
Ply: A Visual Web Inspector for Learning
from Professional Webpages

Sarah Lim, Joshua Hibschman, Haoqi Zhang, Eleanor O’Rourke
Northwestern University

Evanston, IL
{slim, jh}@u.northwestern.edu, {hq, eorourke}@northwestern.edu

ABSTRACT
While many online resources teach basic web development,
few are designed to help novices learn the CSS concepts and
design patterns experts use to implement complex visual fea-
tures. Professional webpages embed these design patterns and
could serve as rich learning materials, but their stylesheets are
complex and difficult for novices to understand. This paper
presents Ply, a CSS inspection tool that helps novices use their
visual intuition to make sense of professional webpages. We
introduce a new visual relevance testing technique to identify
properties that have visual effects on the page, which Ply uses
to hide visually irrelevant code and surface unintuitive relation-
ships between properties. In user studies, Ply helped novice
developers replicate complex web features 50% faster than
those using Chrome Developer Tools, and allowed novices to
recognize and explain unfamiliar concepts. These results show
that visual inspection tools can support learning from complex
professional webpages, even for novice developers.

ACM Classification Keywords
H.5.0. Information Interfaces and Presentation: General

Author Keywords
Developer tools; web inspection; CSS; authentic learning.

INTRODUCTION
Novice programmers often rely on online resources while
learning to code [3], particularly in the domain of web devel-
opment [10]. When learning to style webpages using Cascad-
ing Style Sheets (CSS), novices look to tutorials on platforms
like Codeacademy and CSS-Tricks to learn syntax and explore
simple examples. However, few resources are designed to help
novices create more complex visual effects [36]. For example,
a novice who wants to overlap two elements may struggle if
she does not know that the z-index property also requires the
position property to be set. Moving beyond the basics requires
substantial additional knowledge: developers must understand

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UIST 2018, October 14–17, 2018, Berlin, Germany.
Copyright © 2018 Association of Computing Machinery.
ACM ISBN 978-1-4503-5948-1/18/10 ...$15.00.
https://doi.org/10.1145/3242587.3242660

overloading in the cascade, interdependencies between prop-
erties, and modern layout models such as CSS Flexbox and
Grid. These approaches are often opaque to novices, and there
is an overall lack of materials designed to bridge this gap.

When tutorial examples do not meet developers’ needs, they
often turn to professionally-authored webpages for design
inspiration [23, 25, 16, 11]. Professional webpages embed
rapidly-evolving best practices and conventions not covered
by tutorials, and are continually updated as new solutions arise.
Most importantly, all webpages are freely inspectable using
browser developer tools, which expose the Document Object
Model (DOM) and CSS responsible for a page’s appearance.
As a result, professional websites represent an appealing class
of resources to help novices learn implementation approaches.

In practice, however, professional webpages are too complex
for novice developers to understand through inspection. In
a needfinding study, we observed that novices approach in-
spection from a visual perspective, asking questions about
how the features on a webpage are implemented in code (e.g.
“How does this webpage create overlapping boxes?”). This
visually-driven approach leads to two challenges. First, even
a state-of-the-art web inspector might display over a hundred
CSS properties at a time, many of which have no observable
effect on the page. As a result, novices struggle to locate the
lines of code responsible for an effect using visual intuition
alone. Second, even after locating relevant code, novices with
only superficial CSS knowledge have trouble understanding
properties without intuitive visual effects. For example, the
property color: red; is familiar to most novices and has a clear
visual effect, whereas position: relative; is more abstract.

To overcome these challenges, we introduce Ply, a CSS and
DOM inspection tool designed to help novices replicate vi-
sual features and understand CSS concepts on professional
webpages. Ply identifies visually relevant CSS properties by
analyzing their observable effects on the page. Using this
information, Ply helps novices (1) locate relevant properties
by pruning code with no observable effect on the page; and
(2) understand cascading relationships and dependencies be-
tween CSS properties through contextual tooltips. By directly
connecting properties and their relationships to meaningful
visual output, Ply helps novices use their visual intuition to
learn abstract concepts from complex professional webpages.

Our conceptual contribution is the idea that web inspectors
that incorporate visual relevance can help novices apply visual

intuition to learn from professional webpages. Our approach
is informed by research in the learning sciences that provides
guidelines for designing software to support novice sense-
making during scientific inquiry [32]. We adapt these guide-
lines for our domain, arguing that web inspection tools should
support novices’ visual approach to inspection by hiding visu-
ally irrelevant properties and explaining visually unintuitive
concepts with in-situ hints. To quantify visual relevance, we
introduce a novel visual relevance testing technique that mea-
sures the observable effects of CSS properties by systemati-
cally deleting them from the page source and testing for visual
changes in the resulting page. This technique enables Ply’s
core features, including the first approach we know of that can
automatically detect dependencies between CSS properties.

We evaluate Ply through two user studies that measure novices’
ability to replicate visual features and understand CSS con-
cepts, respectively. In our first study (n = 12), novices using
Ply successfully replicated a complex grid feature from a pro-
fessional webpage 50% faster than those using Chrome Devel-
oper Tools. In our second study, novices (n = 6) successfully
recognized unfamiliar CSS design patterns and implicit depen-
dencies using Ply, and generalized these approaches beyond
the given examples. These results provide exciting evidence
of the potential for visual inspection tools to support learning
from professional webpages, even for novice developers.

RELATED WORK
Prior systems for example-driven development focus on help-
ing programmers adapt curated examples or locate features in
complex codebases. Ply builds on this work to target novices
interested in learning expert approaches to static web design.

Programming with examples
While many existing systems support developers in foraging
[25, 18, 6] and adapting [3, 23, 22] curated examples, com-
paratively few systems attempt to surface the programming
concepts contained within those examples to support learn-
ing. For example, Lee et al. help users design webpages
by modifying examples from a structured corpus [25], while
Blueprint [3] helps developers incorporate code snippets from
forums, blogs, and tutorials. These systems focus on identify-
ing similar examples to provide inspiration, but cannot explain
the language features and design principles embedded within
those examples. Our work targets novice developers with pro-
fessional aspirations who are actively invested in learning new
CSS concepts, not just adapting existing designs.

Feature location in professional interfaces
Another class of systems aims to help developers perform
feature location tasks, or identifying code responsible for
functionality of interest within a program. Specifically, a num-
ber of systems provide visual affordances to help developers
reverse-engineer dynamic behaviors within complex interac-
tive applications. Rehearse [4] highlights the active lines of
code during program execution, and locates related lines based
on API definitions. In the web domain, Telescope [17] and
FireCrystal [29] link DOM and CSS modifications to respon-
sible lines of JavaScript code, and provide affordances for

visualizing the resulting interaction timelines. Scry [5] rep-
resents the application state using a graphical timeline, and
compares snapshots of DOM nodes at different points in time
to help users identify visually-meaningful state changes. These
systems focus on inspecting dynamic behavior, such as inter-
actions driven by JavaScript. Such interactions may include
small CSS modifications, but tools like Telescope, FireCrystal,
and Scry are not designed to explain the entire webpage’s ap-
pearance at one moment in time. In contrast, we explore static
webpage inspection to help users learn about CSS behavior.

Moreover, while feature location tools can help developers
inspect professional examples, these tools frequently abstract
away the embedded development practices. A simplifying
interface can sacrifice authenticity: for instance, WebCrystal
[7] generates CSS snippets based on questions about an ele-
ment’s appearance, but reduces the cascade of authored styles
to the used CSS values calculated by the browser engine. In
other words, WebCrystal might display width: 45.66667px;

rather than the authored property width: 33%;. Developers are
unlikely to set an element’s width to 45.66667px in practice,
limiting WebCrystal’s utility for learning authentic styling
practices. In contrast, Ply is designed to help developers in-
spect and understand CSS at the source level, and targets
novices interested in learning real-world design patterns.

CHALLENGES OF INSPECTING CSS
Professionally-authored webpages provide an attractive cor-
pus of learning materials that embed expert design patterns
and are richer than available web design tutorials. Yet inspect-
ing professional webpages with state-of-the-art browser tools
is often intractable for novices. Reasoning about CSS is a
nontrivial task for both humans and machines [19, 31], due
to the complexity of the language and a lack of automated
tooling beyond syntax-checkers [12, 30]. To our knowledge,
no prior study has examined the difficulties associated with
inspecting CSS on professional webpages. Before designing
Ply, we therefore conducted a needfinding study with novice
developers to understand these challenges.

Needfinding methods
First, we surveyed 20 undergraduate student web develop-
ers about their experience inspecting webpages and learning
from HTML and CSS tutorials. We then followed up with
an in-person study with ten of these developers. Eight users
were novice CSS developers with experience on one or two
course projects, and two users were more advanced and had
completed internships focused on front-end web development.

During the in-person study, we asked users to talk aloud while
replicating a single web feature (a responsive full-screen back-
ground image, login form, or responsive grid layout). Each
user was given three professional example implementations
of the target feature to inspect using Chrome Developer Tools
(CDT).1 Users could freely search the web for documenta-
tion or additional resources. We observed users and analyzed
their progress using informal milestones for each feature (e.g.,

1For the rest of this paper, we use “CDT” as a metonym for state-of-
the-art inspection tools available to practitioners.

adding a background image; making the image cover the view-
port). Participants were compensated with Amazon gift cards
ranging from $15 to $25, depending upon the task length.

Needfinding results
None of the ten users successfully completed the replication
task in full, and only the two most experienced users achieved
any milestone beyond the most basic (adding the key HTML
elements with margins and padding, but no other meaningful
styles). The two more experienced participants made progress
by relying on their prior knowledge of CSS to recreate the
feature. Information overload was a recurring theme: all users
repeatedly described feeling overwhelmed by CDT’s dense
interface, which displays the entire DOM at once, along with
a lengthy cascade of matched CSS styles for the selected ele-
ment. Through our observations, we identified two recurring
obstacles: (1) there was a mismatch between novices’ visual
approach to inspection and the information displayed by CDT,
and (2) novices lacked the conceptual knowledge needed to
form hypotheses and reason about example code.

Visually ineffective properties
To our surprise, users of all skill levels followed the same
reverse-engineering process, with varying degrees of success.
First, users identified a visual entity of interest on the page
(e.g. a row of grid cells), and formulated a hypothesis about
the entity’s implementation (e.g. “I’m looking for code that
keeps these boxes in a row, maybe a float: left;”). Within
CDT, users searched for a DOM element with the hypothe-
sized styles. When an element is selected in CDT, the browser
engine computes the set of CSS rules matched to that element,
and displays these rules in descending order of precedence
based on static factors such as declaration order and the speci-
ficity of each rule’s selector. If users noticed a promising set
of styles within this cascade, they transferred those styles into
their editors. In the best case, these additions brought their
output closer to the example, and they moved on to a new
objective. Far more often, the changes had no visual effect,
and users either revised their hypotheses or gave up.

These visually ineffective properties were the primary source
of frustration and wasted time we observed. We say that a
fragment of CSS is ineffective if its presence or removal has
no effect on the page’s appearance. Any property that is over-
ridden by a higher-precedence declaration is ineffective, and
CDT denotes these properties with a strikethrough. However,
we were surprised to find that many properties that appeared
relevant in CDT were nonetheless visually ineffective (Figure
1). Complex interfaces often require a large number of styles
to ensure consistency in rendering across all possible condi-
tions, and the global cascading nature of CSS means that it
is often easier for developers to declare redundant properties
“just in case,” rather than risk failure in an edge case. When
these properties appear at or near the top of the cascade, they
are indistinguishable from relevant code in the CDT interface,
and frequently misled users in our study.

Beyond slowing down feature replication, ineffective prop-
erties defied novices’ visual intuition and prevented compre-
hension of example code. Throughout the inspection process,

Figure 1. Ineffective properties (highlighted in red) appear active in
CDT, but have no visible effect on the webpage when disabled. This
example is taken from the highest-precedence CSS rule in the cascade.

novices approached inspection from a visual perspective, rely-
ing on visual terminology and deictic references to describe
their goals and hypotheses (“How do I make this button look
like this?”). Since ineffective properties have no visual effect,
novices could not understand why these properties appeared
active in the inspector. Without a coherent mental model,
novices either gave up or resorted to copying and pasting code
without attempting to understand the example.

Missing conceptual knowledge
Even after users located a set of relevant styles, they frequently
struggled to understand how the different properties worked
together to produce the element’s appearance. This was partic-
ularly true in cases where related properties were distributed
across multiple rules within the cascade, often overriding one
another. Here, we discuss two classes of approaches frequently
used in professional code that were opaque to our users.

Visual subtypes. Professional developers often modularize
styles by declaring a set of base rules to ensure uniformity
across components (akin to a base class in object orientation),
and then declaring additional rules to override specific proper-
ties (akin to a subclass):
1 <button class="button">Default</button>
2 <button class="button button�inverted">Inverted</button>

3 .button {
4 font�family: sans�serif ;
5 padding: 11px 18px;
6 background�color: pink;
7 color: white;
8 }
9 .button�inverted {

10 background�color: white; /* overrides line 6 */

11 color: pink; /* overrides line 7 */

12 }

This design pattern, which we call visual subtyping, was par-
ticularly challenging for the novices in our study who did not
understand the behavior of the cascade. Given two rules with
conflicting property declarations, browsers assign precedence
based on static features such as selector specificity and source
location.2 We found that most users in our study were unfa-
miliar with these rules, which have no intuitive visual basis,
and could not interpret examples like the one above.

Implicit dependencies. While the most straightforward vi-
sual changes can be achieved with a single CSS property (e.g.
color: red;), more sophisticated effects require coordination
2https://www.w3.org/TR/CSS2/cascade.html

between multiple properties. Consider the following example
based on a scenario we repeatedly witnessed during needfind-
ing: a novice developer, Cuthbert aims to vertically center text
within a <div>, and writes the following:

1 <div class="container">
2 Cascading Style Sheets are so expressive !
3 </div>

4 . container {
5 height: 100px;
6 vertical�align: middle;
7 }

This code does nothing to vertically center the text, because
the vertical-align property only applies to elements with dis-
play: inline or display: table-cell;, and <div> elements are as-
signed display: block; by default. Frustrated, Cuthbert searches
“vertical align middle” and notices that the top suggested com-
pletion is “vertical align middle not working.”3 Based on a
StackOverflow suggestion, Cuthbert adds display: table-cell;
below line 6, a common hack4 used to center text in <div>

elements. Now, vertical-align: middle; behaves as expected –
it has an implicit dependency upon display: table-cell;.

Implicit dependencies were particularly baffling to novices in
our study, as most had only used straightforward CSS prop-
erties such as color and did not realize that properties could
depend upon one another. While such dependencies are well-
defined in the specification, they are not centrally documented
and impossible to statically infer. Our conversations with
professional front-end developers confirm that implicit depen-
dencies are a common source of frustration, often tediously
memorized through years of practice.

Without an understanding of these core concepts, novices
in our study struggled to apply their visual intuition to the
examples. This is consistent with the general finding that
novice programmers have trouble identifying relationships
between example code constructs [13, 4, 21]. On multiple oc-
casions, our users recognized that they were missing important
knowledge, but lacked the domain vocabulary to formulate an
effective search query. This inhibited the less experienced par-
ticipants from searching for resources, as the more advanced
ones did. When asked to rate the usefulness of professional
examples for replication on a 1 (not helpful) to 10 (very help-
ful) scale, one user said, “Either a 7 or a 1, if there’s some
concept I don’t understand. If there ended up being something
that required some background knowledge...you just get lost.”

DESIGN RATIONALE
Our needfinding study confirms that novice developers are
unable to replicate visual features from professional webpages
using current tools. We identified two obstacles that made
inspection difficult for novices: (1) a mismatch between their
visual approach to inspection and the information prioritized
by CDT, and (2) missing conceptual knowledge needed to form
hypotheses and reason about example code. In this section,
we describe our approach for overcoming these obstacles.

3This is true at the time of submission.
4Before the Flexbox module, CSS 2.1 did not provide an idiomatic
way to vertically center text within a block-level element.

We draw on literature from the learning sciences on supporting
novices during sense-making tasks. Broadly speaking, sense-
making refers to the process of building an understanding of
an artifact or example by constructing mental representations
of what is known [34]. In our work, we build upon a set of
guidelines for designing software to support sense-making
in the context of scientific inquiry, a domain with notable
similarities to learning from code examples on the web. In
scientific inquiry, sense-making is an iterative process that
involves reasoning about a phenomenon, testing conjectures
empirically, and deriving new understanding from the results
[20, 32]. During web inspection, programmers follow a similar
iterative process that involves forming hypotheses about how
a feature might be implemented, searching the DOM and style
cascade for evidence, and refining hypotheses accordingly.
Quintana et al. [32] propose a set of guidelines for designing
software to help learners overcome obstacles during scientific
sense-making. Given the similar obstacles associated with
sense-making during scientific inquiry and web inspection,
we argue that these guidelines can inform the design of web
inspection tools for novices.

Obstacle: mismatch between novice intuition and tools
In scientific disciplines, learners must use formal scientific
representations to express their understanding and empirically
test hypotheses [24, 32]. However, learners are often over-
whelmed by the formalisms used by experts [8] and struggle
to use their own intuition to reason about unfamiliar phenom-
ena [33]. Likewise, experienced programmers rely on formal
representations of programming concepts to make sense of
complex code and documentation. However, these patterns
are often opaque to novices, preventing them from building a
deep understanding of the domain [1, 35, 27].

To overcome this obstacle, Quintana et al. argue that software
should use representations and language that bridge learners’
understanding by explaining complex concepts in ways that
build on learners’ intuition [32]. Consistent with prior studies
[13] of novice programmers more generally, our needfinding
study showed that novices approach inspection from a visual
perspective, and struggle to reason about the many visually
ineffective properties displayed by CDT. Building on Quintana
et al.’s guideline, we argue that web inspection tools should
bridge from novices’ intuitive visual approach by highlighting
properties of visual interest:

Characteristic 1: Hide visually-irrelevant code from inspector
output to minimize information overload and support novices’
visual approach to sense-making.

Current CSS inspection tools display a large number of prop-
erties with no observable effect, complicating novices’ sense-
making efforts. Ply implements Characteristic 1 by giving
users the option to remove visually ineffective properties from
the inspector output. For example, when a learner inspects an
element styled with @media query rules for multiple screen
sizes, Ply will hide irrelevant properties designed for smaller
screens. To compute relevance, we introduce a novel visual
relevance testing technique that allows Ply to identify and hide
visually-irrelevant code.

Figure 2. Left: Ply’s DOM and CSS inspection interface is designed to minimize visually irrelevant information during inspection tasks. Right: Ply’s
implicit dependency overlay reveals dependencies between CSS properties across different rules. Here, the developer has requested dependencies for
display: flex; (highlighted in yellow). Ply identifies that justify-content as a dependent of display: flex;, whereas flex-basis is not.

Obstacle: missing conceptual knowledge
During scientific inquiry, learners struggle when they lack the
domain knowledge needed to form hypotheses about scientific
phenomena and draw inferences from data [32]. Similarly,
programmers rely on heuristics and conceptual knowledge of
programming constructs and language semantics as they make
sense of complex examples [1, 35, 27], and novices struggle to
reason about unfamiliar constructs without this understanding.

To overcome this obstacle, Quintana et al. argue that software
should embed expert guidance into the sense-making process
to provide missing domain knowledge. In our needfinding
study, we discovered that novices lack conceptual understand-
ing required to reason about professional CSS design patterns,
particularly when multiple properties work together to produce
a visual effect. We identified two constructs that were particu-
larly challenging: visual subtypes and implicit dependencies.
Building on Quintana et al.’s guideline, we argue that web
inspection tools should fill in missing conceptual knowledge
about these relationships by providing in-situ guidance:

Characteristic 2: Embed contextual guidance into inspector
output to explain how CSS properties coordinate to produce
visual effects.

Current CSS inspection tools have no awareness of the rela-
tionships between individual properties, and therefore cannot
provide contextual guidance. Ply implements Characteristic 2
by providing tooltip hints beside CSS properties that relate to
other properties via subtyping or implicit dependencies. For
example, when a learner inspects a button that overrides the
default button style, Ply displays a hint about visual subtypes.

PLY: A VISUAL WEB INSPECTOR
We use these guidelines to design Ply (Figure 2), a visual
web inspector modeled after CDT and similar tools. Ply aug-
ments the standard inspection interface with the ability to hide
ineffective properties, identify instances of visual subtyping,
and trace implicit dependencies. As a representative example,
consider a novice developer Stella interested in replicating the
login buttons (Figure 2a) on the Tumblr homepage. After acti-

vating Ply’s browser extension and hovering over the button
of interest, Ply loads the element and its subtree, isolated from
the rest of the DOM (Figure 2b). Unlike CDT, which displays
the entire document at once, Ply treats the selected element as
the root of the inspection tree and hides any non-descendants.
This allows Stella to scope her inspection task to the region
of interest. As in CDT, hovering over an element in Ply high-
lights the corresponding region on the page, reinforcing the
link between code and visual output.

Relevance pruning
When Stella inspects an element, Ply displays the correspond-
ing cascade of matched CSS rules. Clicking a property toggles
it on and off, allowing her to observe the result. To hide in-
effective properties, Stella clicks the “Prune” button in the
toolbar (Figure 2c). After a brief delay, visually-ineffective
properties are crossed out and displayed in greyscale (Fig-
ure 2d), with the option to hide them completely. By hiding
visually ineffective properties, Ply helps novices locate the
CSS responsible for a feature of interest.

Understanding the cascade through visual subtypes
To help Stella understand the behavior of the cascade, Ply
detects examples of visual subtyping and annotates their cor-
responding base styles with explanatory tooltips. The Tumblr
homepage in Figure 2 uses visual subtypes to define a default
button style (“Get Started”) and an alternate color scheme
(“Log In”). In this case, the “Log In” button is a visual sub-
type, because it overrides a subset of its base styles.

When Stella inspects the “Log In” button and prunes the cas-
cade, Ply displays a Likely base style hint next to the base style
rule (Figure 2e). This rule defines padding and typography,
along with the default grey-on-white color scheme. Mousing
over the hint reveals a tooltip, which explains the concept of
a base style in intuitive language. Ply highlights the specific
properties overridden by the subtype, background-color and
color (Figure 2f). Hovering over either highlight displays a sec-
ond tooltip explaining the concept of an overridden property.
These in-situ hints can be used to fill in missing syntax knowl-
edge [15] and provide expert guidance during problem-solving

[2]. By linking terms such as “specificity” and “overriding”
to concrete visual examples, Ply helps novices restate their
intuition in terms of expert practice.

Implicit dependencies
Relevance pruning reveals which properties are relevant, but
does not explain why they are relevant. For properties corre-
sponding one-to-one with a visual effect (e.g. color, margin,
width), toggling them on and off suffices to illustrate their
role. However, many properties (e.g. display, position) do not
produce an effect by themselves; rather, they serve as implicit
dependencies for other properties in the cascade. Without
advance knowledge of these dependencies, users may not un-
derstand why such properties are visually relevant.

Stella turns her attention to a footer element, which uses the
display: flex; property (Figure 2g). She is only vaguely famil-
iar with Flexbox layout, but guesses that this property turns its
element into a flex container, and that some of the other proper-
ties behave as flexbox modifiers. Based on naming similarity,
Stella guesses that flex-basis is related to display: flex;. While
her guess is reasonable, it is incorrect: flex-basis is not related
to display: flex; because display: flex; defines a flex container,
and flex-basismodifies the behavior of a flex child. Conversely,
while justify-content does not contain a flex- prefix, it defines
the behavior of a flex container and therefore depends upon
display: flex;.

To help novices make sense of these relationships, Ply re-
veals the dependents of unfamiliar properties. Stella clicks
on the “Show dependents” icon next to the display: flex; prop-
erty, which highlights the selected property in yellow, and
all of its dependents in green (Figure 2g). Hovering over
justify-content: space-between; displays a tooltip explaining
that the property implicitly depends on the selected property
display: flex;. Toggling the parent property now toggles its
dependents as well, reinforcing the relationship visually. By
surfacing these non-obvious relationships, Ply helps novices
develop a more precise understanding of CSS behaviors.

ANALYZING CSS BASED ON OBSERVABLE EFFECTS
In contrast to existing inspection tools, which do not consider
rendered output when computing CSS property relevance, Ply
uses image comparison to compute visual relevance from the
user’s perspective. We consider a CSS property to be visually
relevant if the user can observe its effect on the page. This
definition of visual relevance is key to detecting ineffective
properties. While CDT can reliably determine whether a prop-
erty is active (i.e. evaluated and not overridden) within the
cascade, an active property does not necessarily have an ob-
servable effect. For instance, a property might re-define the
browser’s default styles, have an unsatisfied implicit depen-
dency, or only apply to an occluded element.

In this section, we introduce our core approach for determin-
ing whether CSS properties are visually relevant, and describe
how this technique can be applied to (1) prune ineffective prop-
erties, (2) identify visual subtypes, and (3) compute implicit
dependencies between properties. Given the prevalence of

implicit dependencies in CSS, this last contribution is partic-
ularly significant—to the best of our knowledge, no existing
technique can automatically detect these dependencies.

Visual relevance testing
In order to compute visual relevance from the user’s perspec-
tive, we draw inspiration from visual regression testing, a
commercial approach to testing programs with graphical out-
puts (such as web applications). To confirm that program
modifications do not break the application in unexpected ways,
the developer defines a test suite with ground truth screenshots.
The testing framework applies the program modifications, re-
renders the application, and compares the updated views to the
ground truth screenshots using a black-box image comparison
algorithm. Any change in the application’s appearance consti-
tutes a visual regression, corresponding to a potential breakage.
Visual regression testing has been implemented in commercial
continuous integration services (https://percy.io/), and used
to provide in-editor warnings about breaking changes [26].

Our key insight is that visual regression testing can be adapted
to determine the precise visual effect of any CSS fragment.
We introduce a new visual relevance testing technique that
identifies relevant CSS properties by systematically deleting
them from the page source and testing for visual regressions
in the resulting page. The main idea behind this approach
is that a CSS property is relevant if and only if its deletion
causes a regression. Visual relevance testing thus enables a
class of techniques for analyzing CSS fragments in terms of
their observable effects.

Formally, we define a predicate ISRELEVANT(p, R) to deter-
mine whether disabling a property p (e.g. margin: 0 auto;)
causes a regression within a region of interest R (e.g. the
viewport). First, a base screenshot of R is captured. Next, the
property p is commented out in the stylesheet source, tem-
porarily disabling it for the page. After disabling p, a new
screenshot ofR is captured and compared with the base screen-
shot using a black-box image comparison algorithm. Finally,
the algorithm returns a boolean denoting whether the two
screenshots differ according to the comparison, and therefore
whether the property is visually relevant.

Application 1: Relevance pruning
Visual relevance testing enables the automatic identification
of active yet visually ineffective properties; this allows Ply to
prune these properties from its inspector output. Figure 3(a)
illustrates how we perform relevance pruning for a given DOM
element, in this case a “Sign up” button. Ply first requests the
cascade of matched CSS properties from the browser engine.
Iterating over properties in descending order of precedence,
Ply computes ISRELEVANT(p, viewport) for each property p
(Figure 3(a)-1) to check for regressions anywhere within the
browser viewport. If ISRELEVANT returns TRUE, the prop-
erty’s removal causes a regression, and immediately restored
(Figure 3(a)-2). Otherwise, the property is deemed ineffective
and left disabled (Figure 3(a)-3). The resulting pruned cascade
contains only properties with a visual effect on the webpage
(Figure 3(a)-4).

(a) Relevance pruning (b) Visual subtypes (c) Implicit dependencies

Figure 3. Ply uses three applications of visual relevance testing to (a) hide irrelevant code, (b) surface visual subtyping relationships, and (c) identify
implicit dependencies between properties.

Application 2: Visual subtypes
Our second application of visual relevance testing identifies
visual subtype relationships, a visually-salient example of
overloading behavior in the cascade. Here, the main idea is
to check where on the page a regression occurs. Consider
the example in Figure 3(b)-1: both buttons share common
styles (padding, font, etc.), but the “Sign up” button is a visual
subtype because it overrides the default blue background (akin
to method overloading in object orientation). Disabling the de-
fault background color will cause a regression on other buttons
in the DOM, but not on the inspected element (Figure 3(b)-2).
This allows Ply to determine that background: blue; is a base
style, and that the “Sign up” button is a visual subtype of the
default button style.

Subtype detection amounts to calling ISRELEVANT twice on
different regions, and comparing the results. First, ISRELE-
VANT(p, viewport) tests for a global regression anywhere in
the viewport (“Are any visible buttons blue?”). Next, ISRELE-
VANT(p, element) tests for a local regression to the inspected
element’s bounding box (“Is the current button blue?”). If
there is a global regression but not a local one, then p must
be visually effective but overridden in the current element’s
cascade, which indicates that it is a base style.

Application 3: Implicit dependencies
Our final application of visual relevance testing identifies im-
plicit dependencies between properties in the cascade. Fig-
ure 3(c) illustrates the intuition: if a property p depends on
another property q, then ISRELEVANT(p, viewport) will re-
turn TRUE if and only if property q is enabled. This is because
disabling q leaves the dependency unsatisfied, rendering p
ineffective.

Before computing dependencies, the algorithm first performs
relevance pruning (Figure 3(a)) to filter out visually ineffective

properties. If one of the remaining properties does not have an
intuitive visual effect, the user can select the property to query
for its dependents (Figure 3(c)-1).5 We call this property a
candidate dependency because it might serve as a dependency
for other properties in the cascade. Given this user-selected
candidate dependency q, the algorithm temporarily disables q
(Figure 3(c)-2) and re-prunes all other effective properties. If
a property p now becomes ineffective without q (Figure 3(c)-
3b), the algorithm concludes that p depends on q, since p is
effective if and only if q is active.

Existing approaches to CSS analysis
Our approach to visual relevance testing is closely related to
two areas of research in programming languages and software
engineering. Program slicing aims to approximate the mini-
mal subset of a program necessary to preserve some feature of
interest, and has been recently been applied to picture descrip-
tion languages with graphical outputs [37]. Redundancy anal-
ysis broadly aims to identify and optimize redundant program
statements. For CSS, such analyses generally focus on com-
puting the coverage of individual selectors to determine which
style rules apply to which DOM elements. This relation can
be tested dynamically at runtime [28] or verified statically by
formally modeling selector logic and DOM manipulation [12,
14]. Like CDT, however, these approaches define redundancy
in terms of what code is (or will be) evaluated as active, rather
than what code has an observable effect.

We build upon this body of work in two ways. First, visual
relevance testing imposes a weaker definition of redundancy,
in which a property is deemed redundant if it is visually inef-
fective. This is the criterion of interest during web inspection,
and allows our relevance pruning technique to eliminate not

5In practice, many properties with unintuitive effects are included
only as dependencies necessary for other properties.

just inactive rules, but also active rules with no visible effect.
Second, we demonstrate how repeated application of program
slicing and redundancy analysis can be used to infer relation-
ships between properties, such as visual subtyping and implicit
dependencies. No prior work has applied redundancy analysis
to perform inference beyond stylesheet maintenance and dead
code elimination.

Implementation details
Ply consists of a web application front-end and a Google
Chrome extension, which communicate via WebSocket con-
nections to a lightweight proxy server. The extension instru-
ments the inspected webpage through the Chrome Remote
Debugging Protocol.6 To perform image comparison, our pro-
totype uses the pixelmatch algorithm by Mapbox;7 our custom
fork early-returns after finding the first differing pixel. Since
visual relevance testing treats image comparison as a black
box, the difference threshold could be adjusted depending on
the inspection context, or replaced by more sophisticated tech-
niques capable of identifying visual features within interfaces
(e.g. those introduced in [9]). Source code for the front-end,
proxy server, and Chrome extension are available on GitHub.8

STUDY 1: FEATURE REPLICATION
We conducted two user studies to evaluate how Ply supports
novice developers in inspecting professional examples. Our
first study asked whether and how pruning ineffective proper-
ties can help developers replicate features more quickly. We
recruited 12 undergraduate and graduate students with varying
levels of web development experience, and randomly divided
them into control and experimental groups. The control group
used CDT, and the experimental group used Ply.

Users were given HTML markup for a section of the IDEO
homepage containing recent blog posts (Figure 4), and were
asked to spend 40 minutes replicating the feature’s appear-
ance. To structure the task and measure user progress, we
defined three milestones: (1) styling the three tiles into a hor-
izontal grid, (2) rendering each tile’s image, included with
the provided HTML markup, and (3) visually differentiating
the third tile by giving it a yellow background and hiding its
image. These milestones covered a diverse set of CSS con-
cepts, including flexbox behavior, how height is calculated for
block-level elements, and patterns for overloading styles with
higher-precedence rules.

Users were given a walkthrough of each milestone, including
the expected visual criteria for success, and told they could
complete the milestones in any order. As a secondary pri-
ority after the milestones, users were told they could style
the overall appearance (colors, typography, etc.) of the page.
Tasks such as setting the font and colors of a webpage were
more straightforward for users, because they involved inde-
pendent properties with straightforward meanings rather than
coordinating styles on multiple related nodes.

6https://chromedevtools.github.io/devtools-protocol/
7https://github.com/mapbox/pixelmatch
8At https://github.com/sarahlim/ply and https://github.com/
sarahlim/chrome-remote-css

Figure 4. In our first user study, developers replicated this grid feature
from the IDEO homepage.

After hearing the task description, both groups reported similar
confidence levels on a 1 to 5 scale (Ply: —= 3;�= 1:14; CDT:
— = 3:17;� = 0:52). To guard against self-perception bias,
we asked users to describe their previous experience with
HTML and CSS. The authors independently assigned scores
based on reported experiences such as creating a personal
webpage, completing a front-end web internship, building
webpages for side projects, and serving as a teaching assistant
for the Human-Computer Interaction course, which teaches
basic web design. These assigned experience scores did not
differ meaningfully from self-reported confidence levels. Each
user received a $20 Amazon gift card for their participation.

During the task users had access to three windows: (1) the
example itself, (2) an inspection tool (either Ply or CDT),
and (3) a JSBin live editing environment. The editor was
pre-populated with the feature’s outerHTML markup, but con-
tained no styling. CDT was initialized by selecting the DOM
node corresponding to the feature root. Ply was initialized
by setting the inspection context to the feature root, and prun-
ing all nodes in advance. Since the aim of the study was to
isolate the impact of relevance pruning on replication speed,
users did not have access to Ply’s visual subtyping or implicit
dependency annotations.

Results
Overall, Ply users completed their three milestones about
50% faster (Ply: — = 16:67 minutes;� = 1:63; CDT: — =
24:83 minutes;�= 8:08) (Figure 5). This difference was most
pronounced on the first milestone, where Ply users were 3.5
times faster than CDT users (Ply: —= 2:5 minutes;� = 1:64;
CDT: —= 8:83 minutes;� = 4:167). For the milestone com-
pletion time dependent variable, Ply users finished the first two
significantly faster than control users (M1 : t(10) =�3:5;p=
:01;M2 : t(10) =�3:4;p = :01). The difference was not sig-
nificant for the third milestone (t(10) =�2:4;p = :06), likely
due to our small sample. One possible explanation for the
front-loading is that 8 out of 12 users completed the grid mile-
stone first, which only required the user to locate one property
on the starting node. Since Ply’s interface showed only a sin-
gle collapsed node and a handful of relevant properties, users
quickly identified the display: flex; property in the inspec-
tor, toggled it on and off to verify its effect, and added it to
their solution. Conversely, CDT displayed multiple ineffective
properties and a confusing array of styles denoting various
states of inactivity, obscuring the relevant lines of code.

Figure 5. Ply users had lower cumulative completion times for all three
milestones. Ply users also had less variation in their completion times,
despite higher variation in confidence and experience.

For all milestones, the variation in completion time was
markedly lower in the Ply group compared to CDT (Figure 5),
even though the Ply group had slightly greater variation in
experience levels and reported confidence. For instance, both
the least (P6) and most (P10) experienced users in the study
used Ply. P6’s only experience with CSS consisted of “small
tweaks to other people’s templates,” and they reported a 1 out
of 5 in confidence. By comparison, P10 reported a 4 out of 5,
had several years of experience building webpages for paying
clients, and had recently completed an internship in front-end
development at a major software company. Despite this dif-
ference in experience levels, P10 and P6 completed their final
milestone in 16 versus 17 minutes, respectively. For the two
CDT users with the widest gap in experience and confidence,
this difference was 12 versus 35 minutes. While it is inappro-
priate to generalize with such a small sample, this result is
consistent with our needfinding observations that highlighting
visually-salient properties can help narrow the performance
gap between novice and intermediate developers by giving
novices access to the information filtering heuristics used by
more experienced developers.

STUDY 2: LEARNING NEW DESIGN PATTERNS
Having shown that pruning supports developers during repli-
cation, we conducted a second evaluation to understand how
Ply’s embedded guidance could help novice developers learn
new language concepts. We recruited six student develop-
ers with very minimal web design experience; two had never
used HTML and CSS outside of an undergraduate HCI course,
and another had previously styled desktop applications using
Qt stylesheets9 but had never used CSS itself. During the
study, developers described their prior experience with CSS
and example-based learning, completed two 20-minute tasks,
and provided feedback on their user experience. Each user
was compensated with a $20 Amazon gift card.

Task 1: Visual subtyping
Our first task evaluated whether Ply’s visual subtype detection
and guidance could help users understand the behavior of
the cascade. We used a pair of buttons on the Indiegogo
9http://doc.qt.io/archives/qt-4.8/stylesheet.html

Figure 6. In study 2, users inspected this Indiegogo example which uses
visual subtypes to style buttons with overlapping visual characteristics.

homepage as an example (Figure 6). First, we conducted a pre-
task to elicit developers’ prior knowledge of style organization
approaches. Developers were given a sheet of paper with a
screenshot of the Indiegogo buttons and three sets of paper
code snippets corresponding to the common button styles, the
white-on-pink color scheme, and the inverted color scheme,
respectively. We asked developers to construct CSS rules
using these paper code snippets and draw lines connecting
each rule to the corresponding button element(s). Developers
were instructed to generate as many distinct approaches as they
could think of, then contrast the approaches and explain their
rationale for each. There were no constraints on the number of
snippets that could be grouped in each rule, or the cardinality
of the matchings between rules and elements.

After the pre-task, we asked developers to inspect the original
buttons from the Indiegogo webpage using Ply, then recon-
struct the approach used in the example. Finally, we asked
developers to contrast the approach used by the Indiegogo ex-
ample with the approaches they generated during the pre-task.

Result 1: Developers learned new organizational approaches
The Indiegogo website style guide organizes their button styles
using visual subtyping. A complete set of base styles is de-
clared for the default "Sign up now" button, and a second rule
inverts the color properties of the "Learn more" button. Only
P3 was able to produce this arrangement of styles during the
pre-task. Most users expressed discomfort with overloading
behavior and preferred to style each element by applying two
rules: one containing only the common base styles (akin to an
abstract base class) with a separate color rule (akin to a virtual
function implementation).

After inspecting Indiegogo with Ply, all users correctly con-
structed the visual subtype approach using the provided code
snippets. They characterized this approach using terminology
from other programming domains: “to achieve the secondary
style, they are composing classes which have overrides” (P5).
Users identified scenarios in which the visual subtype ap-
proach would be preferable to the disjoint approach they had
previously preferred: “for theming and consistency on a large
site” (P0), “if I had a lot of pink buttons, and only a few white
buttons...you wouldn’t want to type [the .pink class] every sin-
gle time” (P4). Inspection exposed users to new approaches,
as reflected in their unprompted remarks: “I actually haven’t
thought about doing it this way” (P2), “I might have thought of
this before, but I wouldn’t have done that — but if that’s what
professionals are doing, it seems better” (P0), “I re-learned
something I forgot about overriding properties” (P4).

Task 2: Implicit dependencies
Our second task evaluated how Ply’s implicit dependency
detection and guidance helps users identify dependencies be-
tween CSS properties on a sticky header on the Oscar home-

Figure 7. In study 2, users inspect this sticky header from the Oscar
homepage, which is styled using properties with implicit dependencies.

page (Figure 7). The header is implemented using the top

and z-index properties, which only apply to elements with a
position value other than the default of static.10 To elicit users’
prior understanding of these dependencies, we presented each
user with a toy example depicting a blue rectangle overlap-
ping a red rectangle. The blue rectangle had the following
properties applied:

position: fixed ;
top: 0;
width: 100%;
z�index: 3000;

In this example, the property position: fixed; is a dependency
for top: 0; width: 100%;, and z-index: 300;. The top and
z-index properties are used to adjust an element’s position, so
they always require the element to have a position other than
the default value of static. (Incidentally, the top Google search
completion for “z-index” is “z-index not working.”) width

does not always depend upon position in the CSS specifica-
tion, but applying position: fixed; removes an element from
the page flow, so a percentage-based width will be computed
relative to the entire viewport, rather than the parent element.
We constructed this example to parallel the Oscar header im-
plementation, in order to evaluate users’ prior knowledge of
implicit dependencies.

We asked users to draw a diagram representing the dependen-
cies between properties in this example. Each property-value
declaration was represented by a node. If the user believed that
a property p depended upon a property q, they drew a directed
edge from p to q. If they were unsure of the direction of the
relationship, they drew an undirected edge between p and q.
If they were unsure, but tentatively believed that a relationship
existed, they drew a dotted undirected edge.

After drawing and explaining their diagram, each developer
inspected the Oscar example using Ply’s implicit dependency
tooltips, then drew a diagram for the dependencies within the
Oscar example. Finally, developers revisited the original toy
example and drew a revised diagram, based on the knowledge
they had gained from the Oscar task.

Result 2: Developers identified new relationships
In the pre-task, none of the users could identify a relation-
ship between position and z-index or characterize the effects
of position: fixed; when asked: “I don’t remember all the
things you can specify with position” (P4). After using Ply
to inspect Oscar, all 6 users drew correct diagrams, showing
that top, width, and z-index depended upon position in Oscar.
Moreover, users accurately characterized the nature of the de-
pendency when asked: “z-index’s effects depend on whether

10https://www.w3.org/TR/css-position-3/#property-index

position is fixed or not: if you turn off position: fixed, z-index
doesn’t have an effect anymore” (P4).

Developers used Ply to confirm their prior intuitions (“I am
now confident that z-index depends on position,” P3) and
revise misconceptions (“I see now that z-index requires a
position to be set. I wouldn’t have said [that] before...it
seems like z-indexmakes sense without having position: fixed;,”
P2). The least-experienced developer, who had only used the
Qt stylesheet language, enriched their mental model of how
properties could relate to one another: “Something about z-
index would change as a result of position not being fixed.
position: fixed; is doing something beyond pinning in place
while you scroll” (P5). These findings show that Ply’s tooltip
guidance successfully helped novices inspect, make sense of,
and generalize this design pattern.

DISCUSSION
This paper presents Ply, a web inspector designed to help
novice developers learn CSS by exploring complex profes-
sional webpages. In a needfinding study, we found that novice
developers approach web inspection from a visual perspective.
Therefore, rather than overwhelming users with properties
that have no visual effect on the page, Ply uses visual rele-
vance testing to hide irrelevant code. Ply also provides em-
bedded guidance to explain visually unintuitive relationships
between properties. Our conceptual approach builds on design
principles from the learning sciences for supporting novice
sense-making, which we adapt to the domain of making sense
of professional webpages. In particular, we argue that web
inspectors that incorporate visual relevance can help novices
apply visual intuition to learn from professional webpages.
Through two user studies, we found that Ply allows novice
developers to replicate complex web features more quickly
than with Chrome Developer Tools, and that novices under-
stand unfamiliar design patterns and concepts after inspecting
professional examples with Ply.

Limitations
Since visual relevance testing relies on snapshot comparison,
the technique in its current form cannot be used to inspect
JavaScript-driven animations and interactive behaviors. It
would be straightforward to extend our approach to support
CSS keyframe animations, as well as interactions implemented
using :hover pseudo-classes. Non-deterministic interface ele-
ments, such as live-updating feeds and dynamic widgets, can
also produce false positives during relevance testing. One po-
tential solution is to allow the user to exclude certain regions
of the page from the image comparison procedure. Finally, our
prototype of Ply cannot teach advanced features of CSS pre-
processors such as Sass and Less,11 which support mixins and
custom function definitions. While visual relevance testing
can still help users reason about the compiled CSS, and even
link to the corresponding preprocessor code when sourcemaps
are available, full support for these language extensions would
require adding a compilation pipeline.

11https://sass-lang.com/ and http://lesscss.org/

Future work
“Style sheet languages are terribly under-researched. This
statement dates back from 1999, but it is still true” [12]. This
statement dates back from 2012, but it is also still true. As
CSS remains the only major option for styling webpages, there
is an urgent need for new tools capable of reasoning about
the language’s increasingly complex semantics. Despite its
maturity, CSS lacks a formal grammar and machine-readable
specification (aside from a partial encoding of the CSS 2.1
layout model introduced in [30]). Moreover, while many
groups have studied the usability shortcomings of CSS, re-
search has overwhelmingly focused on designing replacement
languages rather than improving available tooling [12]. Im-
plicit dependencies in particular are under-researched and pose
a significant usability barrier; Ply takes a first step towards
improving the usability of CSS by surfacing implicit depen-
dencies between properties affecting the same element. Future
work should address more complex dependencies, such as
those between properties on different elements, and explore
possibilities for inferring language-wide dependencies from a
diverse corpus of webpages.

Another potential avenue for future work involves incorporat-
ing visual relevance testing into human-in-the-loop refactoring
and maintenance systems. By design, visual relevance test-
ing only checks whether a CSS property is effective on the
currently-visible webpage. For instance, a modal element
might be styled to support both “open” and “closed” states; if
the modal is currently open, Ply will prune all styles pertaining
only to the “closed” state. While this allows Ply to prune more
aggressively than CDT, it also means that the results cannot be
used to refactor stylesheets without human input.12 However,
incorporating visual relevance as a coverage metric within UI
testing frameworks could highlight potentially redundant or
obsolete CSS for programmer review.

Finally, our work has important implications for web developer
training more broadly. Prior work on example-based learn-
ing has largely neglected professional examples because they
present too much information to be meaningful to learners.
However, tutorial examples do not teach the design patterns
and problem-solving practices needed to produce professional-
quality work. Our results provide preliminary evidence that
tools designed to support novice intuition by reducing informa-
tion and embedding guidance can make learning from profes-
sional examples tractable, even for inexperienced developers.
Future exploration into the design of learner-centered inspec-
tion tools could further bridge the knowledge gap between
novice and expert developers.

ACKNOWLEDGEMENTS
We thank Lea Verou, Bert Bos, Michail Yasonik, Jordan Scales,
members of the Khan Academy development team, and stu-
dents in the Design, Technology, and Research program for
valuable discussions. We also thank Andrea Cardaci for early
technical advice. This work was supported by the National
Science Foundation under Grant IIS-1735977, and an Under-
graduate Research Grant from Northwestern University.
12The general problem of determining whether two stylesheets are
observably equivalent under all circumstances is undecidable.

REFERENCES
1. Beth Adelson and Elliot Soloway. 1985. The role of

domain experience in software design. IEEE Transactions
on Software Engineering 11 (1985), 1351–1360.

2. John R. Anderson, Albert T. Corbett, Kenneth R.
Koedinger, and Ray Pelletier. 1995. Cognitive tutors:
Lessons learned. The Journal of the Learning Sciences 4,
2 (1995), 167–207.

3. Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R Klemmer. 2010a. Example-centric programming -
integrating web search into the development environment.
CHI (2010).

4. Joel Brandt, Vignan Pattamatta, William Choi, Ben Hsieh,
and Scott R Klemmer. 2010b. Rehearse: Helping
Programmers Adapt Examples by Visualizing Execution
and Highlighting Related Code. Technical Report.

5. Brian Burg, Andrew J Ko, and Michael D Ernst. 2015.
Explaining Visual Changes in Web Interfaces. In
Proceedings of the 28th Annual ACM Symposium on User
Interface Software and Technology. ACM, New York, NY,
USA, 259–268.

6. Jill Cao, Scott D Fleming, and Margaret Burnett. 2011.
An exploration of design opportunities for “gardening”
end-user programmers’ ideas. In 2011 IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 35–42.

7. Kerry Shih-Ping Chang and Brad A Myers. 2012.
WebCrystal: Understanding and Reusing Examples in
Web Authoring. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, New York, NY, USA, 3205–3214.

8. Michelene TH Chi, Paul J Feltovich, and Robert Glaser.
1981. Categorization and representation of physics
problems by experts and novices. Cognitive science 5, 2
(1981), 121–152.

9. Morgan Dixon and James Fogarty. 2010. Prefab:
Implementing Advanced Behaviors Using Pixel-based
Reverse Engineering of Interface Structure. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10). ACM, New
York, NY, USA, 1525–1534. DOI:
http://dx.doi.org/10.1145/1753326.1753554

10. Brian Dorn and Mark Guzdial. 2010. Learning on the Job:
Characterizing the Programming Knowledge and
Learning Strategies of Web Designers. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems. ACM, New York, NY, USA, 703–712.

11. Claudia Eckert and Martin Stacey. 2000. Sources of
inspiration: a language of design. Design Studies 21, 5
(Sept. 2000), 523–538.

12. Pierre Genevès, Nabil Layaïda, and Vincent Quint. 2012.
On the analysis of cascading style sheets. WWW (2012).

13. Paul Gross and Caitlin Kelleher. 2010. Toward
Transforming Freely Available Source Code into Usable
Learning Materials for End-users. In Evaluation and
Usability of Programming Languages and Tools. ACM,
New York, NY, USA, 6:1–6:6.

14. Matthew Hague, Anthony W. Lin, and C.-H. Luke Ong.
2015. Detecting Redundant CSS Rules in HTML5
Applications: A Tree Rewriting Approach. In
Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2015). ACM,
New York, NY, USA, 1–19. DOI:
http://dx.doi.org/10.1145/2814270.2814288

15. Andrew Head, Codanda Appachu, Marti A Hearst, and
Bjorn Hartmann. 2015. Tutorons - Generating
context-relevant, on-demand explanations and
demonstrations of online code. VL/HCC (2015).

16. Scarlett R Herring, Chia-Chen Chang, Jesse Krantzler,
and Brian P Bailey. 2009. Getting inspired! -
understanding how and why examples are used in
creative design practice. CHI (2009).

17. Joshua Hibschman and Haoqi Zhang. 2016. Telescope. In
the 29th Annual Symposium. ACM Press, New York, New
York, USA, 233–245.

18. Will Jernigan, Amber Horvath, Michael Lee, Margaret
Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters,
Irwin Kwan, Faezeh Bahmani, and Andrew Ko. 2015. A
principled evaluation for a principled idea garden. In
2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 235–243.

19. Matthias Keller and Martin Nussbaumer. 2010. CSS
Code Quality: A Metric for Abstractness; Or Why
Humans Beat Machines in CSS Coding. In 2010 Seventh
International Conference on the Quality of Information
and Communications Technology. 116–121.

20. David Klahr and Kevin Dunbar. 1988. Dual Space Search
During Scientific Reasoning. Cognitive Science (1988).

21. Andrew J Ko, Brad A Myers, and Htet Htet Aung. 2004.
Six Learning Barriers in End-User Programming Systems.
In VLHCC ’04: Proceedings of the 2004 IEEE
Symposium on Visual Languages - Human Centric
Computing (VLHCC’04). Carnegie Mellon University,
IEEE Computer Society.

22. Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres,
Maxine Lim, Salman Ahmad, Scott R. Klemmer, and
Jerry O. Talton. 2013. Webzeitgeist: Design Mining the
Web. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’13). ACM,
New York, NY, USA, 3083–3092.

23. Ranjitha Kumar, Jerry O Talton, Salman Ahmad, and
Scott R Klemmer. 2011. Bricolage - example-based
retargeting for web design. CHI (2011).

24. Bruno Latour. 1990. Drawing things together. In In
Representation in Scientific Practice, M. Lynch and
S. Woolgar (Eds.). The MIT Press, 19–68.

25. Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen I
Brafman, and Scott R Klemmer. 2010. Designing with
interactive example galleries. CHI (2010).

26. Hsiang-Sheng Liang, Kuan-Hung Kuo, Po-Wei Lee,
Yu-Chien Chan, Yu-Chin Lin, and Mike Y Chen. 2013.
SeeSS. In the 26th annual ACM symposium. ACM Press,
New York, New York, USA, 353–356.

27. Marcia C Linn and Michael J Clancy. 1992. The case for
case studies of programming problems. Commun. ACM
35, 3 (1992), 121–132.

28. Ali Mesbah and Shabnam Mirshokraie. 2012. Automated
analysis of CSS rules to support style maintenance. ICSE
(2012).

29. Steve Oney and Brad Myers. 2009. FireCrystal:
Understanding interactive behaviors in dynamic web
pages. In 2011 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE,
105–108.

30. Pavel Panchekha and Emina Torlak. 2016. Automated
reasoning for web page layout. OOPSLA (2016).

31. Vincent Quint and Irne Vatton. 2007. Editing with Style.
In Proceedings of the 2007 ACM Symposium on
Document Engineering (DocEng ’07). ACM, New York,
NY, USA, 151–160.
http://doi.acm.org/10.1145/1284420.1284460

32. Chris Quintana, Brian J Reiser, Elizabeth A Davis,
Joseph Krajcik, Eric Fretz, Ravit Golan Duncan, Eleni
Kyza, Daniel Edelson, and Elliot Soloway. 2004. A
Scaffolding Design Framework for Software to Support
Science Inquiry. Journal of the Learning Sciences 13, 3
(July 2004), 337–386.

33. Bruce L Sherin. 2001. How students understand physics
equations. Cognition and instruction 19, 4 (2001),
479–541.

34. Karl E Weick. 1995. Sensemaking in organizations.
Vol. 3. Sage.

35. Mark Weiser and Joan Shertz. 1983. Programming
problem representation in novice and expert
programmers. International Journal of Man-Machine
Studies 19, 4 (1983), 391–398.

36. Jenna Wortham. 2012. A surge in learning the language
of the internet. New York Times 27 (2012).

37. Shin Yoo, David Binkley, and Roger Eastman. 2016.
Observational slicing based on visual semantics. Journal
of Systems and Software (2016).

