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Abstract— The study of correlated MIMO broadcast channel
is becoming an important subject due to the growing research
interest in higher frequency and also massive MIMO. In this
paper, we study a two-user MIMO broadcast channel where the
two users have correlation matrices with eigenspaces partially
overlapped with each other. It is neither identical nor fully
overlapped. Thus no existing technique can be straight forward
applied to this scenario. We show in such correlation structure,
the overlapping between the two users can increase the degrees of
freedom over TDMA. We leverage the overlapping eigenspaces
in the system via pre-beamforming and combine the product
superposition technique to obtain the new achievable degree of
freedom region.

I. INTRODUCTION

Spatial correlation of the channel effects the performance of

MIMO broadcast channel. In most previous works, channels

have been assumed to have identical correlation condition [1],

[2]. Particularly, [1] showed that the transmit correlation is a

detrimental impact on the sum capacity of multiuser MIMO

system. [2] concluded that in the massive MIMO system,

transmit correlation significantly decreases the system per-

formance. But in practice, different users may have different

scattering environments, such as in the street and on the top

of the roof, thus the fading links may experience different

spatial correlation. In such scenarios, the fundamental limits

are unknown.

The scenario of different correlation matrices across links

has raised an interesting question about the dependance of the

broadcast performance on the relation between the correlation

matrices. For the case of broadcast channel with correlation

matrices having orthogonal (non-overlapping) eigenspaces,

where Joint Spatial Division Multiplexing (JSDM) transmis-

sion scheme was proposed to provide gains by reducing the

overhead needed for channel estimation [3]–[6]. For multiuser

networks with orthogonal eigenspace correlation matrices, [7]

showed transmit correlation helps in multicell network by par-

titioning the user space into clusters according to correlation.

[8] also concluded transmit correlation benefits the sum rate in

the downlink performance of a heterogeneous cellular network

(HetNet) where both macro and small cells share the same

spectrum. [9] presented how to exploit the transmit correlation

in a two-tier system where a large number of small cells are

deployed under a macro-cellular. For the case where users

have non-orthogonal correlation eigenspaces, [10] proposed

one achievable scheme via the method named product super-

position for users having fully overlapped eigenspaces, which

achieves gains over TDMA. These results show evidence that

difference between transmit antenna correlation is a kind of

potential gain resource in multiuser systems.

However, the performance of the broadcast channel with

correlated channel in general is still unknown. For users

with correlated channel, when the links between transmitter

and users have different scatters, the null space of channel

matrix for different users can be neither identical nor fully

embedded. In such scenario, the eigenspace of these users will

be partially overlapped. Due to the overlapping subspace, the

pre-beamforming technique [3]–[6] for orthogonal eigenspaces

cannot be directly applied and the product superposition

scheme [10], which focused on the overlapping part, do

not address the possible gains we can obtain from the non-

overlapping subspace. Thus none of these known techniques

fit to this scenario perfectly.

This paper studies this new scenario where the users have

correlation matrices with partially overlapping eigenspaces.

Our proposed schemes create multiuser gains from both

the non-overlapping subspace and the overlapped part. We

start with the two-user case where there is one dimension

overlapped. Using the proposed transmit scheme, both users

can decode their messages. After that, we consider the case

of general correlation for both users with same number of

antennas, where the degree of freedom gains are shown over

the conventional transmission that employs TDMA. Then, we

consider the case of arbitrary number of antennas, providing

transmit schemes and calculate the degree of freedom gains.

Notations: For a matrix U, span(U) represents the subspace

including the linear sum of the columns of U. For two

subspaces S1 and S2, S1 + S2 represents the subspace of the

linear sum of the vectors in S1 and S2. S1\S2 represents the

subspace of the vectors in S1 which are orthogonal with the

vectors in S2.

II. SYSTEM MODEL

Consider a MIMO Broadcast channel with M transmit

antennas serving K users, where user i is equipped with Ni

antennas. The received signal at user i is

Yi = HiX+Wi, i = 1, . . . ,K, (1)

where X ∈ C
M×T is the transmitted signal and Wi ∈ C

Ni×T

is the i.i.d. white Gaussian noise. The channel matrix Hi

follows the block fading model. It remains constant during the

coherence interval of T , which satisfies T ≥ 2max(M,Ni),



but changes independently across blocks [11]. Define Ri as the

transmit correlation matrix of user i and ri = rank(Ri). From

the Kronecker model (a.k.a separable model), the channel Hi

is given by Hi = GiR
1
2
i , where Gi ∈ C

Ni×M is a Gaussian

random matrix with i.i.d. entries [12]. Let R
1
2
i = UiΣUH

i

denote the eigen decomposition, where Σi ∈ C
ri×ri is a

diagonal matrix that includes the non-zero eigenvalues of

R
1
2
i and Ui ∈ C

M×ri is the matrix whose columns are the

eigenvectors of R
1
2
i corresponding to the non-zero eigenvalues.

Therefore,

Hi = H̃iU
H
i , (2)

where H̃i = GiUiΣi, whose entries are independent but not

identical Gaussian.

We assume there is no CSIR or CSIT, where Hi and H̃i are

not known at transmitter or receivers, while Σi and Ui are

globally known. In this paper, correlation eigenspace refers to

the span of eigenvectors of a correlation matrix.

We assume that there are K independent messages associ-

ated with rates R1(ρ), . . . , RK(ρ) to be communicated from

the transmitter to the K receivers at ρ signal-to-noise ratio.

The degrees of freedom at receiver i achieving rate Ri(ρ) is

defined as

dk = lim
ρ→∞

Ri(ρ)

log(ρ)
. (3)

III. TWO-USER BROADCAST CHANNEL

In this section, we study the two-user broadcast channel

with correlation. We start with a toy example and then extend

it to general case. For each scenario, we propose a scheme

achieving degree of freedom gains over TDMA.

A. Toy Example

For the broadcast channel defined as (1),(2) with two users,

where M = N1 = N2 = 2, and

U1 =

[
1√
2

0 0

0 1√
2

0

]
(4)

U2 =

[
0 1√

2
0

0 0 1√
2

]
(5)

the following degree of freedom region can be achieved⎧⎨
⎩

d1 ≤ 2
T (T − 2)

d1 ≤ 2
T (T − 2)

d1 + d2 ≤ 3
T (T − 2)

(6)

Proof: The transmitted signal is

X =
√
ρ

⎡
⎣1 0 xδ,1

0 1 xδ,0

1 0 xδ,2

⎤
⎦ , (7)

xδ,1 and xδ,2 ∈ C
1×(T−2) contain symbols intended for

User 1 and User 2, xδ,0 ∈ C
1×(T−2) contains symbols that

both User 1 and User 2 can decode.

The received signal at User 1 is

Y1 =
√
ρH̃1

[
1 0 0
0 1 0

]
X+W1 (8)

=
√
ρH̃1

[
1 0 xδ,1

0 1 xδ,0

]
+W1. (9)

User 1 estimates H̃1 during the first 2 time slots and can

decode xδ,1 and xδ,0 during the remaining time slots achieving

2× (T − 2) degrees of freedom.

The received signal at User 2 is

Y2 =
√
ρH̃2

[
0 1 0
1 0 0

]
X+W2 (10)

=
√
ρH̃2

[
1 0 xδ,0

0 1 xδ,2

]
+W2. (11)

User 2 estimates H̃2 during the first 2 time slots and can

decode xδ,0 and xδ,2 during the remaining time slots achieving

2× (T − 2) degrees of freedom.

Because xδ,0 is decoded by both User 1 and User 2, using

time sharing, the degree of freedom pair ( 2
T (T−2), 1T (T−2)),

( 1
T (T−2), 2T (T−2)) can be achieved. Together with the single

user degree of freedom bound [10], the degree of freedom

region of (6) can be achieved, which is larger than the TDMA

achievable region.

This toy example shows that when two users have partially

overlapping correlation eigenspaces, we can achieve more

degrees of freedom than TDMA.

B. Matched number of antennas: M = N1 = N2

1) Orthogonal eigenvectors:
Theorem 1: For the broadcast channel defined in (1) and (2)

with two users, when the columns in U1 and U2 are either

the same or orthogonal with each other and the number of

duplicated columns is r0, define r∗i = ri − r0, i = 1, 2 and

without loss of generality, assume r∗1 ≥ r∗2 . The following

degree of freedom pair is achievable:

D1 = (
r∗1 + r0

T
(T − r∗1 − r0)

r∗2
T
(r∗1 − r∗2) +

r∗2
T
(T − r∗1 − r0)),

(12)

D2 = (
r1
T
(T − r∗1 − r0),

r∗2
T
(r∗1 − r∗2) +

r∗2 + r0
T

(T − r∗1 − r0)),
(13)

D3 = (
(r∗1 + r0)

T
(T − r∗1 − r0),

r0r
∗
1

T
), (14)

D4 = (
r0r

∗
2

T
,
(r∗2 + r0)

T
(T − r∗2 − r0)). (15)

Proof: Define U0 as the submatrix generated by the

columns appearing in both U1 and U2. U∗
i represents the

submatrix of Ui excluding the column vectors appearing in

U0, i = 1,2. Let U = [U∗
1 U0 U∗

2], then UHU = I. We

transmit the signal

X =
√
ρUX̄ =

√
ρU

⎡
⎣ Ir∗1 0 Xδ,1

0 Ir0 Xδ,0

Ir∗2 X2 0 Xδ,2

⎤
⎦ , (16)



where Xδ,1 ∈ C
r∗1×(T−r∗1−r0) and Xδ,2 ∈ C

r∗2×(T−r∗1−r0)

contain symbols intended for User 1 and User 2, Xδ,0 ∈
C

r0×(T−r∗1−r0) contains symbols that both User 1 and User 2

can decode. X2 ∈ C
r∗2×(r∗1−r∗2 ) contains the symbols that

intended for User 2 only.

The received signal at User 1 is

Y1 =
√
ρH̃1[U

∗
1 U0]

HX+W1 (17)

=
√
ρH̃1

[
Ir∗1 0 0
0 Ir0 0

]⎡⎣ Ir∗1 0 Xδ,1

0 Ir0 Xδ,0

Ir∗2 X2 0 Xδ,2

⎤
⎦+W1

(18)

=
√
ρH̃1

[
Ir∗1 0 Xδ,1

0 Ir0 Xδ,0

]
+W1. (19)

User 1 estimates H̃1 during the first (r∗1 + r0) time slots and

can decode Xδ,1 and Xδ,0 during the remaining time slots

achieving (r∗1 + r0)(T − r∗1 − r0) degrees of freedom.

The received signal at User 2 is

Y2 =
√
ρH̃2[U0 U∗

2]
HX+W2 (20)

=
√
ρH̃2

[
0 Ir0 0
0 0 Ir∗2

]⎡⎣ Ir∗1 0 Xδ,1

0 Ir0 Xδ,0

Ir∗2 X2 0 Xδ,2

⎤
⎦+W1

(21)

=
√
ρH̃1

[
0 0 Ir0 Xδ,0

Ir∗2 X2 0 Xδ,2

]
+W1. (22)

User 2 estimates H̃2 during the first r∗2 and (r∗1+1) to (r∗1+r0)
time slots and decode Xδ,0, Xδ,2 and X2 achieving (r∗2(r

∗
1 −

r∗2) + (r0 + r∗2)(T − r∗1 − r0)) degrees of freedom. Because

Xδ,0 is decoded by both User 1 and User 2, the degree of

freedom pair (12) and (13) are achievable via time sharing.

Next consider the product superposition transmit scheme

proposed in [10]. Make User 1 achieving its single user bound.

Transmit signals over the subspace of span([U∗
1 U0]). The

transmit signal is:

X =
√
ρ[U∗

1 U0]X2X1, (23)

where X1 and X2 has the following structure:

X1 = [Ir∗1+r0 Xδ,1], (24)

X̄ =

[
Ir0 Xδ,2

0 Ir∗1

]
, (25)

where Xδ,1 ∈ C
(r∗1+r0)×(T−r∗1−r0) and Xδ,2 ∈ C

r0×r∗1 con-

tains symbol intended for User 1 and User 2. User 1 estimates

its equivalent channel during the first (r∗1 + r0) time slots

and decodes Xδ,1 during the remaining time slots achieving

(r0+r∗1)(T−r∗1−r0) degrees of freedom. User 2 estimates H̄2

during the first r0 time slots and decodes Xδ,2 achieving r0r
∗
1

degrees of freedom. Thus this product superposition scheme

achieves the degree of freedom pair (14). In the same way,

if we make User 2 achieving its single user bound, we can

achieve the degree of freedom pair (15). Thus completes the

proof of Theorem 1.

2) Non-orthogonal Eigenvectors: In this section, we study

the case where the columns in U1 and U2 do not satisfy the

assumption of either the same or orthogonal but span(U1)∩
span(U2) �= ∅.

Theorem 2: For the broadcast channel defined in (1) and

(2) with two users. Define the subspace S = span(U1) ∩
span(U2) and dim(S) = r0 and r∗i = ri − r0, i = 1, 2, the

degree of freedom pair (12)(13)(14)(15) are achievable.

Proof: Define V0 ∈ C
M×r0 , whose columns are one

set of basis of S . Define the subspace Si = span(Ui)\S ,

dim(S) = r∗i and Vi ∈ C
M×r∗i , whose columns are one set

of basis of Si, where i = 1, 2.

According to the definition, we have span(U1) = S + S1,

thus there exists one non-singular matrix T1 such that U1 =
[V1 V0]T1, thus the channel matrix H1 can be decomposed

as follows:

H1 = H̃1U
H
1 = H̃1T

H
1

[
VH

1

VH
0

]
= H̄1

[
VH

1

VH
0

]
, (26)

where H̄1 = H̃1T
H
1 . In the same way, there exists one non-

singular matrix T2 such that:

H2 = H̄2

[
VH

2

VH
0

]
, (27)

where H̄2 = H̃2T
H
2 . Define the matrix V = [V1 V0 V2].

The transmitter sends the signal:

X = V(VHV)−1X̄, (28)

where X̄ has the same structure as (13). Because of the

definition, VHV is invertible. The received signal at User 1

is:

Y1 =
√
ρH̄1[V1 V0]

HX+W1 (29)

=
√
ρH̄1[V1 V0]

HV(VHV)−1X̄+W1 (30)

=
√
ρH̄1

[
Ir∗1 0 0
0 Ir0 0

]
X̄+W1 (31)

=
√
ρH̄1

[
Ir∗1 0 Xδ,1

0 Ir0 Xδ,0

]
+W1. (32)

The received signal at User 2 is

Y2 =
√
ρH̄2[V0 V2]

HX+W2 (33)

=
√
ρH̄2[V0 V2]

HV(VHV)−1X̄+W2 (34)

=
√
ρH̄2

[
0 Ir0 0
0 0 Ir∗2

]
X̄+W2 (35)

=
√
ρH̃2

[
0 0 Ir0 Xδ,0

Ir∗2 X2 0 Xδ,2

]
+W2. (36)

We can achieve the same degree of freedom pair as (12) and

(13). Then apply the product superposition transmit scheme.

Make User 1 achieving its single user bound. Define the matrix

V = [V1 V0] The transmitted signal is:

X =
√
ρV(VHV)−1X2X1, (37)

where X1 and X2 has the following structure:

X1 = [Ir∗1+r0 Xδ,1], (38)



X2 =

[
Ir0 Xδ,2

0 Ir∗1

]
, (39)

where Xδ,1 ∈ C
(r∗1+r0)×(T−r∗1−r0) and Xδ,2 ∈ C

r0×r∗1

contains symbol intended for User 1 and User 2. This product

superposition scheme achieves the same degree of freedom

pair (14). In the same way, if we make User 2 achieving its

single user bound, we can achieve the degree of freedom pair

(15). Thus completes the proof of Theorem 2

C. Unmatched number of antennas: N1, N2 ≤ M

In this section, we study the case where the number of

antennas do not match between transmitter and receivers. We

will use the notations provided in the previous section and

focus on the method of designing the pre-beamforming matrix

V.

1) N1 ≤ r∗1 and N2 ≤ r∗2: When the number of antennas of

two users is small, we can transmit to two users at their single

user degree of freedom bound. Generate submatrices V∗
1 and

V∗
2 by selecting N1 columns from V1 and N2 columns from

V2. Define the matrix V = [V∗
1 V∗

2]. The transmitted signal

is:

X =
√
ρV(VHV)−1X̄, (40)

where X has the following structure:

X̄ =

[
IN1×N1

Xδ,1

IN2×N2
Xδ,2

]
, (41)

where Xδ,1 ∈ C
N1×(T−N1) and Xδ,2 ∈ C

N2×(T−N2) are the

symbols intended for User 1 and User 2. The received signal

at User 1 is:

Y1 =
√
ρH̄1[V1 V0]

HX+W1 (42)

=
√
ρH̄1[V1 V0]

HV(VHV)−1X̄+W1 (43)

=
√
ρH̄1

[
IN1 Xδ,1

]
+W1. (44)

User 1 estimates H̄1 during the first N1 time slots and decodes

Xδ,1 during the remaining time slots achieving N1(T − N1)
degrees of freedom, which meets the single user degree

of freedom bound. Similarly, User 2 can achieve N2(T −
N2) degrees of freedom. Thus the degree of freedom pair

(N1(T−N1)
T , N2(T−N2)

T ) can be achieved.

2) N1 ≥ r∗1 and N2 ≤ r∗2: Generate submatrix V∗
2 by

selecting N2 columns from V2. Define the matrix V =
[V1 V∗

2]. The transmitted signal is:

X =
√
ρV(VHV)−1X̄, (45)

where X has the following structure:

X̄ =

[
Ir∗1 Xδ,1

IN2
Xδ,2

]
, (46)

Xδ,1 ∈ C
r∗1×(T−r∗1 ) and Xδ,2 ∈ C

N2×(T−N2) contains symbol

intended for User 1 and User 2. Thus the degree of freedom

pair (
r∗1
T (T − r∗1),

N2

T (T −N2)) is achievable.

The other corner point can be achieved via the product

superposition transmit scheme. Generate submatrix V∗
0 by

selecting r∗0 = N1 − r0 columns from V0. Define the matrix

V = [V1 V∗
0]. The transmitted signal is:

X =
√
ρV(VHV)−1X2X1, (47)

where X1 and X2 has the following structure:

X1 = [Ir∗1+r∗0 Xδ,1], (48)

X̄ =

[
Ir∗0 Xδ,2

0 Ir∗1

]
, (49)

where Xδ,1 ∈ C
(r∗1+r∗0 )×(T−r∗1−r∗0 ) and Xδ,2 ∈ C

N2×r∗1 )

contains symbol intended for User 1 and User 2. User 1

can achieve (r∗1 + r∗0)(T − r∗1 − r∗0) degrees of freedom.

User 2 achieves min(N2, r
∗
0)r

∗
1 degrees of freedom. Thus the

degree of freedom pair (
(r∗1+r∗0 )

T (T − (r∗1 + r∗0)),
min(N2,r

∗
0 )r

∗
1

T
is achievable.

3) N1 ≤ r∗1 and N2 ≥ r∗2: Choose N1 columns from V1,

generating the submatrix V∗
1 . Define the matrix V = [V∗

1 V2].
The transmitted signal is:

X =
√
ρV(VHV)−1X̄, (50)

where X has the following structure:

X̄ =

[
IN1

Xδ,1

Ir∗2 Xδ,2

]
, (51)

where Xδ,1 ∈ C
n1×(T−r∗1 ) and Xδ,2 ∈ C

N2×(T−N2) contains

symbol intended for User 1 and User 2. Thus the degree of

freedom pair (N1

T (T −N1),
r∗2
T (T − r∗2)) is achievable.

4) N1 ≥ r∗1 and N2 ≥ r∗2: Define r∗0 = min(N1−r∗1 , N2−
r∗2). Choose r∗0 columns from U0, generating the submatrix

V∗
0 . Define the matrix V = [V1 V∗

0 V2]. The transmitter

sends the signal:

X = V(VHV)−1X̄, (52)

where X̄ has the structure.

X̄ =

⎡
⎣ Ir∗1 0 Xδ,1

0 Ir0 Xδ,0

Ir∗2 X2 0 Xδ,2,

⎤
⎦ (53)

where Xδ,1 ∈ C
r∗1×(T−r∗1−r∗0 ) and Xδ,2 ∈ C

r∗2×(T−r∗1−r∗0 )

contains symbols intended for User 1 and User 2, Xδ,0 ∈
C

r ast
0 ×(T−r∗1−r∗0 ) contains symbol that both User 1 and User 2

can decode. X2 ∈ C
r∗2×(r∗1−r∗2 ) contains symbols intended for

User 2 only. (
(r∗1+r∗0 )

T (T − r∗1 − r∗0),
1
T (r

∗
2(r

∗
1 − r∗2) + r∗2(T −

r∗1 − r∗0))) and (
r∗1
T (T − r∗1 − r∗0),

1
T (r

∗
2(r

∗
1 − r∗2) + (r∗2 +

r∗0)(T − r∗1 − r∗0))) are achievable via time sharing. Use the

product superposition transmit scheme. Make User 1 achieving

its single user bound. Define the matrix V = [V1 V∗
0] The

transmitted signal is:

X =
√
ρV(VHV)−1X2X1, (54)

where X1 and X2 has the following structure:

X1 = [Ir∗1+r∗0 Xδ,1], (55)

X̄ =

[
Ir∗0 Xδ,2

0 Ir∗1

]
, (56)



where Xδ,1 ∈ C
(r∗1+r∗0 )×(T−r∗1−r∗0 ) and Xδ,2 ∈ C

r∗0×r∗1

contains symbol intended for User 1 and User 2. Thus this

product superposition achieves the degree of freedom pair

(
(r∗1+r∗0 )

T (T − r∗1 − r∗0),
r∗0r

∗
1

T ). In the same way, if we make

User 2 achieving its single user bound, we can achieve the

degree of freedom pair (
r∗0r

∗
2

T ,
(r∗2+r∗0 )

T (T − r∗2 − r∗0)).

IV. NUMERICAL RESULTS

Fig. 1. Degrees of freedom region with r∗2 = 1

Fig. 2. Degrees of freedom region with r∗2 = 2

In this section, we compare the proposed scheme with

TDMA transmission demonstrating the two-user achievable

degrees of freedom region for different r∗2 , the dimension of

the correlation matrix of User 2. We consider the case of

M = N1 = N2 = 10 and T = 20. In Fig. 1, r∗1 = 1,

the corner points (4.8,0.75) is achieved via pre-beamforming

proposed in this paper and in Fig. 2, r∗2 = 2, the corner

points (4.8,0.8) is achieved via product superposition. The

corner points is achieved by pre-beamforming or product

superposition depending on the coherence time and the dimen-

sion of the eigenspace. Comparing with the dimension of the

eigenspace, when the coherence time is long, pre-beamforming

has more gains, otherwise product superposition provides more

achievable degree of freedom.

V. CONCLUSION

It has been shown that Correlation at the transmitter side

can be beneficial in various scenarios in MIMO broadcast

channel. In this paper, we study the case where the transmitter

serves two users with partially overlapped eigenspaces of

the channel correlation matrices. The proposed pilot-based

signaling achieves degrees of freedom gains over TDMA trans-

mission. This scheme transmits the pre-beamformed signal

and allows them to decode their own symbol successfully. We

also combined this pre-beamforming scheme with the product

superposition technique, obtaining new achievable degree of

freedom region. This achievable scheme is also promising to

be extended to broadcast channel with multiple users.
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