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Abstract

Predator—prey interactions with stochastic forcing have been extensively investigated
in the literature. However there are not many investigations of such models, that include
prey defense. The goal of the current manuscript is to investigate a stochastic predator—
prey model with mutual interference, and various Holling type functional responses,
where the prey is able to release toxins as defense against a predator. This can also
be generalized to include group or herd defense, toxin production and mimicry. We
establish local and global existence for the stochastic model, and perform various
numerical simulations to support our theoretical results. Our key result is that we
have globally existing solutions independent of the magnitude of the toxin release
parameter, or the predation rates. We also show that large enough noise intensity in
solely the prey, can lead to extinction in the noisy model, for both species, whilst there
is persistence in the deterministic model.
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1 Introduction

In recent years, applied mathematicians and ecologists have been interested in inves-
tigating the dynamical properties of biological models. Nonlinear factors such as
functional response and mutual interference are among several crucial factors affect-
ing biological models. Predator—prey models with varied functional responses and
mutual interference types have been of great interest lately. Mutual interference [1,2]
is defined as the behavioral interactions among feeding organisms, that reduce the
time that each individual spends obtaining food, or the amount of food each individual
consumes. It occurs most commonly where the amount of food is scarce, or the popu-
lation of feeding organisms is large [3]. Wang [4,5] studied the existence, permanence
and global asymptotic stability for a predator—prey system with mutual interference.
Wang and his group [6,7] also obtained some sufficient conditions, for the permanence
and global attractivity of positive periodic solution for a Volterra model, and delayed
predator—prey model with mutual interference. Periodic solutions, permanence and
global attractivity of a delayed impulsive predator—prey system has also been studied
in [8]. Recently, Chen [9] investigated the permanence of the corresponding discrete
periodic system model

= = x(1(0) = b)) = c(xy" [k + ),
d
=% = Y2 = b)) + ke !k + ),

where x (prey) and y (predator) are population densities and all parameter are pos-
itive. Lin and Chen [10] have studied the almost periodic solution for system with
Beddington-DeAngelis functional response. Wang et al. [11] have investigated the
existence and global attractivity of positive periodic solution to the above system with
Holling type III functional response.

All biological processes are fundamentally affected by enviromental white noise. In
stochastic modeling, the environmental noise is conceived as stochastic fluctuations.
May [12] analyzed a biological system under stochastic fluctuations, considering white
noise forcing for the population. He observed that when the population deviates more
from equilibrium point, the system shows irregular behavior (i.e., instability). Thus,
after one investigates a deterministic system, extending the results to the stochastic
case becomes an important research endeavor. Upadhyay et al. [13] investigated the
influence of environmental noise on a fairly realistic ecological model with generalist
top predator and showed the importance of the noise amplitude, the trophic level
susceptibility of populations to environmental noise. Liu and Wang [14-16] studied
the population dynamics of a Lotka Volterra cooperative model, two prey one predator
system, with random perturbation and persistence-extinction dynamics in a stochastic
single species model, with regime switching in a polluted environment. Rudnicki [17]
studied the long time behavior of a stochastic prey—predator model. Ji et al. [18]
analysed a stochastic predator—prey model, with modified Leslie-Gower and Holling
type II schemes. Upadhyay and Agrawal [19] studied the effect of mutual interference
on the dynamics of a predator—prey system, with gestation delay. Du [20] considered
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a stochastic predator—prey model with mutual interference and studied the existence,
extinction and its global asymptotic stability. Recently Du et al. [30,32] studied the
dynamical behavior for a stochastic predator—prey model with Hassell-Varley type
functional response, as well as investigated a neural network approach.

In the works outlined above, the classical setting of predator—prey models were
considered. That is the predator feeds on a prey species according to some functional
response, and dies out due to a natural death rate. The loss in the prey population is due
to predation, and often times the prey population is logistically controlled. However,
in most cases the prey species is able to fight back, due to inducible defenses that
it possesses. These might include group or herd defense, toxin production, mimicry
etc. [3]. Thus understanding the dynamics of systems with prey defense, in a noisy
environment is an interesting scientific question, but not well studied in the literature.
The goal of the current manuscript is to investigate a stochastic predator—prey model
with mutual interference, and various Holling type functional responses, where the
prey is able to release toxins, as a form of defense against the predator. Our primary
contributions in the manuscript are

(1) We formulate and propose a two species predator—prey model, with a general
form of mutual interference and toxin release effect. The model is subjected to
stochastic forcing.

(2) We show global existence of solutions to the model via Theorem 6.1. This result
is derived independent of the relation between the predation rate w; and the toxin
release parameter 6. That is, we do not require the restriction 8 > wy, for global
existence. We provide biological justification to this end, see remark 1.

(3) We investigate extinction criteria in the model, finding that the stochastic forcing
can be responsible for extinction of both species, under certain conditions. This
is shown via Theorem 5.1.

(4) We carry out extensive numerical simulations to support our analytical results.

2 Model system

In this paper, we consider the following predator—prey model with mutual interferences

dxy 2 X1 " m

— =ajx; — byx;i — w x5 2,

dr AT orh O(x1+d 2

d)C2 X1 i m

— = —axy — 0 f(x)x2 +w —_— X 2,
T 2x2 — 6 f(x1)x2 1<x1+d) )

There are few assumptions we place on the toxin release function f, and the mutual
interference paramaters ;.

0 <m; <1,i=1,2, as per literature on mutual interference [1,2].

f depends only on prey density, that is f = f(x1).

f is identically 0, at O prey density. So f(0) = 0.

f € C°(M4), and grows sublinearly. That is, | f (x1)| < Cxj, where C is a pure
constant.
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Table 1 List of parameters used

in the model Symbols  Meaning

X1 Prey population

b) Predator population

f(x1) Toxin release function

aj Per capita rate of self-reproduction for the prey

aj Intrinsic death rate of the predator population in the
absence of the only food x|

wo Maximum rate of per capita removal of prey

wi Measure efficiency of biomass conversion from prey to
predator

by Effect of the density of one species on the rate of growth
rate of other

d Value of population density at which per capita removal
rate is half of x|

6 Rate of toxin released by prey

m; Mutual interference parameter that model the intraspe-

cific competition among predators when hunting for preys

All parameters considered are positive constants

e f is saturating in xp, that is % decreases, (or is at least nonincreasing) as xi
increases.
e Thus we can assume standard Holling type responses for the toxin release function

f-

All parameters in the above model are positive constants.
The above model together with x(0) = xo > 0, y(0) = yo > 0, will be referred to as
model (DM). The variables and parameters used in the model are defined in Table 1:

The deterministic system assumes that the parameters in the model are all determin-
istic, irrespective of the environmental fluctuations. Hence they have some limitations
in mathematical modeling of ecological systems, as they are unable to fit data well,
and thus, to predict the future dynamics of the system accurately. May [12] has pointed
out that because of environmental noise, the birth rate, carrying capacity, competition
coefficient and other parameter involved in the system always exhibit random fluc-
tuations. Thus we construct a stochastic model by introducing a noise term, into the
growth terms of both the predator and prey populations. Essentially the growth rate can
be written as an average growth rate plus an error term. In general, by the well-known
central limit theorem, the error term follows a normal distribution; thus for short cor-
relation time, we can approximate the error term by a white noise, o; (I)%, where

oiz(t) is a continuous bounded function on )i representing the intensity of the noise

at time ¢ and % is a standard white noise. Then corresponding to the deterministic
system (DM), we obtain the following stochastic system (SM).
X1
dx; = |:a1x1 — ble — wo<

x1+d

mi
) xé"z:|dt + o1 (t)x1dB1 (1), (1a)

x1
dvs = | —apxr — 0
X2 [ azxy — 0 f(x1)x2 + w <X1 d

) 1x£'12:|dt+02(t)x2d32(t), (1b)
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where o;(¢) > 0Vi and Bj(¢), B2(t) are statistically independent Brownian motions
at time, 7. We show that the system admits a unique positive asymptotically global
solution, starting from a positive initial value, with different functional responses. The
solutions are interpreted in the Ito sense [21,23]. Also note that in the ensuing analysis
C,Ci,1 <i <5, are generic pure constants, and can change in value from line to
line, and also within the same line if so required.

3 Existence and uniqueness of global positive solution

In this section, we will present some results on existence and uniqueness of a global
positive solution of the system (SM). Our approach to study the properties of (SM)
is a combination of some stochastic calculus and martingale methods. If f(¢) is a
continuous bounded function on i, define

"= sup f(),
teNy
= inf F(@0).
teNy

Additionally, assume there exist positive constants (7{ , 01", aé, 02”, such that

oll <oi(t) <of,Vt € Ry

aé <o(t) <oy, Vt €Ny

We first present some lemmas that give us almost sure eventual boundedness of the
state variables x1, x7.

Lemma 3.1 Assume (x1(t), x2(t)) are solutions to system (SM) then x; < K1, xy <
K>, a.s.

Proof We provide a few details for x1, the result for x; follows similarly. Via positivity
of solutions and the stochastic comparison principle, see [26] and the references within,
it follows that

x1(t) < ®(t), t € [0, 1), a.s. 2)

where ®(¢) is the solution to the following SDE,
do = |:a1<I> - b14>2] + o1(1)®dB (1) (3)

Since global existence for (3) is standard [21,23], clearly T = 00, a.s. Also we have

via standard results [23] that if a < % then lim; , oo ®(¢t) — 0, a.s.. Andifa >

o1)2

2 . . . . — A
((’%, then one has persistence in mean, that is lim;_, o } fot O(s)ds = MTZ, a.s.
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Thus one easily infers

a; — (o)
lim E[x(] < lim E[®] = ——2—, 4)
t—00 t—00 by
a—’
and so setting K1 = 5 2 we obtain
1
lim x; < Ky, a.s. 5)
11— 00
The almost sure eventual bound for x, follows similarly. O

Theorem 3.2 There is a unique positive local solution (x(t), x2(t)) fort € [0, t,) to
system (SM) almost surely (a.s.) for the initial x1(0) > 0, x2(0) > O where 7, is the
explosion time.

Proof Letus assume x1(7) = e*® and x,(7) = e”"). Therefore, u(¢) = In (x1(¢)) and
v(t) = In (x2(¢)). Then by using Ito’s formula [21] we obtain

1 anl_l o
du(t) = Z {xl <a1 —bix) — wOmxz )dt + o1x1d By (t)}
+ 1 o) (_—1> dt,
2 2
x;nl_l my 1 2
= (m —bix; — womx2 — Eal ) dt +o01dB (1),

ol =Du()

_ _ u(t) _
= (m bie wo (eu(t) +d)m|

1
v _ 50%) dt +o01dB; (1) .

Similarly,

1 i _
dv(t) = — {XZ (—az — 0 f(x1) 4+ w (xlxﬁ) x£"2 1) dt + o2x2d By (I)}

X2

+ ! ( )2 - dt
— (o — ,
2 22 x2

2

mi
X1 1 1
= (—dz—@f(x1)+w1 <m> Xénz — 5022> dt‘l‘o'dez (t),

eu(t)
=|—a2 - 07" ) +ur

mi
1
(ma=Dv(1) _ _ 52
e”(’)—l—d) e 202>dt—|—02dB2 (1),

with #(0) = Inx1(0), v(0) = Inx2(0).
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Therefore the system (SM) becomes

i —=Du(t)

— _ u(®) _
du(r) = (al bie wo (@O + )™

1
m2v(t) _ 2(712> dt +01dBy (),

eu(t)

N u(t) -
dv(t) = ( ap — 0 f (") +w; <eu(t) +d

mi
1
) ema=h() _ 20%) dt +02dB> (1),

along with #(0) = Inx1(0), v(0) =Inx2(0) ,att = 0.

We denote the above system along with the initial conditions as (SM). Note that the
coefficients of (SM) satisfy the local Lipschitz condition, then for given initial values
u(0) > 0, v(0) > O there is a unique maximal local solution u(t), v(¢) on [0, ),
where T, is the explosion time of the solution. By It6’s formula [21], x;(¢) = PLOR
x2(t) = e"® is the positive local solution to (SM) with initial value x;(0) > 0,
x2(0) > 0. O

Theorem 3.3 Forany given initial value (x1(0), x2(0)) € EY& there is a unique solution
(x1(t), x2(t)) ont > 0 to (SM), and this solution will remain in ER&_ with probability
1, where Wy = {(x,y) € W |x,y > 0}.

Proof For convenience, let

mi—1
F(x1,x2) = x1 (a1 — b1x1 — woLx;”2 .
(x1 +d)™

mi
G(x1,x2) = x2 (—az — 6 f(x1) +wi <x1x+‘d> xg"z—l).

Letng > 0, be large enough, such that for x1 (0) and x5 (0) given, they lie in the interval
[l, no]. For each integer n > n(, define the stopping times [15]:

no
T, = inf {t € [0, t.]: x1(t) ¢ (%,n) or x2(t) ¢ <%,n>} .

Clearly, 1, is increasing as n — 00. Let too = lim,,_, o 7, Where oo < 7,. We only
need to show that 75, = 00. If this statement is false, there exist constants 7 < oo and
e € (0, 1) such that P {too < T} > &. Consequently, there exists an integer n; > ny
such that

P{t, <T}>e¢e, n>n,j. (6)

Define a C? function V : ‘R%_ — Ny by

V(x1,x) = («/)T]— 1 —O.Slnx1) + («/)Tz— 1 —0.51nx2).
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If (x1, x2) € MZ, then It6’s formula [21] yields

dv 1d%v 5, dV 1d*v 5
dV(x1,xp) = —dxl—i—i 2(d)q) +de2+§d 2(dxz)

1 0.5
=<2\/x_1 xl)(F(xl,xz)dt+01x1dBl)+ (oix})

1 _3p 0.5)
— X +—2 dt
( 4 *1

+ ! 0.5 (G( Ydt + dB)—i—l( 2x2)
- — X1, X 02X —(o5x
) —Xz Xy 1, X2 2X204 D) ) 24X

1
=0.5 ( 0.5 _xl—l) F(x1, x2)dt + §012 (—x?'S + 2) dt
+ 0.501()5?'5 — 1)dB
1
£05 (5" —51) G xapds + 593 (=83 +2)ar
+O.502(x(2)'5 —1)dB,.

Now,
wox"!
-0.5 -1 —-0.5 -1 2 1 m
(x1 — X ) F(x1,x) = (xl — X ) arxy —bixy — X 2,
(x1 +d)ym™m
m1—0.5
= ax blx woxl—xm2 —a; +bix;
a (x1 +dym ™2

mip—1
1 my
+ wo-—— X bl
O+ aym 2
< Kj,a.s.
This follows via Lemma 3.1, and here we assume sufficient time has passed so the

bound is achieved (the time here may depend on the IC, that is large IC may require
a larger time for the absorption). Similarly, we have

_ _ _ _ X1 mi
5"~y HG( 1) = (5% —xh (—azxz —0f(x))x2 + w ( ) x2m2) ,

x1+d
_ 0 X1 \" my—05 )
_—a2x2 —0f(x1)x2 +wy 7x1+d Xy +ax +0f(x1)
< X1 )ml myp—1
—wy | —— X, ,
x1+d
< Kj,a.s.

This follows via Lemma 3.1. Here K| and K, are constants as in Lemma 3.1. The
terms g0 (—x¥° +2) dt and §o7 (—x3 + 2) dt are used as follows, we bring the
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g0t (—x93) dt and o (—x35) dt terms to the left and use their positivity, and inte-

grate both sides of the above Eq. (7) from O to t, A T and then take expectation on
both sides to yield
1 AT
EVxi(mAT), x2(tu AT)) + glE [/0 012(’))610’55”]
1 WAl 0
+-E 05 (t)xy7dt
8 LJo

<V@@©,x»0)+ K +K2+ K3+ Ky) E(ry AT)

W AT AT
+0.501E [ / x?~5d31] +0.50,F [ / x?'Sde] ) 8)
0 0

Here K3, K4 are the bounds on the 012 (1), (722 () respectively. The control of the Itd’s
integral terms is handled via the embedding of L? < L!, the Ito isometry [23], and
a standard application of Holder and Young’s inequality,

AT
0.501E [/ x?'5d81i|
0
AT 2
<CE (/ xlo‘SdBl)
0
AT
=CE |:f xlds]
0

b] AT
<-E [/ xll'sds:| + Ks(ty AT).
0

The first term in the above can be absorbed into the left hand side with the same term,
with coefficient b;. The Ito integral involving d B is handled in the same way, and
there is a bound generated via a constant K¢. This finally yields

EV(xi(ta AT),x2(thy AT)) )
<V&x10),x0)+(Ki+Kr+ K3+ Ky+ K5+ Kg) E(t, AT) (10)
Now, we set 2, = {t, < T}. So, by Eq. (6), we have P (£2,,) > ¢. Note that for

each w € €2, there is some i such that x; (z,,, w) equals to n or % fori=1, 2. Hence
V(xi(ty AT),xp (ty AT)) is no less than

min[ﬁ— 1—05Inn, Ji/n—1 —O.51nl/n}.
So by Eq. (8), we have

Vi 0), x> 0)+ (K1 +Kr+ K3+ Ks+Ks+Kg) E(ty, AT)
> E 1o,V (51 (ta) , %2 (t0))] s

>emin{ﬁ—1—o.51nn, ,/1/n—1—0.51n1/n},
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where 1q,is the indicator function of €2,,. Letting n — o0, leads to a contradiction
00>V (x1(0),x2(0) + (K1 + K2+ K3+ Kqa + K5 + Kg) T = 00.

This completes the proof. O

4 Persistence

In this section, persistent in time average of the model (1a)—(1b) is intended to be
proved under certain conditions on the parameters.

Definition 4.1 The model (1a)—(1b) is said to be persistent in time average if for all
i=1,2

1 t
lim inf—/ xi(s)ds >0, a.s.
t—oo 0

The lemma below from Xia et al. [22] is used to prove persistent in time average
for (1a)—(1b).

Lemma4.2 Let f € C[[0, 00) x 2, (0,00)], F(t) € ((0, 00) x 2, R). If there exist
positive constants Ao and A such that

t
log f(t) > At — AO/ f(s)ds + F(1), t>0, as.,
0

and
F(t
lim L =0, a.s.,
t—o00 t
then
5 'fI/tf()d >A
iminf — s)ds > —, a.s.
t—o0 t Jo _)tO

Proof This proof is shown in Lemma 17 of [22].

Theorem 4.3 Let us assume aj —k — 0.50’12 (s) > 0, where k is a positive constant, that
is an upper bound for %E[xg], then the solution (x1(t), x2(t)) of the system (1a)—(1b)
with any given initial value (x1(0), x2(0)) € 9{3 is persistent in time average.

Proof Using Ito’s formula on (1a), we obtain
mi—1
xl (t) m
0 X2
(1 (0) +d)™
+ o1(t)d B (1). (11)

dllnxi(1)] = [al —bixi (D) — w (1) - %af(r)} dt
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Integrating both sides of Eq. (11) from 0 to ¢ yields,

i (Y107, 0)) _Ji a1 =05020)ds b fyxids | fio1(5)dBy(s)
t t t t

1 1)
_ Jo w0t e X (9ds.

t

12)

But noting via positivity, Theorem 3.3 and the embedding of L' < L™2 we have

my—1
xll (s) my @ my
G Fayn 2 O =g 0 sk as

for some positive constant &, then

my—1
X1 (s) my t
Jo wotmaym s ()ds . _Jo kds = s
t t

Thus

n (Y10 0) _ o1 =0508@)ds by fyxi@ds | fo15)dBys)  Jy kds

t - t t t t
(13)
Jo (a1 —k —0.50%(s))ds by [y xi1(s)ds [y o1(s)dBi(s)
= - + . (14)
t t t
Moreover, M; = fot 0;(s)dB;(s) is a local martingale whose quadratic variation is

given by

t
(M;, M;), = /O o2 (s)ds < |lo ]| %t

The above bound allows us to apply the strong law of large numbers for Martingales
[21] to obtain

. M@
lim

t—00 t

=0, a.s. (15)

Applying Lemma 4.2 and condition a; — k — 0.5012 (s) > 0, we obtain the following
result

t—oo f

1 [ 1 1 [
lim inf —/ x1(s)ds > — liminf — / (al —k — O.Salz(s)) (s)ds >0, a.s.
t—oo t Jo b
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Now assume that x| persists. We can use standard comparison on the predator
equation to obtain

x|
x1+d

m
dx) = <—a2x2 — 60 f(x1)x2 4+ wy < ) x;n 2) dt + op(t)xodB) (1),

m |

> <—a2x2—0Gx2+w1 <G+d> xé’”) dt + 07(t)x2d By (1),
= (—Clxz + sz'zn 2) dt + op(t)xpdBy(t), where Cy, Cy > 0. (16)
This follows via the persistence of x1, the boundedness of x| via Theorem 3.3, and

the assumptions on the toxic release function. We now consider a subsolution x3 that
solves

dxy = (=Cix5 + Ca(x3)™)dt + osx5dBy (1),

Our goal is to derive conditions under which x} will persist, as then x, will persist
by simple comparison. Via standard methods for SDE see [23], the above equation is
easily solved in closed form. We have

% I:(e—cl(l—mz)t(xik(o))l—mz) + e—Cl(l—mz)t

1
t —m
/ecl(l—mz)s (e—(l—mz)aéBz(t)+<1—m2>(0§>2ﬂ) ds:|1 ’ (17)
0

Under conditions that x3(f) given by the above will persist, we have by simple
comparison that x; will persist. This completes the proof. O

5 Extinction criteria

The following theorem shows that under certain sufficient conditions the environ-
mental noise may drive the predator and prey populations to extinction, whilst the
equilibrium populations are stable in the absence of the noise.

Theorem 5.1 Assume that we have Trace (J) < 0 and det (J) > 0, where J is the lin-
earized variational matrix of system (DM) around the interior equilibrium E*(x, x3).
Further assume we choose o1, aj s.ta; < % fot (012 (s)) ds. Then the equilibrium pop-
ulations to (DM) will be locally asymptotically stable, whilst the populations x1(t)
and x> (t), that are solutions to (SM), will be driven to extinction exponentially, with
probability one.
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Proof The linearized variational matrix of system (SM) around the interior equilibrium
E*(x}, x3) is

« _ dmywox*y 2! mawoxy™2 L]
@1 = 2bixy — S —
J df(XT) " £y Xikm]—l * *mz—l XT mi
-0 o 0 +midwix; G =0 f(x]) — ax + mawx; T
| Jr Ji2
1 I’
with
TR
* * *Mp—
Trace (J) = a; —az — 2b1x] — 0 f (x7) + mawix™, ( - d)
x| +
3]
X
1
— dmywox™*)? <—>
2 ,
xF(xf +dym+l
and

*M2 M

dmywox™y*x™ i ™
det J) = |a; —2bjxF — ————=——_ )| [ =0 £ () — ap + mow x2™2 < >
(@) (1 1% TG+ f&)) —az 2W1Xy T d

_ _mzwox;MZ71x*’lﬂl —Odf(xik)x*-i-m dwx3™2 7)61"”171
(XT-Fd)’n' dxik 2 1awixy (xi‘—{—d)m""l ’

Thus the local stability of the interior equilibrium (x', x3) requires that we have
Trace (J) < 0 and det (J) > 0. Assume, that the above criteria are met, then (x7', x3)
are locally asymptotically stable in the absence of noise. Now define V (x) = c1x1 +
cpx2, then by Ito’s formula, we have (11).

Now, by the Egs. (11), (15), and by using the condition a; < % fé (012 (s)) ds, we
obtain

<0, a.s

lim su
t—00

b In (xtl () - fol (a1 — 0.[5012(s)) ds

We show extinction for x;, using a simple approach. Under the criteria posed in
Theorem 5.1, x1 goes to extinction, a.s, thus the equation for x reduces to

dxy = —apxxpdt + oo (t)x2d B (1),
This follows via the assumption on the toxic release function f. Standard compar-

ison now yields
dxy < —apxpdt + Ozuxdez(t),

Note that the solution to
dx; = —axx;dt + 05 x3dBy (1),
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uy2
goes to extinction trivially by standard theory [23], if —ap < (022) . But this follows
as ay > 0. Thus x3 goes to extinction, a.s, and then so does x by simple comparison.
This proves the theorem. O

It is important to note that the extinction result depends solely on the noise intensity
in the prey species o7 (¢). It is independent of the magnitude of noise intensity in the
predator species o2 (¢), or the magnitude of toxin release 6.

6 Global existence
Theorem 6.1 Let x1(t), x2(t) be a solution to (SM) with positive initial conditions

(x100), x2(0)). If a1 < % fol (012 (s)) ds, then there exist constants C4 and Cs5 depend-
ing only on the parameters and initial conditions, such that

E[x1(t)] < C4, E[x2(t)] < Cs.

Proof We first multiply the equation for x; in (1a) by w1, and the equation for x, in
(1b) by wop. Then using Ito’s lemma [21] we obtain

d[wi Inx(7)]

xml l(t)
= | wial —wlblxl(l‘)—UHU)Ow B (t)— w1‘71 (f)
+wyo(t)dBi(2). (18)
d [wo In x7(7)]
= [—woaz — wof f (x1(1) + wy (%) "0 @) — —woaz (r)} dt
+ woord By(1). (19)

We now integrate (18), (19) in time from [0, 7] and take expectations to yield

T T
le[lnxl(T)]—i-wlbl/ E[xl(t)]dt—f-%wl/ ol (t)dt
0 0

T m1 1
I O
=ayu T wlwofo E[ (xl(l) ) X, -1dt + wiE[In x;(0)] (20)

and

T 1 T
wolE[In x2(T)] + woby / E[6 f (x1(t))]dt + EwO/ Gzz(t)dl‘ + woax T
0 0

= /T IE[—XTl © M21dt + woE[In x2(0)] (21)
= wjw X w X .
1o 0 (x1(t) +d)™ 2 0 ?
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We can now add up (20) and (21), use the condition that a; < % fot (0f(s))ds to
obtain,

wiE[In x1(T)] + woE[In x2(T)] < wiE[In x1(0)] + woE[In x5 (0)]. (22)

Thus we obtain
Ellnx;(T)] < C3, E[lnxo(T)] < C3, VT. (23)

Here C3 depends only on initial conditions and parameters in the problem. Thus,
trivially we can ascertain that,

Elx1(T)] = C4, E[x2(T)] = Cs, VT. (24)

We can take the limit in above as 7 — o0, and the bound still holds, as the constants
C4 and Cs, is independent of T. Thus E[x] ()], E[x2(¢)] cannot blow-up in finite time,
because if without loss of generality say x; did, we would have

Ilim E[lnx{(¢)] = E[ lim In(x;(z))] = E[In( im x;(¢))] = oo,
T*<o0 t—>T* t—>T*

t—
but this is a contradiction via (23). And thus we have global existence.

Remark 1 Note that the above result holds independent of the relation between 6 and
wi. That is we do not need that & > wq, for global existence. If we enforce 8 > w;
then one has very strong damping in predator population—this leads decline of the
predators, and thus global existence easily follows via simple comparison method.
Also such a restriction might not be interesting biologically, because it will probably
always lead to predator extinction, and prey going to carrying capacity. Thus will not
be a feasible biological model for ecosystems where one observes persistence. Also,
6 < wjy, is indicative of the fact that the predator gains more from his hunting efforts,
than he his harmed by the prey release—which provides a net positive feedback to the
predator population. If we restricted 8 > w1, then in a sense we are saying that there is
very strong prey defense mechanism, and in a sense the particular prey is not huntable
or optimal for the predator to hunt. In this setting the predator prey formulism might
not make sense from a optimal foraging theory as well [31], which says that predators
want the most “bang” for the “buck”. O

7 Numerical simulation results

In this section, we will use the semi-implicit Milstein method described in [24] to
give some numerical finding to system (SM). The semi-implicit Milstein method is
used to approximate the Ito’s stochastic ordinary differential equation given in system
(SM), with a time-step size of At = 0.001. This reduces system (SM) into a difference
equation given as
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Fig. 1 Solution of system (SM) with Holling type I functional response with m| > my where (blue line)
represents the prey behavior and (black line) represents the predator behavior. a—c¢ are 3 sample runs of
x1(¢#) and x»(¢). Hence a is when k = 1, b is when k = 2 and ¢ is when k = 3. d, e are the mean and
standard deviation of x1 (¢) and x7(¢) and f being the behavior of population size of x (¢) and x(¢) where
o1 =07 = 0.0 and 6 = 0.25. Parameter set given in Table 2. (Color figure online)

+1
Xn+1 —x"=la Xn+1 —b (Xn+1)2 —w X’11 " (Xn+1)mz At
1 1= | 41% 18%] o\ 1, d 2
X X, + 25)
n 91 on 2
—i—UleABl—i-?Xl (ABy1)" — At ),
+1
Xn-i—l —x'"=| —a n+1 -0 n+1\n+1 X? " n\mn2 A
2 2 = 2X) JOGTOXT +wy 1 d (x3) 4
! (26)

2
+oxiAB, + %X’Z’((ABz)z _ At),

where x| = x1(t,) and x5 = x»(#,) are the discretization of the solutions at discrete
time 1,. Also AB; = zi+/Af and AB, = zu+/Af, where 71,70 ~ N(0, 1) are
independent normally distributed random numbers with mean 0 and standard deviation
1. These random numbers are generated using Box—Muller—Wiener algorithm [25].

Remark 2 The semi-implicit Milsten scheme used to advance the difference equation
in time necessitates solving a nonlinear system of equations at each time-step. This is
achieved through a Newton—Raphson method.

We next investigate the asymptotic stability of system (SM) by studying the behavior of
6 on system (SM) as shown on Figs. 1, 2 and 3. Numerical experiments are conducted
for fixed values of by, wg, w1, d, a1, ax, my, my and varying values of 6 and f(x1) as
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Fig.2 Solution of system (SM) with Holling type II functional response with m| > m7 where (blue line)
represents the prey behavior and (black line) represents the predator behavior. a—c¢ are 3 sample runs of
x1(¢) and x5 (¢). Hence a is when k = 1, b is when k = 2 and ¢ is when k = 3. d, e are the average and
standard deviation of x(#) and x(¢) for 3.0 x 103 runs where o1 = op = 0.3 and f being the behavior
of population size of x1(¢) and x2(¢) where o1 = 07 = 0.0 and 6 = 0.85. Parameter set given in Table 2.
(Color figure online)

given in Table 2 with fixed intensity of the Gaussian noise with o = 0 (Deterministic
case) and o > 0. In Figs. 4, 5 and 6, we then investigate numerically conditions
under which extinction occurs using Theorem 5.1. Thus for each set of values of the
parameters, a set of numerical approximations is conducted.

To understand the stochastic behavior of system (SM) with solutions x;(¢) and
x2(¢), M = 3.0 x 10> Monte Carlo simulations are conducted and the behavior of
both the sample means and sample standard deviations are given. Both the sample
mean and sample deviation of the sample population are calculated at each time of
the total M runs. We first denote x{‘ (¢;) as the approximate solution of x1 (¢;) at run k.
Thus for M Monte Carlo runs, there exist M possible solutions of x| at time #; given
as x]f (¢;). Hence the average population density at time ¢; is taken over all the possible
M solution of x; (¢;). This definition also applies for x]2‘ (¢j). Hence

M

. 1

OEEvDIEARE (27a)
k=1

| M

Bat) = 22> x5 ), (27b)

k=1
whereas j =0,..., N with N = L%J and M is the number of Monte Carlo runs.
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Fig.3 Solution of system (SM) with Holling type III functional response with m| > m, where (blue line)
represents the prey behavior and (black line) represents the predator behavior. a—c¢ are 3 sample runs of
x1(¢) and x2(¢). Hence a is when k = 1, b is when k = 2 and c¢ is when k = 3. d, e are the average and
standard deviation of x(¢) and xp(¢) for 3.0 x 103 runs where 01 = op = 0.3 and f being the behavior
of population size of x1(¢) and xp(#) where 01 = 02 = 0.0 and 6 = 2.0. Parameter set given in Table 2.
(Color figure online)

Table 2 Lists of parameters
used in the simulations of Figs. a1 =07 by =0.5 wo = 0.3 w; =03
1,2 and 3 my; =0.5 my =0.2 ap =0.1 d=4.0

Similarly the sample standard deviation for each x{‘ (¢;) and x'z‘ (¢j), measures how
much the individual solution at times #; in each run are dispersed or scattered around
individual average population densities.

Figures 1, 2 and 3 shows the effect of varying 6 and f (x1) on system (SM). Clearly
as seen in the prey density’s population standard deviation, there is a fairly high
standard deviation which signifies that the individual times of xf(t ) for each k run
spreads out over a large range of values. The predator population density also has a
fairly low standard deviation as compared to the standard deviation associated with the
density population of the prey. Low standard deviations indicates that the individual
times of each x§ (¢;) of the predator population are very close to the average population
density %»(;), which means the predator behavior in time is fairly the same within
each run. This therefore implies that if the deterministic system solution is globally
stable then the corresponding stochastic system will preserve this property when the
noise o; are sufficiently small. Hence the stability of system (SM) may depends on
the noise intensity o;.

In Fig. 4, we give a numerical evidence to support Theorem 5.1. This reveals that if
the condition a; — 0.50*12 < 0 holds then x1 () and x(¢) by system (SM) will become
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Fig.4 Numerical behavior of system (DM) versus (SM) is shown. Here we are numerically illustrating the
results of Theorem 5.1 using Holling type II functional response with 01 = 0, = 0.895. Parameter set
given in Table 3

Table 3 List of parameters used

in the simulations of Figs. 4, 5 ap =04 by =05 wo = 0.3 6 =0.31 wy =03

and 6 m; =05 mpy=02 ap=0.1 d=40
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Fig.5 Numerical behavior of system (SM) with Holling type I functional response with o; = 0.3 shown in
(a—c) and o; = 0.7 shown in (d—f), where (blue line) represents the prey behavior and (black line) represents
the predator behavior. a, d are sample runs of x () and x;(¢) when k = 1. Parameter set given in Table 3.
(Color figure online)
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Fig.6 Numerical behavior of system (SM) with Holling type II functional response with o; = 0.3 shown in
(a—c) and o; = 0.7 shown in (d—f), where (blue line) represents the prey behavior and (black line) represents
the predator behavior. a, d are sample runs of x1 () and x3 () when k = 1. Parameter Parameter set given
in Table 3. (Color figure online)

extinct exponentially with probability 1. We therefore again investigated system (SM)
choosing f(x) as Holling type I and Holling type II functional response and varying
the intensity of the noise o; > 0 respectively. This is done to show how the noise can
affect system (SM) even when extinct is possible.

Figure 5 shows the effect of the noise intensity o; on system (SM) with f(x1) cho-
sen as Holling type I functional response. Clearly from Fig. 5, increasing o; from 0.3
to 0.7 does cause an increase in the variability in the average predator population. This
behavior is due to the increasing growth rate of the standard deviation in time as o;
increases. Therefore as shown in Fig. 5, increasing the noise intensity in Theorem 5.1
for system (SM) does have a significant effect on the average predator population
behavior. But the effect of o; on the average prey population is relatively low even as
o; increases. A similar behavior for both the prey and predator population is observed
even either f(x1) chosen as Holling type II functional response as shown in Fig. 6.
Therefore even though noise does affect both the prey and predator populations, its
effect is fairly high on the predator population even as it goes into extinction.

8 Conclusions and discussions

In this paper, we have studied a two dimensional predator—prey system with mutual
interferences m and m, , with different Holling’s type functional responses in preda-
tor equation. Sufficient conditions for the local existence, persistence, extinction and
global existence of positive solutions are obtained in stochastic environment, which
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is fundamental to many problems in population dynamics. Note that our global exis-
tence result is derived independent of the relation between the predation rate w; and
the toxin release parameter 6. That is, we do not require the restriction 8 > wy, for
global existence. We have added white Gaussian noise in the growth rate parameter
of the prey population and death rate parameter of predator populations and observe
that the stochastic system preserves the property of the deterministic system when the
noise is sufficiently small. However for large enough noise the stochastic system can
be driven to extinction, whilst the deterministic system persists, via Theorem 5.1. This
result depends solely on the noise intensity of the prey species, and is independent of
the noise intensity of the predator species. Also note, the global existence result given
via Theorem 6.1 does not depend on the toxin release parameter 6. This warrants some
discussion. In the vent of no toxin release that is @ = 0, the model reduces to stochas-
tic predator—prey model, with interference, as studied by many authors. Here global
existence also follows, from the form of the functional responses, in that x, x» cannot
explode in finite time. Thus the toxin release parameter provides further damping to
the system, by decreasing the predator population, and so actually “helps” in global
existence. The effect of toxin release as well as pollution effects, is well studied in
literature and the interested reader is refereed to [27,28]. It would be a very interesting
problem to consider negative values of 8 as modeled, where this could be interpreted
as additional predation. Depending on the form of the function f (x1), one may or may
not expect global existence [29].

Numerically, we have simulated both the model systems for different values of
mutual interference parameters and same values of noise strengthi.e., o1 = oo = 0.2,
and present the results in the form of time series. Sufficient conditions for extinction
for both the population are obtained. Note, the stochastic system has a unique local
positive solution (x1(t), x2(¢)) for ¢ € [0, t.) via Theorem 3.2, as well as a globally
existing solution via Theorem 6.1.

Acknowledgements RP would like to acknowledge valuable support from the National Science Foundation
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