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We provide an efficient method to approximate the covariance between decision variables and uncertain
parameters in solutions to a general class of stochastic nonlinear complementarity problems. We also de-
velop a sensitivity metric to quantify uncertainty propagation by determining the change in the variance
of the output due to a change in the variance of an input parameter. The covariance matrix of the solu-
tion variables quantifies the uncertainty in the output and pairs correlated variables and parameters. The
sensitivity metric helps in identifying the parameters that cause maximum fluctuations in the output. The
method developed in this paper optimizes the use of gradients and matrix multiplications which makes
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version of the North American Natural Gas Model (NANGAM), to incorporate effects due to uncertainty in
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then use the sensitivity metrics to identify the parameters that impact the equilibrium the most.
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1. Introduction

Complementarity models arise naturally out of various real life
problems. A rigorous survey of their application is available in
Ferris and Pang (1997). Authors in Abada, Gabriel, Briat, and Mas-
sol (2013); Christensen and Siddiqui (2015); Feijoo, Huppmann,
Sakiyama, and Siddiqui (2016); Huppmann and Egging (2014);
Martin, Smeers, and Aguado (2015); Oke, Huppmann, Marshall,
Poulton, and Siddiqui (2016) use complementarity problems to
model markets from a game theoretic perspective (Anderson &
Xu, 2004; Siddiqui & Christensen, 2016), where the complemen-
tarity conditions typically arise between the marginal profit and
the quantity produced by the producer. In the field of mechanics,
they typically arise in the context of frictional contact problems
(Kwak & Lee, 1988), where there is a complementarity relation
between the frictional force between a pair of surfaces and the
distance of separation between them. With a wide range of appli-
cations, understanding the characteristics of solutions to comple-
mentarity problems becomes important for advancing the field. In
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this paper, we focus on studying the characteristics of solutions to
complementarity problems under uncertainty.

The behavior of a solution to a complementarity problem with
random parameters was first addressed in Giirkan and Robin-
son (1999), where such problems were referred to as stochastic
complementarity problems (SCP). Authors in Chen and Fukushima
(2005); Egging, Pichler, Kalvg, and WalleHansen (2016); Gabriel,
Zhuang, and Egging (2009); Jiang and Xu (2008); Shanbhag
(2013) define various formulations of SCP for different applica-
tions and have devised algorithms to solve the problem. Authors in
Lamm, Lu, and Budhiraja (2016) compute confidence intervals for
solution of the expected value formulation of the problem, how-
ever they do not have efficient methods to find the second-order
statistics for large-scale complementarity problems.

Large-scale problems, those with over 10,000 decision variables
and uncertain parameters arise naturally out of detailed market
models and there is considerable interest in studying, understand-
ing and solving such models. For example, Chen, Cowling, Po-
lack, Remde, and Mourdjis (2017) discuss a case of urban drainage
system with large number of variables. Yumashev and Johnson
(2017) discuss a case of deciding under large-scale nuclear emer-
gencies. In line with the area of application used in this paper,
Gabriel, Kydes, and Whitman (2001) discuss a case of an energy
model with large number of variables and parameters. Naturally,
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developing methods to solve such large-scale problems gained in-
terest. Authors in Kopanos, Méndez, and Puigjaner (2010); Luo,
Hong, Nelson, and Wu (2015) discuss various tools ranging from
mathematical techniques (decomposition based) to computational
techniques (parallel processing) for solving large-scale optimization
problems. Ohno, Boh, Nakade, and Tamura (2016) uses an approx-
imate algorithm for a large-scale Markov decision process to op-
timize production and distribution systems. In this paper, we do
not present a new method to solve stochastic complementarity
problems, but an efficient algorithm to generate second-order in-
formation that is flexible enough to be coupled with any existing
algorithm that provides a first-order solution.

The objective of this paper is to efficiently obtain second-order
statistical information about solution vectors of large-scale stochas-
tic complementarity problems. This gives us information about
variability of the equilibrium obtained by solving a nonlinear com-
plementarity problem (NCP) and the correlation between various
variables in the solution. Authors in Hyett, Podosky, Santamaria,
and Ham (2007) and Benedetti-Cecchi (2003) provide examples in
the area of clinical pathways and ecology respectively, about the
utility of understanding the variance of the solution in addition to
the mean. They also show that a knowledge of variance aids better
understanding and planning of the system. Agrawal, Ding, Saberi,
and Ye (2012) emphasize the necessity to understand covariance
as a whole rather than individual variances by quantifying “the
loss incurred on ignoring correlations” in a stochastic programming
model.

In addition, we also introduce a sensitivity metric which quan-
tifies the change in uncertainty in the output due to a perturba-
tion in the variance of uncertain input parameters. This helps us
to directly compare input parameters by the amount of uncertainty
they propagate to the solution.

In attaining the above objectives, the most computationally ex-
pensive step is to solve a system of linear equations. We choose
approximation methods over analytical methods, integration, or
Monte Carlo simulation because of the computational hurdle in-
volved while implementing those methods for large-scale prob-
lems. The method we describe in this paper achieves the follow-
ing:

o The most expensive step has to be performed just once, irre-
spective of the covariance of the input parameters. Once the
linear system of equations is solved, for each given covariance
scenario, we only perform two matrix multiplications.

o Approximating the covariance matrix and getting a sensitivity
metric can be obtained by solving the above mentioned linear
system just once.

The methods developed in this paper can also be used for
nonlinear optimization problems with linear equality constraints.
We prove stronger results on error bounds for special cases of
quadratic programming.

Having developed this method, we apply it to a large-scale
stochastic natural gas model for North America, an extension of
the deterministic model developed in Feijoo et al. (2016) and de-
termine the covariance of the solution variables. We then proceed
to identify the parameters which have the greatest impact on the
solution. A Python class for efficiently storing and operating on
sparse arrays of dimension greater than two is created. This is use-
ful for working with high-dimensional problems which have an in-
herent sparse structure in the gradients.

We divide the paper as follows. Section 2 formulates the prob-
lem and mentions the assumptions used in the paper. It then de-
velops the algorithm used to approximate the solution covariance
and provides proofs for bounding the error. Section 3 develops a
framework to quantify the sensitivity of the solution to each of
the random variables. Section 4 shows how the result can be

applied for certain optimization problems with equality con-
straints. Having obtained the theoretical results, Section 5 gives
an example of a oligopoly where this method can be applied and
compares the computational time of the approximation method
with a Monte-Carlo method showing the performance improve-
ment for large-scale problems. Section 6 describes the Natural Gas
Model to which the said method is applied. Section 7 discusses
the possible enhancements for the model and its limitations in the
current form.

2. Approximation of covariance

For the rest of the paper, all bold quantities are vectors. A sub-
script i for those quantities refer to the i-th component of the vec-
tor in Cartesian representation.

2.1. Definitions

We define a complementarity problem and a stochastic com-
plementarity problem which are central to the results obtained in
this paper. We use a general definition of complementarity prob-
lems and stochastic complementarity problems as stated below.

Definition 1. (Facchinei & Pang, 2007) Given F: R™™ i R", and
parameters 6 € R™, the parametrized nonlinear complementarity
problem (NCP) is to find x € R" such that

K>x 1 F(x;0) e K* (2.1)
where K*, the dual cone of K is defined as

K*={xeR":v'x>0 Wek} (2.2)

Definition 2. Given a cone K € R" a random function F: K x Q
R", the stochastic complementarity problem (SCP) is to find x € R"
such that

K> x | EF(X; w) € K* (2.3)

We assume that we can explicitly evaluate the expectation in
(2.3) using its functional form, and that the SCP can be solved us-
ing an existing algorithm.

We now make assumptions on the form of K in (2.1). This form
of K helps in establishing an equivalence between a complemen-
tarity problem and a minimization problem which is key to derive
the approximation method in this paper.

Assumption 1. K in (2.1) is a Cartesian product of half spaces and

full spaces, i.e., for some Z C {1,2,...,n}
K={xeR": ifieZ)

X; >0 (24)

We now propose a lemma about the form of the dual cone of K
to understand the special form that it has. This will help us convert
the complementarity problem into an unconstrained minimization
problem.

Lemma 3. The dual cone K* of the set assumed in Assumption 1 is
ifieZ
ifi¢gr

x>0

‘X =0 (2.5)

K*=K = {X eR"
Proof. Check Appendix A O
2.2. Preliminaries for approximation

In this subsection, we prove two preliminary results. Firstly, we
prove our ability to pose an NCP as an unconstrained minimization
problem. Then we prove results on twice continuous differentiabil-
ity of the objective function, thus enabling us to use the rich lit-
erature available for smooth unconstrained minimization. Follow-
ing that, Propositions 5 and 6 help in achieving the former while
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Proposition 7 along with its corollaries help us in achieving the
latter.

We now define C-functions, which are central to pose the com-
plementarity problem into an unconstrained optimization problem.
The equivalent formulation as an unconstrained optimization prob-
lem assists us in developing the algorithm.

Definition 4. (Facchinei and Pang, 2007, pg. 72) A function ¥ :
R? > R is a C-function when

Y(xy)=0&x>0 y>0 xy=0 (2.6)
We consider the following commonly used C-functions.

Yrs(X,y) = /X2 +y2 —x -y (2.7)
Yimin (X, ¥) = min(x, y) (2.8)

Under our assumptions on K, the following two propositions
establish the equivalence of the complementarity problem and an
unconstrained minimization problem.

Proposition 5. Suppose Assumption 1 holds. Then every solution
x*(#) of the parameterized complementarity problem in (2.1), is a
global minimum of the following function f(x; 9),

o |Fi(x,0) if i¢Z
®;(x,0:F) = {wi(xi, Fi(x,0)) if ieZ (29)
F:0) = 2| x: 0: ) (2.10)

with an objective value 0, for some set of not necessarily identical C-
functions ;.

Proof. Check Appendix A O

Proposition 6. Suppose Assumption 1 holds. If a solution to the prob-
lem in (2.1) exists and x*(@) is an unconstrained global minimizer of
f(x; 0) defined in (2.10), then x*(@) solves the complementarity prob-
lem in (2.1).

Proof. Check Appendix A O

Now given a function F, and a set K which satisfies
Assumption 1, and a solution of the NCP x* (é) for some fixed 0 =
6, we define a vector valued function @ : RP™™ 1 R" component-
wise as follows.

Fi(x,0) if i¢zT
P;i(x.6:F) = { ¥2(x;. Fi(x.0)) if icz (2.11)
¥ (x;, Fi(x,0)) otherwise
0 0) = 2 | x; 0 B3 (212)
z= {iezzx*,-(é):F,-(x*(é);é)zo} (213)

Note that if ¥ is a C-function, 2 is also a C-function since {2 =
0 — ¥ =0. We observe from Propositions 5 and 6 that mini-
mizing f(x; €) over X is equivalent to solving the NCP in (2.1).

Now we assume conditions on the smoothness of F so that the
solution to a perturbed problem is sufficiently close to the original
solution.

Assumption 2. F(x;0) is twice continuously differentiable in x
and @ over an open set containing K.

Given that the rest of the analysis is on the function f(x; 6) de-
fined in (2.12), we prove that a sufficiently smooth F and a suitable
Y ensure a sufficiently smooth f.

Proposition 7. With Assumption 2 holding, we state f(x; ) defined
as in (2.12) is a twice continuously differentiable at x satisfying
f(x;0) =0 for any C function i provided

1. ¢ is twice differentiable at {(a,b) e R? : yr(a,b) =0} \ {(0,0)}
with a finite derivative and finite second derivative.
2. Y vanishes sufficiently fast near the origin. i.e.,
0%y (a, b)
2(a. b =0 2.14
(a.b)— <00>1’// @) —p dadb (214)

Proof. Given that f is a sum of squares, it is sufficient to prove
each term individually is twice continuously differentiable to prove
the theorem. Also since we are only interested where f vanishes, it
is sufficient to prove the above property for each term where it
vanishes.

Consider terms from i ¢ Z. Since F; is twice continuously differ-
entiable, Fi2 is twice continuously differentiable too.

Consider the case ie 2. This means ieZ and x*i(é) =
F; (x*i(é), é) = 0. These contribute a ¥* term to f. With the no-

tation ;=¥ (x;, Fi(x; #)), and §;; =1 < i=j and 0 otherwise
we clearly have,

881){]4 _4¢3<a‘/" 8ij + aaw’ 8F> 0 (2.15)
giﬁ; - 12””1’2(83? %t aF) aail‘s 831? g::)

+4y} <3 vi 8ijbi + aaabg—l:k + other terms ) (2.16)
=0 (217)
For the third case, i € 7\ Z, we have
%ﬁf = 21//i<36)‘zi51j + 881/; gi;) =0 (2.18)
02y _ (31/&8 awn)
XXy da db 0x;

+ 21//,(8 1%5 0k + gzgl;g—;i + other terms ) (2.19)
_ Wiy %% (2.20)

Continuity of f at the points of interest follow the continuity of the
individual terms at the points. O

The following corollaries show the existence of C-functions
which satisfy the hypothesis of Proposition 7.

Corollary 8. With Assumption 2 holding, for the choice of C-function
Y = Ymin defined in (2.8), the function f is twice continuously differ-
entiable at its zeros.

Corollary 9. With Assumption 2 holding, for the choice of C-function
Y = Ypp defined in (2.7), the function f is twice continuously differ-
entiable.

We now define an isolated solution to a problem and assume
that the problem of interest has this property. This is required to
ensure that our approximation is well defined.

Definition 10. (Nocedal & Wright, 2006) A minimum x* of a prob-
lem is said to be an isolated minimum, if there is a neighborhood
B(x*; €) of x*, where x* is the only minimum of the problem.
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Fig. 1. Intuitions.

A counter-example for an isolated minimum is shown on
Fig. 1(a). It is a plot of the function

f(x) = 5x% + x*sin (xlz)

and the global minimum at x = 0 is not an isolated minimum as
we can confirm that any open interval around x = 0 has other min-
imum contained in it. Unlike this case, in this paper, we assume
that if we obtain a global-minimum of f, then it is an isolated
minimum. The existence of a neighborhood B(x*;€) as required
in Definition 10 protects the approximation method from return-
ing to a local minimum in the neighborhood for sufficiently small
perturbations in problem parameters.

(2.21)

Assumption 3. ForAsome fixed value of 6 :é, there exists a
known solution x*(6) such that it is an isolated global minimum
of f(x;60).

2.3. Approximation algorithm and error bounding

This subsection achieves two primary results as follows. We
now propose Algorithm 1 to approximate the covariance of the
output given a covariance matrix for the input parameters. Follow-
ing that Theorem 11 gives a mathematical proof that the algorithm
indeed approximates the covariance matrix. The second key result
is Theorem 12 which bounds the error in the approximation.

Given a deterministic shift in a parameters value, the sensitiv-
ity of the solution has been studied in Castillo, Conejo, Castillo,
Minguez, and Ortigosa (2006); Fiacco (2009) for mathematical
programming problems (e.g., nonlinear or large-scale programs).
Authors in Castillo, Conejo, and Aranda (2008) used a perturba-
tion technique to study the sensitivities in calculus of variations.
We aim to build on the research in Castillo et al. (2006); Fiacco
(2009) by proposing an approximation approach for large-scale
stochastic complementarity problems. In particular, the sensitiv-
ity analysis in Chapter 3 in Fiacco (2009) motivates the method
developed in this paper, after converting the complementar-
ity problem into an unconstrained optimization problem with
sufficient smoothness properties. Chapters 4 and 5 in Fiacco
(2009) provide good context for computational approaches related
to the ideas of Chapter 3. Our approach is amenable to extensions
towards approximations for large-scale models, as we study the
sensitivity of the variance of the solution, to a perturbation in the
variance of input random parameters. We invite readers to refer to
these works on further context in standard optimization problems.
Chapter 2 of Fiacco (2009) provides interesting examples on how
small perturbations can lead to large changes in solutions. This is
good context in situations where Assumptions 2 (and Corollaries

Algorithm 1 Approximating covariance.

Solve the complementarity problem in (2.1) for the mean value of
6 =6, or solve the stochastic complementarity problem in (2.3)
and calibrate the value of the parameters 6 = 6 for this solution.
Call this solution as x*. Choose a tolerance level t.

1: Evaluate F* < F(x*; ), Gij < w Lij < 3F"§’g;9).

2: Choose a C-function i such that the conditions in proposition
7 are satisfied.

3: Define the function ¥%(a, b) = W Yb(a, b) = W.

4: Find the set of indices Z = {z e T : |x*;| = |F}| < t}.

5: Define

Gij ifigzl
Mi]' <~ 0 ifieZz
Vax*, B8+ P (x*, F;)Gy;  otherwise
(2.22)
where §;; =1 if i = j and 0 otherwise.
6: Define
L ifi¢gT
Nij < 0 ifiez (2.23)
Yo(x*i,F)L;  otherwise
7: Solve the linear systems of equations for 7.
MT = N (2.24)

If M is non singular, we have a unique solution. If not, a least
square solution or a solution obtained by calculating the Moore
Penrose Pseudo inverse 26 can be used.

8: Given C, a covariance matrix of the input random parameters,
0 (w), return C* < 7CT'.

8 and 9) and 3 in our paper do not hold. The research in Castillo
et al. (2006) provides good context for standard optimization prob-
lems, including situations where we relax assumptions on smooth-
ness and active constraints.

The intuition behind the approximation is shown on Fig. 1(b)
and can be summarized as follows. Having posed the NCP as an
unconstrained minimization of a function f, we now approximate
the change in the solution due to a perturbation of the parame-
ters. Keeping the smoothness properties of f in mind, we say that
the gradient of f vanishes at the solution before any perturbation.
Following the random perturbation of parameters, we approximate
the new value of the gradient of f at the old solution. Then we
compute the step to be taken so that the gradient at the new
point vanishes. We formalize this idea in Theorem 11 and use that
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to build Algorithm 1 with some features for increased efficiency.
The analysis builds on Dini’s implicit function theorem Krantz and
Parks (2012) for deterministic perturbations and extends the re-
sults to predict covariance under random perturbations.

Theorem 11. Algorithm 1 generates Taylor’s first-order approximation
for the change in solution for a perturbation in parameters and com-
putes the covariance of the solution for a complementarity problem
with uncertain parameters with small variances.

Proof. Consider the function f(x; ). From Theorem 5, x* = x*(é)
minimizes this function for # = 6. From Proposition 7, we have
f(x; 0) is twice continuously differentiable at all its zeros. Thus we

have,
Vif(x*;8) =0 (2.25)

Now suppose the parameters 0 are perturbed by A#, then the
above gradient can be written using the mean value theorem and
then approximated up to the first order as follows.

Vif(x*(0),0 + AB) = Vyf(x*(8),0)

+V,; Vif(x*(0),0) A0 (2.26)

Vif (x*(0),0 + AO) — Vif(x*(),0) ~ TAO (2.27)
where,

6 < [60,0+n0] (2.28)

Tij = [V Vi (x*(0). O)]; (2.29)

_ AV D)l (2.30)

30;

Since JAf is not guaranteed to be 0, we might have to alter x
to bring the gradient back to zero. ie, we need Ax such that
Vxf(x*(0) + AX, 0 + AB) = 0. But by the mean value theorem,

Vif (X*(0) + AX, 0 + AO) = Vyf (x*(0),0 + AB)

+ V2£(X. 0 + AD)AX (2.31)

0~ JAO + V(X 0)Ax (2.32)

~ JAO + V2(x*(0).0) Ax (2.33)

HAX ~ —TAO (2.34)
where,

X e [x(0),x*(0)+ Ax] (2.35)

[H]ij = [V2F(x*(0), O)];j (2.36)

_ AV D)l (2.37)

an

Now from Nocedal and Wright (2006), the gradient of the least
squares function f can be written as

Vif(x*,0) = MTO(x*, 0) (2.38)

_30i(x,0)
Ml = =5 (239)
731:1'2(;;’9) if i¢T
J
2(v. F.(wv* 2)
= VW ROCO) ez (2.40)
i
—Bw(xi,aF),-((x .0)) otherwise
J
OF;(x*,0) .
=10 if iez (241)
0 otherwise
8Xj
which is the form of M defined in Algorithm 1. Also
n
H = V2 0) = MM+ ) &;(x*; ) VZDi(x*: 0) (2.42)
i=1
= MM (2.43)
where the second term vanishes since we have from

Theorem 5 that each term of & individually vanishes at the
solution. Now

J = Vyf(x*; 0) (2.44)
V(x5 )]
8 - x. ) %, )
= 0, (g[VXQKX ;) i P (x ,9)) (2.46)

n A A )
(Wx’e)]k'cbk(x*; 0) + [Vx@ (X" 0) i

D, (x5 0)
a0;

36;
(2.47)

k=1

n
=Y MNyj = MV

k=1

(2.48)

where the first term vanished because ®; are individually zeros,
and we define

Njj = 30, (2.49)
JF; e
a—xj ifigZ
oF; e
= 12y (x* s E) Y (x* i Fr 35 ifiez (2.50)
R i
. ey OFi(x*;0) .
Yo (x*;; F ’BT otherwise
% ifigZ
_Jo”’  ifiez (2.51)
Y (x*i; F) OFi(x*; 0) otherwise
)90,
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which is the form of A defined in Algorithm 1. By Assumption 3,
we have a unique minimum in the neighborhood of x* where the
gradient vanishes. So we have from (2.34), (2.43) and (2.48)

HAX = -JAO (2.52)
MIMAX = —M"NAO (2.53)
AX solves the above equation, if it solves

MAX = -NAO (2.54)
By defining 7 as the solution to the linear system of equations
MT =N (2.55)
AX=—-TAO (2.56)

and we have the above first-order approximation. From Seber and
Lee (2012), we know that if some vector x has covariance C, then
for a matrix A, the vector Ax will have covariance ACAT. So we
have.

Cov(AX) ~ TCov(AO)TT (2.57)

Thus we approximate the covariance of Ax in Algorithm 1. O

The matrix M could potentially not have full rank, for example,
when Z is non-empty, i.e, when we have weak complementarity
terms. But we note that MTM is the Hessian of f and the null-
space of the Hessian corresponds to the directions where the gra-
dient does not change for small perturbations. So in a first-order
sence, small perturbations in those directions do not move the so-
lution, keeping the method robust even under weak complemen-
tarity. This is further confirmed by computational experiments de-
tailed in Section 5.2 and Appendix D where we have cases with
weak complementarity terms but no significant error.

Further, when M is singular, we use Moore-Penrose pseudoin-
verse, MT to solve the system of Eq. (2.55). Among possibly in-
finite solutions that minimize the error |MT — N, MTA gives
the solution that minimizes |7, (Ben-Israel & Greville, 2003).
This would lead us to identifying the smallest step Ax that could
be taken to reach the perturbed solution, up to first-order approx-
imation and hence give the most conservative estimate of the un-
certainty. Uniqueness and existence of M is guaranteed and it can
be computed efficiently. For computational purposes the matrix 7
in the above equation has to be calculated only once, irrespective
of the number of scenarios for which we would like to run for the
covariance of . Thus if x e R", § ¢ R™ and we want to test the
output covariance for k different input covariance cases, the com-
plexity is equal to that of solving a system of n linear equations
m times as in (2.55), and hence is O(mn2). i.e, the complexity is
quadratic in the number of output variables, linear in the number
of input parameters and constant in the number of covariance sce-
narios we would like to run.

In Theorem 12 below, we prove that the error in the approxi-
mation of Theorem 11 can be bounded using the condition number
of the Hessian. We need the following assumption that the con-
dition number of the Hessian of f is bounded and the Hessian is
Lipschitz continuous.

Assumption 4. At the known solution of the complementarity
problem of interest (6 = 8),

1. The condition number of the Hessian of f defined is finite and
equals to kp.

2. The Hessian of f is Lipschitz continuous with a Lipschitz con-
stant £(x*; 60).

Theorem 12. With Assumption 4 holding, the error in the linear ap-
proximation (2.34) for a perturbation of € is o(€).

Proof. Since V2f is Lipschitz continuous on both x and 6, we can
write for X near x*,

H V2(x*, ) — V26(X, 0) H < £x:0)|x —X|| (2.58)
< L(x*: 0)|| AX| (2.59)
H = V(X 0) (2.60)
. (2.61)

where ||ey|| < £(x*; 0)||Ax||. Applying the Lipschitz continuity on

’

H Y,y Vif (X, ) — V) Vi (X, é)” < £(X*; 9)”5— é” (2.62)
< L(x*:0)|| A0 (2.63)
T = VyVkf(x*,0) (2.64)
=T +g (2.65)
where ”8]” < L(x*; 0)||A8||. Thus the equation

HAX = JA (2.66)

is exact, even if we cannot compute # and 7 exactly. Now the
error in inverting # is bounded by the condition number (Horn
and Johnson, 2012, Ch. 5)

H_ -1 =
| : H ngl (2.67)
“H [
Assuming kullenll < |H|l, the above equation becomes
oA lewl
L (2.68)
||H T ="
N H
= |7 -HTY <y ” ——|lenll (2.69)
| | bl
= AT -HT -H g
< Kn “ﬁj ” enll TN+ Ku ”ﬁj ” lenll|& (2.70)
] ]
S [T -1 T < k| AX + ko[ A6 (271)
with
[7]
k] = KH‘C(X*; 9) ||7'_z” ||~.7|| (272)
ky = L% 0)| 17 (2.73)

Thus we have from (2.71), that the error in the approximation
done in Algorithm 1 is bounded. O
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3. Stochastic sensitivity analyses

In this section, we quantify the sensitivity of the variance of the
solution to variance in each of the input parameters. To achieve
this, we define total linear sensitivity and how it can be approx-
imated using the matrix 7 derived in (2.55). We then proceed to
prove that these quantities also bound the maximum increase in
uncertainties of the output.

Definition 13. Given a function f : R™ — R", the total linear sen-
sitivity, By € Ry of a dimension d <m; d e N at a point x e R™ is
defined for § > 0, sufficiently small,

pa = inf fac: I 0c+ 8eq)l, -~ GO,

<do + 0(82)} (3.1)
where ey is the d-th standard basis vector.

This is a bound on the distance by which the function value can
move for a small perturbation in the input. Now we look at the so-
lution to the parametrized complementarity problem in (2.1) as a
function from the space of parameter tuples to the space of solu-
tion tuples and bound the change in solution for a small pertur-
bation. The next proposition shows how the total linear sensitivity
can be calculated from the linear approximation matrix 7 derived
earlier.

Proposition 14. Suppose we know, G € R™™ such that G;; = 33;’9,
J
then fy = /(X0 G)

Proof. See Appendix A O

The above proposition proves that the 7 matrix obtained in
(2.55) is sufficient to approximate the total linear sensitivity. The
following result suggests how the total linear sensitivity can ap-
proximate the total variance in the output variables.

Theorem 15. Given a function f : R™ — R" and B, the increase in
the total uncertainty in the output, i.e., the sum of variances of the
output variables, for a small increase of the variance of an input pa-
rameter, o2 of X4 is approximated by B30 2.

Proof. Let E; be the matrix of size mxm with zeros every-
where except the d-th diagonal element, where it is 1. Given C =
Cov(x(w)), for a small perturbation o2 in the variance of x4, the
covariance of f(x) changes as follows.

C* ~ VyfCVyf" (3.2)

C* + AC* ~ Vyf(C + 02E;) Vyf' (3.3)
= C* + 02V fEy Vxf' (3.4)

[ACTij ~ o[ Vxflial Vxflja (3.5)
n

Y [AC )i~ 0?8 (3.6)

i=1
which is the total increase in variance. The off-diagonal terms
do not affect the total uncertainty in the system because, the
symmetric matrix C can be diagonalized as QDQ!, where Q is
a rotation matrix, and the trace is invariant under orthogonal
transformations. O

With the above result, we can determine the contribution of
each input parameter to the total uncertainty in the output.

4. Application to optimization

To illustrate the application of this method explained in
Algorithm 1, we use it to derive an approximation for the covari-
ance of the solution of certain canonical optimization problems.
The goal of this section is to walk the reader through a simple ap-
plication of the method to develop intuition of the analysis and
results.

To start with, we assume conditions on the differentiability and
convexity of the objective function.

Assumption 5. The objective function f(x; 0) is strictly convex in
x and is twice continuously differentiable in x and 6.

In the theorem below, we approximate the covariance of the
decision variables of a convex optimization with uncertainties in
the linear term and with only linear equality constraints.

Theorem 16. With Assumption 5 holding, the covariance of the pri-
mal and dual variables at the optimum of the problem,

Mim;(mize f(x:0) =gx) +c(®)x (4.1)

subject to Ax = b(0) y) (4.2)

where 6 = 6(w) are random parameters with covariance C, is first-
order approximated by TCTT where

-1
o (Viex) AT (=Yc(0)
A 0 Vyb(0)
Proof. For the given optimization problem, because of
Assumption 5 and linear independence constraint qualifica-
tion (LICQ), the KKT conditions are necessary and sufficient for

optimality. The KKT condition satisfied at a solution (x*, y*) for
the problem are given by

VigX*) +c(@) +ATy* =0

(4.3)

(4.4)

Ax* = b(0) (4.5)

for some vector y so that the equation is well defined. Suppose
from there, 0 is perturbed by A#, we have

Vxg(X*) 4+ c(@ + AQ) + ATy* =~ Vyc(6) A (4.6)
AX* —b(0 + AO) ~ —Vyb(0)AO (4.7)
Now we need to find Ax and Ay such that

Vig(X* + AX) +c(0 + AQ) + AT (y* + Ay) ~ 0 (4.8)
AX* 4+ AX) —b(0 + AB)~0 (4.9)
V2g(x*)AX + AT Ay ~ Vyc(0)AO (4.10)
AAX ~ —Vyb(0)AO (4.11)
The above conditions can be compactly represented as

Vig(x*) AT\ [ Ax\ _ [ Vac(9)
< XA o J\ay) =\ =v,b6) A6 (4.12)

If A has full rank, then the above matrix is non-singular. So the
change in the decision variables x and the duals y can be written
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as a linear transformation of the perturbation in the random pa-
rameters. And we now have

Cov( 2;‘ ) — TCov(0)TT (413)

V2g(x') AT\ ' (=Vyc(0)
7':( ) 0) (vﬁxm) (414)
O

In the corollary below, we show that the method suggested is
accurate (i.e. has zero error) for an unconstrained quadratic opti-
mization problem with uncertainty in the linear term.

Corollary 17. For an optimization problem with uncertainty of objec-
tives of the form,

f(x;0) = %XTGX +0(w)"x (4.15)

where G is positive definite, the approximation method has zero error.
In other words, the obtained covariance matrix is exact.

Proof. See Appendix A O
5. Application to a general oligopoly market

We now present an example of a complementarity problem in
a natural gas oligopoly and show how the methods developed in
this paper can be applied.

5.1. Problem formulation and results

Consider k producers competitively producing natural gas in a
Nash-Cournot game. Let the random unit costs of production be
yi(w), ie{l,...,k}. Also, let us assume that the consumer be-
havior is modeled by a linear demand curve P(Q) as follows.

P =a(®) + b(w)Q (5.1)

where P is the price the consumer is willing to pay, Q is the
total quantity of the natural gas produced and random variables
a(w)>0,b(w) <0Vw e 2. Suppose the producers are maximizing
their profits, then the Nash equilibrium can be obtained by solv-
ing the following complementarity problem (Cottle, Pang, & Stone,
2009; Gabriel, Conejo, Fuller, Hobbs, & Ruiz, 2012).

k
OgQiJ_Fi(Q)zyi—a—b<ZQk>—bQizo (5.2)

j=1

In this formulation, a, b, y; correspond to @ and Q; correspond to
x in (2.1) with Z= {1, 2, ..., k}. In the current numerical example,
let us consider a duopoly where k = 2. Let

En v a b)=(2 1 15 -1) (53)

Solving the complementarity problem deterministically with the
above parameter values, we get Q; and Q, to be 4 and 5, respec-
tively. We use the C-function ¥,,;, (%, ¥) = min(x, y) for this exam-

ple to get
2 1 1 0 -1 -13
M= (1 2) N = (0 1 -1 —14> (5.4)
Now we have from (2.52)
12 -1 -1 -12
_ —“1Tar—
T=MIN=3 (—1 2 -1 —15) (5-5)

Having obtained 7, we attempt to get insight on how uncertainties
in various input parameters propagate through the model caus-
ing uncertainty in the equilibrium quantities. If we assume that all

these parameters, viz. ¥, Y2, @, b have a 10% coefficient of vari-
ation and are all uncorrelated, then the covariance matrix of the
input is
0.04 0 0 0
0 0.01 0 0
G=1 o 0 225 0 (5.6)
0 0 0 0.01

Then the covariance matrix of the solution would be

0.4289 0.4389) (57)

% T__
G=7GT = (0.4389 0.5089

The standard deviation of the produced quantities are 0.65(=
+/0.4289) and 0.71(= +0.5089), respectively. The produced quanti-
ties also have about 95% positive correlation as an increase in de-
mand will cause both producers to produce more and a decrease
in demand will cause both producers to produce less.

If we assume that we have perfect knowledge about the de-
mand curve, and if the uncertainty is only in the production costs,
then the new parameter covariance C, has the third and fourth di-
agonal term of C; as zero. In such a scenario, we would expect the
decrease in the quantity of production of one player to cause an
increase in the quantity of production of the other and vice versa,
caused by re-adjustment of market share. We can see this effect
by computing the covariance of the solution as 7C,7. The solu-
tion thus obtained shows that the produced quantities are nega-
tively correlated with a correlation of —85%. The uncertainties in
the produced quantities are 3% and 2% respectively of the quantity
produced by each producer. We also note that the variances are
smaller now, as we no longer have uncertainties stemming from
the demand side of the problem.

Now if we assume a more realistic scenario of the produc-
tion costs being correlated (60% correlation), then we note that
the produced quantity are negatively correlated with —62% cor-
relation. The standard deviations in the produced quantities have
also dropped to about 2.9% and 1.2%. Thus we not only ob-
tain insight about the uncertainties in the output, but also the
correlation between the output parameters. From an energy mar-
ket policy maker’s perspective this is crucial information as it helps
identifying the regions where increase or decrease in production,
consumption, price, pipeline flows and infrastructural expansions
occur simultaneously and where they change asynchronously. Now
we calculate the sensitivity of each of the input parameters to
identify the parameter that causes maximum uncertainty in the
output. The values for § for each of the four parameters y1,y>,a,b
are calculated below.

p=3(v5 V5 V2 V369)

=(0.745 0745 0.471 6.4O)T (5.8)

Thus we see that the solution is more sensitive to the slope of the
demand curve than to say production cost. Strictly speaking, if we
define the variance in equilibrium as the sum of the variance of all
output variables, this says, a unit increase in variance of the slope
of the demand curve will be magnified about 41 times (6.42) vari-
ance in the equilibrium. However, a unit increase in the variance
of the production cost only increases the variance in equilibrium
by 0.556 (0.7452) units.

5.2. Computational complexity

We used a Monte-Carlo based method as a comparison against
our approximation method to compute covariance in the decision
variables. To achieve this, we modeled the oligopoly complemen-
tarity problem mentioned in (5.2) varying the number of play-
ers, and hence the number of random parameters and the de-
cision variables. For the Monte-Carlo simulation based approach,
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Fig. 2. Computational experiments comparing Monte-Carlo methods and First-order approximation method.
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Fig. 3. Regional disaggregation of United States and Mexico. Source: AEO (2015) and U.S. Energy Information Administration http://www.eia.gov/todayinenergy/detail.php?

id=16471.

a symmetrically balanced stratified design (Shields, Teferra, Hapij,
& Daddazio, 2015) is used with each dimension divided into two
strata. With increasing number of random parameters and equi-
librium variables, Monte-Carlo methods become increasingly inef-
ficient as the number of simulations required grows exponentially.
A comparison of the time taken in an 8 gigabyte RAM 1600 mega-
hertz DDR3 2.5 gigahertz Intel Core i5 processor to solve the above
oligopoly problem with varying number of players is shown in
Fig. 2(a). Despite developments in algorithms to solve complemen-
tarity problems, the said exponential growth in the number of
sample points required in a Monte-Carlo based approach deters
the computational speed. A problem with as few as 25 uncertain
variables takes about 2 hours to solve and one with 30 uncertain
variables takes about seven days to solve using Monte-Carlo based
approaches while it takes few seconds to minutes in the first-
order approximation method. Fig 2(b) compares the error between
5 rounds of Monte-Carlo simulation and the first-order approxima-
tion method. More details on these computational experiments are
provided in Appendix D.

6. Application to North American natural gas market

In Mexico, motivation to move from coal to cleaner energy
sources creates an increasing trend in natural gas consumption,
particularly in the power sector. Technology change, including
fracking, has made natural gas available at a low cost. This re-
sulted in increased production and higher proven reserves in the
U.S. Therefore, the US is expected to become a net exporter of Nat-
ural Gas (increasing pipelines exports to Mexico and LNG) during
the next years (EIA, 2016; Feijoo et al., 2016). The North American
Natural Gas Model (NANGAM) developed in Feijoo et al. (2016) an-
alyzes the impacts of cross border trade with Mexico. NANGAM
models the equilibrium under various scenarios by competitively
maximizing the profits of suppliers and pipeline operators, and
the utility of consumers, resulting in a complementarity problem.
The model also uses the Golombek function (Golombek, Gjelsvik,

& Rosendahl, 1995; Huppmann, 2013) to model the increase in
marginal cost of production when producing close to capacity. The
formal description of the model is provided in Appendix B.

For the model in this paper, which is motivated by NANGAM,
we have disaggregated the United States into 9 census regions
(US1-9) and Alaska (AEO, 2015). Mexico is divided into 5 regions
(MEX1-5). A map showing this regional disaggregation is shown
in Fig. 3. Further Canada is divided into two zones, Canada East
(CAE) and Canada West (CAW). The model has 13 suppliers, 17
consumers, 17 nodes, and 7 time-steps. This amounts to 12,047
variables (primal and dual) and 2023 parameters. The gradient ma-
trix of the complementarity function would contain 12, 0472 ele-
ments and a Hessian matrix will have 12,0473 elements which is
more than 1700 trillion floating point variables. We need efficient
methods to handle these large objects. We observe, however, that
the dependence of each component of the complementarity func-
tion is limited to few variables, thus making the gradient matrix
sparse. Efficient sparse matrix tools in scipy (Jones, Oliphant, Pe-
terson, & Others, 2015) are used along with a python class we spe-
cially built to handle a sparse multi-dimensional array. The details
of this class are given in Appendix C. This model is calibrated to
match the region-wise production and consumption data by ad-
justing the parameters of the demand curve, supply curve and the
transportation cost. The source for the projected numbers are the
same as the ones in Table 2 of Feijoo et al. (2016). The parameters
of the demand curve were chosen in such a way that an elastic-
ity of 0.29 is maintained at the solution to be consistent with EIA
(2012).

6.1. Covariance matrix calibration

We used the method developed in Algorithm 1 to understand
the propagation of uncertainty in the model. The covariance for
each parameter across years is obtained by fitting a Wiener process
to the parameter value. This is chosen to mimic the Markovian and
independent increment properties of market parameters. Thus we
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have for any parameter
do(t) =dug(t) + opdB(t)

where (i, is calibrated, o is chosen to be 1% of the average value
of 1y in the analyzed period and B(t) is the standard Brownian
motion. The diffusion parameter o, is assumed to be independent
of time. Additionally to understand the effect of greater uncer-
tainty in US7, that accounts for about 40% of the total production
in the continent, the parameters of production cost are assumed to
have 5 times the variance than in any other region.

(6.1)

6.2. Results

The deterministic version of the problem is solved using the
PATH algorithm (Dirkse & Ferris, 1995) by assuming a mean value
for all random parameters. Following this, Algorithm 1 was applied
and the 7 matrix defined in (2.52) is obtained by solving the linear
system of equations using a Moore-Penrose pseudoinverse (Horn &
Johnson, 2012). In the following paragraph, we discuss some of the
results obtained in this study.

The heat map on Fig. 4(a) shows the coefficient of variation
(standard deviation divided by mean) in consumer price in each
year caused by the uncertainty in parameters as mentioned in
Section 6.1. We notice that this large uncertainty in production
costs of US7 caused relatively small uncertainties in the consumer
price. This is partially due to the availability of resources in US8
and CAW to compensate for the large uncertainty in US7. The fact
that it is actually US8 and CAW that compensate for this uncer-
tainty is known by looking at the covariance plot on Fig. 4(b)
which shows large correlation between US7 and US8 and also be-
tween US7 and CAW.

Fig. 5 shows the sensitivity of the solution to various input pa-
rameters. The graph on Fig. 5(a) shows the sum total change in
uncertainty in price for a 1% fluctuation in the demand curve of
consumers. We notice that the price is particularly sensitive to
changes in demand in Mexico. This reflects the increasing concern

about growing exports (both LNG and pipeline) that are likely to
result in higher consumer prices in the U.S. We also note that fluc-
tuations in demand at nodes where production facilities are not
available (MEX1, MEX3, MEX4) cause greater uncertainty in price.
This is because, for regions with a production facility in the same
node, the production facility produces more to cater the demand at
that node and there is little effect in the flows and in the prices at
other nodes. This is also contingent to sufficient pipeline capacity.
Larger changes in demand for regions with limited pupeline ca-
pacity (e.g. MEX1) may result in major changes in price. However
a perturbation to the demand at a node with no production unit
causes the flows to alter to have its demand catered. This affects
natural gas availability elsewhere and causes larger fluctuations in
price. The tornado plot on Fig. 5(b) sorts the parameters in de-
creasing order of their effect on the uncertainty of the solution.
The plot Fig. 5(b) shows the total change of the equilibrium if
a parameter (e.g., the demand intercept) is shifted by 1% from its
original value. Note that the results are plotted in logarithmic scale
and are sorted in decreasing order. In general, our results suggest
that parameters of consumers and producers play a major role on
the equilibrium and hence a small perturbation have a large ef-
fect on the solution. In particular, the intercept and slope of the
demand curve and the linear cost parameter are the three most
significant parameters. Interestingly, the expansion cost parame-
ters (pipeline as well as production expansion) have a lower effect
on the solution equilibrium. As it was described on Fig 5(a), un-
certainties in demand significantly affect regions with no or low
production capacities. Fig 5(b) corroborates that changes to the
demand affects the equilibrium the most. The results also indi-
cate that the infrastructure expansion happens independently of
changes in expansion cost. Natural gas prices paid by consumers
account for cost expansions and transportation. Therefore, the level
of expansion is then driven by changes on demand. Hence, if policy
changes need to be implemented in order to, for instance, to in-
crease economic activity or reduce carbon emissions, respectively
subsidizes or taxes the downstream or upstream ends of market
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rather than the mid-stream players to have larger impacts. How-
ever, a policy maker who is interested in generating revenue with-
out much impacts on the equilibrium should tax fuel transporta-
tion or infrastructure expansion for the greatest benefit.

7. Conclusion and future work

In this paper, we developed a method to approximate the co-
variance of the output of a large-scale nonlinear complementarity
problem with random input parameters using first-order approxi-
mation methods. We extended this method to general optimization
problems with equality constraints. We then developed sensitivity
metrics for each of the input parameters quantifying their contri-
bution to the uncertainty in the output. We used these tools to un-
derstand the covariance in the equilibrium of the North American
natural gas Market. The method gave insights into how produc-
tion, consumption, pipeline flows, prices would vary due to large
uncertainties. While the variances identified the regions that are
affected the most, the covariance gave information about whether
the quantity will increase or decrease due to perturbation in the
input. We also obtained results on the sensitivity of price uncer-
tainty to demand uncertainty in various nodes. We then quantified
the contribution of each input parameter to the uncertainty in the
output. This in turn, helps in identifying the regions that can have
large impacts on equilibrium.

We note that the method is particularly useful for large-
scale nonlinear complementarity problems with a large number
of uncertain parameters, which make Monte-Carlo simulations in-
tractable. It is robust in approximating the solution covariance for
small uncertainty in the inputs. It is also good in quantifying the
sensitivity of the output (and its variance) to the variance of in-
put parameters. However since all the above are obtained as an
approximation based on first-order metrics, there is a compromise
in the accuracy if the variances of the input are large. The method
works the best for problems involving a large number of decision
variables and random parameters with small variance.

We foresee expanding this work by using progressively higher
order terms of the Taylor series to capture the nonlinearities more
efficiently. To ensure computational feasibility, this would typically
require us to have stronger assumptions on the sparsity of the Hes-
sian and the higher-order derivatives. This will also require analy-
sis and stronger assumptions about higher-order moments of the
random parameters.
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