based

pproaches while it takes few seconds to minutes in the first-

rder approximation method. Fig 2 (b) compares the error between

 rounds of Monte-Carlo simulation and the first-order approxima-

ion method. More details on these computational experiments are

rovided in Appendix D. 

. Application to North American natural gas market 

In Mexico, motivation to move from coal to cleaner energy

ources creates an increasing trend in natural gas consumption,

articularly in the power sector. Technology change, including

racking, has made natural gas available at a low cost. This re-

ulted in increased production and higher proven reserves in the

.S. Therefore, the US is expected to become a net exporter of Nat-

ral Gas (increasing pipelines exports to Mexico and LNG) during

he next years ( EIA, 2016; Feijoo et al., 2016 ). The North American

atural Gas Model (NANGAM) developed in Feijoo et al. (2016) an-

lyzes the impacts of cross border trade with Mexico. NANGAM

odels the equilibrium under various scenarios by competitively

aximizing the profits of suppliers and pipeline operators, and

he utility of consumers, resulting in a complementarity problem.

he model also uses the Golombek function ( Golombek, Gjelsvik,
 Rosendahl, 1995; Huppmann, 2013 ) to model the increase in

arginal cost of production when producing close to capacity. The

ormal description of the model is provided in Appendix B. 

For the model in this paper, which is motivated by NANGAM,

e have disaggregated the United States into 9 census regions

US1-9) and Alaska ( AEO, 2015 ). Mexico is divided into 5 regions

MEX1-5). A map showing this regional disaggregation is shown

n Fig. 3 . Further Canada is divided into two zones, Canada East

CAE) and Canada West (CAW). The model has 13 suppliers, 17 

onsumers, 17 nodes, and 7 time-steps. This amounts to 12,047

ariables (primal and dual) and 2023 parameters. The gradient ma-

rix of the complementarity function would contain 12, 047 2 ele-

ents and a Hessian matrix will have 12,047 3 elements which is

ore than 1700 trillion floating point variables. We need efficient

ethods to handle these large objects. We observe, however, that

he dependence of each component of the complementarity func-

ion is limited to few variables, thus making the gradient matrix

parse. Efficient sparse matrix tools in scipy ( Jones, Oliphant, Pe-

erson, & Others, 2015 ) are used along with a python class we spe-

ially built to handle a sparse multi-dimensional array. The details

f this class are given in Appendix C. This model is calibrated to

atch the region-wise production and consumption data by ad-

usting the parameters of the demand curve, supply curve and the

ransportation cost. The source for the projected numbers are the

ame as the ones in Table 2 of Feijoo et al. (2016) . The parameters

f the demand curve were chosen in such a way that an elastic-

ty of 0.29 is maintained at the solution to be consistent with EIA

2012) . 

.1. Covariance matrix calibration 

We used the method developed in Algorithm 1 to understand

he propagation of uncertainty in the model. The covariance for

ach parameter across years is obtained by fitting a Wiener process

o the parameter value. This is chosen to mimic the Markovian and

ndependent increment properties of market parameters. Thus we

http://www.eia.gov/todayinenergy/detail.php?id=16471
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Fig. 4. Covariance results. 

Fig. 5. Sensitivity results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

r  

t  

a  

T  

n  

t  

o  

L  

p  

a  

c  

n  

p  

c

 

a  

o  

a  

t  

t  

f  

d  

s  

t  

o  

c  

p  

d  

c  

c  

a  

o  

c  

c  

s  
have for any parameter 

dθ (t) = dμθ (t) + σθ dB (t) (6.1)

where μθ is calibrated, σ θ is chosen to be 1% of the average value

of μθ in the analyzed period and B ( t ) is the standard Brownian

motion. The diffusion parameter σ θ is assumed to be independent

of time. Additionally to understand the effect of greater uncer-

tainty in US7, that accounts for about 40% of the total production

in the continent, the parameters of production cost are assumed to

have 5 times the variance than in any other region. 

6.2. Results 

The deterministic version of the problem is solved using the

PATH algorithm ( Dirkse & Ferris, 1995 ) by assuming a mean value

for all random parameters. Following this, Algorithm 1 was applied

and the T matrix defined in (2.52) is obtained by solving the linear

system of equations using a Moore-Penrose pseudoinverse ( Horn &

Johnson, 2012 ). In the following paragraph, we discuss some of the

results obtained in this study. 

The heat map on Fig. 4 (a) shows the coefficient of variation

(standard deviation divided by mean) in consumer price in each

year caused by the uncertainty in parameters as mentioned in

Section 6.1 . We notice that this large uncertainty in production

costs of US7 caused relatively small uncertainties in the consumer

price. This is partially due to the availability of resources in US8

and CAW to compensate for the large uncertainty in US7. The fact

that it is actually US8 and CAW that compensate for this uncer-

tainty is known by looking at the covariance plot on Fig. 4 (b)

which shows large correlation between US7 and US8 and also be-

tween US7 and CAW. 

Fig. 5 shows the sensitivity of the solution to various input pa-

rameters. The graph on Fig. 5 (a) shows the sum total change in

uncertainty in price for a 1% fluctuation in the demand curve of

consumers. We notice that the price is particularly sensitive to

changes in demand in Mexico. This reflects the increasing concern
bout growing exports (both LNG and pipeline) that are likely to

esult in higher consumer prices in the U.S. We also note that fluc-

uations in demand at nodes where production facilities are not

vailable (MEX1, MEX3, MEX4) cause greater uncertainty in price.

his is because, for regions with a production facility in the same

ode, the production facility produces more to cater the demand at

hat node and there is little effect in the flows and in the prices at

ther nodes. This is also contingent to sufficient pipeline capacity.

arger changes in demand for regions with limited pupeline ca-

acity (e.g. MEX1) may result in major changes in price. However

 perturbation to the demand at a node with no production unit

auses the flows to alter to have its demand catered. This affects

atural gas availability elsewhere and causes larger fluctuations in

rice. The tornado plot on Fig. 5 (b) sorts the parameters in de-

reasing order of their effect on the uncertainty of the solution. 

The plot Fig. 5 (b) shows the total change of the equilibrium if

 parameter (e.g., the demand intercept) is shifted by 1% from its

riginal value. Note that the results are plotted in logarithmic scale

nd are sorted in decreasing order. In general, our results suggest

hat parameters of consumers and producers play a major role on

he equilibrium and hence a small perturbation have a large ef-

ect on the solution. In particular, the intercept and slope of the

emand curve and the linear cost parameter are the three most

ignificant parameters. Interestingly, the expansion cost parame-

ers (pipeline as well as production expansion) have a lower effect

n the solution equilibrium. As it was described on Fig 5 (a), un-

ertainties in demand significantly affect regions with no or low

roduction capacities. Fig 5 (b) corroborates that changes to the

emand affects the equilibrium the most. The results also indi-

ate that the infrastructure expansion happens independently of

hanges in expansion cost. Natural gas prices paid by consumers

ccount for cost expansions and transportation. Therefore, the level

f expansion is then driven by changes on demand. Hence, if policy

hanges need to be implemented in order to, for instance, to in-

rease economic activity or reduce carbon emissions, respectively

ubsidizes or taxes the downstream or upstream ends of market
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ather than the mid-stream players to have larger impacts. How-

ver, a policy maker who is interested in generating revenue with-

ut much impacts on the equilibrium should tax fuel transporta-

ion or infrastructure expansion for the greatest benefit. 

. Conclusion and future work 

In this paper, we developed a method to approximate the co-

ariance of the output of a large-scale nonlinear complementarity

roblem with random input parameters using first-order approxi-

ation methods. We extended this method to general optimization

roblems with equality constraints. We then developed sensitivity

etrics for each of the input parameters quantifying their contri-

ution to the uncertainty in the output. We used these tools to un-

erstand the covariance in the equilibrium of the North American

atural gas Market. The method gave insights into how produc-

ion, consumption, pipeline flows, prices would vary due to large

ncertainties. While the variances identified the regions that are

ffected the most, the covariance gave information about whether

he quantity will increase or decrease due to perturbation in the

nput. We also obtained results on the sensitivity of price uncer-

ainty to demand uncertainty in various nodes. We then quantified

he contribution of each input parameter to the uncertainty in the

utput. This in turn, helps in identifying the regions that can have

arge impacts on equilibrium. 

We note that the method is particularly useful for large-

cale nonlinear complementarity problems with a large number

f uncertain parameters, which make Monte-Carlo simulations in-

ractable. It is robust in approximating the solution covariance for

mall uncertainty in the inputs. It is also good in quantifying the

ensitivity of the output (and its variance) to the variance of in-

ut parameters. However since all the above are obtained as an

pproximation based on first-order metrics, there is a compromise

n the accuracy if the variances of the input are large. The method

orks the best for problems involving a large number of decision

ariables and random parameters with small variance. 

We foresee expanding this work by using progressively higher

rder terms of the Taylor series to capture the nonlinearities more

fficiently. To ensure computational feasibility, this would typically

equire us to have stronger assumptions on the sparsity of the Hes-

ian and the higher-order derivatives. This will also require analy-

is and stronger assumptions about higher-order moments of the

andom parameters. 
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