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Abstract
Predator–prey interactions with stochastic forcing have been extensively investigated
in the literature.However there are notmany investigations of suchmodels, that include
prey defense. The goal of the current manuscript is to investigate a stochastic predator–
prey model with mutual interference, and various Holling type functional responses,
where the prey is able to release toxins as defense against a predator. This can also
be generalized to include group or herd defense, toxin production and mimicry. We
establish local and global existence for the stochastic model, and perform various
numerical simulations to support our theoretical results. Our key result is that we
have globally existing solutions independent of the magnitude of the toxin release
parameter, or the predation rates. We also show that large enough noise intensity in
solely the prey, can lead to extinction in the noisy model, for both species, whilst there
is persistence in the deterministic model.
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1 Introduction

In recent years, applied mathematicians and ecologists have been interested in inves-
tigating the dynamical properties of biological models. Nonlinear factors such as
functional response and mutual interference are among several crucial factors affect-
ing biological models. Predator–prey models with varied functional responses and
mutual interference types have been of great interest lately. Mutual interference [1,2]
is defined as the behavioral interactions among feeding organisms, that reduce the
time that each individual spends obtaining food, or the amount of food each individual
consumes. It occurs most commonly where the amount of food is scarce, or the popu-
lation of feeding organisms is large [3]. Wang [4,5] studied the existence, permanence
and global asymptotic stability for a predator–prey system with mutual interference.
Wang and his group [6,7] also obtained some sufficient conditions, for the permanence
and global attractivity of positive periodic solution for a Volterra model, and delayed
predator–prey model with mutual interference. Periodic solutions, permanence and
global attractivity of a delayed impulsive predator–prey system has also been studied
in [8]. Recently, Chen [9] investigated the permanence of the corresponding discrete
periodic system model

dx

dt
= x(r1(t) − b1(t)x) − c(t)xym/(k + x),

dy

dt
= y(−r2(t) − b2(t)x) + kc(t)xym−1/(k + x),

where x (prey) and y (predator) are population densities and all parameter are pos-
itive. Lin and Chen [10] have studied the almost periodic solution for system with
Beddington-DeAngelis functional response. Wang et al. [11] have investigated the
existence and global attractivity of positive periodic solution to the above system with
Holling type III functional response.

All biological processes are fundamentally affected by enviromental white noise. In
stochastic modeling, the environmental noise is conceived as stochastic fluctuations.
May [12] analyzed a biological systemunder stochastic fluctuations, consideringwhite
noise forcing for the population. He observed that when the population deviates more
from equilibrium point, the system shows irregular behavior (i.e., instability). Thus,
after one investigates a deterministic system, extending the results to the stochastic
case becomes an important research endeavor. Upadhyay et al. [13] investigated the
influence of environmental noise on a fairly realistic ecological model with generalist
top predator and showed the importance of the noise amplitude, the trophic level
susceptibility of populations to environmental noise. Liu and Wang [14–16] studied
the population dynamics of a Lotka Volterra cooperative model, two prey one predator
system, with random perturbation and persistence-extinction dynamics in a stochastic
single species model, with regime switching in a polluted environment. Rudnicki [17]
studied the long time behavior of a stochastic prey–predator model. Ji et al. [18]
analysed a stochastic predator–prey model, with modified Leslie-Gower and Holling
type II schemes. Upadhyay and Agrawal [19] studied the effect of mutual interference
on the dynamics of a predator–prey system, with gestation delay. Du [20] considered
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a stochastic predator–prey model with mutual interference and studied the existence,
extinction and its global asymptotic stability. Recently Du et al. [30,32] studied the
dynamical behavior for a stochastic predator–prey model with Hassell-Varley type
functional response, as well as investigated a neural network approach.

In the works outlined above, the classical setting of predator–prey models were
considered. That is the predator feeds on a prey species according to some functional
response, and dies out due to a natural death rate. The loss in the prey population is due
to predation, and often times the prey population is logistically controlled. However,
in most cases the prey species is able to fight back, due to inducible defenses that
it possesses. These might include group or herd defense, toxin production, mimicry
etc. [3]. Thus understanding the dynamics of systems with prey defense, in a noisy
environment is an interesting scientific question, but not well studied in the literature.
The goal of the current manuscript is to investigate a stochastic predator–prey model
with mutual interference, and various Holling type functional responses, where the
prey is able to release toxins, as a form of defense against the predator. Our primary
contributions in the manuscript are

(1) We formulate and propose a two species predator–prey model, with a general
form of mutual interference and toxin release effect. The model is subjected to
stochastic forcing.

(2) We show global existence of solutions to the model via Theorem 6.1. This result
is derived independent of the relation between the predation rate w1 and the toxin
release parameter θ . That is, we do not require the restriction θ > w1, for global
existence. We provide biological justification to this end, see remark 1.

(3) We investigate extinction criteria in the model, finding that the stochastic forcing
can be responsible for extinction of both species, under certain conditions. This
is shown via Theorem 5.1.

(4) We carry out extensive numerical simulations to support our analytical results.

2 Model system

In this paper,we consider the following predator–preymodelwithmutual interferences

dx1
dt

= a1x1 − b1x
2
1 − w0

(
x1

x1 + d

)m 1

xm 2
2 ,

dx2
dt

= −a2x2 − θ f (x1)x2 + w1

(
x1

x1 + d

)m 1

xm 2
2 ,

There are few assumptions we place on the toxin release function f , and the mutual
interference paramaters mi .

• 0 < mi ≤ 1, i = 1, 2, as per literature on mutual interference [1,2].
• f depends only on prey density, that is f = f (x1).
• f is identically 0, at 0 prey density. So f (0) = 0.
• f ∈ C0(�+), and grows sublinearly. That is, | f (x1)| ≤ Cx1, where C is a pure
constant.
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Table 1 List of parameters used
in the model

Symbols Meaning

x1 Prey population

x2 Predator population

f (x1) Toxin release function

a1 Per capita rate of self-reproduction for the prey

a2 Intrinsic death rate of the predator population in the
absence of the only food x1

w0 Maximum rate of per capita removal of prey

w1 Measure efficiency of biomass conversion from prey to
predator

b1 Effect of the density of one species on the rate of growth
rate of other

d Value of population density at which per capita removal
rate is half of x1

θ Rate of toxin released by prey

mi Mutual interference parameter that model the intraspe-
cific competition amongpredatorswhenhunting for preys

All parameters considered are positive constants

• f is saturating in x1, that is
d f
dx1

decreases, (or is at least nonincreasing) as x1
increases.

• Thus we can assume standard Holling type responses for the toxin release function
f .

All parameters in the above model are positive constants.
The above model together with x(0) = x0 > 0, y(0) = y0 > 0, will be referred to as
model (DM). The variables and parameters used in the model are defined in Table 1:

The deterministic system assumes that the parameters in themodel are all determin-
istic, irrespective of the environmental fluctuations. Hence they have some limitations
in mathematical modeling of ecological systems, as they are unable to fit data well,
and thus, to predict the future dynamics of the system accurately. May [12] has pointed
out that because of environmental noise, the birth rate, carrying capacity, competition
coefficient and other parameter involved in the system always exhibit random fluc-
tuations. Thus we construct a stochastic model by introducing a noise term, into the
growth terms of both the predator and prey populations. Essentially the growth rate can
be written as an average growth rate plus an error term. In general, by the well-known
central limit theorem, the error term follows a normal distribution; thus for short cor-
relation time, we can approximate the error term by a white noise, σi (t)

dBi
dt , where

σ 2
i (t) is a continuous bounded function on �+ representing the intensity of the noise

at time t and dBi
dt is a standard white noise. Then corresponding to the deterministic

system (DM), we obtain the following stochastic system (SM).

dx1 =
[
a1x1 − b1x

2
1 − w0

(
x1

x1 + d

)m1

xm2
2

]
dt + σ1(t)x1dB1(t), (1a)

dx2 =
[

− a2x2 − θ f (x1)x2 + w1

(
x1

x1 + d

)m1

xm2
2

]
dt + σ2(t)x2dB2(t), (1b)
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where σi (t) > 0 ∀i and B1(t), B2(t) are statistically independent Brownian motions
at time, t . We show that the system admits a unique positive asymptotically global
solution, starting from a positive initial value, with different functional responses. The
solutions are interpreted in the Ito sense [21,23]. Also note that in the ensuing analysis
C,Ci , 1 ≤ i ≤ 5, are generic pure constants, and can change in value from line to
line, and also within the same line if so required.

3 Existence and uniqueness of global positive solution

In this section, we will present some results on existence and uniqueness of a global
positive solution of the system (SM). Our approach to study the properties of (SM)
is a combination of some stochastic calculus and martingale methods. If f (t) is a
continuous bounded function on �+, define

f u = sup
t∈�+

f (t),

f l = inf
t∈�+

f (t).

Additionally, assume there exist positive constants σ l
1, σ

u
1 , σ l

2, σ
u
2 , such that

σ l
1 < σ1(t) < σ u

1 ,∀t ∈ �+
σ l
2 < σ2(t) < σ u

2 ,∀t ∈ �+

We first present some lemmas that give us almost sure eventual boundedness of the
state variables x1, x2.

Lemma 3.1 Assume (x1(t), x2(t)) are solutions to system (SM) then x1 ≤ K1, x2 ≤
K2, a.s.

Proof We provide a few details for x1, the result for x2 follows similarly. Via positivity
of solutions and the stochastic comparison principle, see [26] and the referenceswithin,
it follows that

x1(t) ≤ �(t), t ∈ [0, τ ), a.s. (2)

where �(t) is the solution to the following SDE,

d� =
[
a1� − b1�

2
]

+ σ1(t)�dB1(t) (3)

Since global existence for (3) is standard [21,23], clearly τ = ∞, a.s. Also we have

via standard results [23] that if a <
(σ1)

2

2 then limt→∞ �(t) → 0, a.s.. And if a >

(σ1)
2

2 , then one has persistence in mean, that is limt→∞ 1
t

∫ t
0 �(s)ds = a1− (σ1)2

2
b1

, a.s.
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Thus one easily infers

lim
t→∞E[x1] ≤ lim

t→∞E[�] = a1 − (σ1)
2

2

b1
, (4)

and so setting K1 = a1− (σ1)2

2
b1

, we obtain

lim
t→∞ x1 ≤ K1, a.s. (5)

The almost sure eventual bound for x2 follows similarly. �	
Theorem 3.2 There is a unique positive local solution (x1(t), x2(t)) for t ∈ [0, τe) to
system (SM) almost surely (a.s.) for the initial x1(0) > 0 , x2(0) > 0 where τe is the
explosion time.

Proof Let us assume x1(t) = eu(t) and x2(t) = ev(t). Therefore, u(t) = ln (x1(t)) and
v(t) = ln (x2(t)). Then by using Itô’s formula [21] we obtain

du(t) = 1

x1

{
x1

(
a1 − b1x1 − w0

xm1−1
1

(x1 + d)m1
xm2
2

)
dt + σ1x1dB1 (t)

}

+ 1

2
(σ1x1)

2

(
−1

x21

)
dt,

=
(
a1 − b1x1 − w0

xm1−1
1

(x1 + d)m1
xm2
2 − 1

2
σ 2
1

)
dt + σ1dB1 (t) ,

=
(
a1 − b1e

u(t) − w0
e(m1−1)u(t)(
eu(t) + d

)m1
em2v(t) − 1

2
σ 2
1

)
dt + σ1dB1 (t) .

Similarly,

dv(t) = 1

x2

{
x2

(
−a2 − θ f (x1) + w1

(
x1

x1 + d

)m1

xm2−1
2

)
dt + σ2x2dB2 (t)

}

+ 1

2
(σ2x2)

2

(
−1

x22

)
dt,

=
(

−a2 − θ f (x1) + w1

(
x1

x1 + d

)m1

xm2−1
2 − 1

2
σ 2
2

)
dt + σ2dB2 (t) ,

=
(

−a2 − θ f (eu(t)) + w1

(
eu(t)

eu(t) + d

)m1

e(m2−1)v(t) − 1

2
σ 2
2

)
dt + σ2dB2 (t) ,

with u(0) = ln x1(0), v(0) = ln x2(0).
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Therefore the system (SM) becomes

du(t) =
(
a1 − b1e

u(t) − w0
e(m1−1)u(t)(
eu(t) + d

)m1
em2v(t) − 1

2
σ 2
1

)
dt + σ1dB1 (t) ,

dv(t) =
(

−a2 − θ f (eu(t)) + w1

(
eu(t)

eu(t) + d

)m1

e(m2−1)v(t) − 1

2
σ 2
2

)
dt + σ2dB2 (t) ,

along with u(0) = ln x1(0), v(0) = ln x2(0) , at t = 0.
We denote the above system along with the initial conditions as (SM). Note that the

coefficients of (SM) satisfy the local Lipschitz condition, then for given initial values
u(0) > 0, v(0) > 0 there is a unique maximal local solution u(t), v(t) on [0, τe),
where τe is the explosion time of the solution. By Itô’s formula [21], x1(t) = eu(t),
x2(t) = ev(t) is the positive local solution to (SM) with initial value x1(0) > 0,
x2(0) > 0. �	

Theorem 3.3 For any given initial value (x1(0), x2(0)) ∈ �2+ there is a unique solution
(x1(t), x2(t)) on t ≥ 0 to (SM), and this solution will remain in �2+ with probability
1, where �2+ = {

(x, y) ∈ �2 |x, y > 0
}
.

Proof For convenience, let

F(x1, x2) = x1

(
a1 − b1x1 − w0

xm1−1
1

(x1 + d)m1
xm2
2

)
,

G(x1, x2) = x2

(
−a2 − θ f (x1) + w1

(
x1

x1 + d

)m1

xm2−1
2

)
.

Let n0 > 0, be large enough, such that for x1(0) and x2(0) given, they lie in the interval[
1
n0

, n0
]
. For each integer n > n0, define the stopping times [15]:

τn = inf

{
t ∈ [0, τe] : x1(t) /∈

(
1

n
, n

)
or x2(t) /∈

(
1

n
, n

)}
.

Clearly, τn is increasing as n → ∞. Let τ∞ = limn→∞ τn , where τ∞ ≤ τe. We only
need to show that τ∞ = ∞. If this statement is false, there exist constants T < ∞ and
ε ∈ (0, 1) such that P {τ∞ ≤ T } > ε. Consequently, there exists an integer n1 ≥ n0
such that

P {τn ≤ T } > ε, n ≥ n1. (6)

Define a C2 function V : �2+ → �+ by

V (x1, x2) = (√
x1 − 1 − 0.5 ln x1

)+ (√
x2 − 1 − 0.5 ln x2

)
.
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If (x1, x2) ∈ �2+, then Itô’s formula [21] yields

dV (x1, x2) = dV

dx1
dx1 + 1

2

d2V

dx21
(dx1)

2 + dV

dx2
dx2 + 1

2

d2V

dx22
(dx2)

2,

=
(

1

2
√
x1

− 0.5

x1

)(
F(x1, x2)dt + σ1x1dB1

)+ 1

2
(σ 2

1 x
2
1 )(

−1

4
x−3/2
1 + 0.5

x21

)
dt

+
(

1

2
√
x2

− 0.5

x2

)
(G(x1, x2)dt + σ2x2dB2) + 1

2
(σ 2

2 x
2
2 )(

−1

4
x−3/2
2 + 0.5

x22

)
dt, (7)

= 0.5
(
x−0.5
1 − x−1

1

)
F(x1, x2)dt + 1

8
σ 2
1

(
−x0.51 + 2

)
dt

+ 0.5σ1(x
0.5
1 − 1)dB1

+ 0.5
(
x−0.5
2 − x−1

2

)
G(x1, x2)dt + 1

8
σ 2
2

(
−x0.52 + 2

)
dt

+ 0.5σ2(x
0.5
2 − 1)dB2.

Now,

(
x−0.5
1 − x−1

1

)
F(x1, x2) =

(
x−0.5
1 − x−1

1

)(
a1x1 − b1x

2
1 − w0x

m1
1

(x1 + d)m1
xm2
2

)
,

= a1x
0.5
1 − b1x

1.5
1 − w0

xm1−0.5
1

(x1 + d)m1
xm2
2 − a1 + b1x1

+ w0
xm1−1
1

(x1 + d)m1
xm2
2 ,

≤ K1, a.s.

This follows via Lemma 3.1, and here we assume sufficient time has passed so the
bound is achieved (the time here may depend on the IC, that is large IC may require
a larger time for the absorption). Similarly, we have

(x−0.5
2 − x−1

2 )G(x1, x2) = (x−0.5
2 − x−1

2 )

(
−a2x2 − θ f (x1)x2 + w1

(
x1

x1 + d

)m1
x
m2
2

)
,

= − a2x
0.5
2 − θ f (x1)x2 + w1

(
x1

x1 + d

)m1
x
m2−0.5
2 + a2 + θ f (x1)

−w1

(
x1

x1 + d

)m1
x
m2−1
2 ,

≤ K2, a.s.

This follows via Lemma 3.1. Here K1 and K2 are constants as in Lemma 3.1. The
terms 1

8σ
2
1

(−x0.51 + 2
)
dt and 1

8σ
2
2

(−x0.52 + 2
)
dt are used as follows, we bring the
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1
8σ

2
1

(−x0.51

)
dt and 1

8σ
2
2

(−x0.52

)
dt terms to the left and use their positivity, and inte-

grate both sides of the above Eq. (7) from 0 to τn ∧ T and then take expectation on
both sides to yield

E V (x1 (τn ∧ T ) , x2 (τn ∧ T )) + 1

8
E

[∫ τn∧T

0
σ 2
1 (t)x0.51 dt

]

+ 1

8
E

[∫ τn∧T

0
σ 2
2 (t)x0.52 dt

]

≤ V (x1 (0) , x2 (0)) + (K1 + K2 + K3 + K4) E (τn ∧ T )

+ 0.5σ1E

[∫ τn∧T

0
x0.51 dB1

]
+ 0.5σ2E

[∫ τn∧T

0
x0.51 dB2

]
. (8)

Here K3, K4 are the bounds on the σ 2
1 (t), σ 2

2 (t) respectively. The control of the Itô’s
integral terms is handled via the embedding of L2 ↪→ L1, the Ito isometry [23], and
a standard application of Holder and Young’s inequality,

0.5σ1E

[∫ τn∧T

0
x0.51 dB1

]

≤ CE

[(∫ τn∧T

0
x0.51 dB1

)2]

= CE

[∫ τn∧T

0
x1ds

]

≤ b1
2
E

[∫ τn∧T

0
x1.51 ds

]
+ K5(τn ∧ T ).

The first term in the above can be absorbed into the left hand side with the same term,
with coefficient b1. The Ito integral involving dB2 is handled in the same way, and
there is a bound generated via a constant K6. This finally yields

E V (x1 (τn ∧ T ) , x2 (τn ∧ T )) (9)

≤ V (x1 (0) , x2 (0)) + (K1 + K2 + K3 + K4 + K5 + K6) E (τn ∧ T ) (10)

Now, we set �n = {τn ≤ T }. So, by Eq. (6), we have P (�n) ≥ ε. Note that for
each w ∈ �n , there is some i such that xi (τn, w) equals to n or 1

n for i = 1, 2. Hence
V (x1 (τn ∧ T ) , x2 (τn ∧ T )) is no less than

min
{√

n − 1 − 0.5 ln n ,
√
1/n − 1 − 0.5 ln 1/n

}
.

So by Eq. (8), we have

V (x1 (0) , x2 (0)) + (K1 + K2 + K3 + K4 + K5 + K6) E (τn ∧ T )

≥ E
[
1�n(w)V (x1 (τn) , x2 (τn))

]
,

> εmin

{√
n − 1 − 0.5 ln n ,

√
1/
n − 1 − 0.5 ln 1

/
n

}
,
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where 1�n is the indicator function of �n . Letting n → ∞, leads to a contradiction

∞ > V (x1 (0) , x2 (0)) + (K1 + K2 + K3 + K4 + K5 + K6) T = ∞.

This completes the proof. �	

4 Persistence

In this section, persistent in time average of the model (1a)–(1b) is intended to be
proved under certain conditions on the parameters.

Definition 4.1 The model (1a)–(1b) is said to be persistent in time average if for all
i = 1, 2

lim inf
t→∞

1

t

∫ t

0
xi (s)ds > 0, a.s.

The lemma below from Xia et al. [22] is used to prove persistent in time average
for (1a)–(1b).

Lemma 4.2 Let f ∈ C[[0,∞) × �, (0,∞)], F(t) ∈ ((0,∞) × �,R). If there exist
positive constants λ0 and λ such that

log f (t) ≥ λt − λ0

∫ t

0
f (s)ds + F(t), t ≥ 0, a.s.,

and

lim
t→∞

F(t)

t
= 0, a.s.,

then

lim inf
t→∞

1

t

∫ t

0
f (s)ds ≥ λ

λ0
, a.s.

Proof This proof is shown in Lemma 17 of [22].

Theorem 4.3 Let us assume a1−k−0.5σ 2
1 (s) > 0, where k is a positive constant, that

is an upper bound for w0
d E[x2], then the solution (x1(t), x2(t)) of the system (1a)–(1b)

with any given initial value (x1(0), x2(0)) ∈ �2+ is persistent in time average.

Proof Using Itô’s formula on (1a), we obtain

d[ln x1(t)] =
[
a1 − b1x1(t) − w0

xm1−1
1 (t)

(x1(t) + d)m1
xm2
2 (t) − 1

2
σ 2
1 (t)

]
dt

+ σ1(t)dB1(t). (11)
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Integrating both sides of Eq. (11) from 0 to t yields,

ln
(
x1(t)

/
x1(0)

)
t

=
∫ t
0

(
a1 − 0.5σ 2

1 (s)
)
ds

t
− b1

∫ t
0 x1(s)ds

t
+
∫ t
0 σ1(s)dB1(s)

t

−
∫ t
0 w0

x
m1−1
1 (s)

(x1(s)+d)m1 x
m2
2 (s)ds

t
.

(12)

But noting via positivity, Theorem 3.3 and the embedding of L1 ↪→ Lm2 we have

w0
xm1−1
1 (s)

(x1(s) + d)m1
xm2
2 (s) ≤ w0

d
xm2
2 (s) ≤ k, a.s

for some positive constant k, then

−
∫ t
0 w0

x
m1−1
1 (s)

(x1(s)+d)m1 x
m2
2 (s)ds

t
≥ −

∫ t
0 kds

t
, a.s

Thus

ln
(
x1(t)

/
x1(0)

)
t

≥
∫ t
0

(
a1 − 0.5σ 2

1 (s)
)
ds

t
− b1

∫ t
0 x1(s)ds

t
+
∫ t
0 σ1(s)dB1(s)

t
−
∫ t
0 kds

t
(13)

=
∫ t
0

(
a1 − k − 0.5σ 2

1 (s)
)
ds

t
− b1

∫ t
0 x1(s)ds

t
+
∫ t
0 σ1(s)dB1(s)

t
. (14)

Moreover, Mi = ∫ t
0 σi (s)dBi (s) is a local martingale whose quadratic variation is

given by

〈Mi , Mi 〉t =
∫ t

0
σ 2
i (s)ds ≤ ||σ ||2∞t .

The above bound allows us to apply the strong law of large numbers for Martingales
[21] to obtain

lim
t→∞

Mi (t)

t
= 0, a.s. (15)

Applying Lemma 4.2 and condition a1 − k − 0.5σ 2
1 (s) > 0, we obtain the following

result

lim inf
t→∞

1

t

∫ t

0
x1(s)ds ≥ 1

b1
lim inf
t→∞

1

t

∫ t

0

(
a1 − k − 0.5σ 2

1 (s)
)

(s)ds > 0, a.s.
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Now assume that x1 persists. We can use standard comparison on the predator
equation to obtain

dx2 =
(

−a2x2 − θ f (x1)x2 + w1

(
x1

x1 + d

)m 1

xm 2
2

)
dt + σ2(t)x2dB2(t),

≥
(

−a2x2 − θGx2 + w1

(
ε

G + d

)m 1

xm 2
2

)
dt + σ2(t)x2dB2(t),

= (−C1x2 + C2x
m 2
2

)
dt + σ2(t)x2dB2(t), where C1,C2 > 0. (16)

This follows via the persistence of x1, the boundedness of x1 via Theorem 3.3, and
the assumptions on the toxic release function. We now consider a subsolution x∗

2 that
solves

dx∗
2 = (−C1x

∗
2 + C2(x

∗
2 )

m2)dt + σ l
2x

∗
2dB2(t),

Our goal is to derive conditions under which x∗
2 will persist, as then x2 will persist

by simple comparison. Via standard methods for SDE see [23], the above equation is
easily solved in closed form. We have

x∗
2 (t) = e

(
σ l
2B2(t)−

(σ l2)2

2 t

)

×
[(

e−C1(1−m2)t (x∗
2 (0))

1−m2
)

+ e−C1(1−m2)t

∫ t

0
eC1(1−m2)s

(
e−(1−m2)σ

l
2B2(t)+(1−m2)(σ

l
2)

2s)
)
ds

] 1
1−m2

(17)

Under conditions that x∗
2 (t) given by the above will persist, we have by simple

comparison that x2 will persist. This completes the proof. �	

5 Extinction criteria

The following theorem shows that under certain sufficient conditions the environ-
mental noise may drive the predator and prey populations to extinction, whilst the
equilibrium populations are stable in the absence of the noise.

Theorem 5.1 Assume that we have Trace (J) < 0 and det (J) > 0, where J is the lin-
earized variational matrix of system (DM) around the interior equilibrium E∗(x∗

1 , x
∗
2 ).

Further assume we choose σ1, a1 s.t a1 < 1
2t

∫ t
0

(
σ 2
1 (s)

)
ds. Then the equilibrium pop-

ulations to (DM) will be locally asymptotically stable, whilst the populations x1(t)
and x2(t), that are solutions to (SM), will be driven to extinction exponentially, with
probability one.
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Proof The linearized variationalmatrix of system (SM) around the interior equilibrium
E∗(x∗

1 , x
∗
2 ) is

J =
⎡
⎢⎣

a1 − 2b1x∗
1 − dm1w0x∗m2

2 x∗m1
1

x∗
1 (x∗

1+d)m1+1 −m2w0x∗
2
m2−1x∗m1

1
(x∗

1+d)m1

−θ
d f (x∗

1 )

dx∗
1

x∗
2 + m1dw1x∗

2
m2

(
x∗
1
m1−1

(x∗
1+d)m1+1

)
−θ f (x∗

1 ) − a2 + m2w1x∗
2
m2−1

(
x∗
1

x∗
1+d

)m1

⎤
⎥⎦

=
[
J11 J12
J21 J22

]
,

with

Trace (J) = a1 − a2 − 2b1x
∗
1 − θ f (x∗

1 ) + m2w1x
∗m2−1
2

(
x∗
1

x∗
1 + d

)m1

− dm1w0x
∗m2
2

(
x∗
1
m1

x∗
1 (x

∗
1 + d)m1+1

)
,

and

det (J) =
(
a1 − 2b1x

∗
1 − dm1w0x

∗m2
2 x∗m1

1
x∗
1 (x∗

1 + d)m1+1

)(
− θ f (x∗

1 ) − a2 + m2w1x
∗
2
m2−1

(
x∗
1

x∗
1 + d

)m1
)

−
(

−m2w0x
∗
2
m2−1x∗m1

1
(x∗

1 + d)m1

)(
− θ

d f (x∗
1 )

dx∗
1

x∗
2 + m1dw1x

∗
2
m2

(
x∗
1
m1−1

(x∗
1 + d)m1+1

))
.

Thus the local stability of the interior equilibrium (x∗
1 , x

∗
2 ) requires that we have

Trace (J) < 0 and det (J) > 0. Assume, that the above criteria are met, then (x∗
1 , x

∗
2 )

are locally asymptotically stable in the absence of noise. Now define V (x) = c1x1 +
c2x2, then by Itô’s formula, we have (11).

Now, by the Eqs. (11), (15), and by using the condition a1 < 1
2t

∫ t
0

(
σ 2
1 (s)

)
ds, we

obtain

lim
t→∞ sup

ln (x1(t))

t
≤
∫ t
0

(
a1 − 0.5σ 2

1 (s)
)
ds

t
< 0, a.s

We show extinction for x2, using a simple approach. Under the criteria posed in
Theorem 5.1, x1 goes to extinction, a.s, thus the equation for x2 reduces to

dx2 = − a2x2dt + σ2(t)x2dB2(t),

This follows via the assumption on the toxic release function f . Standard compar-
ison now yields

dx2 ≤ − a2x2dt + σ u
2 x2dB2(t),

Note that the solution to

dx∗
2 = −a2x

∗
2dt + σ u

2 x
∗
2dB2(t),
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goes to extinction trivially by standard theory [23], if −a2 <
(σ u

2 )2

2 . But this follows
as a2 > 0. Thus x∗

2 goes to extinction, a.s, and then so does x2 by simple comparison.
This proves the theorem. �	

It is important to note that the extinction result depends solely on the noise intensity
in the prey species σ1(t). It is independent of the magnitude of noise intensity in the
predator species σ2(t), or the magnitude of toxin release θ .

6 Global existence

Theorem 6.1 Let x1(t), x2(t) be a solution to (SM) with positive initial conditions
(x1(0), x2(0)). If a1 < 1

2t

∫ t
0

(
σ 2
1 (s)

)
ds, then there exist constants C4 and C5 depend-

ing only on the parameters and initial conditions, such that

E [x1(t)] ≤ C4, E [x2(t)] ≤ C5.

Proof We first multiply the equation for x1 in (1a) by w1, and the equation for x2 in
(1b) by w0. Then using Itô’s lemma [21] we obtain

d[w1 ln x1(t)]

=
[
w1a1 − w1b1x1(t) − w1w0

xm1−1
1 (t)

(x1(t) + d)m1
xm2
2 (t) − 1

2
w1σ

2
1 (t)

]
dt

+w1σ1(t)dB1(t). (18)

d [w0 ln x2(t)]

=
[
−w0a2 − w0θ f (x1(t)) + w1

(
x1(t)

x1(t) + d

)m1

x (m2−1)
2 (t) − 1

2
w0σ

2
2 (t)

]
dt

+w0σ2dB2(t). (19)

We now integrate (18), (19) in time from [0, T ] and take expectations to yield

w1E[ln x1(T )] + w1b1

∫ T

0
E[x1(t)]dt + 1

2
w1

∫ T

0
σ 2
1 (t)dt

= a1w1T − w1w0

∫ T

0
E[ xm1−1

1 (t)

(x1(t) + d)m1
xm2
2 ]dt + w1E[ln x1(0)] (20)

and

w0E[ln x2(T )] + w0b1

∫ T

0
E[θ f (x1(t))]dt + 1

2
w0

∫ T

0
σ 2
2 (t)dt + w0a2T

= w1w0

∫ T

0
E[ xm1−1

1 (t)

(x1(t) + d)m1
xm2
2 ]dt + w0E[ln x2(0)]. (21)
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We can now add up (20) and (21), use the condition that a1 < 1
2t

∫ t
0

(
σ 2
1 (s)

)
ds to

obtain,

w1E[ln x1(T )] + w0E[ln x2(T )] ≤ w1E[ln x1(0)] + w0E[ln x2(0)]. (22)

Thus we obtain
E[ln x1(T )] ≤ C3, E[ln x2(T )] ≤ C3, ∀T . (23)

Here C3 depends only on initial conditions and parameters in the problem. Thus,
trivially we can ascertain that,

E[x1(T )] ≤ C4, E[x2(T )] ≤ C5, ∀T . (24)

We can take the limit in above as T → ∞, and the bound still holds, as the constants
C4 andC5, is independent of T . ThusE[x1(t)],E[x2(t)] cannot blow-up in finite time,
because if without loss of generality say x1 did, we would have

lim
t→T ∗<∞E[ln x1(t)] = E[ lim

t→T ∗ ln(x1(t))] = E[ln( lim
t→T ∗ x1(t))] = ∞,

but this is a contradiction via (23). And thus we have global existence.

Remark 1 Note that the above result holds independent of the relation between θ and
w1. That is we do not need that θ > w1, for global existence. If we enforce θ > w1
then one has very strong damping in predator population—this leads decline of the
predators, and thus global existence easily follows via simple comparison method.
Also such a restriction might not be interesting biologically, because it will probably
always lead to predator extinction, and prey going to carrying capacity. Thus will not
be a feasible biological model for ecosystems where one observes persistence. Also,
θ < w1, is indicative of the fact that the predator gains more from his hunting efforts,
than he his harmed by the prey release—which provides a net positive feedback to the
predator population. If we restricted θ > w1, then in a sense we are saying that there is
very strong prey defense mechanism, and in a sense the particular prey is not huntable
or optimal for the predator to hunt. In this setting the predator prey formulism might
not make sense from a optimal foraging theory as well [31], which says that predators
want the most “bang” for the “buck”. �	

7 Numerical simulation results

In this section, we will use the semi-implicit Milstein method described in [24] to
give some numerical finding to system (SM). The semi-implicit Milstein method is
used to approximate the Itô′s stochastic ordinary differential equation given in system
(SM), with a time-step size of�t = 0.001. This reduces system (SM) into a difference
equation given as
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Fig. 1 Solution of system (SM) with Holling type I functional response with m1 > m2 where (blue line)
represents the prey behavior and (black line) represents the predator behavior. a–c are 3 sample runs of
x1(t) and x2(t). Hence a is when k = 1, b is when k = 2 and c is when k = 3. d, e are the mean and
standard deviation of x1(t) and x2(t) and f being the behavior of population size of x1(t) and x2(t) where
σ1 = σ2 = 0.0 and θ = 0.25. Parameter set given in Table 2. (Color figure online)

xn+1
1 − xn1 =

[
a1x

n+1
1 − b1(x

n+1
1 )2 − w0

(
xn+1
1

xn+1
1 + d

)m1(
xn+1
2

)m2

]
�t

+ σ1xn1�B1 + σ 2
1

2
xn1

(
(�B1)

2 − �t

)
,

(25)

xn+1
2 − xn2 =

[
− a2x

n+1
2 − θ f (xn+1

1 )xn+1
2 + w1

(
xn+1
1

xn+1
1 + d

)m1(
xn2
)m2

]
�t

+ σ1xn2�B2 + σ 2
1

2
xn2

(
(�B2)

2 − �t

)
,

(26)

where xn1 = x1(tn) and xn2 = x2(tn) are the discretization of the solutions at discrete
time tn . Also �B1 = z1

√
�t and �B2 = z2

√
�t , where z1, z2 ∼ N (0, 1) are

independent normally distributed randomnumberswithmean 0 and standard deviation
1. These random numbers are generated using Box–Muller–Wiener algorithm [25].

Remark 2 The semi-implicit Milsten scheme used to advance the difference equation
in time necessitates solving a nonlinear system of equations at each time-step. This is
achieved through a Newton–Raphson method.

Wenext investigate the asymptotic stability of system (SM) by studying the behavior of
θ on system (SM) as shown on Figs. 1, 2 and 3. Numerical experiments are conducted
for fixed values of b1, w0, w1, d, a1, a2,m1,m2 and varying values of θ and f (x1) as
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Fig. 2 Solution of system (SM) with Holling type II functional response with m1 > m2 where (blue line)
represents the prey behavior and (black line) represents the predator behavior. a–c are 3 sample runs of
x1(t) and x2(t). Hence a is when k = 1, b is when k = 2 and c is when k = 3. d, e are the average and
standard deviation of x1(t) and x2(t) for 3.0 × 103 runs where σ1 = σ2 = 0.3 and f being the behavior
of population size of x1(t) and x2(t) where σ1 = σ2 = 0.0 and θ = 0.85. Parameter set given in Table 2.
(Color figure online)

given in Table 2 with fixed intensity of the Gaussian noise with σ = 0 (Deterministic
case) and σ > 0. In Figs. 4, 5 and 6, we then investigate numerically conditions
under which extinction occurs using Theorem 5.1. Thus for each set of values of the
parameters, a set of numerical approximations is conducted.

To understand the stochastic behavior of system (SM) with solutions x1(t) and
x2(t), M = 3.0 × 103 Monte Carlo simulations are conducted and the behavior of
both the sample means and sample standard deviations are given. Both the sample
mean and sample deviation of the sample population are calculated at each time of
the total M runs. We first denote xk1 (t j ) as the approximate solution of x1(t j ) at run k.
Thus for M Monte Carlo runs, there exist M possible solutions of x1 at time t j given
as xk1 (t j ). Hence the average population density at time t j is taken over all the possible
M solution of xi (t j ). This definition also applies for xk2 (t j ). Hence

x̂1(t j ) = 1

M

M∑
k=1

xk1 (t j ), (27a)

x̂2(t j ) = 1

M

M∑
k=1

xk2 (t j ), (27b)

where as j = 0, . . . , N with N = � 60
�t � and M is the number of Monte Carlo runs.
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Fig. 3 Solution of system (SM) with Holling type III functional response with m1 > m2 where (blue line)
represents the prey behavior and (black line) represents the predator behavior. a–c are 3 sample runs of
x1(t) and x2(t). Hence a is when k = 1, b is when k = 2 and c is when k = 3. d, e are the average and
standard deviation of x1(t) and x2(t) for 3.0 × 103 runs where σ1 = σ2 = 0.3 and f being the behavior
of population size of x1(t) and x2(t) where σ1 = σ2 = 0.0 and θ = 2.0. Parameter set given in Table 2.
(Color figure online)

Table 2 Lists of parameters
used in the simulations of Figs.
1, 2 and 3

a1 = 0.7 b1 = 0.5 w0 = 0.3 w1 = 0.3

m1 = 0.5 m2 = 0.2 a2 = 0.1 d = 4.0

Similarly the sample standard deviation for each xk1 (t j ) and xk2 (t j ), measures how
much the individual solution at times t j in each run are dispersed or scattered around
individual average population densities.

Figures 1, 2 and 3 shows the effect of varying θ and f (x1) on system (SM). Clearly
as seen in the prey density’s population standard deviation, there is a fairly high
standard deviation which signifies that the individual times of xk1 (t j ) for each k run
spreads out over a large range of values. The predator population density also has a
fairly low standard deviation as compared to the standard deviation associated with the
density population of the prey. Low standard deviations indicates that the individual
times of each xk2 (t j ) of the predator population are very close to the average population
density x̂2(t j ), which means the predator behavior in time is fairly the same within
each run. This therefore implies that if the deterministic system solution is globally
stable then the corresponding stochastic system will preserve this property when the
noise σi are sufficiently small. Hence the stability of system (SM) may depends on
the noise intensity σi .

In Fig. 4, we give a numerical evidence to support Theorem 5.1. This reveals that if
the condition a1 − 0.5σ 2

1 < 0 holds then x1(t) and x2(t) by system (SM) will become
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Fig. 4 Numerical behavior of system (DM) versus (SM) is shown. Here we are numerically illustrating the
results of Theorem 5.1 using Holling type II functional response with σ1 = σ2 = 0.895. Parameter set
given in Table 3

Table 3 List of parameters used
in the simulations of Figs. 4, 5
and 6

a1 = 0.4 b1 = 0.5 w0 = 0.3 θ = 0.31 w1 = 0.3

m1 = 0.5 m2 = 0.2 a2 = 0.1 d = 4.0
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Fig. 5 Numerical behavior of system (SM) with Holling type I functional response with σi = 0.3 shown in
(a–c) and σi = 0.7 shown in (d–f), where (blue line) represents the prey behavior and (black line) represents
the predator behavior. a, d are sample runs of x1(t) and x2(t) when k = 1. Parameter set given in Table 3.
(Color figure online)
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Fig. 6 Numerical behavior of system (SM) with Holling type II functional response with σi = 0.3 shown in
(a–c) and σi = 0.7 shown in (d–f), where (blue line) represents the prey behavior and (black line) represents
the predator behavior. a, d are sample runs of x1(t) and x2(t) when k = 1. Parameter Parameter set given
in Table 3. (Color figure online)

extinct exponentially with probability 1. We therefore again investigated system (SM)
choosing f (x) as Holling type I and Holling type II functional response and varying
the intensity of the noise σi > 0 respectively. This is done to show how the noise can
affect system (SM) even when extinct is possible.

Figure 5 shows the effect of the noise intensity σi on system (SM) with f (x1) cho-
sen as Holling type I functional response. Clearly from Fig. 5, increasing σi from 0.3
to 0.7 does cause an increase in the variability in the average predator population. This
behavior is due to the increasing growth rate of the standard deviation in time as σi
increases. Therefore as shown in Fig. 5, increasing the noise intensity in Theorem 5.1
for system (SM) does have a significant effect on the average predator population
behavior. But the effect of σi on the average prey population is relatively low even as
σi increases. A similar behavior for both the prey and predator population is observed
even either f (x1) chosen as Holling type II functional response as shown in Fig. 6.
Therefore even though noise does affect both the prey and predator populations, its
effect is fairly high on the predator population even as it goes into extinction.

8 Conclusions and discussions

In this paper, we have studied a two dimensional predator–prey system with mutual
interferences m1 and m2 , with different Holling’s type functional responses in preda-
tor equation. Sufficient conditions for the local existence, persistence, extinction and
global existence of positive solutions are obtained in stochastic environment, which
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is fundamental to many problems in population dynamics. Note that our global exis-
tence result is derived independent of the relation between the predation rate w1 and
the toxin release parameter θ . That is, we do not require the restriction θ > w1, for
global existence. We have added white Gaussian noise in the growth rate parameter
of the prey population and death rate parameter of predator populations and observe
that the stochastic system preserves the property of the deterministic system when the
noise is sufficiently small. However for large enough noise the stochastic system can
be driven to extinction, whilst the deterministic system persists, via Theorem 5.1. This
result depends solely on the noise intensity of the prey species, and is independent of
the noise intensity of the predator species. Also note, the global existence result given
via Theorem 6.1 does not depend on the toxin release parameter θ . This warrants some
discussion. In the vent of no toxin release that is θ = 0, the model reduces to stochas-
tic predator–prey model, with interference, as studied by many authors. Here global
existence also follows, from the form of the functional responses, in that x1, x2 cannot
explode in finite time. Thus the toxin release parameter provides further damping to
the system, by decreasing the predator population, and so actually “helps” in global
existence. The effect of toxin release as well as pollution effects, is well studied in
literature and the interested reader is refereed to [27,28]. It would be a very interesting
problem to consider negative values of θ as modeled, where this could be interpreted
as additional predation. Depending on the form of the function f (x1), one may or may
not expect global existence [29].

Numerically, we have simulated both the model systems for different values of
mutual interference parameters and same values of noise strength i.e., σ1 = σ2 = 0.2,
and present the results in the form of time series. Sufficient conditions for extinction
for both the population are obtained. Note, the stochastic system has a unique local
positive solution (x1(t), x2(t)) for t ∈ [0, τe) via Theorem 3.2, as well as a globally
existing solution via Theorem 6.1.

Acknowledgements RPwould like to acknowledge valuable support from theNational Science Foundation
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