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Abstract— The study of correlated MIMO broadcast channel
is becoming an important subject due to the growing research
interest in higher frequency and also massive MIMO. In this
paper, we study a two-user MIMO broadcast channel where the
two users have correlation matrices with eigenspaces partially
overlapped with each other. It is neither identical nor fully
overlapped. Thus no existing technique can be straight forward
applied to this scenario. We show in such correlation structure,
the overlapping between the two users can increase the degrees of
freedom over TDMA. We leverage the overlapping eigenspaces
in the system via pre-beamforming and combine the product
superposition technique to obtain the new achievable degree of
freedom region.

I. INTRODUCTION

Spatial correlation of the channel effects the performance of
MIMO broadcast channel. In most previous works, channels
have been assumed to have identical correlation condition [1],
[2]. Particularly, [1] showed that the transmit correlation is a
detrimental impact on the sum capacity of multiuser MIMO
system. [2] concluded that in the massive MIMO system,
transmit correlation significantly decreases the system per-
formance. But in practice, different users may have different
scattering environments, such as in the street and on the top
of the roof, thus the fading links may experience different
spatial correlation. In such scenarios, the fundamental limits
are unknown.

The scenario of different correlation matrices across links
has raised an interesting question about the dependance of the
broadcast performance on the relation between the correlation
matrices. For the case of broadcast channel with correlation
matrices having orthogonal (non-overlapping) eigenspaces,
where Joint Spatial Division Multiplexing (JSDM) transmis-
sion scheme was proposed to provide gains by reducing the
overhead needed for channel estimation [3]—[6]. For multiuser
networks with orthogonal eigenspace correlation matrices, [7]
showed transmit correlation helps in multicell network by par-
titioning the user space into clusters according to correlation.
[8] also concluded transmit correlation benefits the sum rate in
the downlink performance of a heterogeneous cellular network
(HetNet) where both macro and small cells share the same
spectrum. [9] presented how to exploit the transmit correlation
in a two-tier system where a large number of small cells are
deployed under a macro-cellular. For the case where users
have non-orthogonal correlation eigenspaces, [10] proposed
one achievable scheme via the method named product super-
position for users having fully overlapped eigenspaces, which

achieves gains over TDMA. These results show evidence that
difference between transmit antenna correlation is a kind of
potential gain resource in multiuser systems.

However, the performance of the broadcast channel with
correlated channel in general is still unknown. For users
with correlated channel, when the links between transmitter
and users have different scatters, the null space of channel
matrix for different users can be neither identical nor fully
embedded. In such scenario, the eigenspace of these users will
be partially overlapped. Due to the overlapping subspace, the
pre-beamforming technique [3]-[6] for orthogonal eigenspaces
cannot be directly applied and the product superposition
scheme [10], which focused on the overlapping part, do
not address the possible gains we can obtain from the non-
overlapping subspace. Thus none of these known techniques
fit to this scenario perfectly.

This paper studies this new scenario where the users have
correlation matrices with partially overlapping eigenspaces.
Our proposed schemes create multiuser gains from both
the non-overlapping subspace and the overlapped part. We
start with the two-user case where there is one dimension
overlapped. Using the proposed transmit scheme, both users
can decode their messages. After that, we consider the case
of general correlation for both users with same number of
antennas, where the degree of freedom gains are shown over
the conventional transmission that employs TDMA. Then, we
consider the case of arbitrary number of antennas, providing
transmit schemes and calculate the degree of freedom gains.

Notations: For a matrix U, span(U) represents the subspace
including the linear sum of the columns of U. For two
subspaces &1 and Sp, 81 + So represents the subspace of the
linear sum of the vectors in S; and Ss. S1\S» represents the
subspace of the vectors in &7 which are orthogonal with the
vectors in Ss.

II. SYSTEM MODEL

Consider a MIMO Broadcast channel with M transmit
antennas serving K users, where user ¢ is equipped with NN;
antennas. The received signal at user ¢ is

Y, =H,X+W,, 1=1,..., K, (1)

where X € CM*T s the transmitted signal and W; € CN:*T
is the i.i.d. white Gaussian noise. The channel matrix H;
follows the block fading model. It remains constant during the
coherence interval of 7', which satisfies T' > 2 max(M, N;),



but changes independently across blocks [11]. Define R; as the
transmit correlation matrix of user ¢ and r; = rank(R;). From
the Kronecker model (aik.a separable model), the channel H;
is given by H; = G;R?, where G; € (CNMMlis a Gaussian
random matrix with i.i.d. entries [12]. Let R? = UiEUfI
denote the eigen decomposition, where 3; € C"*™ is a
dialgonal matrix that includes the non-zero eigenvalues of
R? and U; € CM*" is the matrix whose columns are the

1
eigenvectors of R? corresponding to the non-zero eigenvalues.
Therefore,

H; = H;UY, 2)

where ﬁi = G;U,;%;, whose entries are independent but not
identical Gaussian.

We assume there is no CSIR or CSIT, where H; and I:IZ- are
not known at transmitter or receivers, while X, and U, are
globally known. In this paper, correlation eigenspace refers to
the span of eigenvectors of a correlation matrix.

We assume that there are /K independent messages associ-
ated with rates Ry(p),..., Rik(p) to be communicated from
the transmitter to the K receivers at p signal-to-noise ratio.
The degrees of freedom at receiver ¢ achieving rate R;(p) is
defined as

3)

III. TWO-USER BROADCAST CHANNEL

In this section, we study the two-user broadcast channel
with correlation. We start with a toy example and then extend
it to general case. For each scenario, we propose a scheme
achieving degree of freedom gains over TDMA.

A. Toy Example

For the broadcast channel defined as (1),(2) with two users,
where M = Ny = Ny = 2, and

4 0 0
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Us=|, ¢ 1 5)
V2

the following degree of freedom region can be achieved

d; < %(T -2)

dy < A(T —2) (6)

di+dy < 3(T - 2)

Proof: The transmitted signal is

1 0 X5,1
X=yp|0 1 x50/, (N
1 0 X5,2

x51 and x55 € CY*(T=2) contain symbols intended for
User 1 and User 2, x50 € C'*(T=2) contains symbols that
both User 1 and User 2 can decode.

The received signal at User 1 is

~ |1 0 O
o ~ 1 0 X551
- \/IBHl |:O 1 X60:| + Wi (9)

User 1 estimates H; during the first 2 time slots and can
decode x5 and x5, during the remaining time slots achieving
2 x (T — 2) degrees of freedom.

The received signal at User 2 is

= (01 0 W
o od 1 0 X5,0
- \/EHQ |:O 1 X572:| + Wo. (11)

User 2 estimates Hy during the first 2 time slots and can
decode x5, and X » during the remaining time slots achieving
2 x (T — 2) degrees of freedom.

Because x5, is decoded by both User 1 and User 2, using
time sharing, the degree of freedom pair (2 (7'—2),% (T —2)),
(#(T'—2),2(T—2)) can be achieved. Together with the single
user degree of freedom bound [10], the degree of freedom
region of (6) can be achieved, which is larger than the TDMA
achievable region. |

This toy example shows that when two users have partially
overlapping correlation eigenspaces, we can achieve more
degrees of freedom than TDMA.

B. Matched number of antennas: M = N1 = Ny

1) Orthogonal eigenvectors:

Theorem 1: For the broadcast channel defined in (1) and (2)
with two users, when the columns in U; and Uy are either
the same or orthogonal with each other and the number of
duplicated columns is 7¢, define r} = r; —rg, ¢ = 1,2 and
without loss of generality, assume r] > r3. The following
degree of freedom pair is achievable:

ri 4 .
Dy = ( 1T (T —7F — o)
o o (12)
Ff=r3) + 2 (T =11 = 70)),
r *
DQZ(%(T_TI ’l"())7
T’; * T; + 1o * (13)
f(ﬁ‘%)"‘ T (T —ri —10)),
(ri 4 ro) . ror}
Dy = (LT = —r0). L), (14)
Dy = (02 BT gy, 1s)
Proof: geﬁne [jZ; as the submatrix generated by the

columns appearing in both U; and Usy. U} represents the
submatrix of U; excluding the column vectors appearing in
Uy, i = 1,2. Let U = [Uj Uy U}, then UHU = 1. We
transmit the signal

. L: 0 Xs
X=pUX=pU| 0 L, Xs|, (16
L;Xo 0 Xso



where X5, € Cri*(T=ri=ro0) and X552 € Cr2*(T—ri—ro)
contain symbols intended for User 1 and User 2, X5 €
Crox(T=r1=70) contains symbols that both User 1 and User 2
can decode. X, € C"2*("1="2) contains the symbols that
intended for User 2 only.

The received signal at User 1 is

Y, = /pHi[U} U)X + W, (17)
I N 1 R S
= \/ﬁHl 01 1 0 0 ITO X670 + Wl
To I: Xo 0 Xsp
(18)
_ ] Ir* 0 X5,1
= V/pH, { 0oL XM] + W, (19)

User 1 estimates H; during the first (7} + 7o) time slots and
can decode X1 and Xs o during the remaining time slots
achieving (75 4 ro)(T — ri — o) degrees of freedom.

The received signal at User 2 is

Y, = /pH,[U, U3]7X + W, (20)
_ [0 I, O Ly 0 X
= \/,BHQ 0 0 L. 0 L, X500 +W;
T2 IT; X 0 X(S’Q
(21
=0 0 1, Xso
= /oH, [I X, 0 Xoo + W, (22)

User 2 estimates Hy during the first 75 and (7 +1) to (1 +70)
time slots and decode X, X5 and X, achieving (75 (1} —
r3) + (ro +13)(T — rj — o)) degrees of freedom. Because
Xs,0 is decoded by both User 1 and User 2, the degree of
freedom pair (12) and (13) are achievable via time sharing.

Next consider the product superposition transmit scheme
proposed in [10]. Make User 1 achieving its single user bound.
Transmit signals over the subspace of span([Uj Ujy]). The
transmit signal is:

X = /p[U; Ug)XaXy, (23)
where X; and X5 has the following structure:
Xy = [Los .y X1], (24)
Sa I'r'U X6,2
X = { 0 1. } , (25)

where X5, € Critro)x(T=ri=r0) and X4, € C™*"1 con-
tains symbol intended for User 1 and User 2. User 1 estimates
its equivalent channel during the first (r{ + 7o) time slots
and decodes X 1 during the remaining time slots achieving
(ro+71)(T =77 —7rg) degrees of freedom. User 2 estimates Hy
during the first r time slots and decodes X; 2 achieving o7}
degrees of freedom. Thus this product superposition scheme
achieves the degree of freedom pair (14). In the same way,
if we make User 2 achieving its single user bound, we can
achieve the degree of freedom pair (15). Thus completes the
proof of Theorem 1. [ |

2) Non-orthogonal Eigenvectors: In this section, we study
the case where the columns in U; and Us do not satisfy the
assumption of either the same or orthogonal but span(U;) N
span(Uy) # (.

Theorem 2: For the broadcast channel defined in (1) and
(2) with two users. Define the subspace S = span(U;) N
span(Usz) and dim(S) = rg and r} =r; — 19, i = 1,2, the
degree of freedom pair (12)(13)(14)(15) are achievable.

Proof: Define Vo € CM*70 whose columns are one
set of basis of S. Define the subspace S; = span(U;)\S,
dim(S) = 7} and V; € CM*", whose columns are one set
of basis of S;, where i = 1, 2.

According to the definition, we have span(U;) =S + &1,
thus there exists one non-singular matrix T such that U; =
[V1 V)T, thus the channel matrix H; can be decomposed
as follows:

H H
H, = H, U’ = H,T{ [g(};} =H, [x(}f] ;o (26)
where H; = H; T . In the same way, there exists one non-
singular matrix T such that:

27)

H
H, = Hy {V2},

Vil
where Hy = HyT4 . Define the matrix V = [V; Vi V.
The transmitter sends the signal:

X =V(Viv) X, (28)

where X has the same structure as (13). Because of the
definition, VHV is invertible. The received signal at User 1
is:

Y = /pH:i[V: Vo)X + W, (29)
= /pHi [V Vo] IV(VIV)TIX + W, (30)
- L. 0 0]
= /pH; | 1 X+W (31)
vPH, [ 0 I, o} !
~ L 0 X1
=,/pH 1 |+ Wi 32
The received signal at User 2 is
Y, = \/ﬁﬁg[VO VQ]HX + W, (33)
= /pHs [V Vo] IV(VEV)TIX + W,  (34)
|0 I, 0|
= /pHs {0 0“ I } X+ W, (35)
T2
_ ~ [0 0 L, Xso
= /pHa |:Ir§ X, 0 XM] + Wo. (36)

We can achieve the same degree of freedom pair as (12) and
(13). Then apply the product superposition transmit scheme.
Make User 1 achieving its single user bound. Define the matrix
V = [V V] The transmitted signal is:

X = /pV(VEV)TIX, X, (37)
where X; and X5 has the following structure:
X1 = [Lsgre X5, (38)



I’r’o XzS 2:| (39)

S

where X;; € CUitro)x(T=ri=ro) and X5, € CroX1
contains symbol intended for User 1 and User 2. This product
superposition scheme achieves the same degree of freedom
pair (14). In the same way, if we make User 2 achieving its
single user bound, we can achieve the degree of freedom pair
(15). Thus completes the proof of Theorem 2 [ ]

C. Unmatched number of antennas: N1, No < M

In this section, we study the case where the number of
antennas do not match between transmitter and receivers. We
will use the notations provided in the previous section and
focus on the method of designing the pre-beamforming matrix
V.

1) N1 <7} and Ny < r3: When the number of antennas of
two users is small, we can transmit to two users at their single
user degree of freedom bound. Generate submatrices V] and
V3 by selecting N7 columns from V; and Ny columns from
V. Define the matrix V = [V} V3]. The transmitted signal
is:

X = /pV(VAV)~IX, (40)
where X has the following structure:
< Inyxvy X1
X = R 41
|:IN2><N2 X5,2:| ( )

where X1 € CN1x(T=N1) and Xs,2 € CN2x(T=N2) gre the
symbols intended for User 1 and User 2. The received signal
at User 1 is:

Y1 == \/ﬁfll[Vl Vo]HX + Wl (42)
= /pH V1 VoIV(VEV)TIX + W,  43)
= VpH, [Iy, Xs1] + Wy, (44)

User 1 estimates Hy during the first N7 time slots and decodes
X1 during the remaining time slots achieving N1 (7" — Ny)
degrees of freedom, which meets the single user degree
of freedom bound. Similarly, User 2 can achieve Ny(7 —

Ns) degrees of freedom. Thus the degree of freedom pair
(Nl(T M) Na(T— N2)) can be achieved.

2) Ny > ry and Ny < r3: Generate submatrix V3 by
selecting Ns columns from Vj. Define the matrix V =
[V1 V3]. The transmitted signal is:

X = /pV(VEV)IX, (45)
where X has the following structure:
S L Xs1

X = ’ 46

[IN2 X&,Q] (46)

X1 € Crix(T=m1) and X5 € CN2X(T=N2) contains symbol
intended for User 1 and User 2. Thus the degree of freedom
pair (% (T —r}), 52(T — N>)) is achievable.

The other corner point can be achieved via the product
superposition transmit scheme. Generate submatrix Vg by

selecting 75 = N; — rg columns from V. Define the matrix
V = [V; V§]. The transmitted signal is:

X = /pV(VIV)"IX, X, (47)
where X and X5 has the following structure:
X1 = Loy 4ry Xs1l, (48)
S Ir* X5,2
X = {00 1. } , (49)

where X;; € CUTHro)x(T=r1=75) and X5, € CN2x71)
contains symbol intended for User 1 and User 2. User 1
can achieve (r§ + r§)(T — r7 — r}) degrees of freedom.
User 2 achieves min(No, r§)r; degrees of freedom. Thus the

H (T%+T]3) * * min(Na,75)r]
degree of freedom pair (~272>(T — (1] +717)), — 2+
is achievable.

3) Ny <r} and Ny > r3: Choose N; columns from Vi,

generating the submatrix V7. Define the matrix V = [V} V).
The transmitted signal is:
X = /pV(VHEV)"IX, (50)
where X has the following structure:
< _ [Iny Xsa
X = ! ’ 51
[Ir; X5 eb

where X1 € Cmx(T=r1) and Xs2 € CN2x(T=N2) contains
symbol intended for User 1 and User 2. Thus the degree of
freedom pair (31 (7 — Ny), 22 (T — r3)) is achievable.

4) N1 > r} and Ny > rj: Define r§ = min(Ny —r}, Ny —
r3). Choose 1 columns from Uy, generating the submatrix
V. Define the matrix V. = [V; V{5 Vg|. The transmitter
sends the signal:

X =Vv(Viv)! (52)
where X has the structure.
B I'ri‘ 0 Xé,l
X = 0 L, Xso (53)
I, s Xy, 0 Xso,

where X5, € Ci*(T=mi=70) and X5, € Crz2*(T=ri-70)
contains symbols intended for User 1 and User 2, X503 €
Cro" " *(T=ri=75) contains symbol that both User 1 and User 2
can decode. X, € C"2*("1=72) contains symbols intended for
User 2 only. ((T1+r°) (T =71} —718), 7 (r3(rf —r3) +r3(T —
ri = r5))) and (F(T — 7§ = 18), 7 (r3(r} = r3) + (5 +
r¢)(T —r{ —rg))) are achievable via time sharing. Use the
product superposition transmit scheme. Make User 1 achieving

its single user bound. Define the matrix V = [V; V(] The
transmitted signal is:
X = /pV(VEV)IX, X, (54)
where X; and X, has the following structure:
X1 = Lrgtry Xsal, (55)
X = {16* )I(‘ﬂ : (56)



where X5, € CUitro)x(T=r1-70) and X5, € Croxri
contains symbol intended for User 1 and User 2. Thus this
product superposition achieves the degree of freedom pair
(W(T —r}f — 1), “4+). In the same way, if we make
User 2 achieving its single user bound, we can achieve the
degree of freedom pair (“%52, W(T —r5—1y)).

IV. NUMERICAL RESULTS
4 T T T

Proposed scheme
===TDhkA H

d

Fig. 1. Degrees of freedom region with 75 = 1

45 T T . :
Froposed scheme
——=TOMA i

dy

Fig. 2. Degrees of freedom region with 75 = 2

In this section, we compare the proposed scheme with
TDMA transmission demonstrating the two-user achievable
degrees of freedom region for different 3, the dimension of
the correlation matrix of User 2. We consider the case of
M = N; = Ny = 10 and T" = 20. In Fig. 1, i = 1,
the corner points (4.8,0.75) is achieved via pre-beamforming
proposed in this paper and in Fig. 2, 5 = 2, the corner
points (4.8,0.8) is achieved via product superposition. The
corner points is achieved by pre-beamforming or product

superposition depending on the coherence time and the dimen-
sion of the eigenspace. Comparing with the dimension of the
eigenspace, when the coherence time is long, pre-beamforming
has more gains, otherwise product superposition provides more
achievable degree of freedom.

V. CONCLUSION

It has been shown that Correlation at the transmitter side
can be beneficial in various scenarios in MIMO broadcast
channel. In this paper, we study the case where the transmitter
serves two users with partially overlapped eigenspaces of
the channel correlation matrices. The proposed pilot-based
signaling achieves degrees of freedom gains over TDMA trans-
mission. This scheme transmits the pre-beamformed signal
and allows them to decode their own symbol successfully. We
also combined this pre-beamforming scheme with the product
superposition technique, obtaining new achievable degree of
freedom region. This achievable scheme is also promising to
be extended to broadcast channel with multiple users.
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