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Inference of Spatio-Temporal Functions Over Graphs
via Multikernel Kriged Kalman Filtering

Vassilis N. Ioannidis

Abstract—Inference of space-time varying signals on graphs
emerges naturally in a plethora of network science related
applications. A frequently encountered challenge pertains to
reconstructing such dynamic processes, given their values over
a subset of vertices and time instants. The present paper develops
a graph-aware Kkernel-based kriged Kalman filter that accounts
for the spatio-temporal variations, and offers efficient online re-
construction, even for dynamically evolving network topologies.
The kernel-based learning framework bypasses the need for sta-
tistical information by capitalizing on the smoothness that graph
signals exhibit with respect to the underlying graph. To address the
challenge of selecting the appropriate kernel, the proposed filter is
combined with a multikernel selection module. Such a data-driven
method selects a kernel attuned to the signal dynamics on-the-fly
within the linear span of a preselected dictionary. The novel multi-
kernel learning algorithm exploits the eigenstructure of Laplacian
kernel matrices to reduce computational complexity. Numerical
tests with synthetic and real data demonstrate the superior recon-
struction performance of the novel approach relative to state-of-
the-art alternatives.

Index Terms—Graph signal reconstruction, dynamic models on
graphs, kriged Kalman filtering, multi-kernel learning.

I. INTRODUCTION

NUMBER of applications involve data that admit a natu-
A ral representation in terms of node attributes over social,
economic, sensor, communication, and biological networks, to
name a few [12], [26]. An inference task that emerges in this
context is to predict or extrapolate the attributes of all nodes in
the network given the attributes of a subset of them. In a finance
network, where nodes correspond to stocks and edges capture
dependencies among them, one may be interested in predict-
ing the price of all stocks in the network knowing the price of
some. This is of paramount importance in applications where
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collecting the attributes of all nodes is prohibitive, as is the case
when sampling large-scale graphs, or, when the attribute of in-
terest is of sensitive nature, such as the transmission of HIV in a
social network. This task was first formulated as reconstructing
a time-invariant function on a graph [26], [27].

Follow-up reconstruction approaches leverage the notions
of graph bandlimitedness [5], [24], sparsity and overcomplete
dictionaries [29], smoothness over the graph [13], [27], all
of which can be unified as approximations of nonparametric
graph functions drawn from a reproducing kernel Hilbert space
(RKHS) [21]; see also [10] for semi-parametric alternatives.

In various applications however, the network connectivity
and node attributes change over time. Such is the case in e.g.
a finance network, where not only the stock prices change
over time, but also their inter-dependencies. Hence, maximiz-
ing reconstruction performance for these time-varying signals
necessitates judicious modeling of the space-time dynamics,
especially when samples are scarce.

Inference of time-varying graph functions has been so far
pursued mainly for slow variations [9], [15], [30]. Temporal
dynamics have been modeled in [18] by assuming that the co-
variance of the function to be reconstructed is available. On the
other hand, spatio-temporal reconstruction of generally dynamic
graphs has been approached using an extended graph kernel ma-
trix model with a block tridiagonal structure that lends itself to
a computationally tractable iterative solver [19]. However, [19]
neither relies on a dynamic model of the function variability,
nor it provides a tractable method to learn the “best” kernel that
fits the data. Similarly, the algorithm in [11] assumes that an
appropriate kernel is known. Furthermore, [18], [11], and [19]
do not adapt to changes in the spatio-temporal dynamics of the
graph function.

The present paper fills this gap by introducing online estima-
tors for time-varying functions on generally dynamic graphs.
Specifically, the contribution is threefold.

Cl. A deterministic model for time-varying network pro-
cesses is proposed, where spatial dependencies are cap-
tured by the topology while spatio-temporal dynamics
are described through a graph-aware state-space model.

C2. Based on this model, an algorithm termed kernel kriged
Kalman filter (KeKriKF) is developed to obtain function
estimates by minimizing a kernel ridge regression (KRR)
criterion in an online fashion. The proposed solver gen-
eralizes the traditional network kriged Kalman filter
(KriKF) [17], [18], [31], which relies on a probabilistic
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model. The novel estimator forgoes with assumptions on
data distributions and stationarity, by promoting space-
time smoothness through dynamic kernels on graphs.

C3. To select the most appropriate kernel, a multi-kernel

(M)KriKF is developed based on the multi-kernel learn-
ing (MKL) framework. This algorithm adaptively se-
lects the kernel that “best” fits the data dynamics within
the linear span of a prespecified kernel dictionary. The
structure of Laplacian kernels is exploited to reduce com-
plexity down to the order of KeKriKF. This complexity
is linear in the number of time samples, which renders
KeKriKF and MKriKF appealing for online operation.

The rest of the paper is structured as follows. Section II
contains preliminaries and states the problem. Section III in-
troduces the spatio-temporal model and develops the KeKriKF.
Section IV endows the KeKriKF with an MKL module to obtain
the MKriKF. Finally, numerical experiments and conclusions
are presented in Sections V and VI, respectively.

Notation: Scalars are denoted by lowercase, column vectors
by bold lowercase, and matrices by bold uppercase letters. Su-
perscripts | and T respectively denote transpose and pseudo-
inverse; 1y stands for the N x 1 all-one vector; diag{x}
corresponds to a diagonal matrix with the entries of @ on its
diagonal, while diag { X'} is a vector holding the diagonal en-
tries of X; and A (y,0?) a Gaussian distribution with mean 1
and variance o2. Finally, if A is a matrix and x a vector, then

|z|% :=x"A 'z and |z|} = 2" =.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a time-varying graph G; := (V, A;), t =1,2,...,
where V := {v1,...,vn} denotes the vertex set, and A; the
N x N adjacency matrix, whose (n,n)-th entry A,, ,,/(¢) is the
nonnegative weight of the edge connecting vertices v,, and v,/
attime t. The edge setis & := {(v,,v,) €V x V1 A, (L) #
0}, and two vertices v and v’ are connected at time t if (v,v') €
&;. The graphs {G;}; in this paper are undirected and have
no self-loops, which means that A, = A/ and A, ,(¢) =0,
Vt, n. The Laplacian matrix is L; := diag {A;1x} — A¢, and
is positive semidefinite provided that A,, ,,/(¢t) > 0, Vn,n/,t.

A time-varying graph function is a map f:V x 7 — R,
where 7 := {1,2,...} is the set of time indices. Specifically,
f (vy, t) represents the value of the attribute of interest at node
n and time ¢, e.g. the closing price of the n-th stock on the
t-th day. Vector f; := [f(vi,t),..., f(vn,t)]T € RV collects
the function values at time ¢.

Suppose that S; noisy observations y(v,_,t) = f(v,,,t)
e(vn,,t), s=1,...,5;, are available at time ¢, where S; :
{n1,...,ng, } contains the sampled indices 1 <n; <...
ng, < N, and e(v,, t) captures the observation error.

With y; = [y(va,, 1), ..., y(vns,, )] and e; := [e(vy,, 1),
... €e(vyg,1)]", the observation model in vector-matrix
form is

IAI +

yt:Stft+et7 t:1727 (1)

where S; € {0, 1} %" selects the sampled entries of f;.
Giveny,, S,,and A, forT = 1,...,¢, the goal of this paper
is to reconstruct f; at each ¢. The estimators should operate in an
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TABLE I
EXAMPLES OF LAPLACIAN KERNELS AND THEIR ASSOCIATED SPECTRAL
WEIGHT FUNCTIONS

[ Kernel name | Function | Parameters |
Diffusion kernel [13] r(\) = exp{a?)\/2} aZ>0
p-step random | r(A) = (a—\)"P a>2,p
walk [27]

Regularized Laplacian | r(\) = 1 + o2\ >0
[26], [27], [32]
<n<
Bandlimited [21] R B>0, B
53 otherwise
L k<n<N-1
Band-rejection r(An) = {’18/6 otk;er::/i;e B8>0k,1

online fashion, which means that the computational complexity
per time slot £ must not grow with ¢. Observe that no statistical
information is assumed available in our formulation.

A. Kernel-Based Reconstruction

Aiming ultimately at the time-varying f;, it is instructive
to outline the kernel-based reconstruction of a time-invariant
f=1f, .., fv] given G := (V, A), and using samples y =
Sf+ecR% where S € {0,1}%*" and S < N.

Relying on regularized least-squares (LS), we obtain

= arg min ly = SFIE + ng(f) @)

where 1 > 0 and the regularizer g(f) promotes estimates with
a certain structure.
For example, the so-called Laplacian regularizer

N N
gLR(f) = (1/2> Z Z An,n’(fn - fn’)2 (3)
n=1n'=1

promotes smooth function estimates with similar values at ver-

tices connected by strong links (large A,, ,,/), since gir(f) is

small when f is smooth. It turns out that g g (f) = f' Lf; see

e.g. [12, Ch. 2]. For a scalar function (L) a general graph

kernel family of regularizers is obtained as ggr(f) =
FTKTf = | fll%, where the Laplacian kernel is defined as

K :=¢(L) :=U" diag{r'(A\)}U 4

where U € RV*N and XA > 0 € RV*! denote the eigenvector
matrix and the eigenvalues of L, since L = U diag {A\}U .
Clearly, gkr (f) subsumes gig(f) for (L) = L. Other special
cases of ggxr(f) that will be tested in the simulations are col-
lected in Table I, and the scalar functions are plotted in Fig 1.
Prior knowledge about the properties of f may guide the se-
lection of the appropriate 7(+). For instance, a diffusion kernel
accounts for smoothness of f, as well as the prior that f is
generated by a graph diffusion process. Data-driven selection
techniques follow in Section IV.

Further broadening the scope of the generalized Laplacian
kernel regularizers, one may set g(f) = || f||% for an arbi-
trary positive semidefinite matrix K, not necessarily a Laplacian
kernel. These regularizers give rise to the family of kernel ridge
regression (KRR) estimators

. 1
f= arg;mnguy—SfH%waH% )
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Fig. 1. Laplacian kernels (Diffusion o = 1.9, p-step random walk o = 2.55,

p = 6, Regularized Laplacian o = 4.5, 8 = 50, Bandwidth B = 20, § = 50,
Band-reject k = 10, [ = 10).

where 1 > 0 controls the effect of the regularizer with respect
to the fitting term S~ ||y — S f||3. KRR estimators have well-
documented merits and solid grounds on statistical learning
theory; see e.g. [23].

So far, signal f was assumed deterministic. To present a
probabilistic interpretation of KRR suppose that f is zero-mean
with C := E [f 7], and that the entries of e are uncorrelated
with each other and with f, and o? := S~'E [[e|3]. In this
setting, the KRR estimator (5) reduces to the linear minimum
mean-square error (LMMSE) estimator if S = ¢ and K =
C'. Thus, KRR generalizes LMMSE and can be interpreted as
the LMMSE estimator of a random signal f with covariance
matrix K; see [21, Proposition 2].

III. KERNEL KRIGED KALMAN FILTER

This section presents a space-time varying model that is capa-
ble of accommodating fairly general forms of spatio-temporal
dynamics. Building on this model, a novel online KRR esti-
mator will be subsequently developed for graph functions over
time-varying graphs.

A. Spatio-Temporal Model

An immediate approach to estimate f; is to apply (5) sepa-
rately per slot £. This yields the instantaneous estimator

2()
i

= argmin = lly— S FIB+ulflR, ©
f t

where K; > 0is a per-slot preselected kernel matrix, and super-
script v will be explained later. Unfortunately, such an approach
does not account for the possible dynamics relating f; to f;_.
However, leveraging dependencies across slots can benefit the
estimator of f; from observations {y; } ;.

To circumvent the aforementioned limitation, consider mod-
eling the function of interest as

f(v’nat) = f(y)(’UTHt) + f<X)(/U’VI,7t) (7)

where f(*) captures arbitrary (even fast) temporal dynamics
across sampling intervals and can be interpreted as an instanta-
neous component, while f(X) represents a structured (typically
slow) varying component.

As an example, consider stock price prediction, where f(*)
accounts for instantaneous changes caused e.g. by political
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statements or company announcements at t relative to ¢t — 1,
while f(X) captures the steady evolution of the stock market,
where stock prices at slot ¢ are closely related to prices of (pos-
sibly) other stocks at £ — 1. Before delving into how these com-
ponents are modeled, let fg'/) = [f (v, ), fP) oy, )] T
and £ = [fO (v, ), ..., f9(vy, )], and note that (7)
can be cast into vector form as

Fi=1" 4. )

Vector fi") can be smooth over its entries (G;), and captures
instantaneous dependence among {f(v,,?)}\_,. This term
models the component of the network process that is either
uncorrelated over time or it is uncorrelated with respect to the
presumed sampling interval. Indeed, one may consider nonlin-
ear models to capture the dynamics of £(*). However, such an
approach goes beyond the scope of this submission. On the other
hand, f§X> is smooth not only over G; but also over time, and
models dependencies between {f(v,,t)}_, and their time-
lagged versions { f(v,,t — 1)})_;.

The smooth evolution of fEX ) over time slots adheres to the
state equation

f§X> :A(t,tfl).fi)f)l +T,t7 t= 172a'-' (9)

where A, 1) is a graph transition matrix, and 7; 1=
n(v1,1),...,n(vy,t)]" € RY is termed state noise. Vector 7,
will be assumed smooth over G;, meaning 7)(v,,, t) is expected to
be similar to n(v,, t) if Ay, /() # 0. The recursion in (9) is the
graph counterpart of a vector autoregressive model (VARM) of
order one (see e.g. [16], [25]), and will lead to computationally
efficient online KRR estimators of f; that account for temporal
dynamics [25].

Model (8) can be thought of as the graph counterpart of
the model adopted in [31] to derive the kriged Kalman filter.
In our context here, f§”> describes small-scale spatial fluctu-
ations within slot ¢, whereas EX) captures the so-called trend
across slots. Furthermore, (8) generalizes the model used in [ 18],
where A(; ;1) = Iy, for network delay prediction, where fEV)
represents the propagation, transmission, and processing delays
and fiX) the queuing delay at each router that is affected.

Remark 1: The transition matrix A; ;_;) can be interpreted
as the NV x N adjacency of a generally directed “transition
graph” that relates { ) (v,,,t — 1)}, to {fO)(v,,t)}N_,.
To avoid estimation of A(; ;_1), the random walk model is mo-
tivated, where A(m_l) = ¢l with ¢ > 0. On the other hand,
adherence to the graph, prompts the selection A; ;1) = cA,in
which case (9) amounts to a diffusion process on a time-invariant

G [24].

B. KeKriKF Algorithm

This section develops an online algorithm to estimate
fi. given (1) and {y,,S;, A;, A, ,_1)}._, for the spatio-
temporal model of f; in (8) and (9). Unfortunately, { f(T”)

and fSX)} cannot be obtained by solving the system of equa-
tions comprising (1), (8), and (9) over time even if e, =0
and 1, =0, V7; simply because after replacing f, with
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f + f VT the estimation task involves 2Nt unknowns,
namely { fT <"> '_y, and only S + Nt equations, where
S:=3" S and S < Nt. To obtain a solution to this un-
derdetermmed problem, one must exploit the model structure.
Extending the KRR estimator in (5) to time-varying functions,
suppose we wish to

t

minimize E

{f(x f<u)}f>:1 = 1

+,u’12||f 7'7'1

Hyf — 8, 0 — 8 f|?

t
+ p2 Z [Fi ”i{i”)
T=1

(10)

(x) 2
7'71 ||K(TX)

where the scalars pq, s > 0 control the trade-off between
smoothness and data fit. The first cost is an LS fitting error
of the observations. The second cost is a weighted LS error of
the slow-varying state (weight matrix promotes spatio-temporal
smoothness over G, and time), and the third term (regularizer)
is the weighted /5-norm of the fast-varying state (with weight
matrix promoting spatial smoothness over G, ). When available,
prior information about { f(T”) , f§X> 1t _ | may steer the selection
of suitable kernel matrices; when not available, one can resort
to the algorithm in Section I'V.

Directly solving (10) per ¢ would not lead to an online al-
gorithm since the complexity of such an approach grows with
t; see Section II. However, we will develop next an efficient

online algorithm to obtain per slot ¢ estimates ]"Efi),}'i;) that
still account for {y.,S., A -} _,

Given f (TX ) , the first-order necessary conditions for optimality
of F) yield [cf. (10)]

U = KWSHEKY 4 11nS Is,) (g, — 8, £9) (1)

where K =S5, K ST Notice that the overbar notation

indicates S X ST matrices or S, x 1 vectors, and recall that
without overbar their counterparts have sizes N x N and
N x 1, respectively. Substituting (11) into (10), we arrive at an
optimization problem that does not depend on f(TV) for 7 =
1,...,t. Rewrite next the per slot 7 measurement error in (10)
using (11) as

1 14
?H?ﬁ - ST.fSX) - STf-(r )||2

— 5l - S £0 - kY
$ (K 4 198 Ts. ) (y, — S, f0O)|2
~ Lirs - KORY + o1
X (yr — S fY)|1°.

The matrix inversion lemma asserts for the matrix in square
brackets of (12a) that

(12a)

[Is, — K (KY) + 08 L5 )]

1)
~(r1s + K:> .
(ST NQST

(12b)
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Plugging (12b) into (12a) yields

( 1
NJZST

1 o
— (y, — S, F)T (MKi '+ STIsT)
2

2
1

S

-1
K\ +IsT> (yr — S fY)

1 — !
x 8. I <MK§ )y STIST) (y, — S, £99). (120)
2

Next, we express the regularizer in (10) using (11) for each
T as

IJ’QHf‘(rV)Hi((TI)
1 . -T
= (y, — 8, £ (KW + STIsT)
M2
1 - 1 —0 -
KO (LRD S ) (-8
2 2
(12d)

where the last equality follows from the definition of K (T”).
Combining (12c¢) with (12d) yields

1 14
§||y7 - ST.fS'X) - ||2 +M2||.f< )HK(U)

= lly- = S- I

where K 51,)

boils down to

Yo (13)

= %f{ + 8, Is. . Using (13) per slot, (10)

{7 I Y= argmmZIIyr — 8, fix ||2
{fTY }:' 1 T=1

+m ZHf

Since (14) is identical to the deterministic formulation of
the Kalman filter (KF) applied to a state-space model with

state noise covariance K"

ance K iy), we deduce that the KF algorithm, see e.g. [28,

Ch. 17], applies readily to obtain sequentially the structured

per slot ¢ component { f ‘T) ! _,. After substituting { f ‘T Ly

into (11), we can find also the per slot instantaneous compo-

nent { ]A"'Yh) ¢ _,. The t-th iteration of our so-termed KeKriKF is
listed as Algorithm 1.
Summing up, we have established the following result.

Theorem I: If{{f |,, M =t i tll solves (10) for t =

1,...,t1, the KeKriKF lteratlons summarized in Algorlthm 1 for

t= 1, ., t1 generate the subset of solutions {ft‘t ,ft“ i=h
C]early, the KeKriKF algorithm comprises two subproce-
dures: Kalman filtering (steps S1-S6), and kriging (step S7).
S3-S5 specify My;_1, M;;, and G, that are known in the
KEF literature as the mean square-error matrices for prediction,
correction, and the Kalman gain matrix.
The traditional KriKF has been employed to interpolate sta-

tionary processes defined over continuous spatial domains [17],

T 1”2

- (14

and measurement noise covari-
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Algorithm 1: Kernel Kriged Kalman Filter (KeKriKF).

Input: KgX),Kiy) €SY; A1y € RVN gy € RS
St S {0, 1}St XEV; }‘i)i)l‘t—l € R]v;
M; 11 € Siv
SLKV" = H%S,,Ki”)sj + 8,1,
() 5 o
S2. ft\)fs 1 =Aqnfie 1t—1 (prediction)

S3. My = Ap - le 1[t— 1A” 1) +f]K§X)

S4.G; = My, S/ (Kt + 8/ M 1 S/]) " (gain)
S5. Mt\t = (I - GtSt)Mt,\t—r

200 () 2(x)
6. fﬂi - ftfi = Gt (yt ~ Sifip)
- 2(x)
S7. ft\t —K ST (Y _St.ft\)f‘,)
Output: .ft|t > ft|t > Mt\t-

(correction)

(kriging)

[31], and its derivation follows from a probabilistic linear-
minimum mean-square error (LMMSE) criterion that relies on
knowledge of second-order statistics [17], [18], [31]. Here, our
KeKriKF is derived from a deterministic kernel-based learning
framework, which bypasses assumptions on data distributions
and stationarity and replaces knowledge of second-order (cross-
) covariances with knowledge of K §"> and K IEX ). Moreover,
different from [7], [15], [18], [30], the novel KeKriKF can ac-
commodate dynamic graph topologies provided { K", KV},
are available.

Remark 2: The complexity of KeKriKF is O(N?) per slot.
When the underlying graph is large (/N >>), this complex-
ity can be managed after splitting the graph into N, sub-
graphs each with at most [N/N,] nodes, and employing
consensus-based decentralized KF schemes along the lines
of [22].

IV. ONLINE MULTI-KERNEL LEARNING

This section broadens the scope of the KeKriKF algorithm by
employing a multi-kernel learning scheme, to bypass the need
for selecting an appropriate kernel.

The performance of KRR estimators is well known to heavily
depend on the choice of the kernel matrix [21]. Unfortunately,
it is difficult to know which kernel matrix is most appropri-
ate for a given problem. To address this issue, an MKL ap-
proach is presented that selects a suitable kernel matrix within
the linear span of a prespecified dictionary using the available
data.

In the following, consider for simplicity that K ﬁ'/) =KW,

KgX) = KX, and St S, Vt. The kernels in the dictio-

naries D) := {K")[m ]GSV}m 1, and DY) = {K(X)
[m] € S“} *, will be combined to generate K() = K
(01) =30, 6@ [m] K ) [m] and KV = K00 (80)) :=
S 9O [ K [m],  where  60) := [90)[1],..., 60

M7, 000 = [90[1], ...,
to be determined.

00 [M,]]" = 0 are coefficients
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Next, consider expanding the optimization in (10) to obtain

0"), ) along with {f(TX>,f(TV) t_,, as follows

t

1 1
n >, gllyr = SN — SFWP

T=1

minimize
() f e

o(X)-0,0(7) -0

Mr
Z||f<>< A P B o0y
,LL t
2 v v
+ D IF e oy + 1013 + i lI6V 15 (15)
T7=1

where p,,p, >0 are regularization parameters. The solu-

tion to (15) for each ¢ will be denoted as { f(TTt), <‘t) Ly

{9§X),[9iy>}. Here, the data-dependent {Q,EX),QEV } select the
kernel matrices that “best” capture the data dynamics.

Due to the presence of the weighted norms, namely {|| f 0o
A(ﬂ‘l'fl)f‘(rx—)lH%{(x)(e(x)) —1 and {”fTV ||K< ) () }T 1» the
problem in (15) is non- convex Fortunately, (15) is separately

convex in { fT fT" M, (), @(X) | which motivates the use
of alternating mrnlmrzatron (AM) strategies. AM algorithms
minimize the objective with respect to every block of vari-
ables, while keeping the other variables fixed [8]. Conve-
niently, if o 0 ) are fixed, then (15) reduces to (10), which
can be solved by Algorithm 1 for fﬂt , ft‘t per slot t; see
Theorem 1 Conversely, 9%”,9;”

(£, #9938 | as specified next.
Theorem 2 Constder mmzmlzmg (15) with respect to 0X)

and 0 forﬁxedfT —f dfTV :}'(TTT),T:L...,t,
where { f ‘T, T\T}t%:r are given and not necessarily the

global minimizers of (15) with respect to { fT fT
Let 5‘“{3 =7 -A

can be obtained for fixed

7—7

(X
(r7— 1>fT 1‘7_71,7'22,...715, as well

200 200
ClSR _127 1f“f‘f ‘T X):%Zizlf‘r)l:'f‘r)‘:'
Then, the minimizers of (15) with respect to 0") and %) are
0" = argmin T (R K 00))) 1 2203 (160
0v) =0
éiX) = arg minTr{REX)K(X)il(O(X))} + prHH(X) 5. (16b)
0x) >0 M

Proof: To prove (16a), keep in (15) only those terms
that depend on 8(*), and replace {f@}g:l with {}-(”) t

TirSr=1

. . . NN

Then, the objective in (15) reduces to (1/t) th:lfm

K<”>71(0(”))}'(TTT)+(py/u2)H9<”>H§. Next, using the lin-

earity and cyclic invariance of the trace it follows that
LS DN ()

FULR KOO0} = T (RVK® TN (6)), which

proves (16a). The proof of (16b) follows along the same lines.

|
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Algorithm 2: Multi-kernel KriKF (MKriKF).

Algorithm 3: Online Kernel Matching (OKM).

Input: D); DX); [ = U diag {\} U.
I+ Initialize: 6, = 6" = [1,0,...,0], 3}y =0,
Mg = ;=KW[1],
A [m] = diag {UK W) [m]UT } ¥,
AN [m] = diag (UK [m]UT } vm.

2: fort=1,2,...do

3: Imput: Aj, ) eRVN gy, eRY; S, €{0,1}57N,
4 K =K@

5 K( 0 K<X)(9(X))

6 {ft\f ’ft\f }= KeK“KF(Kf( )15K1(€’:)17A(t,t71)a

Y, St ft—llt—l M 1)

7. Update R\") and R\"
8: TV =U"R"U
: X) _ UTREX)U
10: 6, = ORM(AY ]} e, T, 6,7))
6, = oRM(AY ]}, TP, 6,)
12:  Qutput: fﬁﬁ) fﬁr,) M.
13: end for

Thus, Theorem 2 simplifies the objective that has to be mini-

mized to find éiX) and éiy). With K (0) = Zf:l O[m]K[m],
problems (16a) and (16b) are of the form
6 = argmin Tr{RK 1 (0)} + p| 0|3 (17)

6>0

for some R € RY*YN  p >0, and D = {K[m]}*_,. Due to
their resemblance to covariance matching [20], problem (17),
and hence (16a) and (16b) will be referred to as kernel matching.

Theorem 2 suggests an online AM procedure to approximate
the solution to (15), where Algorithm 1 and a solver for (17)
termed online kernel matching (OKM) are executed alternat-
ingly. This is summarized as Algorithm 2, and it is termed
multi-kernel KriKF (MKriKF). Algorithm 2 does not generally
find a global optimum of (15); yet, finding such an optimum
may not be critical in practice, since it cannot be computed in
polynomial time.

The rest of this section develops the OKM algorithm for
solving (17) when D comprises Laplacian kernels. The first step
is to exploit the fact that all Laplacian kernel matrices associated
with a given graph have common eigenvectors.

Proposition 1: Consider the eigenvalue decompositions
{K[m] = U diag {\[m]} UT}m L and let T:=U'"RU.
Upon defining A(0) := dzag{zm 1 Om]X[m]} and $(0) :=

Tr (TA'(8)) + p||0|3, (17) can be equivalently written as
0 = arg min (0) (18)
0-0
Proof: Since K (0)=Y"" 6[m]U diag (A\[m]} U =
()UT, (18) follows by noting that Tr{RK '(6)}=Tr
{RUA(0)UT}=Tr{U RUA'(8)} =Tr{TA~' (8)}. ]

Illpllt {)\[ ] m_l,Tf €S+,0[ 1 G]R”
1: Initialize: 8° = 6, _,,
2: while stopping_criterion not met do

3: 0k+1 _ [ek o Skv¢(0k;)]+
4: k—k+1
5: end while

Output: 6,.

Proposition 1 establishes that (17) can be expressed as (18)
when the kernels in D share eigenvectors, as is the case of
Laplacian kernels; cf. Section II-A.

Proposition 2: When 0 = 0, function ¢(0) is strongly con-
vex and differentiable with gradient

Vo(0) =v(0) + 2p0 (19)
where~v(0) = i[Tr{diag{)l[l]}T}, e ,T?:{diag{S\[M]}T}],
with Am] := [M\i[m], ..., Ay [m]]" and X\, [m] := X\, [m]/

Proof: Because T' is a positive semidefinite matrix and
A[m] = 0Vm, it can be easily seen that Tr {T'A~"(6)} is con-
vex over @ = 0. And since p||@]|3 is strongly convex, it follows
by its definition that ¢(0) is strongly convex. To obtain the
gradient observe that

(’Ma[(fn] =-—Tr {A—l 0) diag {)\[m]}A—l(a)T} + 2p0[m]
(20)
and A71(0) diag {A\[m]} A71(0) = diag{j\[m]}. =

As (18) entails a strongly convex and differentiable objec-
tive, and projections on its feasible set are easy to obtain, we
are motivate to solve (18) through projected gradient descent
(PGD) [6]. Besides its simplicity, PGD converges linearly to the
global minimum of (18). The general PGD iteration is

0kl = [0" — s"Ve(8")] T, k=0,1,... 1)

where s* is the stepsize chosen e.g. by the Armijo rule [6], 8°
is a feasible initial step, and H * denotes projection on the non-
negative orthant {0 : §[m] >0, m =1,..., M}. The overall
algorithm is termed OKM, and it is listed as Algorithm 3.
Observe that 6° in Algorithm 3 is initialized with its out-
put in the previous iterate, namely ét_l. This is a warm start
that considerably speeds up convergence of Algorithm 3 since
¢(0) is expected to change slowly across the iterations in
Algorithm 2. An interesting byproduct of the OKM algorithm is

its ability to adapt to changes in the spatio-temporal dynamics of

the graph functions by adjusting the coefficients {é 0(X> e
and consequently the kernel matrices.

In view of Proposition 2, finding each entry of V¢ (0) in
Algorithm 3 requires O(N) operations. Computing the gradient
through (19) exploits the common eigenvectors of { K [m]}M_
and avoids the inversion of the N x N matrix K () that is
required when calculating the gradient for the general formu-

lation (17), where {K[m]}*_, need not share eigenvectors.
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The complexity of evaluating the gradient is therefore reduced
from a prohibitive O(N? M) for general kernels to an afford-
able O(NM) for Laplacian kernels, which amounts to con-
siderable computational savings especially for large-scale net-
works. With K denoting the number of PGD iterations for
convergence, the overall computational complexity of OKM
is therefore O(N M K). Typically, N* > N M K and hence the
complexity of Algorithm 2 is O(N?), while learning the ap-
propriate linear combination of kernels through MKL does not
increase the complexity order that can be further reduced as
suggested in Remark 2.

Selecting the dictionary and its size clearly depends on the
amount of prior information available, and the complexity that
can be afforded by the MKL optimization that follows up. Desir-
able attributes such as smoothness, bandlimitedness, and diffu-
sion effects can prompt inclusion of corresponding kernels over
a grid of their parameters - the case present in our simulation
tests.

Remark 3: The algorithms in this section adopted a fixed
kernel dictionary over time, namely D = {K[m] € SY }M_,.
If the topology changes over time, the Laplacian kernel matrices
change as well, cf. (4). To accommodate this scenario, one can
restart Algorithm 2 whenever the topology changes, say at time
t., and initialize }'éTO) — fii(\tn Mg M; ;.. as well as
replace the Laplacian kernels in D with the ones corresponding
to the new topology.

Remark 4: To accommodate a certain degree of nonstation-
arity one may consider using the following matrices

t
- () ) )T
Rt = Z,y;i ‘r|‘r-f |7 +’VVI

T=1

t
ZfoleT

T=1
instead of R\") and R\, where Yy Vv € (0,1) are forgetting
factors that weigh exponentially past observations, and ensure
v and REX) Moreover, REV) and

REX) can be updated recursively as

R

Rix)

(22a)

RY = VT (22b)

invertibility of matrices R

=) ) R()7
=nR,_|+ ft|t ft\t (23a)

(x) 2007
t 1 + .f t|t f t|t
which significantly reduces the requlred memory for the com-

()‘011

(23b)

putation with respect to (22), since { f |T , need not be

stored.

Remark 5: The algorithms presented in this paper can be
generalized to account for a VARM of order L, fEX) =
Zle A(tﬁt,”fl(ff; + 1. Towards that end, consider the LN x
1 extended state vector FO = [(FNDT, L (fi)QLH)T]T, the
Sy x LN matrix S; :=[S;,0 ,0], the LN x LN matri-

- . . - L
ces A, ;_1) with block entries {[A(t_t,l)]u = Aqinfi_,s
{[A(tﬁtfl)]l,z = IN}ILZQ, and the rest zero, and KEX) with

block entries [I_(ﬁX)]l‘l = K}V, {[I_{z(fX)]lz = IN}IL:Q’ and
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the rest zero. The KeKriKF algorithm can then be readily ap-
plied after replacing the pertinent matrices and vectors with
their extended versions. Having established that Algorithm 1
can accommodate multi-lag dependencies, the extension of
Algorithm 2 follows, as Algorithm 3 is not affected by the
extended state.

Remark 6: One may ponder on the role of graphs in our
KRR formulation with the regression coefficient vector obeying
a linear dynamical model. Our graph-based formulation is well
motivated not only because several physical networks are repre-
sented by graphs having known connectivity, but also because
graphical models are known to represent effectively probabilis-
tic dependencies among nodal vectors. Sure, one could have a
fortiori assumed knowledge of the needed covariance (or ker-
nel) matrices that are not generally available. Here, we employ
kernel matrices that are functions of the graph adjacency ma-
trices. In so doing, we further endow our formulation in the
form of regularization terms with graph-related properties that
can be present. Those include smoothness, (block) sparsity, low
rank, and diffusion effects. Although the emphasis here is on
leveraging these properties on graphs the advocated MKriKF
approach can be indeed useful in various spatio-temporal es-
timation tasks involving signals not necessarily evolving over
graphs, so long as the underlying (cross-)covariance matrices
can become available. Finally, our OKM algorithm leverages
the common eigenvectors of the graph-induced kernel matrix
to reduce complexity. All in all, our graph-based formulation
facilitates incorporation of graph-specific prior information.

V. SIMULATIONS

This section evaluates the performance of the developed algo-
rithms by means of numerical tests with synthetic and real data.
The proposed algorithms are compared with: (i) The least mean-
square (LMS) algorithm in [15] with step size pyms; and (ii) the
distributed least-squares reconstruction (DLSR) algorithm [30]
with step sizes puprsg and Oppsg. Both LMS and DLSR can
track slowly time-varying B-bandlimited graph signals.

The performance of the aforementioned approaches is quan-
tified through the normalized mean-square error (NMSE)

E[> . [IS:f-13]
where the expectation is taken over the sample locations, and
S¢ isan (N —.S;) x N matrix comprising the rows of I y whose
indices are not in S;, which means that the test set in all exper-
iments is V \ S, Vt. Unless otherwise stated, S; is chosen uni-
formly at random without replacement over ), and kept constant
over time; that is, S; = &, per ¢, in order to compare on equal
footing the competing algorithms DLSR [30] and LMS [15] that
cannot cope with time-varying ;. For all tests 10 fold cross-
validation has been employed. The training set S; was split in
10 subsets, out of which 9 were used for training and 1 for val-
idation. The validation error was averaged over the 10 subsets,
and the set of parameters exhibiting the smallest error was se-

lected. To reduce the search space, we set (i1 = jip and p, = p,.
The test set is in all cases V \ &;, Vt. Notice that our MKriKF,

NMSE :=
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Fig. 2. NMSE of function estimates (p1 = po = 1).

which learns the kernel that “best” fits the data, requires minimal
parameter tuning.

A. Numerical Tests on Synthetic Data

To construct a graph, consider the dataset in [4], which con-
tains timestamped messages among students at the University
of California, Irvine, exchanged over a social network during
90 days. The sampling interval ¢ is one day. A graph is con-
structed such that the edge weight A, ,,/(¢) counts the num-
ber of messages exchanged between student n and n’ in the
k-th month, where £ =1,2,3 and 30(k — 1) + 1 < ¢ < 30k.
Hence, A; changes across months. A subset of N = 310
users for which A; corresponds to a connected graph Vi
is selected. At each ¢, f; was generated by superimposing
a B-bandlimited graph function with B =5 and a spatio-
temporally correlated signal. Spemﬁcally, fi= ft + fIEX)

SO l'yfuf + £, where {4}2_, ~ N(0,1) for all £, while
{u!}>_, denote the elgenvectors assoc1ated with the 5 small-
est eigenvalues of L;, and f,/ is generated according to (9)
with Ay 1) = 0.03(A; 1 + Iy),n ~N(0,C,),and C, is
a diffusion kernel with o = 0.5. Function f(v,,t) is therefore
smooth with respect to the graph and can be interpreted e.g.
as the time that the n-th student spends on the specific social
network during the ¢-th day.

The first experiment justifies the proposed decomposition by
assessing the impact of dropping either £\") or £/ from the
right hand side of (8). The KriKF algorithm uses diffusion ker-
nels K;w and K,EX)
respectively.

Fig. 2 depicts the NMSE with S = 217 for the KeKriKF;
the Kalman filter (KF) estimator, which results from setting
fil') = 0 for all ¢ in the KeKriKF; as well as kernel Kriging
(KKr), which the KeKriKF reduces to if ng) = 0 for all £. As
observed, KeKriKF, which accounts for both summands in (8),
outperforms those algorithms that account for only one of them.
Moreover, the low NMSE of KeKriKF in reconstructing the
N — § =310 — 217 = 93 unavailable node values reveals that
this algorithm is capable of efficiently capturing the spatial as
well as the temporal dynamics over time-varying topologies.

with parameters ¢ = 1.5 and 0 = 0.5,
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Fig. 3. NMSE of KeKriKF for different time-varying graphs (S = 65, u; =
w2 = 1).

Next, the robustness of KeKriKF is evaluated when the con-
nectivity of G;, captured by A;, exhibits abrupt changes over .
Synthetic time-varying networks of size N = 81 were generated
using the Kronecker product model, which effectively captures
properties of real graphs [14]. The prescribed “seed matrix”

1 01 07
Dy:= {03 01 0.5
0 1 0.1

produces the N x N matrix D := Dy ® Dy ® Dy ® Dy,
where ® denotes the Kronecker product. An initial adja-
cency matrix Ay was constructed with entries A, ,,/(0)Vn,
A, 2(0) ~ Bernoulli(D,, /) for n>n/, and A, ,(0)=
Ay (0) for n<n'. Next, the following time-varying
graph model was generated: at each ¢, = 10k, Kk =1,2,...,
each entry of A; changes with probability p,, =
Dok An k(o) 2oy Avnr (o) /305 200 Aralte) as Ap (e +1) =
Ay i (te) + |&n e (te)| for n > n' where &, ,,/(t.) ~ N(0,04)
and A, (t. +1) = A, (tc + 1) for n < n'. This choice of
Dn,n' is based on the “rich get richer” attribute of real net-
works, where new connections are formed between nodes
with high degree [14]. Moreover, the edge (v,,v,/) is
deleted at each t; = 20k, K = 1,2,... with probability 0.1;
that is, A,/ ,(tq +1)= A4, (t4+1) =0, as long as the
graph remains connected. By varying o4, we obtain different
time-varying graphs. A graph function was generated for each
time-varying graph as follows

10
Fo=0Af  + > 7w

i=1

(24)

where § = 1072 is aforgettmg factor ZZ el (@) ( ) is a graph-

bandlimited component with % ~ N(0,1),and {ut }101 are
the eigenvectors associated with the 10 smallest eigenvalues of
L;. Algorithm 1 employs a bandlimited kernel with 3 = 10°
and B for K (v) , a diffusion kernel with o = 0.5 for K ;X), and
Aoy = 10 3(A;_1 + Iy). Fig. 3 plots the NMSE of the
KeKrlKF algorithm as a function of o 4, which determines how
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Fig. 4. True and estimated temperature values (B =5, puppsg = 1.2,

BoLsr = 0.5, pums = 1.5, p1 = p2 = 1, p, = 10°, p, = 10°).

rapidly the graph changes. As observed, the KeKriKF algorithm
can effectively cope with different degrees of time variation.

B. Temperature Prediction

Consider the dataset [1] provided by the National Climatic
Data Center, which comprises hourly temperature measure-
ments at /N = 109 measuring stations across the continental
United States in 2010. A time-invariant graph was constructed
as in [19], based on geographical distances. The value f(v,,,t)
represents the ¢-th temperature sample recorded at the n-th sta-
tion. The sampling interval is one hour for the first experiment,
and one day for the second.

KeKriKF employs diffusion kernels with parameter o = 1.8
for KEL")K?‘) =10""Iy, and a transition matrix A ; 1) =
5- 10’4(At,1 + Iy). MKriKF is configured as follows:
D) contains M, =40 diffusion kernels with parameters

{o[m]}2_, with o[m] ~ N'(2,0.5),¥m; DY) contains 44 dif-
fusion kernels with parameters {o[m]}*!_ |, where o[m] ~

N(1,0.2), ¥m, and an identity kernel K ) [45] = Ty .

Fig. 4 depicts the true temperature along with its estimates for
a station n that is not sampled, meaning n ¢ S, with .S = 44.
Clearly, KeKriKF accurately tracks the temperature by exploit-
ing spatial and temporal dynamics, but MKriKF outperforms
KeKriKF by learning those dynamics from the data. The ran-
dom sampling set selection heavily affects performance of the
LMS algorithm; for adaptive selection of S see [15].

Fig. 5 compares the NMSE of all considered approaches for
S = 44. Observe the superior performance of the proposed re-
construction methods, which in this scenario exhibit roughly the
same NMSE.

C. GDP Prediction

The next dataset is provided by the World Bank Group [2],
and comprises gross domestic product (GDP) per capita for
N = 127 countries for the years 1960-2016. A time-invariant
graph was constructed using the correlation between the GDP
of different countries for the first 25 years. The graph function
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1.5, py = 10°, p, = 10°).
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Fig. 6. Greece GDP values along with the estimated ones (S = 38, upLsg =

1.6, BpLsk = 0.4, pims = 1.2, p, = 104, p, = 10%).

f(v,,,t) denotes the GDP reported at the n-th country and ¢-th
year for t = 1985,...,2016.

The graph Fourier transform of the GDP in the first
25 years defined as fo = u, fVn, where u,, denotes the n-
th eigenvector of the Laplacian matrix; see [26], shows that the
graph frequencies f take small values for 4 < k < 123, and
large values otherwise. Motivated by the aforementioned ob-
servation, the KeKriKF is configured with a band-reject kernel
K" withk =6,1 = 6,3 = 15; see Table I, K(X) = 10731,
and Ay, 1) =107°(A,_ + Iy). MKriKF adopts a D)
with M, = 16 band-reject kernels with &k € [2,5], [ € [1,4],
B =15, and a DY) with 60 diffusion kernels with parame-
ters {o[m]}8Y_,, where o[m] ~ N(2,0.5), Vm, and an identity
kernel KW [61] = Iy.

Fig. 6 depicts the actual GDP as well as its estimates for
Greece, which is not contained in the sampled countries. Clearly,
both MKriKF and KeKriKF, track the GDP evolution over the
years with greater accuracy than the considered alternatives.
This is expected because the graph function does not adhere to
the graph bandlimited model assumed by DLSR and LMS.
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Fig. 7.

NMSE of GDP estimates (S = 38, 1pLSR = 1.6, OpLsr = 0.4,
pivs = 1.6, p, = 10%, py

= 10%).

Fig. 7 reports NMSE over time, where the proposed algo-
rithms achieve the smallest NMSE. The data-driven MKriKF
outperforms KeKriKF, which is configured manually.

D. Network Delay Prediction

The last dataset records measurements of path delays on the
Internet2 backbone [3]. The network comprises 9 end-nodes and
26 directed links. The delays are available for N = 70 paths at
every minute. The paths connect origin-destination nodes by a
series of links described by the path-link routing matrix Il €
{0,1}¥ =26 whose (n,1) entry is II,, ; = 1 if path n’ traverses
link [, and O otherwise. A graph is constructed with each vertex
corresponding to one of these paths, and with the time-invariant
adjacency matrix A € RV*" given by

26

=1 Hn,lnn’,l
26 26
o g+ 322, 10

forn,n’ =1,..., N, n # n'. Expression (25) was selected to
assign a greater weight to edges connecting vertices whose as-
sociated paths share a large number of links. This is intuitively
reasonable since paths with common links usually experience
similar delays [7]. Function f(v,,t) denotes the delay in mil-
liseconds measured at the n-th path and ¢-th minute.

The KeKriKF algorithm employs a diffusion kernel with pa-

rameter o = 2.5 for Kﬁ”’, K§X) =0.0021I, and A(f,,t—l) =
0.005(A¢_1 + Iy). The MKriKF is configured as follows:
DW) contains M, = 40 diffusion kernels with parameters
{o[m]}20_, with o[m] ~ N(4,0.5), Vm; D) contains M, =
60 diffusion kernels with parameters {o[m]}5"_, with o[m] ~
N(1,0.1), Vm, and an identity kernel KX)[61] = I

Fig. 8 depicts the NMSE when S = 20. KeKriKF and
MK{riKF are seen to outperform competing methods. Using the
parameters of Fig. 8, the MKriKF algorithm is tested for S; cho-
sen at random per slot ¢ with S; = S, Vi, but S; # Sy, Vt # t'.
Fig. 9 shows the NMSE of MKriKF with variable S and as
expected the performance improves as the number of samples
increases. For the same configuration, Fig. 10 depicts the NMSE

Anm,’ -

25
26 —q 1 Iy )

n',l —
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Fig. 8. NMSE of network delay estimates (upms = 1.5, ¢ = 0.0005, p, =

100, py = 100, j11 = iy = 1).
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Fig. 10. NMSE of MKriKF for different ps (1 = 1, p, = 100, p,, = 100).

as fio varies, and shows that the minimum NMSE for all S is at
w2 = 1.

Finally, the proposed MKriKF will be evaluated in tracking
the delay over the network from S = 56 randomly sampled
path delays. To that end, delay maps are traditionally employed,
which depict the network delay per path over time and enable
operators to perform troubleshooting; see also [18]. The paths
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Fig. 11.  True and estimated network delay map for N = 70 paths (p, = 100,

1 = po = 1). (a) True delay (b) MKriKF.

for the delay maps in Fig. 11 are sorted in increasing order of
the true delay at ¢ = 1. Clearly, the delay map recovered by
MKTIriKF in Fig. 11 (b) visually resembles the true delay map in
Fig. 11 (a).

VI. CONCLUSION

This paper introduced online estimators to reconstruct dy-
namic functions over (possibly dynamic) graphs. In this context,
the function to be estimated was decomposed in two parts: one
capturing the spatial dynamics, and the other jointly modeling
spatio-temporal dynamics by means of a state-space model. A
novel kernel kriged Kalman filter was developed using a deter-
ministic RKHS approach. To accommodate scenarios with lim-
ited prior information, an online multi-kernel learning technique
was also developed to allow tracking of the spatio-temporal dy-
namics of the graph function. The structure of Laplacian ker-
nels was exploited to achieve low computational complexity.
Through numerical tests with synthetic as well as real-data,
the novel algorithms were observed to perform markedly better
than existing alternatives. Future work includes distributed im-
plementations of the proposed algorithms, data-driven learning
of A(; 1), and exploring nonlinear dynamical models such as
the sampled Brownian motion, the extended KF, unscented KF,
or particle filters.

REFERENCES

[1] “1981-2010 U.S. climate normals,” [Online]. Available: https:/www.
ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/
climate-normals/1981-2010-normals-data, Accessed on: Sep. 2016.

[2] “GDP per capita (current US),” [Online]. Available: https://data.
worldbank.org/indicator/NY.GDP.PCAP.CD, Accessed on: Sep. 2017.

[3] “One-way ping internet2,” [Online]. Available: http://software.internet2.
edu/owamp/, Accessed on: Sep. 2017.

[4] “Snap temporal networks: Collegemsg,” [Online]. Available: http://snap.
stanford.edu/data/CollegeMsg.html, Accessed Sep. 2017.

[5] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for
bandlimited graph signals using graph spectral proxies,” IEEE Trans.
Signal Process., vol. 64, no. 14, pp. 3775-3789, Jul. 2016.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 12, JUNE 15, 2018

[6] D. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena Sci-
entific, 1999.

[7] D. B. Chua, E. D. Kolaczyk, and M. Crovella, “Network kriging,” IEEE
J. Sel. Areas Commun., vol. 24, no. 12, pp. 2263-2272, Dec. 2006.

[8] L Csiszar and G. Tusnady, “Information geometry and alternating min-
imization procedures,” Stat. Decis., Supplement Issue, 1, pp. 205-237,
1984.

[9] P. A. Forero, K. Rajawat, and G. B. Giannakis, “Prediction of partially

observed dynamical processes over networks via dictionary learning,”

1EEE Trans. Signal Process., vol. 62, no. 13, pp. 3305-3320, Jul. 2014.

V. N. Ioannidis, A. N. Nikolakopoulos, and G. B. Giannakis, “Semi-

parametric graph kernel-based reconstruction,” in Proc. Global Conf. Sig-

nal Inf. Process., Montreal, QC, Canada, Nov. 2017, pp. 588-592.

V. N. Ioannidis, D. Romero, and G. B. Giannakis, “Inference of spatiotem-

poral processes over graphs via kernel kriged Kalman filtering,” in Proc.

Eur. Signal Process. Conf., Kos, Greece, Aug. 2017, pp. 1679-1683.

E. D. Kolaczyk, Statistical Analysis of Network Data: Methods and Mod-

els. New York, NY, USA: Springer, 2009.

R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other

discrete structures,” in Proc. Int. Conf. Mach. Learn., Sydney, NSW,

Australia, Jul. 2002, pp. 315-322.

J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z.

Ghahramani, “Kronecker graphs: An approach to modeling networks,”

J. Mach. Learn. Res., vol. 11, pp. 985-1042, Feb. 2010.

P. D. Lorenzo, S. Barbarossa, P. Banelli, and S. Sardellitti, “Adaptive

least mean-square estimation of graph signals,” IEEE Trans. Signal Inf.

Process. Netw., vol. 2, no. 4, pp. 555-568, Sep. 2016.

H. Liitkepohl, New Introduction to Multiple Time Series Analysis. New

York, NY, USA: Springer, 2005.

K. V. Mardia, C. Goodall, E. J. Redfern, and F. J. Alonso, “The kriged

Kalman filter,” Test, vol. 7, no. 2, pp. 217-282, 1998.

K. Rajawat, E. Dall’ Anese, and G. B. Giannakis, “Dynamic network delay

cartography,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2910-2920,

Mar. 2014.

D. Romero, V. N. Ioannidis, and G. B. Giannakis, “Kernel-based recon-

struction of space-time functions on dynamic graphs,” IEEE J. Sel. Topics

Signal Process., vol. 11, no. 6, pp. 1-14, Sep. 2017.

D. Romero and G. Leus, “Wideband spectrum sensing from compressed

measurements using spectral prior information,” IEEE Trans. Signal Pro-

cess., vol. 61, no. 24, pp. 6232-6246, Dec. 2013.

D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruction of

graph signals,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 764-778,

Feb. 2017.

1. D. Schizas, G. B. Giannakis, S. I. Roumeliotis, and A. Ribeiro, “Con-

sensus in ad hoc WSNs with noisy links—Part II: Distributed estimation

and smoothing of random signals,” IEEE Trans. Signal Process., vol. 56,

no. 4, pp. 1650-1666, Apr. 2008.

B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA,

USA: MIT Press, 2002.

S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, “Reconstruction

of graph signals through percolation from seeding nodes,” IEEE Trans.

Signal Process., vol. 64, no. 16, pp. 43634378, Aug. 2016.

Y. Shen, B. Baingana, and G. B. Giannakis, “Nonlinear structural vector

autoregressive models for inferring effective brain network connectivity,”

arXiv:1610.06551v1, 2016.

D. 1. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,

“The emerging field of signal processing on graphs: Extending high-

dimensional data analysis to networks and other irregular domains,” IEEE

Signal Process. Mag., vol. 30, no. 3, pp. 83-98, May 2013.

A.J. Smola and R. I. Kondor, “Kernels and regularization on graphs,” in

Learning Theory and Kernel Machines, New York, NY, USA: Springer,

2003, pp. 144-158.

G. Strang and K. Borre, Linear Algebra, Geodesy, and GPS. Philadelphia,

PA, USA: SIAM, 1997.

D. Thanou, D. I. Shuman, and P. Frossard, “Learning parametric dictio-

naries for signals on graphs,” IEEE Trans. Signal Process., vol. 62, no. 15,

pp. 3849-3862, Aug. 2014.

X. Wang, M. Wang, and Y. Gu, “A distributed tracking algorithm for

reconstruction of graph signals,” IEEE J. Sel. Topics Signal Process.,

vol. 9, no. 4, pp. 728-740, Feb. 2015.

C. K. Wikle and N. Cressie, “A dimension-reduced approach to space-time

Kalman filtering,” Biometrika, vol. 86, pp. 815-829, 1999.

D. Zhou and B. Scholkopf, “A regularization framework for learning from

graph data,” in Proc. ICML Workshop Stat. Relational Learn. Connections

Other Fields, Banff, AB, Canada, Jul. 2004, vol. 15, pp. 67-68.

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]



IOANNIDIS et al.: INFERENCE OF SPATIO-TEMPORAL FUNCTIONS OVER GRAPHS VIA MULTIKERNEL KRIGED KALMAN FILTERING

Vassilis N. Ioannidis (S’16) received the Diploma
in electrical and computer engineering from the
National Technical University of Athens, Athens,
Greece, in 2015, and the M.Sc. degree in electri-
cal engineering from the University of Minnesota,
Minneapolis, MN, USA, in 2017. He is currently
working toward the Ph.D. degree at the Department of
Electrical and Computer Engineering, University of
Minnesota. From 2014 to 2015, he worked as a Mid-
dleware Consultant for Oracle in Athens, Greece. His
research interests include machine learning, big data
analytics, and network science. He was the recipient of the Performance Excel-
lence award.

Daniel Romero (M’16) received the M.Sc. and Ph.D.
degrees in signal theory and communications from
the University of Vigo, Vigo, Spain,in2011 and 2015,
respectively. From July 2015 to November 2016,
he was a Post-Doctoral Researcher with the Digi-
tal Technology Center and Department of Electrical
and Computer Engineering, University of Minnesota,
Minneapolis, MN, USA. In December 2016, he was
an Associate Professor with the Department of Infor-
mation and Communication Technology, University
of Agder, Kristiansand, Norway. His main research
interests include signal processing, communications, and machine learning.

3239

Georgios B. Giannakis (F’97) received the Diploma
in electrical engineering from the National Technical
University of Athens, Athens, Greece, 1981. From
1982 to 1986, he was with the University of South-
ern California, where he received the MSc. degree
in electrical engineering, 1983, the MSc. degree in
mathematics, 1986, and the Ph.D. degree in electrical
engineering, 1986.

He was with the University of Virginia from 1987
to 1998, and since 1999, he has been a Professor with
the University of Minnesota, Minneapolis, MN, USA,
where he holds an Endowed Chair in Wireless Telecommunications, a Univer-
sity of Minnesota McKnight Presidential Chair in ECE, and serves as Director
of the Digital Technology Center. His interests include communications, net-
working and statistical signal processing—subjects on which he has authored
or coauthored more than 400 journal papers, 700 conference papers, 25 book
chapters, 2 edited books and 2 research monographs (h-index 125). His current
research interest focuses on learning from big data, wireless cognitive radios,
and network science with applications to social, brain, and power networks with
renewables. He is a Fellow of EURASIP, and has served the IEEE in a number
of posts, including that of a Distinguished Lecturer for the IEEE-SP Society. He
is the (co-) inventor of 30 patents issued, and the (co-) recipient of 8 best paper
awards from the IEEE Signal Processing (SP) and Communications Societies,
including the G. Marconi Prize Paper Award in Wireless Communications. He
was also the recipient of the Technical Achievement Awards from the SP So-
ciety (2000), from EURASIP (2005), a Young Faculty Teaching Award, the G.
W. Taylor Award for Distinguished Research from the University of Minnesota,
and the IEEE Fourier Technical Field Award (2015).



