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We study an integral expression that is encountered in some classical spin models of

magnetism. The idea is to calculate the key integral that represents the building block

for the expression of the partition function of these models. The general calculation

allows one to have a better look at the internal structure of the quantity of interest

which, in turn, may lead to potentially new useful insights. We find out that application

of two different approaches to solve the problem in a general case scenario leads to an

interesting integral formula involving modified Bessel functions of the first kind which

appears to be new. We performed Monte Carlo simulations to verify the correctness

of the integral formula obtained. Additional numerical integration tests lead to the

same result as well. The approach under consideration, when generalized, leads to a

linear integral equation that might be of interest to numerical studies of classical spin

models of magnetism that rely on the well-established transfer-matrix formalism.

PACS numbers: 01.55.+b, 73.43.Cd, 02.30.-f

I. INTRODUCTION

Magnetic spin systems, in particular, one-dimensional
(1D) lattice models of classical spins have been widely
studied in recent decades1 since: (i) In some cases they
can be solved exactly; and (ii) In some cases they approx-
imate well real magnetic materials. An example of such
real materials is the case of molecular magnets which typ-
ically are artificial magnetic structures containing a small
number of magnetic ions2,3. Molecular magnetism has at-
tracted considerable recent interest since molecular mag-
netic clusters have desirable properties for technological
applications as nanoscale magnetic devices and/or sen-
sors. Many molecular magnets consist of a finite number
of magnetic ions, each possesing a large value of spin4,5.
Because of the large value of spin, many magnetic prop-
erties for such structures can be reproduced to high accu-
racy by using the classical Heisenberg spin model where

a spin, ~Si is treated as a three-dimensional (3D) vector

of unit length (|~Si|2 = 1). A typical classical molecular
magnet consists of a certain small finite number of classi-
cal spins interacting with each other via various coupling
parameters. The simplest case would be that of a cluster
with a finite number, N of spins all coupled equally (via
a coupling constant, J) to each other:

HCluster = −J
N
∑

i<j

~Si
~Sj . (1)

It is easy to see that the spin Hamiltonian in Eq.(1) (for
N ≥ 3) is different from another standard classical model
of magnetism known as the open linear chain model:

HN = −J

N−1
∑

i=1

~Si
~Si+1 , (2)

where J is the isotropic exchange interaction energy be-
tween neighbouring spins. Note that the partition func-
tion for the case of Eq.(2) is written as:

ZN =

∫

dΩ1 · · ·
∫

dΩN exp

(

β J

N−1
∑

i=1

~Si
~Si+1

)

, (3)

where
∫

dΩi =
∫ π

0
dθi sin θi

∫ 2π

0
dϕi is the integral over

the solid angle for the i-th vector, θi is the polar angle
and ϕi is the azimuthal angle. The parameter β in Eq.(3)
is written as β = 1/(kB T ) where kB is Boltzmann’s con-
stant and T is the absolute temperature of the system.
It is a well-known fact that the partition function can be
calculated exactly for the open linear chain model case6:

ZN = (4π) [4π i0(β J)]
N−1

, (4)

where

il(x) =

√

π

2x
Il+ 1

2

(x) , (5)

are modified spherical Bessel functions of the first kind
(see for example pg.733 of Ref. 7) and l = 0,±1, . . .. The
function Iν(x) denotes the modified Bessel function of the
first kind. Note that i0(x) = sinh(x)/x where sinh(x) is
the hyperbolic sine function. This striking result hinges
solely on the observation that the integrals in Eq.(3) will

separate if the polar coordinates, (θi+1, ϕi+1) for ~Si+1 are

referred to ~Si as polar axis of a 3D coordinative system.

For instance, by choosing ~S1 as lying in the z-direction,
one immediately has:

∫

dΩ2 exp
(

β J ~S1
~S2

)

= 4π i0(β J) . (6)

As pointed out earlier, a typical molecular magnet sys-
tem cannot be described as an open linear chain of spins
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since the positions of the magnetic ions generally define a
3D structure. Tetrahedron-shaped magnetic molecules8,9

represent one of the simplest examples of this type of
structure10 consisting of only N = 4 spins where each
spin is coupled to the three other spins. Since the sim-
ple approach that works fine for the calculation of the
partition function of an open linear chain spin model is
not possible for a system like that in Eq.(1) (as long as
N ≥ 3) one asks if anything new can be learned by: (i)
Firstly, solving the resulting integral expression in Eq.(6)
quite generally for a totally arbitrary choice of the 3D

coordinative system where neither ~S1, nor ~S2 lie in the
z-direction; and (ii) Secondly, see to relate the solution
to other treatments of the problem that might lead to
new insights.
In this work, we show that the problem can be solved

in general terms using two methods as layed out, respec-
tively, in Section II and Section III. The results obtained
by the application of these two different methods lead
to an interesting formula involving modified Bessel func-
tions of the first kind. This formula was verified via var-
ious simulations and numerical tools. In addition, the
results derived lead to a kernel that might be of interest
within the framework of the transfer-matrix approach, a
tool widely used in studies of classical spin systems. Some
discussions and conclusions are presented in Section IV.

II. GENERAL CASE SCENARIO

Let’s assume that the two classical spin vectors have
an arbitrary orientation in a 3D spherical system of co-
ordinates (namely, none of the spins lies along the z-
direction). In such a case, one has:

~S1
~S2 = cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2) .

(7)
At this juncture, one uses the following expansion for-
mula (see for example pg.445 of Ref. 11 or pg.308 of
Ref. 12) for:

exp (x cos γ) =

∞
∑

l=0

(2 l + 1) il(x)Pl(cos γ) , (8)

where Pl(cos γ) are Legendre polynomials. With help
from Eq.(8) one writes:

∫

dΩ2 exp
(

β J ~S1
~S2

)

=

∫

dΩ2

∞
∑

l=0

(2 l + 1) il(β J)Pl(cos γ) . (9)

At this point, we apply the addition theorem for spherical
harmonics ( see pg.796 of Ref. 7 ) which allows us to write:

Pl(cos γ) =
4π

2 l + 1

+l
∑

m=−l

Y ∗

lm(θ1, ϕ1)Ylm(θ2, ϕ2) , (10)

where Ylm(θ, ϕ) are spherical harmonics. In the above
expression, the asterisk may go on either spherical har-
monic. By substituting the result from Eq.(10) into
Eq.(9), one has:

∫

dΩ2 exp
(

β J ~S1
~S2

)

=

= 4π

∞
∑

l=0

il(β J)

+l
∑

m=−l

Y ∗

lm(θ1, ϕ1)

∫

dΩ2Ylm(θ2, ϕ2) .(11)

We recall that:
∫

dΩ2 Ylm(θ2, ϕ2) =
√
4π δl0 δm0 , (12)

where δi j is a Kronecker’s delta function. Based on the
result from Eq.(12) and using the fact that Y00(θ, ϕ) =

1/
√
4π we calculate that:

∫

dΩ2 exp
(

β J ~S1
~S2

)

= 4π i0(β J) . (13)

This conclusion represents the proof of validity of the
formula in Eq.(6) for the general case of an arbitrarily
chosen 3D coordinative system.
The advantages of the prescribed method become

clearer when one recognizes that the expansion in Eq.(8)
in conjunction with the expansion in Eq.(10) may be
readily used to calculate a more general integral of the
type listed below:

∫

dΩ2 exp
(

β J ~S1
~S2

)

Ylm(θ2, ϕ2) = λl Ylm(θ1, ϕ1) ,

(14)
where

λl = 4π il(β J) ; l = 0, 1, . . . ; m = 0,±1, . . . ,±l .
(15)

Note that Eq.(14) represents what is known as a Fred-
holm homogeneous linear integral equation of the sec-
ond kind. As such, this linear integral equation defines
the exact eigenfunctions, in this case Ylm(θ, ϕ) and ex-

act eigenvalues, in this case λl of the kernel, K(~S1, ~S2) =

exp
(

β J ~S1
~S2

)

. We remark that different notations are

used in the literature to describe linear integral equations
of this type. For example, a common choice in literature
is to write the equation in such a way that parameter, λ

multiplies the integral. Note that the kernel, K(~S1, ~S2)
appearing in Eq.(14) is symmetric (and real). As a result,
the Hilbert-Schmidt theory13 for linear integral equations
with symmetric (and real) kernels can be immediately
applied in this case. This observation leads to an exact
calculation of the partition function not only for the open
linear chain of Eq.(2), but also for a closed ring model
of N classical spins with nearest-neighbour isotropic in-
teractions14. If we assume that the number of spins in
the system is N ≥ 3, a closed ring spin model differs
from an open linear chain spin model in that, in the ring,
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there is interaction between spins ~SN and ~S1 (while, such
an interaction term is absent in the open linear chain).
As a result, the Hamiltonian for a closed ring of classi-
cal Heisenberg spins interacting with nearest-neighbour
isotropic exhange interaction is written as:

HRing
N = −J

N−1
∑

i=1

~Si
~Si+1 − J ~SN

~S1 ; N ≥ 3 . (16)

Obviously, use of ~Si as polar axis for ~Si+1 will not help
in the calculation of the partition function for a closed
ring as in Eq.(16). However, the result in Eq.(14) is ex-
tremely important since it allows one to expand the ker-

nels, K(~Si, ~Si+1) appearing in the expression of the par-
tition function in terms of the corresponding eigenfunc-
tions given from Eq.(14) with the eventual final result for
the partition function reading:

ZRing
N =

∞
∑

l=0

(2 l + 1)λN
l , (17)

where the factor, (2 l+ 1) comes from the fact that each
eigenvalue, λl is (2 l + 1)-fold degenerate. In essence,
these are the general features of the transfer-matrix for-
malism15. Obviously, the problem is much more difficult
when the systems (either the linear chain, or the closed
ring) are in an external magnetic field. In such a case, the
partition function can be calculated analytically only for
systems consisting of a very small number of spins16,17.

III. DIFFERENT APPROACH

Let’s now consider the problem in Section II with a
different approach that is more direct in the sense that
it does not make use of the addition theorem for spher-
ical harmonics. This is important since application of
different methods to solve a given mathematical prob-
lem may potentially result in interesting transformations
and identities that otherwise are not so obvious18–20. We
explicitly write the expression under consideration as:

∫

dΩ2 exp
(

β J ~S1
~S2

)

=

∫ π

0

dθ2 sin θ2

∫ 2π

0

dϕ2

exp
{

β J
[

cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)
]}

.(18)

We simplify the notation by denoting a = β J and, hence,
rewrite Eq.(18) as:
∫

dΩ2 exp
(

a ~S1
~S2

)

=

∫ π

0

dθ2 sin θ2 exp
(

a cos θ1 cos θ2

)

×
∫ 2π

0

dϕ2 exp
[

a sin θ1 sin θ2 cos(ϕ1 − ϕ2)
]

. (19)

At this point, we apply the formula:

∫ 2π

0

dϕ2 exp [x cos(ϕ1 − ϕ2)] = 2π I0(x) , (20)

where I0(x) is a modified Bessel function of the first kind
of order zero. We are left with the following integral:
∫

dΩ2 exp
(

a ~S1
~S2

)

=

2π

∫ π

0

dθ2 sin θ2 exp
(

a cos θ1 cos θ2

)

I0

(

a sin θ1 sin θ2

)

.(21)

We simplify Eq.(21) by introducing a new vari-
able, y = cos θ2 so that:

∫

dΩ2 exp
(

a ~S1
~S2

)

= 2π F (a, θ1) , (22)

where

F (a, θ1) =

∫ +1

−1

dy exp
(

a cos θ1 y
)

I0

(

a sin θ1
√

1− y2
)

.

(23)
At first sight, the integral above does not look

extremely challenging. However, despite the ef-
forts, we could not find a simple way to calculate
it analytically. Because of this reason we chose to
calculate the integral in Eq.(23) numerically by
adopting the standard Monte Carlo simulation
method. Numerical integration via the Monte
Carlo simulation method is a well-established ro-
bust technique that generally leads to very accu-
rate results when the number of sampling points
is reasonably large. To this effect, we selected dif-
ferent values of the parameter, a (for the sake of
simplicity, we show the results for only four val-
ues, a = 1, 2, 3 and 4). For each of the values of
a we calculated numerically the integral for sev-
eral different values of the variable, θ1. We per-
formed several Monte Carlo simulation runs with
a large number of sampling points to the extent
that we believe that all the numerical simulation
results are accurate to the fourth digit after the
decimal point (the fourth digit after the decimal
point is rounded). The Monte Carlo integration
results were later verified (to the same degree of
accuracy) by numerical integration of the expres-
sion in question using other schemes (not Monte
Carlo). The numerical results obtained are listed
in Table. I. The numerical results indicate with-
out any ambiguity that the value of the integral
function in Eq.(23) does not depend on variable,
θ1. This means that we can suitably choose θ1 = 0
and calculate the integral F (a, θ1) = F (a, θ1 = 0).
This observation leads to:

F (a, θ1) =

∫ +1

−1

dy exp(a y) =
exp(a)− exp(−a)

a
.

(24)
We searched some of the most authorative books
that contain tables of integrals21,22 but could not
find an integral of the form of Eq.(23). Even stan-
dard computational packages based on symbolic
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TABLE I: Numerical estimate of the integral, F (a, θ1) for selected values of the parameters, a and θ1. The numerical results
are rounded at the fourth digit after the decimal point.

a θ1 = π

6
θ1 = π

5
θ1 = π

4
θ1 = π

3
θ1 = π

2
θ1 = π

1 2.3504 2.3504 2.3504 2.3504 2.3504 2.3504

2 3.6269 3.6269 3.6269 3.6269 3.6269 3.6269

3 6.6786 6.6786 6.6786 6.6786 6.6786 6.6786

4 13.6450 13.6450 13.6450 13.6450 13.6450 13.6450

Exact function 2 i0(a)

Numerical result

F
(a

,θ
1
)

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

a
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

FIG. 1: Comparison of the numerically obtained results
from Table. I (filled dots) to the exact function, 2 i0(a) =
[exp(a)−exp(−a)]

a
(solid line). The uncertainty of the numerical

results (of the order of 10−4) is much less than the size of
symbols (drawn as large filled dots for better visual clarity).

mathematical manipulations like Mathematica23

were unable to do it analytically. On the other
hand, our numerical simulations clearly suggest
that the integral expression in question has the
value as given from Eq.(24). It appears that this
new approach (which avoids the use of the ad-
dition theorem for spherical harmonics) has led
us to an interesting integral involving the modi-
fied Bessel function. This fact is quite interesting
since we can obtain the correct answer in Eq.(24)
in another way by looking at the result in Eq.(13).
A comparison of Eq.(22) to Eq.(13) leads to the

conclusion that:

F (a, θ) =

∫ +1

−1

dy exp (a cos θ y) I0

(

a sin θ
√

1− y2
)

= 2 i0(a) .

(25)
Note that we now dropped the subscript ”1” from
the notation for angle θ1 in Eq.(23). It can be
checked that the result in Eq.(25) is in agreement

with Eq.(24) since by definition, i0(a) = sinh(a)/a
where sinh(a) = [exp(a)− exp(−a)] /2. It can be seen
in Fig. 1 that the numerically obtained results in
Table. I are in perfect agreement with what we
believe to be the exact analytical value of the in-
tegral as written in Eq.(25). The expression in
Eq.(25) appears to be a novel integral formula
involving modified Bessel functions of the first
kind.

IV. DISCUSSIONS AND CONCLUSIONS

We applied different mathematical methods to
solve a problem encountered in studies of classi-
cal magnetism. The approach of using different
mathematical transformations of a given quantity
is known to be extremely useful with the potential
benefits of helping to uncover novel formulas or
identities24. This approach allows one to derive
interesting alternative analytic expressions for a
given quantity of interest. In our case, a com-
parison of the results obtained by by using differ-
ent approaches leads to an interesting integral ex-
pression involving modified Bessel functions. The
result obtained appears to constitute a novel inte-
gral formula involving modified Bessel functions
of the first kind, therefore, it might be of inter-
est to researchers working in the field of mathe-
matical physics and/or applied mathematics. We
checked the correctness of the result obtained nu-
merically via an accurate Monte Carlo calcula-
tion of the integral expression under considera-
tion. We also caculated the integral expression in
Eq.(25) numerically via other tools (not Monte
Carlo) ending with identical results for the accu-
racy adopted. The numerical approach is unam-
bigous, we chose arbitrary values of the variables
a and θ in the expression for F (a, θ) in Eq.(25)
and then verified numerically that the formula in
question is always true and the final result does
not depend on the variable θ. In a nutshell, the
numerical results leave no doubt to the correct-
ness of the formula in Eq.(25). For an analytical
proof see the Appendix.

Note that Eq.(13) and Eq.(25) are related and
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both represent special cases of more general lin-
ear integral equations. For example, Eq.(13) is a
special case of Eq.(14) for l = 0 and m = 0. How-
ever, it is important to note that their respec-
tive kernels are quite different. Differently from

the kernel K(~S1, ~S2) = exp
(

β J ~S1
~S2

)

in Eq.(13)

which is a function of four variables, the ker-

nel, K(θ, y) = exp (a cos θ y) I0

(

a sin θ
√

1− y2
)

in

Eq.(25) is a function of only two variables. Thus,
extension of Eq.(25) to a more general linear in-
tegral equation of the form:

∫ +1

−1

dy K(θ, y) f(y) = λ f(θ) , (26)

may be deemed of interest within the framework
of standard linear integral equation methods13.
Note that Eq.(26) represents a typical homoge-
neous Fredholm linear integral equation of the
second kind. Linear integral equations of the type
in Eq.(26) are the key ingredients of the transfer-
matrix method that can be used to solve (numeri-
cally) more complex situations involving interact-
ing spins. Hence, a kernel like the one in Eq.(26)
may be appealing to the broad audience of re-
searchers that work in numerical studies of such
problems.
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APPENDIX: CALCULATION OF F (a, θ)

The relation in Eq.(25) can be written as:

F (a, θ) =

∫ +1

−1

dy ea cos θ y I0

(

a sin θ
√

1− y2
)

=

√

2π

a
I 1

2

(a) ,

(A.1)
based on the general definition of il(x) from Eq.(5). We
expand the modified Bessel function of the first kind that
appears inside the integral sign by using Eq.(10.25.2) of
Ref. 25 that reads:

Iν(z) =
(z

2

)ν ∞
∑

k=0

(

z2

4

)k

k! Γ(ν + k + 1)
, (A.2)

where Γ represents the gamma function. For ν = 0 one
has:

I0(z) =

∞
∑

k=0

z2k

22k (k!)2
. (A.3)

We substituting the result from Eq.(A.3) into Eq.(A.1)
and interchange summation and integration:

F (a, θ) =

∞
∑

k=0

a2k sin2k θ

22k (k!)2

∫ +1

−1

dy ea cos θ y (1− y2)k dy .

(A.4)
We now rely on Eq.(10.32.2) of Ref. 25 which reads:

Iν(z) =

(

z
2

)ν

√
π Γ(ν + 1

2
)

∫ +1

−1

(1− t2)ν−1/2 e±z t dt . (A.5)

For ν = k + 1/2 such a formula leads to:

∫ +1

−1

(1− t2)k e±z t dt =

√
π k!

(

z
2

)k+ 1

2

Ik+ 1

2

(z) . (A.6)

With help from Eq.(A.6), one transforms Eq.(A.4) into:

F (a, θ) =

√

2π

a cos θ

∞
∑

k=0

1

k!

[a sin2 θ

2 cos θ

]k

Ik+ 1

2

(

a cos θ
)

.

(A.7)
We now use Eq.5.7.6.(1) of Ref. 22 (pg.660) that gives:

∞
∑

k=0

tk

k!
Jk+ν(z) = zν/2 (z − 2 t)−ν/2 Jν

(

√

z2 − 2 t z
)

,

(A.8)
where Jk+ν(z) is a Bessel function of the first kind. This
formula suggests that for ν = 1/2 we should have:

∞
∑

k=0

tk

k!
Jk+ 1

2

(z) =
( z

z − 2 t

)1/4

J 1

2

(

√

z(z − 2 t)
)

. (A.9)

The formula in Eq.(10.27.6) of Ref. 25 explains how a
Bessel function of the first kind with imaginary argument
is related to a modified Bessel function of the first kind:

Iν(z) = e−ν π

2
i Jν

(

z e
π

2
i
)

. (A.10)

This implies that, for our specific case, we have:

Jν(i z) = eν
π

2
i Iν(z) . (A.11)

The next step is to write z = i ξ, t = −i τ and use
Eq.(A.11) to transform Eq.(A.9) in terms of modified
Bessel functions of the first kind. After some careful al-
gebraic manipulations of Eq.(A.9) (note that a factor e

π

4
i

appears in both sides of the equation and, thus, cancels
out), one obtains:

∞
∑

k=0

τk

k!
Ik+ 1

2

(ξ) =
( ξ

ξ + 2 τ

)1/4

I 1

2

(

√

ξ(ξ + 2 τ)
)

.

(A.12)
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The formula in Eq.(A.12) can be immediately applied to
Eq.(A.7) with the understanding that:

τ =
a sin2 θ

2 cos θ
; ξ = a cos θ . (A.13)

As a result, one obtains F (a, θ) =
√

2π
a I 1

2

(a) as in

Eq.(A.1).
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