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Abstract—Inference of space-time varying signals on graphs
emerges naturally in a plethora of network science related
applications. A frequently encountered challenge pertains to
reconstructing such dynamic processes, given their values over
a subset of vertices and time instants. The present paper develops
a graph-aware kernel-based kriged Kalman filter that accounts
for the spatio-temporal variations, and offers efficient online re-
construction, even for dynamically evolving network topologies.
The kernel-based learning framework bypasses the need for sta-
tistical information by capitalizing on the smoothness that graph
signals exhibit with respect to the underlying graph. To address the
challenge of selecting the appropriate kernel, the proposed filter is
combined with a multikernel selection module. Such a data-driven
method selects a kernel attuned to the signal dynamics on-the-fly
within the linear span of a preselected dictionary. The novel multi-
kernel learning algorithm exploits the eigenstructure of Laplacian
kernel matrices to reduce computational complexity. Numerical
tests with synthetic and real data demonstrate the superior recon-
struction performance of the novel approach relative to state-of-
the-art alternatives.

Index Terms—Graph signal reconstruction, dynamic models on
graphs, kriged Kalman filtering, multi-kernel learning.

I. INTRODUCTION

A
NUMBER of applications involve data that admit a natu-

ral representation in terms of node attributes over social,

economic, sensor, communication, and biological networks, to

name a few [12], [26]. An inference task that emerges in this

context is to predict or extrapolate the attributes of all nodes in

the network given the attributes of a subset of them. In a finance

network, where nodes correspond to stocks and edges capture

dependencies among them, one may be interested in predict-

ing the price of all stocks in the network knowing the price of

some. This is of paramount importance in applications where

Manuscript received November 23, 2017; revised March 2, 2018 and March
25, 2018; accepted March 26, 2018. Date of publication April 20, 2018; date of
current version May 10, 2018. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Oliver Lezoray. This
work was supported by NSF under Grants 1442686, 1500713, and 1508993.
This paper was presented in part at the 25th European Signal Processing Con-
ference, Kos island, Greece, Aug.–Sep., 2017. (Corresponding author: Vassilis

N. Ioannidis.)

V. N. Ioannidis and G. B. Giannakis are with the Department of Electri-
cal and Computer Engineering and the Digital Technology Center, University
of Minnesota, Minneapolis, MN 55455 USA (e-mail:, ioann006@umn.edu;
georgios@umn.edu).

D. Romero is with the Department of ICT, University of Agder, Grimstad
4879, Norway (e-mail:,daniel.romero@uia.no).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2018.2827328

collecting the attributes of all nodes is prohibitive, as is the case

when sampling large-scale graphs, or, when the attribute of in-

terest is of sensitive nature, such as the transmission of HIV in a

social network. This task was first formulated as reconstructing

a time-invariant function on a graph [26], [27].

Follow-up reconstruction approaches leverage the notions

of graph bandlimitedness [5], [24], sparsity and overcomplete

dictionaries [29], smoothness over the graph [13], [27], all

of which can be unified as approximations of nonparametric

graph functions drawn from a reproducing kernel Hilbert space

(RKHS) [21]; see also [10] for semi-parametric alternatives.

In various applications however, the network connectivity

and node attributes change over time. Such is the case in e.g.

a finance network, where not only the stock prices change

over time, but also their inter-dependencies. Hence, maximiz-

ing reconstruction performance for these time-varying signals

necessitates judicious modeling of the space-time dynamics,

especially when samples are scarce.

Inference of time-varying graph functions has been so far

pursued mainly for slow variations [9], [15], [30]. Temporal

dynamics have been modeled in [18] by assuming that the co-

variance of the function to be reconstructed is available. On the

other hand, spatio-temporal reconstruction of generally dynamic

graphs has been approached using an extended graph kernel ma-

trix model with a block tridiagonal structure that lends itself to

a computationally tractable iterative solver [19]. However, [19]

neither relies on a dynamic model of the function variability,

nor it provides a tractable method to learn the “best” kernel that

fits the data. Similarly, the algorithm in [11] assumes that an

appropriate kernel is known. Furthermore, [18], [11], and [19]

do not adapt to changes in the spatio-temporal dynamics of the

graph function.

The present paper fills this gap by introducing online estima-

tors for time-varying functions on generally dynamic graphs.

Specifically, the contribution is threefold.

C1. A deterministic model for time-varying network pro-

cesses is proposed, where spatial dependencies are cap-

tured by the topology while spatio-temporal dynamics

are described through a graph-aware state-space model.

C2. Based on this model, an algorithm termed kernel kriged

Kalman filter (KeKriKF) is developed to obtain function

estimates by minimizing a kernel ridge regression (KRR)

criterion in an online fashion. The proposed solver gen-

eralizes the traditional network kriged Kalman filter

(KriKF) [17], [18], [31], which relies on a probabilistic
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model. The novel estimator forgoes with assumptions on

data distributions and stationarity, by promoting space-

time smoothness through dynamic kernels on graphs.

C3. To select the most appropriate kernel, a multi-kernel

(M)KriKF is developed based on the multi-kernel learn-

ing (MKL) framework. This algorithm adaptively se-

lects the kernel that “best” fits the data dynamics within

the linear span of a prespecified kernel dictionary. The

structure of Laplacian kernels is exploited to reduce com-

plexity down to the order of KeKriKF. This complexity

is linear in the number of time samples, which renders

KeKriKF and MKriKF appealing for online operation.

The rest of the paper is structured as follows. Section II

contains preliminaries and states the problem. Section III in-

troduces the spatio-temporal model and develops the KeKriKF.

Section IV endows the KeKriKF with an MKL module to obtain

the MKriKF. Finally, numerical experiments and conclusions

are presented in Sections V and VI, respectively.

Notation: Scalars are denoted by lowercase, column vectors

by bold lowercase, and matrices by bold uppercase letters. Su-

perscripts � and † respectively denote transpose and pseudo-

inverse; 1N stands for the N × 1 all-one vector; diag {x}
corresponds to a diagonal matrix with the entries of x on its

diagonal, while diag {X} is a vector holding the diagonal en-

tries of X; and N (µ, σ2) a Gaussian distribution with mean µ
and variance σ2 . Finally, if A is a matrix and x a vector, then

‖x‖2
A := x�A−1x and ‖x‖2

2 := x�x.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a time-varying graph Gt := (V,At), t = 1, 2, . . .,
where V := {v1 , . . . , vN } denotes the vertex set, and At the

N × N adjacency matrix, whose (n, n′)-th entry An,n ′(t) is the

nonnegative weight of the edge connecting vertices vn and vn ′

at time t. The edge set is Et := {(vn , vn ′) ∈ V × V : An,n ′(t) �=
0}, and two vertices v and v′ are connected at time t if (v, v′) ∈
Et . The graphs {Gt}t in this paper are undirected and have

no self-loops, which means that At = A�
t and An,n (t) = 0,

∀t, n. The Laplacian matrix is Lt := diag {At1N } − At , and

is positive semidefinite provided that An,n ′(t) ≥ 0, ∀n, n′, t.
A time-varying graph function is a map f : V × T → R,

where T := {1, 2, . . .} is the set of time indices. Specifically,

f(vn, t) represents the value of the attribute of interest at node

n and time t, e.g. the closing price of the n-th stock on the

t-th day. Vector f t := [f(v1, t), . . . , f(vN, t)]� ∈ R
N collects

the function values at time t.
Suppose that St noisy observations y(vn s

, t) = f(vn s
, t) +

e(vn s
, t), s = 1, . . . , St , are available at time t, where St :=

{n1 , . . . , nS t
} contains the sampled indices 1 ≤ n1 ≤ . . . ≤

nS t
≤ N , and e(vn s

, t) captures the observation error.

With yt := [y(vn1
, t), . . . , y(vnS t

, t)]� and et := [e(vn1
, t),

. . . , e(vnS t
, t)]�, the observation model in vector-matrix

form is

yt = Stf t + et , t = 1, 2, . . . (1)

where St ∈ {0, 1}S t ×N selects the sampled entries of f t .

Given yτ , Sτ , and Aτ for τ = 1, . . . , t, the goal of this paper

is to reconstruct f t at each t. The estimators should operate in an

TABLE I
EXAMPLES OF LAPLACIAN KERNELS AND THEIR ASSOCIATED SPECTRAL

WEIGHT FUNCTIONS

online fashion, which means that the computational complexity

per time slot t must not grow with t. Observe that no statistical

information is assumed available in our formulation.

A. Kernel-Based Reconstruction

Aiming ultimately at the time-varying f t , it is instructive

to outline the kernel-based reconstruction of a time-invariant

f := [f1 , . . . , fN ] given G := (V,A), and using samples y =
Sf + e ∈ R

S , where S ∈ {0, 1}S×N and S < N .

Relying on regularized least-squares (LS), we obtain

f̂ = arg min
f

||y − Sf ||22 + µg(f) (2)

where µ > 0 and the regularizer g(f) promotes estimates with

a certain structure.

For example, the so-called Laplacian regularizer

gLR(f) := (1/2)

N
∑

n=1

N
∑

n ′=1

An,n ′(fn − fn ′)2 (3)

promotes smooth function estimates with similar values at ver-

tices connected by strong links (large An,n ′ ), since gLR(f) is

small when f is smooth. It turns out that gLR(f) = f�Lf ; see

e.g. [12, Ch. 2]. For a scalar function r(L) a general graph

kernel family of regularizers is obtained as gKR(f) =
f�K†f = ‖f‖2

K , where the Laplacian kernel is defined as

K := r†(L) := U� diag{r†(λ)}U (4)

where U ∈ R
N ×N , and λ ≥ 0 ∈ R

N ×1 denote the eigenvector

matrix and the eigenvalues of L, since L = U diag {λ}U�.

Clearly, gKR(f) subsumes gLR(f) for r(L) = L. Other special

cases of gKR(f) that will be tested in the simulations are col-

lected in Table I, and the scalar functions are plotted in Fig 1.

Prior knowledge about the properties of f may guide the se-

lection of the appropriate r(·). For instance, a diffusion kernel

accounts for smoothness of f , as well as the prior that f is

generated by a graph diffusion process. Data-driven selection

techniques follow in Section IV.

Further broadening the scope of the generalized Laplacian

kernel regularizers, one may set g(f) = ‖f‖2
K for an arbi-

trary positive semidefinite matrix K, not necessarily a Laplacian

kernel. These regularizers give rise to the family of kernel ridge

regression (KRR) estimators

f̂ := arg min
f

1

S
||y − Sf ||22 + µ‖f‖2

K (5)
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Fig. 1. Laplacian kernels (Diffusion σ = 1.9, p-step random walk α = 2.55,
p = 6, Regularized Laplacian σ = 4.5, β = 50, Bandwidth B = 20, β = 50,
Band-reject k = 10, l = 10).

where µ > 0 controls the effect of the regularizer with respect

to the fitting term S−1 ||y − Sf ||22 . KRR estimators have well-

documented merits and solid grounds on statistical learning

theory; see e.g. [23].

So far, signal f was assumed deterministic. To present a

probabilistic interpretation of KRR suppose that f is zero-mean

with C := E
[

ff�
]

, and that the entries of e are uncorrelated

with each other and with f , and σ2
e := S−1

E
[

‖e‖2
2

]

. In this

setting, the KRR estimator (5) reduces to the linear minimum

mean-square error (LMMSE) estimator if µS = σ2
e and K =

C. Thus, KRR generalizes LMMSE and can be interpreted as

the LMMSE estimator of a random signal f with covariance

matrix K; see [21, Proposition 2].

III. KERNEL KRIGED KALMAN FILTER

This section presents a space-time varying model that is capa-

ble of accommodating fairly general forms of spatio-temporal

dynamics. Building on this model, a novel online KRR esti-

mator will be subsequently developed for graph functions over

time-varying graphs.

A. Spatio-Temporal Model

An immediate approach to estimate f t is to apply (5) sepa-

rately per slot t. This yields the instantaneous estimator

f̂
(ν )

t := arg min
f

1

St
||yt − Stf ||

2
2 + µ‖f‖2

Kt
(6)

where Kt > 0 is a per-slot preselected kernel matrix, and super-

script ν will be explained later. Unfortunately, such an approach

does not account for the possible dynamics relating f t to f t−1 .

However, leveraging dependencies across slots can benefit the

estimator of f t from observations {yτ }τ �=t .

To circumvent the aforementioned limitation, consider mod-

eling the function of interest as

f(vn , t) = f (ν )(vn , t) + f (χ)(vn , t) (7)

where f (ν ) captures arbitrary (even fast) temporal dynamics

across sampling intervals and can be interpreted as an instanta-

neous component, while f (χ) represents a structured (typically

slow) varying component.

As an example, consider stock price prediction, where f (ν )

accounts for instantaneous changes caused e.g. by political

statements or company announcements at t relative to t − 1,

while f (χ) captures the steady evolution of the stock market,

where stock prices at slot t are closely related to prices of (pos-

sibly) other stocks at t − 1. Before delving into how these com-

ponents are modeled, let f
(ν )
t := [f (ν )(v1 , t), . . . , f

(ν )(vN , t)]�

and f
(χ)
t := [f (χ)(v1 , t), . . . , f

(χ)(vN , t)]�, and note that (7)

can be cast into vector form as

f t = f
(ν )
t + f

(χ)
t . (8)

Vector f
(ν )
t can be smooth over its entries (Gt), and captures

instantaneous dependence among {f(vn , t)}N
n=1 . This term

models the component of the network process that is either

uncorrelated over time or it is uncorrelated with respect to the

presumed sampling interval. Indeed, one may consider nonlin-

ear models to capture the dynamics of f (ν ) . However, such an

approach goes beyond the scope of this submission. On the other

hand, f
(χ)
t is smooth not only over Gt but also over time, and

models dependencies between {f(vn , t)}N
n=1 and their time-

lagged versions {f(vn , t − 1)}N
n=1 .

The smooth evolution of f
(χ)
t over time slots adheres to the

state equation

f
(χ)
t = A(t,t−1)f

(χ)
t−1 + ηt , t = 1, 2, . . . (9)

where A(t,t−1) is a graph transition matrix, and ηt :=

[η(v1 , t), . . . , η(vN , t)]� ∈ R
N is termed state noise. Vector ηt

will be assumed smooth over Gt , meaning η(vn , t) is expected to

be similar to η(vn ′ , t) if An,n ′(t) �= 0. The recursion in (9) is the

graph counterpart of a vector autoregressive model (VARM) of

order one (see e.g. [16], [25]), and will lead to computationally

efficient online KRR estimators of f t that account for temporal

dynamics [25].

Model (8) can be thought of as the graph counterpart of

the model adopted in [31] to derive the kriged Kalman filter.

In our context here, f
(ν )
t describes small-scale spatial fluctu-

ations within slot t, whereas f
(χ)
t captures the so-called trend

across slots. Furthermore, (8) generalizes the model used in [18],

where A(t,t−1) = IN , for network delay prediction, where f
(ν )
t

represents the propagation, transmission, and processing delays

and f
(χ)
t the queuing delay at each router that is affected.

Remark 1: The transition matrix A(t,t−1) can be interpreted

as the N × N adjacency of a generally directed “transition

graph” that relates {f (χ)(vn , t − 1)}N
n=1 to {f (χ)(vn , t)}N

n=1 .

To avoid estimation of A(t,t−1) , the random walk model is mo-

tivated, where A(t,t−1) = cIN with c > 0. On the other hand,

adherence to the graph, prompts the selection A(t,t−1) = cA, in

which case (9) amounts to a diffusion process on a time-invariant

G [24].

B. KeKriKF Algorithm

This section develops an online algorithm to estimate

f t , given (1) and {yτ ,Sτ ,Aτ ,A(τ ,τ−1)}
t
τ =1 for the spatio-

temporal model of f t in (8) and (9). Unfortunately, {f
(ν )
τ

and f
(χ)
τ } cannot be obtained by solving the system of equa-

tions comprising (1), (8), and (9) over time even if eτ = 0

and ητ = 0, ∀τ ; simply because after replacing f τ with
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f
(χ)
τ + f

(ν )
τ ∀τ , the estimation task involves 2Nt unknowns,

namely {f
(χ)
τ ,f

(ν )
τ }t

τ =1 , and only S̃ + Nt equations, where

S̃ :=
∑t

τ =1 Sτ and S̃ ≤ Nt. To obtain a solution to this un-

derdetermined problem, one must exploit the model structure.

Extending the KRR estimator in (5) to time-varying functions,

suppose we wish to

minimize
{f

(χ )
τ ,f

( ν )
τ }t

τ = 1

t
∑

τ =1

1

Sτ
‖yτ − Sτ f (χ)

τ − Sτ f (ν )
τ ‖2

+ µ1

t
∑

τ =1

‖f (χ)
τ − A(τ ,τ−1)f

(χ)
τ−1‖

2

K
(χ )
τ

+ µ2

t
∑

τ =1

‖f (ν )
τ ‖2

K
( ν )
τ

.

(10)

where the scalars µ1 , µ2 ≥ 0 control the trade-off between

smoothness and data fit. The first cost is an LS fitting error

of the observations. The second cost is a weighted LS error of

the slow-varying state (weight matrix promotes spatio-temporal

smoothness over Gτ and time), and the third term (regularizer)

is the weighted 	2-norm of the fast-varying state (with weight

matrix promoting spatial smoothness over Gτ ). When available,

prior information about {f
(ν )
τ ,f

(χ)
τ }t

τ =1 may steer the selection

of suitable kernel matrices; when not available, one can resort

to the algorithm in Section IV.

Directly solving (10) per t would not lead to an online al-

gorithm since the complexity of such an approach grows with

t; see Section II. However, we will develop next an efficient

online algorithm to obtain per slot t estimates f̂
(χ)

t|t , f̂
(ν )

t|t that

still account for {yτ ,Sτ ,Aτ }
t
τ =1 .

Given f
(χ)
τ , the first-order necessary conditions for optimality

of f
(ν )
τ yield [cf. (10)]

f (ν )
τ = K(ν )

τ S�
τ (K̄

(ν )
τ + µ2Sτ ISτ

)−1(yτ − Sτ f (χ)
τ ) (11)

where K̄
(ν )
τ := Sτ K

(ν )
τ S�

τ . Notice that the overbar notation

indicates Sτ × Sτ matrices or Sτ × 1 vectors, and recall that

without overbar their counterparts have sizes N × N and

N × 1, respectively. Substituting (11) into (10), we arrive at an

optimization problem that does not depend on f
(ν )
τ for τ =

1, . . . , t. Rewrite next the per slot τ measurement error in (10)

using (11) as

1

Sτ
‖yτ − Sτ f (χ)

τ − Sτ f (ν )
τ ‖2

=
1

Sτ
‖yτ − Sτ f (χ)

τ − K̄
(ν )
τ

× (K̄
(ν )
τ + µ2Sτ ISτ

)−1(yτ − Sτ f (χ)
τ )‖2

=
1

Sτ
‖
[

ISτ
− K̄

(ν )
τ (K̄

(ν )
τ + µ2Sτ ISτ

)−1
]

× (yτ − Sτ f (χ)
τ )‖2 . (12a)

The matrix inversion lemma asserts for the matrix in square

brackets of (12a) that

[

ISτ
− K̄

(ν )
τ (K̄

(ν )
τ + µ2Sτ ISτ

)−1
]

=

(

ISτ
+

1

µ2Sτ
K̄

(ν )
τ

)−1

. (12b)

Plugging (12b) into (12a) yields

=
1

Sτ

∥

∥

∥

∥

∥

(

1

µ2Sτ
K̄

(ν )
τ + ISτ

)−1

(yτ − Sτ f (χ)
τ )

∥

∥

∥

∥

∥

2

= (yτ − Sτ f (χ)
τ )�

(

1

µ2
K̄

(ν )
τ + Sτ ISτ

)−�

× Sτ ISτ

(

1

µ2
K̄

(ν )
τ + Sτ ISτ

)−1

(yτ − Sτ f (χ)
τ ). (12c)

Next, we express the regularizer in (10) using (11) for each

τ as

µ2‖f
(ν )
τ ‖2

K
( ν )
τ

= (yτ − Sτ f (χ)
τ )�

(

1

µ2
K̄

(ν )
τ + Sτ ISτ

)−�

×
1

µ2
K̄

(ν )
τ

(

1

µ2
K̄

(ν )
τ + Sτ ISτ

)−1

(yτ − Sτ f (χ)
τ )

(12d)

where the last equality follows from the definition of K̄
(ν )
τ .

Combining (12c) with (12d) yields

1

Sτ
‖yτ − Sτ f (χ)

τ − Sτ f (ν )
τ ‖2 + µ2‖f

(ν )
τ ‖2

K
( ν )
τ

= ‖yτ − Sτ f (χ)
τ ‖2

Ǩ
( ν )
τ

(13)

where Ǩ
(ν )
τ := 1

µ2
K̄

(ν )
τ + Sτ ISτ

. Using (13) per slot, (10)

boils down to

{f̂
(χ)

τ |t }
t
τ =1 := arg min

{f
(χ )
τ }t

τ = 1

t
∑

τ =1

‖yτ − Sτ f (χ)
τ ‖2

Ǩ
( ν )
τ

+ µ1

t
∑

τ =1

‖f (χ)
τ − A(τ ,τ−1)f

(χ)
τ−1‖

2

K
(χ )
τ

. (14)

Since (14) is identical to the deterministic formulation of

the Kalman filter (KF) applied to a state-space model with

state noise covariance K
(χ)
t and measurement noise covari-

ance Ǩ
(ν )
t , we deduce that the KF algorithm, see e.g. [28,

Ch. 17], applies readily to obtain sequentially the structured

per slot t component {f̂
(χ)

τ |τ }
t
τ =1 . After substituting {f̂

(χ)

τ |τ }
t
τ =1

into (11), we can find also the per slot instantaneous compo-

nent {f̂
(ν )

τ |τ }
t
τ =1 . The t-th iteration of our so-termed KeKriKF is

listed as Algorithm 1.

Summing up, we have established the following result.

Theorem 1: If
{

{f̂
(χ)

τ |t , f̂
(ν )

τ |t }
τ =t
τ =1

}t=t1

t=1
solves (10) for t =

1, . . . , t1 , the KeKriKF iterations summarized in Algorithm 1 for

t = 1, . . . , t1 generate the subset of solutions {f̂
(χ)

t|t , f̂
(ν )

t|t }
t=t1
t=1 .

Clearly, the KeKriKF algorithm comprises two subproce-

dures: Kalman filtering (steps S1–S6), and kriging (step S7).

S3–S5 specify M t|t−1 ,M t|t , and Gt that are known in the

KF literature as the mean square-error matrices for prediction,

correction, and the Kalman gain matrix.

The traditional KriKF has been employed to interpolate sta-

tionary processes defined over continuous spatial domains [17],
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Algorithm 1: Kernel Kriged Kalman Filter (KeKriKF).

Input: K
(χ)
t ,K

(ν )
t ∈ S

N
+ ; A(t,t−1) ∈ R

N ×N ; yt ∈ R
S t ;

St ∈ {0, 1}S t ×N ; f̂
(χ)

t−1|t−1 ∈ R
N ;

M t−1|t−1 ∈ S
N
+ .

S1. Ǩ
(ν )
t = 1

µ2
StK

(ν )
t S�

t + StIS t

S2. f̂
(χ)

t|t−1 = A(t,t−1) f̂
(χ)

t−1|t−1 (prediction)

S3. M t|t−1 = A(t,t−1)M t−1|t−1A
�
(t,t−1) + 1

µ1
K

(χ)
t

S4. Gt = M t|t−1S
�
t (Ǩ

(ν )
t + StM t|t−1S

�
t )−1 (gain)

S5. M t|t = (I − GtSt)M t|t−1

S6. f̂
(χ)

t|t = f̂
(χ)

t|t−1 + Gt(yt − St f̂
(χ)

t|t−1) (correction)

S7. f̂
(ν )

t|t = K
(ν )
t S�

t Ǩ
(ν )−1

t (yt − St f̂
(χ)

t|t ) (kriging)

Output: f̂
(χ)

t|t ; f̂
(ν )

t|t ; M t|t .

[31], and its derivation follows from a probabilistic linear-

minimum mean-square error (LMMSE) criterion that relies on

knowledge of second-order statistics [17], [18], [31]. Here, our

KeKriKF is derived from a deterministic kernel-based learning

framework, which bypasses assumptions on data distributions

and stationarity and replaces knowledge of second-order (cross-

) covariances with knowledge of K
(ν )
t and K

(χ)
t . Moreover,

different from [7], [15], [18], [30], the novel KeKriKF can ac-

commodate dynamic graph topologies provided {K
(ν )
t ,K

(χ)
t }t

are available.

Remark 2: The complexity of KeKriKF is O(N 3) per slot.

When the underlying graph is large (N �), this complex-

ity can be managed after splitting the graph into Ng sub-

graphs each with at most �N/Ng
 nodes, and employing

consensus-based decentralized KF schemes along the lines

of [22].

IV. ONLINE MULTI-KERNEL LEARNING

This section broadens the scope of the KeKriKF algorithm by

employing a multi-kernel learning scheme, to bypass the need

for selecting an appropriate kernel.

The performance of KRR estimators is well known to heavily

depend on the choice of the kernel matrix [21]. Unfortunately,

it is difficult to know which kernel matrix is most appropri-

ate for a given problem. To address this issue, an MKL ap-

proach is presented that selects a suitable kernel matrix within

the linear span of a prespecified dictionary using the available

data.

In the following, consider for simplicity that K
(ν )
t = K(ν ) ,

K
(χ)
t = K(χ) , and St = S, ∀t. The kernels in the dictio-

naries D(ν ) := {K(ν ) [m] ∈ S
N
+ }M ν

m=1 , and D(χ) := {K(χ)

[m] ∈ S
N
+ }

Mχ

m=1 will be combined to generate K(ν ) = K(ν )

(θ(ν )) :=
∑M ν

m=1 θ(ν ) [m]K(ν ) [m] and K(χ) = K(χ)(θ(χ)) :=
∑Mχ

m=1 θ(χ) [m]K(χ) [m], where θ(ν ) := [θ(ν ) [1], . . . , θ(ν )

[Mν ]]�, θ(χ) := [θ(χ) [1], . . . , θ(χ) [Mχ ]]� � 0 are coefficients

to be determined.

Next, consider expanding the optimization in (10) to obtain

θ(ν ) ,θ(χ) along with {f
(χ)
τ ,f

(ν )
τ }t

τ =1 , as follows

minimize
{f

(χ )
τ , f

( ν )
τ }t

τ = 1
,

θ(χ ) �0 , θ( ν ) �0

1

t

t
∑

τ =1

1

S
‖yτ − Sf (χ)

τ − Sf (ν )
τ ‖2

+
µ1

t

t
∑

τ =1

‖f (χ)
τ − A(τ ,τ−1)f

(χ)
τ−1‖

2
K(χ ) (θ(χ ) )

+
µ2

t

t
∑

τ =1

‖f (ν )
τ ‖2

K( ν ) (θ( ν ) ) + ρν ‖θ
(ν )‖2

2 + ρχ‖θ
(χ)‖2

2 (15)

where ρν , ρχ ≥ 0 are regularization parameters. The solu-

tion to (15) for each t will be denoted as {f̂
(χ)

τ |t , f̂
(ν )

τ |t }
τ =t
τ =1 ∪

{θ̂
(χ)

t , θ̂
(ν )

t }. Here, the data-dependent {θ̂
(χ)

t , θ̂
(ν )

t } select the

kernel matrices that “best” capture the data dynamics.

Due to the presence of the weighted norms, namely {‖f
(χ)
τ −

A(τ ,τ−1)f
(χ)
τ−1‖

2
K(χ ) (θ(χ ) )

}t
τ =1 and {‖f

(ν )
τ ‖2

K( ν ) (θ( ν ) )
}t

τ =1 , the

problem in (15) is non-convex. Fortunately, (15) is separately

convex in {f
(χ)
τ ,f

(ν )
τ }t

τ =1 ,θ
(ν ) ,θ(χ) , which motivates the use

of alternating minimization (AM) strategies. AM algorithms

minimize the objective with respect to every block of vari-

ables, while keeping the other variables fixed [8]. Conve-

niently, if θ(ν ) ,θ(χ) are fixed, then (15) reduces to (10), which

can be solved by Algorithm 1 for f̂
(ν )

t|t , f̂
(χ)

t|t per slot t; see

Theorem 1. Conversely, θ̂
(χ)

t , θ̂
(ν )

t can be obtained for fixed

{f
(ν )
τ ,f

(χ)
τ }t

τ =1 as specified next.

Theorem 2: Consider minimizing (15) with respect to θ(χ)

and θ(ν ) for fixed f
(χ)
τ = f̂

(χ)

τ |τ and f
(ν )
τ = f̂

(ν )

τ |τ , τ = 1, . . . , t,

where {f̂
(χ)

τ |τ , f̂
(ν )

τ |τ }
t
τ =1 are given and not necessarily the

global minimizers of (15) with respect to {f
(χ)
τ ,f

(ν )
τ }t

τ =1 .

Let f̃
(χ)

τ |τ := f̂
(χ)

τ |τ − A(τ ,τ−1) f̂
(χ)

τ−1|τ−1 , τ = 2, . . . , t, as well

as R
(ν )
t = 1

t

∑t
τ =1 f̂

(ν )

τ |τ f̂
(ν )�

τ |τ and R
(χ)
t = 1

t

∑t
τ =1 f̃

(χ)

τ |τ f̃
(χ)�

τ |τ .

Then, the minimizers of (15) with respect to θ(ν ) and θ(χ) are

θ̂
(ν )
t = arg min

θ( ν ) �0

Tr{R
(ν )
t K (ν )−1

(θ(ν ))} +
ρν

µ2
‖θ(ν )‖2

2 (16a)

θ̂
(χ)
t = arg min

θ(χ ) �0

Tr{R
(χ)
t K (χ)−1

(θ(χ))} +
ρχ

µ1
‖θ(χ)‖2

2 . (16b)

Proof: To prove (16a), keep in (15) only those terms

that depend on θ(ν ) , and replace {f
(ν )
τ }t

τ =1 with {f̂
(ν )

τ |τ }
t
τ =1 .

Then, the objective in (15) reduces to (1/t)
∑t

τ =1 f̂
(ν )�

τ |τ

K(ν )−1
(θ(ν ))f̂

(ν )

τ |τ + (ρν /µ2)‖θ
(ν )‖2

2 . Next, using the lin-

earity and cyclic invariance of the trace it follows that

Tr
{

(1/t)
∑t

τ =1 f̂
(ν )�

τ |τ K(ν )−1
(θ(ν ))f̂

(ν )

τ |τ

}

= Tr
{

(1/t)
∑t

τ =1

f̂
(ν )

τ |τ f̂
(ν )�

τ |τ K(ν )−1
(θ(ν ))

}

= Tr
{

R
(ν )
t K(ν )−1

(θ(ν ))
}

, which

proves (16a). The proof of (16b) follows along the same lines.

�
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Algorithm 2: Multi-kernel KriKF (MKriKF).

Input: D(ν ) ; D(χ) ; L = U� diag {λ}U .

1: Initialize: θ̂
(ν )

0 = θ̂
(χ)

0 = [1, 0, . . . , 0], f̂
(χ)

0|0 = 0,

M 0|0 = 1
µ1

K(χ) [1],

λ(ν ) [m] := diag
{

UK(ν ) [m]U�
}

∀m,

λ(χ) [m] := diag
{

UK(χ) [m]U�
}

∀m.

2: for t = 1, 2, . . . do

3: Input: A(t,t−1) ∈R
N ×N ; yt ∈R

S t ; St ∈{0, 1}S t×N .

4: K
(ν )
t = K(ν )(θ̂

(ν )

t )

5: K
(χ)
t = K(χ)(θ̂

(χ)

t )

6: {f̂
(ν )

t|t , f̂
(χ)

t|t } = KeKriKF(K
(χ)
t−1 ,K

(ν )
t−1 ,A(t,t−1) ,

yt ,St , f̂
(χ)

t−1|t−1 ,M t−1|t−1)

7: Update R
(ν )
t and R

(χ)
t

8: T
(ν )
t = U�R

(ν )
t U

9: T
(χ)
t = U�R

(χ)
t U

10: θ̂
(ν )

t = OKM({λ(ν ) [m]}M ν
m=1 ,T

(ν )
t , θ̂

(ν )

t−1)

11: θ̂
(χ)

t = OKM({λ(χ) [m]}
Mχ

m=1 ,T
(χ)
t , θ̂

(χ)

t−1)

12: Output: f̂
(χ)

t|t ; f̂
(ν )

t|t ; M t|t .

13: end for

Thus, Theorem 2 simplifies the objective that has to be mini-

mized to find θ̂
(χ)

t and θ̂
(ν )

t . With K(θ) =
∑M

m=1 θ[m]K[m],
problems (16a) and (16b) are of the form

θ̂ = arg min
θ≥0

Tr{RK−1(θ)} + ρ‖θ‖2
2 (17)

for some R ∈ R
N ×N , ρ ≥ 0, and D = {K[m]}M

m=1 . Due to

their resemblance to covariance matching [20], problem (17),

and hence (16a) and (16b) will be referred to as kernel matching.

Theorem 2 suggests an online AM procedure to approximate

the solution to (15), where Algorithm 1 and a solver for (17)

termed online kernel matching (OKM) are executed alternat-

ingly. This is summarized as Algorithm 2, and it is termed

multi-kernel KriKF (MKriKF). Algorithm 2 does not generally

find a global optimum of (15); yet, finding such an optimum

may not be critical in practice, since it cannot be computed in

polynomial time.

The rest of this section develops the OKM algorithm for

solving (17) when D comprises Laplacian kernels. The first step

is to exploit the fact that all Laplacian kernel matrices associated

with a given graph have common eigenvectors.

Proposition 1: Consider the eigenvalue decompositions

{K[m] = U diag {λ[m]}U�}M
m=1 and let T := U�RU .

Upon defining Λ(θ) := diag{
∑M

m=1 θ[m]λ[m]} and φ(θ) :=
Tr (TΛ

−1(θ)) + ρ‖θ‖2
2 , (17) can be equivalently written as

θ̂ = arg min
θ�0

φ(θ) (18)

Proof: Since K(θ)=
∑M

m θ[m]U diag {λ[m]}U�=UΛ

(θ)U�, (18) follows by noting that Tr{RK−1 (θ)}=Tr

{RUΛ
−1(θ)U�}=Tr{U�RUΛ

−1(θ)}=Tr{T Λ
−1 (θ)}. �

Algorithm 3: Online Kernel Matching (OKM).

Input: {λ[m]}M
m=1 ; T t ∈ S

N
+ ; θ̂t−1 ∈ R

M
+ .

1: Initialize: θ0 = θ̂t−1 ,

2: while stopping_criterion not met do

3: θk+1 =
[

θk − sk∇φ(θk )
]+

4: k ← k + 1
5: end while

Output: θ̂t .

Proposition 1 establishes that (17) can be expressed as (18)

when the kernels in D share eigenvectors, as is the case of

Laplacian kernels; cf. Section II-A.

Proposition 2: When θ � 0, function φ(θ) is strongly con-

vex and differentiable with gradient

∇φ(θ) = v(θ) + 2ρθ (19)

where v(θ) :=−[Tr
{

diag{λ̃[1]}T
}

, . . . ,T r
{

diag{λ̃[M ]}T
}

],

with λ̃[m] := [λ̃1 [m], . . . , λ̃N [m]]� and λ̃n [m] := λn [m]/

(
∑M

µ=1θ[µ]λn [µ])2 .

Proof: Because T is a positive semidefinite matrix and

λ[m] � 0∀m, it can be easily seen that Tr
{

Tλ−1(θ)
}

is con-

vex over θ � 0. And since ρ‖θ‖2
2 is strongly convex, it follows

by its definition that φ(θ) is strongly convex. To obtain the

gradient observe that

∂φ

∂θ[m]
= −Tr

{

Λ
−1(θ) diag {λ[m]}Λ

−1(θ)T
}

+ 2ρθ[m]

(20)

and Λ
−1(θ) diag {λ[m]}Λ

−1(θ) = diag{λ̃[m]}. �

As (18) entails a strongly convex and differentiable objec-

tive, and projections on its feasible set are easy to obtain, we

are motivate to solve (18) through projected gradient descent

(PGD) [6]. Besides its simplicity, PGD converges linearly to the

global minimum of (18). The general PGD iteration is

θk+1 =
[

θk − sk∇φ(θk )
]+

, k = 0, 1, . . . (21)

where sk is the stepsize chosen e.g. by the Armijo rule [6], θ0

is a feasible initial step, and
[

·
]+

denotes projection on the non-

negative orthant {θ : θ[m] ≥ 0, m = 1, . . . , M}. The overall

algorithm is termed OKM, and it is listed as Algorithm 3.

Observe that θ0 in Algorithm 3 is initialized with its out-

put in the previous iterate, namely θ̂t−1 . This is a warm start

that considerably speeds up convergence of Algorithm 3 since

φ(θ) is expected to change slowly across the iterations in

Algorithm 2. An interesting byproduct of the OKM algorithm is

its ability to adapt to changes in the spatio-temporal dynamics of

the graph functions by adjusting the coefficients {θ̂
(ν )

t , θ̂
(χ)

t }t ,

and consequently the kernel matrices.

In view of Proposition 2, finding each entry of ∇φ(θ) in

Algorithm 3 requires O(N) operations. Computing the gradient

through (19) exploits the common eigenvectors of {K[m]}M
m=1 ,

and avoids the inversion of the N × N matrix K(θ) that is

required when calculating the gradient for the general formu-

lation (17), where {K[m]}M
m=1 need not share eigenvectors.
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The complexity of evaluating the gradient is therefore reduced

from a prohibitive O(N 3M) for general kernels to an afford-

able O(NM) for Laplacian kernels, which amounts to con-

siderable computational savings especially for large-scale net-

works. With K denoting the number of PGD iterations for

convergence, the overall computational complexity of OKM

is therefore O(NMK). Typically, N 3 ≥ NMK and hence the

complexity of Algorithm 2 is O(N 3), while learning the ap-

propriate linear combination of kernels through MKL does not

increase the complexity order that can be further reduced as

suggested in Remark 2.

Selecting the dictionary and its size clearly depends on the

amount of prior information available, and the complexity that

can be afforded by the MKL optimization that follows up. Desir-

able attributes such as smoothness, bandlimitedness, and diffu-

sion effects can prompt inclusion of corresponding kernels over

a grid of their parameters - the case present in our simulation

tests.

Remark 3: The algorithms in this section adopted a fixed

kernel dictionary over time, namely D = {K[m] ∈ S
N
+ }M

m=1 .

If the topology changes over time, the Laplacian kernel matrices

change as well, cf. (4). To accommodate this scenario, one can

restart Algorithm 2 whenever the topology changes, say at time

tc , and initialize f̂
(χ)

0|0 ← f̂
(χ)

tc |tc
, M 0|0 ← M tc |tc

, as well as

replace the Laplacian kernels in D with the ones corresponding

to the new topology.

Remark 4: To accommodate a certain degree of nonstation-

arity one may consider using the following matrices

R̃
(ν )

t =

t
∑

τ =1

γt−τ
ν f̂

(ν )

τ |τ f̂
(ν )�

τ |τ + γt
ν I (22a)

R̃
(χ)

t =
t

∑

τ =1

γt−τ
χ f̃

(χ)

τ |τ f̃
(χ)�

τ |τ + γt
χI (22b)

instead of R
(ν )
t and R

(χ)
t , where γχ , γν ∈ (0, 1) are forgetting

factors that weigh exponentially past observations, and ensure

invertibility of matrices R̃
(ν )

t and R̃
(χ)

t . Moreover, R̃
(ν )

t and

R̃
(χ)

t can be updated recursively as

R̃
(ν )

t = γν R̃
(ν )

t−1 + f̂
(ν )

t|t f̂
(ν )�

t|t (23a)

R̃
(χ)

t = γχR̃
(χ)

t−1 + f̃
(χ)

t|t f̃
(χ)�

t|t (23b)

which significantly reduces the required memory for the com-

putation with respect to (22), since {f̂
(ν )

τ |τ , f̃
(χ)

τ |τ }
t−1
τ =1 need not be

stored.

Remark 5: The algorithms presented in this paper can be

generalized to account for a VARM of order L, f
(χ)
t =

∑L
l=1 A(t,t−l)f

(χ)
t−l + ηt . Towards that end, consider the LN ×

1 extended state vector f̄
(χ)
t := [(f̄

(χ)
t )�, . . . (f̄

(χ)
t−L+1)

�]�, the

St × LN matrix S̄t := [St ,0, . . . ,0], the LN × LN matri-

ces Ā(t,t−1) with block entries
{[

Ā(t,t−1)

]

1,l
= A(t,t−l)

}L

l=1
,

{[

Ā(t,t−1)

]

l,l
= IN

}L

l=2
, and the rest zero, and K̄

(χ)
t with

block entries
[

K̄
(χ)
t

]

1,1
= K

(χ)
t ,

{[

K̄
(χ)
t

]

l,l
= IN

}L

l=2
, and

the rest zero. The KeKriKF algorithm can then be readily ap-

plied after replacing the pertinent matrices and vectors with

their extended versions. Having established that Algorithm 1

can accommodate multi-lag dependencies, the extension of

Algorithm 2 follows, as Algorithm 3 is not affected by the

extended state.

Remark 6: One may ponder on the role of graphs in our

KRR formulation with the regression coefficient vector obeying

a linear dynamical model. Our graph-based formulation is well

motivated not only because several physical networks are repre-

sented by graphs having known connectivity, but also because

graphical models are known to represent effectively probabilis-

tic dependencies among nodal vectors. Sure, one could have a

fortiori assumed knowledge of the needed covariance (or ker-

nel) matrices that are not generally available. Here, we employ

kernel matrices that are functions of the graph adjacency ma-

trices. In so doing, we further endow our formulation in the

form of regularization terms with graph-related properties that

can be present. Those include smoothness, (block) sparsity, low

rank, and diffusion effects. Although the emphasis here is on

leveraging these properties on graphs the advocated MKriKF

approach can be indeed useful in various spatio-temporal es-

timation tasks involving signals not necessarily evolving over

graphs, so long as the underlying (cross-)covariance matrices

can become available. Finally, our OKM algorithm leverages

the common eigenvectors of the graph-induced kernel matrix

to reduce complexity. All in all, our graph-based formulation

facilitates incorporation of graph-specific prior information.

V. SIMULATIONS

This section evaluates the performance of the developed algo-

rithms by means of numerical tests with synthetic and real data.

The proposed algorithms are compared with: (i) The least mean-

square (LMS) algorithm in [15] with step size µLMS; and (ii) the

distributed least-squares reconstruction (DLSR) algorithm [30]

with step sizes µDLSR and βDLSR. Both LMS and DLSR can

track slowly time-varying B-bandlimited graph signals.

The performance of the aforementioned approaches is quan-

tified through the normalized mean-square error (NMSE)

NMSE :=
E

[
∑t

τ =1 ‖S
c
τ (f τ − f̂ τ |τ )‖2

2

]

E
[
∑t

τ =1 ‖S
c
τ f τ ‖2

2

]

where the expectation is taken over the sample locations, and

Sc
τ is an (N−Sτ )×N matrix comprising the rows of IN whose

indices are not in St , which means that the test set in all exper-

iments is V \ St ,∀t. Unless otherwise stated, St is chosen uni-

formly at random without replacement overV , and kept constant

over time; that is, St = S, per t, in order to compare on equal

footing the competing algorithms DLSR [30] and LMS [15] that

cannot cope with time-varying St . For all tests 10 fold cross-

validation has been employed. The training set St was split in

10 subsets, out of which 9 were used for training and 1 for val-

idation. The validation error was averaged over the 10 subsets,

and the set of parameters exhibiting the smallest error was se-

lected. To reduce the search space, we set µ1 = µ2 and ρν = ρχ .

The test set is in all cases V \ St ,∀t. Notice that our MKriKF,
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Fig. 2. NMSE of function estimates (µ1 = µ2 = 1).

which learns the kernel that “best” fits the data, requires minimal

parameter tuning.

A. Numerical Tests on Synthetic Data

To construct a graph, consider the dataset in [4], which con-

tains timestamped messages among students at the University

of California, Irvine, exchanged over a social network during

90 days. The sampling interval t is one day. A graph is con-

structed such that the edge weight An,n ′(t) counts the num-

ber of messages exchanged between student n and n′ in the

k-th month, where k = 1, 2, 3 and 30(k − 1) + 1 ≤ t ≤ 30k.

Hence, At changes across months. A subset of N = 310

users for which At corresponds to a connected graph ∀t
is selected. At each t, f t was generated by superimposing

a B-bandlimited graph function with B = 5 and a spatio-

temporally correlated signal. Specifically, f t = f
(ν )
t + f

(χ)
t =

∑5
i=1 γi

tu
i
t + f

(χ)
t , where {γi

t}
5
i=1 ∼ N (0, 1) for all t, while

{ui
t}

5
i=1 denote the eigenvectors associated with the 5 small-

est eigenvalues of Lt , and f
(χ)
t is generated according to (9)

with A(t,t−1) = 0.03(At−1 + IN ), η ∼ N (0,Cη ), and Cη is

a diffusion kernel with σ = 0.5. Function f(vn , t) is therefore

smooth with respect to the graph and can be interpreted e.g.

as the time that the n-th student spends on the specific social

network during the t-th day.

The first experiment justifies the proposed decomposition by

assessing the impact of dropping either f
(ν )
t or f

(χ)
t from the

right hand side of (8). The KriKF algorithm uses diffusion ker-

nels K
(ν )
t and K

(χ)
t with parameters σ = 1.5 and σ = 0.5,

respectively.

Fig. 2 depicts the NMSE with S = 217 for the KeKriKF;

the Kalman filter (KF) estimator, which results from setting

f
(ν )
t = 0 for all t in the KeKriKF; as well as kernel Kriging

(KKr), which the KeKriKF reduces to if f
(χ)
t = 0 for all t. As

observed, KeKriKF, which accounts for both summands in (8),

outperforms those algorithms that account for only one of them.

Moreover, the low NMSE of KeKriKF in reconstructing the

N − S = 310 − 217 = 93 unavailable node values reveals that

this algorithm is capable of efficiently capturing the spatial as

well as the temporal dynamics over time-varying topologies.

Fig. 3. NMSE of KeKriKF for different time-varying graphs (S = 65, µ1 =
µ2 = 1).

Next, the robustness of KeKriKF is evaluated when the con-

nectivity of Gt , captured by At , exhibits abrupt changes over t.
Synthetic time-varying networks of size N = 81 were generated

using the Kronecker product model, which effectively captures

properties of real graphs [14]. The prescribed “seed matrix”

D0 :=

⎡

⎣

1 0.1 0.7
0.3 0.1 0.5
0 1 0.1

⎤

⎦

produces the N × N matrix D := D0 ⊗ D0 ⊗ D0 ⊗ D0 ,

where ⊗ denotes the Kronecker product. An initial adja-

cency matrix A0 was constructed with entries An,n ′(0) ∀n,

An,n ′(0) ∼ Bernoulli(Dn,n ′) for n > n′, and An,n ′(0) =
An ′,n (0) for n < n′. Next, the following time-varying

graph model was generated: at each tc = 10κ, κ = 1, 2, . . .,
each entry of Atc

changes with probability pn,n ′ =
∑

k An,k (tc)
∑

l Al,n ′(tc)/
∑

k

∑

l Ak,l(tc) as An,n ′(tc + 1) =
An,n ′(tc) + |ξn,n ′(tc)| for n > n′ where ξn,n ′(tc) ∼ N (0, σA )
and An ′,n (tc + 1) = An,n ′(tc + 1) for n < n′. This choice of

pn,n ′ is based on the “rich get richer” attribute of real net-

works, where new connections are formed between nodes

with high degree [14]. Moreover, the edge (vn , vn ′) is

deleted at each td = 20κ, κ = 1, 2, . . . with probability 0.1;

that is, An ′,n (td + 1) = An,n ′(td + 1) = 0, as long as the

graph remains connected. By varying σA , we obtain different

time-varying graphs. A graph function was generated for each

time-varying graph as follows

f t = δAtf t−1 +
10
∑

i=1

γ
(i)
t u

(i)
t (24)

where δ = 10−2 is a forgetting factor,
∑10

i=1 γ
(i)
t u

(i)
t is a graph-

bandlimited component with γ
(i)
t ∼ N (0, 1), and {u

(i)
t }10

i=1 are

the eigenvectors associated with the 10 smallest eigenvalues of

Lt . Algorithm 1 employs a bandlimited kernel with β = 103

and B for K
(ν )
t , a diffusion kernel with σ = 0.5 for K

(χ)
t , and

A(t,t−1) = 10−3(At−1 + IN ). Fig. 3 plots the NMSE of the

KeKriKF algorithm as a function of σA , which determines how
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Fig. 4. True and estimated temperature values (B = 5, µDLSR = 1.2,
βDLSR = 0.5, µLMS = 1.5, µ1 = µ2 = 1, ρν = 105 , ρχ = 105 ).

rapidly the graph changes. As observed, the KeKriKF algorithm

can effectively cope with different degrees of time variation.

B. Temperature Prediction

Consider the dataset [1] provided by the National Climatic

Data Center, which comprises hourly temperature measure-

ments at N = 109 measuring stations across the continental

United States in 2010. A time-invariant graph was constructed

as in [19], based on geographical distances. The value f(vn , t)
represents the t-th temperature sample recorded at the n-th sta-

tion. The sampling interval is one hour for the first experiment,

and one day for the second.

KeKriKF employs diffusion kernels with parameter σ = 1.8

for K
(ν )
t K

(χ)
t = 10−5IN , and a transition matrix A(t,t−1) =

5 · 10−4(At−1 + IN ). MKriKF is configured as follows:

D(ν ) contains Mν = 40 diffusion kernels with parameters

{σ[m]}40
m=1 with σ[m] ∼ N (2, 0.5),∀m; D(χ) contains 44 dif-

fusion kernels with parameters {σ[m]}44
m=1 , where σ[m] ∼

N (1, 0.2),∀m, and an identity kernel K(χ) [45] = IN .

Fig. 4 depicts the true temperature along with its estimates for

a station n that is not sampled, meaning n /∈ S, with S = 44.

Clearly, KeKriKF accurately tracks the temperature by exploit-

ing spatial and temporal dynamics, but MKriKF outperforms

KeKriKF by learning those dynamics from the data. The ran-

dom sampling set selection heavily affects performance of the

LMS algorithm; for adaptive selection of S see [15].

Fig. 5 compares the NMSE of all considered approaches for

S = 44. Observe the superior performance of the proposed re-

construction methods, which in this scenario exhibit roughly the

same NMSE.

C. GDP Prediction

The next dataset is provided by the World Bank Group [2],

and comprises gross domestic product (GDP) per capita for

N = 127 countries for the years 1960–2016. A time-invariant

graph was constructed using the correlation between the GDP

of different countries for the first 25 years. The graph function

Fig. 5. NMSE of temperature estimates (µDLSR = 1.6, βDLSR = 0.5, µLMS =
1.5, ρν = 105 , ρχ = 105 ).

Fig. 6. Greece GDP values along with the estimated ones (S = 38, µDLSR =
1.6, βDLSR = 0.4, µLMS = 1.2, ρν = 104 , ρχ = 104 ).

f(vn , t) denotes the GDP reported at the n-th country and t-th
year for t = 1985, . . . , 2016.

The graph Fourier transform of the GDP in the first

25 years defined as f̌n := u�
n f ∀n, where un denotes the n-

th eigenvector of the Laplacian matrix; see [26], shows that the

graph frequencies f̌k take small values for 4 < k < 123, and

large values otherwise. Motivated by the aforementioned ob-

servation, the KeKriKF is configured with a band-reject kernel

K(ν ) with k = 6, l = 6, β = 15; see Table I, K(χ) = 10−3IN ,

and A(t,t−1) = 10−5(At−1 + IN ). MKriKF adopts a D(ν )

with Mν = 16 band-reject kernels with k ∈ [2, 5], l ∈ [1, 4],
β = 15, and a D(χ) with 60 diffusion kernels with parame-

ters {σ[m]}60
m=1 , where σ[m] ∼ N (2, 0.5),∀m, and an identity

kernel K(χ) [61] = IN .

Fig. 6 depicts the actual GDP as well as its estimates for

Greece, which is not contained in the sampled countries. Clearly,

both MKriKF and KeKriKF, track the GDP evolution over the

years with greater accuracy than the considered alternatives.

This is expected because the graph function does not adhere to

the graph bandlimited model assumed by DLSR and LMS.
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Fig. 7. NMSE of GDP estimates (S = 38, µDLSR = 1.6, βDLSR = 0.4,
µLMS = 1.6, ρν = 104 , ρχ = 104 ).

Fig. 7 reports NMSE over time, where the proposed algo-

rithms achieve the smallest NMSE. The data-driven MKriKF

outperforms KeKriKF, which is configured manually.

D. Network Delay Prediction

The last dataset records measurements of path delays on the

Internet2 backbone [3]. The network comprises 9 end-nodes and

26 directed links. The delays are available for N = 70 paths at

every minute. The paths connect origin-destination nodes by a

series of links described by the path-link routing matrix Π ∈
{0, 1}N ×26 , whose (n, l) entry is Πn,l = 1 if path n′ traverses

link l, and 0 otherwise. A graph is constructed with each vertex

corresponding to one of these paths, and with the time-invariant

adjacency matrix A ∈ R
N ×N given by

An,n ′ =

∑26
l=1 Πn,lΠn ′,l

∑26
l=1 Πn,l +

∑26
l=1 Πn ′,l −

∑26
l=1 Πn,lΠn ′,l

(25)

for n, n′ = 1, . . . , N , n �= n′. Expression (25) was selected to

assign a greater weight to edges connecting vertices whose as-

sociated paths share a large number of links. This is intuitively

reasonable since paths with common links usually experience

similar delays [7]. Function f(vn , t) denotes the delay in mil-

liseconds measured at the n-th path and t-th minute.

The KeKriKF algorithm employs a diffusion kernel with pa-

rameter σ = 2.5 for K
(ν )
t , K

(χ)
t = 0.002IN , and A(t,t−1) =

0.005(At−1 + IN ). The MKriKF is configured as follows:

D(ν ) contains Mν = 40 diffusion kernels with parameters

{σ[m]}40
m=1 with σ[m] ∼ N (4, 0.5),∀m; D(χ) contains Mχ =

60 diffusion kernels with parameters {σ[m]}60
m=1 with σ[m] ∼

N (1, 0.1),∀m, and an identity kernel K(χ) [61] = IN .

Fig. 8 depicts the NMSE when S = 20. KeKriKF and

MKriKF are seen to outperform competing methods. Using the

parameters of Fig. 8, the MKriKF algorithm is tested for St cho-

sen at random per slot t with St = S, ∀t, but St �= St ′ ,∀t �= t′.
Fig. 9 shows the NMSE of MKriKF with variable S and as

expected the performance improves as the number of samples

increases. For the same configuration, Fig. 10 depicts the NMSE

Fig. 8. NMSE of network delay estimates (µLMS = 1.5, c = 0.0005, ρν =
100, ρχ = 100, µ1 = µ2 = 1).

Fig. 9. NMSE of MKriKF with varying sampling set size (µ1 = µ2 =
1, ρν = 100, ρχ = 100).

Fig. 10. NMSE of MKriKF for different µ2 (µ1 = 1, ρν = 100, ρχ = 100).

as µ2 varies, and shows that the minimum NMSE for all S is at

µ2 = 1.

Finally, the proposed MKriKF will be evaluated in tracking

the delay over the network from S = 56 randomly sampled

path delays. To that end, delay maps are traditionally employed,

which depict the network delay per path over time and enable

operators to perform troubleshooting; see also [18]. The paths
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Fig. 11. True and estimated network delay map for N = 70 paths (ρχ = 100,
µ1 = µ2 = 1). (a) True delay (b) MKriKF.

for the delay maps in Fig. 11 are sorted in increasing order of

the true delay at t = 1. Clearly, the delay map recovered by

MKriKF in Fig. 11 (b) visually resembles the true delay map in

Fig. 11 (a).

VI. CONCLUSION

This paper introduced online estimators to reconstruct dy-

namic functions over (possibly dynamic) graphs. In this context,

the function to be estimated was decomposed in two parts: one

capturing the spatial dynamics, and the other jointly modeling

spatio-temporal dynamics by means of a state-space model. A

novel kernel kriged Kalman filter was developed using a deter-

ministic RKHS approach. To accommodate scenarios with lim-

ited prior information, an online multi-kernel learning technique

was also developed to allow tracking of the spatio-temporal dy-

namics of the graph function. The structure of Laplacian ker-

nels was exploited to achieve low computational complexity.

Through numerical tests with synthetic as well as real-data,

the novel algorithms were observed to perform markedly better

than existing alternatives. Future work includes distributed im-

plementations of the proposed algorithms, data-driven learning

of A(t,t−1) , and exploring nonlinear dynamical models such as

the sampled Brownian motion, the extended KF, unscented KF,

or particle filters.

REFERENCES

[1] “1981–2010 U.S. climate normals,” [Online]. Available: https://www.
ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/
climate-normals/1981-2010-normals-data, Accessed on: Sep. 2016.

[2] “GDP per capita (current US),” [Online]. Available: https://data.
worldbank.org/indicator/NY.GDP.PCAP.CD, Accessed on: Sep. 2017.

[3] “One-way ping internet2,” [Online]. Available: http://software.internet2.
edu/owamp/, Accessed on: Sep. 2017.

[4] “Snap temporal networks: Collegemsg,” [Online]. Available: http://snap.
stanford.edu/data/CollegeMsg.html, Accessed Sep. 2017.

[5] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for
bandlimited graph signals using graph spectral proxies,” IEEE Trans.

Signal Process., vol. 64, no. 14, pp. 3775–3789, Jul. 2016.

[6] D. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena Sci-
entific, 1999.

[7] D. B. Chua, E. D. Kolaczyk, and M. Crovella, “Network kriging,” IEEE

J. Sel. Areas Commun., vol. 24, no. 12, pp. 2263–2272, Dec. 2006.
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