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Abstract—Smart grids should efficiently integrate stochastic
renewable resources while effecting voltage regulation. Energy
management is challenging since it is a multistage problem
where decisions are not all made at the same timescale and
must account for the variability during real-time operation. The
joint dispatch of slow- and fast-timescale controls in a smart
distribution grid is considered here. The substation voltage, the
energy exchanged with a main grid, and the generation sched-
ules for small diesel generators have to be decided on a slow
timescale; whereas optimal photovoltaic inverter setpoints are
found on a more frequent basis. While inverter and looser
voltage regulation limits are imposed at all times, tighter bus
voltage constraints are enforced on the average or in proba-
bility, thus enabling more efficient renewable integration. Upon
reformulating the two-stage grid dispatch as a stochastic convex-
concave problem, two distribution-free schemes are put forth.
An average dispatch algorithm converges provably to the opti-
mal two-stage decisions via a sequence of convex quadratic
programs. Its non-convex probabilistic alternative entails solv-
ing two slightly different convex problems and is numerically
shown to converge. Numerical tests on real-world distribution
feeders verify that both schemes yield lower costs over competing
alternatives.

Index Terms—Multistage economic dispatch, voltage regula-
tion, stochastic approximation, convex-concave problem.

I. INTRODUCTION

W
ITH increasing renewable generation, energy man-
agement of power distribution grids is becoming a

computationally challenging task. Solar energy from photo-
voltaic (PV) units can change significantly over one-minute

Manuscript received August 3, 2016; revised December 2, 2016; accepted
January 10, 2017. Date of publication January 17, 2017; date of current version
August 21, 2018. This work was supported in part by the Spanish Ministry of
Education under FPU Grant AP2010-1050, in part by the CAM under Grant
S2013/ICE-2933, in part by the MINECO under Grant TEC2013-41604-R,
and in part by the NSF under Grant 1423316, Grant 1442686, Grant 1508993,
and Grant 1509040. Paper no. TSG-01019-2016.

L. M. Lopez-Ramos and A. G. Marques are with the Department
of Signal Theory and Communications, King Juan Carlos University,
28943 Fuenlabrada, Spain (e-mail: luismiguel.lopez@urjc.es;
antonio.garcia.marques@urjc.es).

V. Kekatos is with the Department of Electronics and Communication
Engineering, Virginia Tech, Blacksburg, VA 24061 USA (e-mail:
kekatos@vt.edu).

G. B. Giannakis is with the Digital Technology Center, University of
Minnesota, Minneapolis, MN 55455 USA, and also with the Department of
Electrical and Computer Engineering, University of Minnesota, Minneapolis,
MN 55455 USA (e-mail: georgios@umn.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSG.2017.2654220

intervals. The power inverters found in PV units can be com-
manded to curtail active power generation or adjust their power
factor within seconds [1], [2]. At a slower timescale, distri-
bution grid operators exchange energy with the main grid
hourly or on a 10-minute basis, and may experience cost
penalties upon deviating from energy market schedules [3].
Moreover, voltage regulation equipment and small diesel gen-
erators potentially installed in microgrids respond at the same
slower timescale. As a result, comprehensive designs to opti-
mize such diverse tasks call for multistage smart grid dispatch
solutions.

Spurred by demand-response programs and the use of PV
inverters to accomplish various grid tasks [4], single-stage dis-
patch schemes for distribution grids have been an active area
of research. Power inverters can be controlled using localized
rules for voltage regulation, see [5]–[8]. Assuming two-way
communication between buses and the utility operator, dis-
patching a distribution system can be posed as an optimal
power flow (OPF) problem. Centralized schemes use nonlinear
program solvers [9]; or rely on convex relaxations of the full
AC model of balanced [10], [11], or unbalanced grids [12].
Distributed solvers with reduced computational complexity
have been devised in [13]–[15].

Nevertheless, the efficient and secure operation of distribu-
tion grids involves decisions at different timescales. A dynamic
programming approach for a two-stage dispatch is suggested
in [10]: The taps of voltage regulators are set on a slow
timescale and remain fixed for consecutive shorter time slots
over which elastic loads are dispatched; yet the flexibility of
loads is assumed known a priori. Alternatively, centrally com-
puted OPF decisions can be communicated to buses at a slow
timescale, while on a faster timescale, PV power electronics
are adjusted to optimally track variations in renewable gen-
eration and demand [16], [17]. Relying on approximate grid
models and ignoring the effect of uncertainty on the dispatch
of slow-responding units, the latter schemes yield a partially
decentralized real-time allocation of the power flows across
fast-responding units.

Multistage dispatching under uncertainty is routinely used in
transmission systems and microgrids [18]. Robust approaches
find optimal slow-timescale decisions for the worst-case
fast-timescale outcome; see [19] and references therein. To
avoid the conservativeness of robust schemes, probabilistic
approaches postulate a probability density function (pdf) for
demand, wind generation, and system contingencies to find
day-ahead grid schedules [20], [21]. The risk-limiting dispatch
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framework adjusts multistage decisions as the variance of the
random variables involved decreases while approaching actual
time [3]. Decisions can be efficiently calculated only for con-
venient pdfs for a network-constrained risk-limiting dispatch
and under congestion assumptions [22]. As a third alterna-
tive, sample average approximation (SAA) approaches yield
optimal slow-timescale decisions using samples drawn from
the postulated pdf; see [19], [23]. Recent works impose lim-
its on the probability of undesirable events, either relying
on convex approximation of chance constraints [24], or via
the (sample-based) scenario approximation approach [25] to
reduce computations; e.g., [26].

Focusing to distribution grids, PV inverters could be over-
loaded sporadically in time and across buses to accommodate
solar fluctuations and prevent overvoltages [27]. The spa-
tiotemporal overloading of power system components (such
as inverters, bus voltages, line flows) could thus consti-
tute an additional means for integrating renewables in smart
grids. Nonetheless, ensuring that overloading occurs spar-
ingly couples decisions across time. The single-stage scheme
of [28] finds optimal PV setpoints while limiting time
averages of overloaded quantities. The latter approach has
been also adopted in [29] for dispatching a transmission
system in a day-ahead/real-time market setup under load
shedding.

Jointly dispatching slow- and fast-timescale grid resources
under average or probabilistic constraints over fast-timescale
decisions is considered here. Our contribution is three-fold.
First, Section III formulates a two-stage grid dispatch as
a convex-concave problem: The expected cost over a slow
control period is minimized, while looser voltage limits are sat-
isfied at all times and tighter voltage limits are enforced on the
average or in probability. Second, upon adapting the stochas-
tic saddle-point approximation scheme from [30], the provably
convergent algorithm in Section IV provides optimal slow-
timescale decisions for the average-constrained formulation.
Different from SAA approaches, this stochastic approxima-
tion (SA) scheme processes random samples one at a time
to improve computational efficiency. Third, in the case of
non-convex probabilistic constraints, an algorithm solving two
similar convex problems for each second stage is put forth
in Section V. Although the expected cost enjoys zero-duality
gap [31], the overall two-stage dispatch is not convex-concave,
which explains why the algorithm’s performance is validated
numerically. Both schemes require only samples of loads
and solar generation (rather than their joint pdfs), and can
rely either on an approximate, or a convexified grid model.
Numerical tests using the linearized distribution flow model
on 56- and 123-bus feeders corroborate the validity of our
findings in Section VI.

Regarding notation, lower-(upper-)case boldface letters
denote column vectors (matrices), with the only exception of
the power flow vectors, which are uppercase. Calligraphic let-
ters are used to denote sets. Symbol � denotes transposition,
while 0 and 1 are the all-zeros and all-ones vectors of appro-
priate dimensions. The indicator function �{·} equals 1 when
its argument is true, and 0 otherwise. A diagonal matrix with
the entries of vector x on its main diagonal is denoted by

dg(x). The operator [·]+ projects its argument onto the positive
orthant; �[·] denotes expectation and Pr{·} probability.

II. PROBLEM FORMULATION

Consider a distribution grid whose energy needs are pro-
cured by distributed renewable generation, distributed con-
ventional (small diesel) generators, and the main grid. The
distribution grid operator aims at serving load at the min-
imum cost while respecting voltage regulation and network
constraints. Energy is exchanged with the main grid at whole-
sale electricity prices through the feeder bus. To effectively
integrate stochastic renewable generation, the focus here is
on short-term grid dispatch. To that end, the distribution
grid is operated at two timescales: a slower timescale cor-
responds to 5- or 10-min real-time energy market intervals,
while the inverters found in PVs are controlled at a faster
timescale of say 10-sec intervals. One period of the slower
timescale is comprised by T faster time slots indexed by
t = 1, . . . , T.

The grid is operated as a radial network with N + 1 buses
rooted at the substation bus indexed by n = 0. The distribu-
tion line feeding bus n is also indexed by n for n = 1, . . . , N.
Let pn,t and qn,t denote respectively the net active and reactive
power injections at bus n and slot t; the N-dimensional vec-
tors pt and qt collect the net injections at all buses except for
the substation. Diesel generators are dispatched at the slower
timescale to generate pd throughout the subsequent T slots
at unit power factor. During slot t, PVs can contribute solar
generation up to pr

t that is modeled as a random process.
Smart inverters perform active power curtailment and reac-
tive power compensation by following the setpoints pr

t and qr
t

commanded by the utility operator. Load demands pl
t and ql

t

are also modeled as random processes. To simplify the exposi-
tion, (pl

t, ql
t) are assumed inelastic and known at the beginning

of slot t; although elastic loads can be incorporated without
any essential differences. The operator buys a power block
pa

0 from the main grid at the slow timescale, which can be
adjusted to p0,t := pa

0 + pδ
0,t in actual time.

Voltage regulation is effected by controlling (re)active
power injections at slot t. Let vn,t denote the squared voltage
magnitude at bus n and slot t, and vt the vector collect-
ing {vn,t}N

n=1. The substation voltage va
0 is controlled at the

slower timescale [10], while voltage magnitudes at all buses
must adhere to voltage regulation standards, e.g., ANSI C84.1
and EN50160 in [32] and [33]. These standards differenti-
ate between a narrower voltage regulation range denoted here
by VA in which voltages should lie most of the time; and
a wider range VB (with VA ⊂ VB) whom voltages should
not exceed at any time. One of the goals of this work is
to leverage this flexibility to design dispatch schemes that:
i) guarantee that voltages lie in VB at all times, while ii) they
belong to VA in a stochastic fashion. To this end, two alterna-
tive schemes are presented, the difference between them being
how constraint ii) is formulated. The first scheme guarantees
that the average voltage lies in VA, whereas the second one
maintains the probability of under-/over-voltage at a specified
low value.



4284 IEEE TRANSACTIONS ON SMART GRID, VOL. 9, NO. 5, SEPTEMBER 2018

A. Grid Modeling

To account for voltage and network limitations, the distri-
bution grid is captured by the approximate linear distribution
flow (LDF) model [34]. To briefly review this model, let
r and x be accordingly the vectors of line resistances and
reactances across lines. Define also the branch-bus incidence
matrix Ã ∈ R

N×(N+1) whose (i, j)-th entry is

Ãij =

⎧

⎨

⎩

+1, if j − 1 is the source bus of line i

−1, if j − 1 is the destination bus of line i

0, otherwise.
(1)

Partition Ã into its first column and the reduced branch-bus
incidence matrix A as Ã = [a0 A]. Ignoring line losses, the
LDF model asserts that the vectors of active and reactive line
power flows at time t can be approximated by

Pt = F�pt and Qt = F�qt (2)

where F := A−1. Moreover, the squared voltage magnitudes
can be expressed as [6], [34]

vt = 2Rpt + 2Xqt + vd
01 (3)

where R := Fdg(r)F� and X := Fdg(x)F�. The LDF model
applies to both radial and meshed networks and, different from
the so termed DC power grid model, it does not ignore line
resistances [35]. It can be derived by assuming that voltage
magnitudes are close to unity and voltage angle differences
across neighboring buses are small. Alternatively, it can be
obtained upon linearizing power injections at the flat voltage
profile [36].

Let us define the voltage regulation regions

VA :=
{

v : vA1 ≤ v ≤ vA1
}

(4a)

VB :=
{

v : vB1 ≤ v ≤ vB1
}

(4b)

with vB ≥ vA and vB ≤ vA. Compliance with VA can be
imposed either on the average as �t[vt] ∈ VA, or in probabil-
ity as Pr{vt ∈ VA} ≥ 1 − α for some small α. Either way, safe
grid operation requires that vt ∈ VB at all times t. Within the
optimization horizon, the random processes involved (demand
and renewable generation) can be assumed ergodic, i.e., their
time averages converge to their ensemble averages. For this
reason, voltage constraints pertaining to VA will be referred to
as ergodic.

According to (2), if fn is the n-th column of F, the squared
power flow on line n can be written as P2

n,t = p�
t fnf�n pt and

Q2
n,t = q�

t fnf�n qt. Imposing the upper limit Sn on the appar-
ent flow on line n is thus expressed as the convex quadratic
constraint

p�
t fnf�n pt + q�

t fnf�n qt ≤ S
2
n. (5)

Although losses have been dropped in (2), upon assuming that
voltage magnitudes are close to unity, active power losses can
be approximated as [37]

N
∑

n=1

rn

(

P2
n,t + Q2

n,t

)

= P�
t dg(r)Pt + Q�

t dg(r)Qt.

Using (2), the latter can be equivalently expressed as p�
t Rpt +

q�
t Rqt, so the active power injection at the substation is

approximately

p0,t = −1�pt + p�
t Rpt + q�

t Rqt (6)

Regarding smart inverters, the tuple (pr
n,t, qr

n,t), which
denotes the power injection from the inverter located on bus n

at slot t, should belong to the feasible set

�n,t :=
{(

pr
n,t, qr

n,t

)

: 0 ≤ pr
n,t ≤ pr

n,t, (7a)
∣

∣qr
n,t

∣

∣ ≤ φnpr
n,t, (7b)

(

pr
n,t

)2 +
(

qr
n,t

)2 ≤ s2
n

}

(7c)

that is random and time-variant due to the variability of pr
n,t.

Constraint (7a) limits the active power generation according
to the available solar power; constraint (7b) enforces the lower
limit cos(arctan(φn)) on the power factor (lagging or leading);
and (7c) limits the inverter apparent power.

B. Operation Costs

If PV owners are compensated at price π for the active
power surplus they inject into the distribution grid, the related
utility cost at slot t is CPV(pr

t ) := π�[pr
t − pl

t]+ with
[·]+ := max{0, ·} applied entrywise on vector pr

t − pl
t. The

diesel generation cost is represented by CD(pd). Regarding
energy transactions with the main grid, the power block pa

0
bought in advance is charged at a fixed and known price β.
Deviating from pa

0 by pδ
0,t at slot t is charged at

Ct
(

pδ
0,t

)

:= γb

[

pδ
0,t

]

+ − γs

[

−pδ
0,t

]

+ (8)

for known prices (γb, γs). To avoid arbitrage, it is assumed that
0 < γs < β < γb; see [3], [22]. Then, the deviation charge
can also be expressed as Ct(pδ

0,t) = max{γbpδ
0,t, γsp

δ
0,t}, which

is certainly convex [19].

C. Optimal Grid Dispatch

Depending on the way compliance with voltage regulation
region VA is enforced, two grid dispatch formulations are
developed next. Commencing with the average dispatch, the
optimal grid operation is posed as

P
∗
a := min CD

(

pd
)

+ βpa
0 +�t

[

Ct
(

pδ
0,t

)

+ CPV
(

pr
t

)]

(9a)

s.to: pt = pr
t − pl

t + pd (9b)

qt = qr
t − ql

t (9c)

p0,t = pa
0 + pδ

0,t (9d)

p0,t ≥ −1�pt + p�
t Rpt + q�

t Rqt (9e)

p�
t fnf�n pt + q�

t fnf�n qt ≤ Sn, ∀n ∈ N (9f)

pd ≤ pd ≤ pd (9g)
(

pr
n,t, qr

n,t

)

∈ �n,t, ∀n ∈ N (9h)

v0 ≤ va
0 ≤ v0 (9i)

vt = 2Rpt + 2Xqt + va
01 (9j)

vt ∈ VB (9k)

�t[vt] ∈ VA (9l)

over va
0, pa

0, pd,
{

pt, qt, vt, pr
t , qr

t , p0,t, pδ
0,t

}T

t=1
.
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The slow-timescale variables {va
0, pa

0, pd} are set in
advance, and remain fixed throughout the T subsequent
control slots over which the fast-timescale variables
{pt, qt, vt, pr

t , qr
t , p0,t, pδ

0,t}T
t=1 are implemented. The latter

variables depend on the randomness of slot t as well as
slow-timescale decisions.

Alternatively to (9), optimal grid operation can be posed as a
probabilistic dispatch that is identical to (9) with the exception
that (9l) is replaced by the probabilistic constraint

Pr{vt /∈ VA} ≤ α (10)

for some small parameter α > 0, say α = 0.05. The optimal
cost for the probabilistic dispatch will be denoted by P

∗
p.

The objective function in (9a) involves the cost of energy
dispatched at the slow timescale plus the average fast-
timescale energy management cost. Nodal (re)active power
balance is ensured via (9b)–(9c). Constraint (9e) accounts
for active power losses. Since the cost in (9a) is non-
decreasing with respect to (pδ

0,t, pa
0), relaxing (6) to the

convex inequality in (9e) does not incur loss of optimal-
ity. Constraint (9f) limits line apparent power flows based
on (5). Constraints (9i)–(9l) are voltage regulation constraints:
In detail, (9j) relates squared voltage magnitudes to power
injections [see (3)]; (9i) constraints the substation bus volt-
age; and (9k) constraints voltages in VB. While (9l) maintains
the average voltage magnitudes in VA, its alternative in (10)
limits the probability of voltage magnitudes being outside VA.

A pertinent question is which of the two proposed dispatch
formulations is to be preferred. The probabilistic formulation
is more sophisticated and aligned with voltage regulation stan-
dards, emerging as the default option. However, as it will
be explained in Section V, enforcing even the single grid-
level probabilistic constraint in (10) gives rise to a non-convex
problem, which comes with computational challenges. The
average dispatch does not suffer from these problems, which
can be critical in scenarios where the duration of the slow
period is short and the optimization has to be frequently re-
run. Furthermore, when renewable generation and loads vary
only slightly during a slow period and/or local control loops
are in place, enforcing probabilistic guarantees may not be
justified and the simpler average constraints suffice.

D. Convexified AC Grid Model

Although (9) relies on the approximate LDF model, it
can be readily customized to the exact AC power flow
model [34]. Upon introducing the optimization variable �t :=
[�1,t . . . �N,t]� with the squared line current magnitudes,
constraints (9e)–(9f) should be substituted respectively by

p0,t ≥ −1�pt + 1��t (11a)

P2
n,t + Q2

n,t ≤ S̄n, ∀n ∈ N . (11b)

Constraint (9j) defining vt should be replaced by

vt = 2Fdg(r)Pt + 2Fdg(x)Qt + va
01 (12)

and variable �t is linked to power flows and voltages through
the additional constraints:

Pt = F�pt + F�dg(r)�t (13a)

Qt = F�qt + F�dg(x)�t (13b)

P2
n,t + Q2

n,t ≤ vπn,t�n,t, ∀n ∈ N (13c)

where πn is the parent bus of bus n. In fact, constraint (13c)
constitutes a relaxation, since in the actual grid model it is sat-
isfied with equality [10]. Nevertheless, the relaxation has been
shown to be exact in radial grids and under different condi-
tions; see [38] for details. Critical for the ensuing sections is
that the differences between the formulation in (11)–(13) and
that for the LDF model pertain to the fast-timescale operation,
whereas the slow-timescale formulation and the constraints
coupling slow with fast timescale variables remain intact.

III. PROBLEM ANALYSIS

To facilitate algorithmic developments, the problem in (9) is
expressed in a compact form next. Collect the slow-timescale
variables in vector z� := [va

0, pa
0, pd]; the fast-timescale vari-

ables at slot t in y�
t := [pt, qt, vt, pr

t , qr
t , p0,t, pδ

0,t]; and the
random variables involved at slot t in ξ�

t := [pr
t , pl

t, ql
t].

The constraints in (9) can be classified into four groups:
(i) Constraints involving fast-timescale variables only, such

as (9c), (9f), (9h), and (9k), that will be abstracted as yt ∈ Yt.
(ii) Constraints (9g) and (9i) that involve slow-timescale

variables only, and they will be denoted as z ∈ Z .
(iii) The linear constraints (9b), (9d), and (9j), coupling

slow- and fast-timescale variables as well as random variables.
These constraints are collectively expressed as Kz+Byt = Hξ t

for appropriate matrices K, B, and H.
(iv) The ergodic constraints (9l) and (10) depend on the volt-

age sequence {vt}T
t=1, hence coupling decisions across time. A

substantial difference between (9l) and (10) is that the latter
is a non-convex constraint.

If the exact grid model of Section II-D is used, the additional
variables Pt, Qt, and �t are added, and set Yt in (i) is modified
to incorporate (11)–(13). Under these considerations, the two
dispatch problems can be compactly rewritten as

P
∗
(a,p) := min

z,{yt}T
t=1

f (z) +�t

[

gt(yt)
]

(14a)

s.to: z ∈ Z (14b)

yt ∈ Yt ∀t (14c)

Kz + Byt = Hξ t ∀t (14d)

�t

[

h(yt)
]

≤ 0 (14e)

where f (z) := CD(pd)+βpa
0 and gt(yt) := Ct(pδ

0,t)+CPV(pr
t ).

For the average dispatch, the optimal cost in (14) is P
∗
a and

the function in (14e) is h(yt) = [vt − vA1, vA1 − vt]. For the
probabilistic dispatch, the optimal cost is P

∗
p and the function

in (14e) is h(yt) = �{vt /∈ VA} − α.
The optimal values for the slow-timescale variables z must

be decided in advance. Once the optimal z is found, it remains
fixed over the slow-timescale interval. The fast-timescale deci-
sions yt(z) for slot t depend on z, while the subscript t indicates
their dependence on the realization ξ t. Both the average and
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the probabilistic dispatch are stochastic programming prob-
lems with recourse [3]. Their costs can be decomposed as
P

∗
(a,p)

= minz∈Z f (z)+G(a,p)(z), where the so termed expected

recourse function is defined as

G(a,p)(z) := min
{yt∈Yt}

�t

[

gt(yt)
]

(15a)

s.to: Kz + Byt = Hξ t ∀t (15b)

�t

[

h(yt)
]

≤ 0. (15c)

Since problem (15) depends on z, its minimizer can be writ-
ten as {y∗

t (z)}T
t=1 and the recourse function as G(a,p)(z) =

�t[gt(y
∗
t (z))]. The ensuing two sections solve the average and

the probabilistic dispatches.

IV. AVERAGE DISPATCH ALGORITHM

This section tackles problem (14) with the ergodic constraint
in (14e), for which h(yt) = [vA1 − vt, vt − vA1]. Although
convex, problem (14) is challenging due to the coupling
across {yt}T

t=1 and between fast- and slow-timescale variables.
Dual decomposition is adopted to resolve the coupling across
{yt}T

t=1. The partial Lagrangian function for (15) is

La({yt}, ν) := �t

[

gt(yt) + ν�h(yt)

]

(16)

with the entries of ν being the multipliers associated with the
upper and lower per-bus constraints in (14e). The correspond-
ing dual function is

Da(ν; z) := min
{yt∈Yt}

La({yt}, ν)

s.to: Kz + Byt = Hξ t ∀t. (17)

Observe that after dualizing, the minimization in (17) is
separable over the realizations {ξ t}. Precisely, the optimal fast-
timescale variable for fixed (ν, z) and for a specific realization
ξ t can be found by solving:

y∗
t (ν, z) ∈ arg min

yt∈Yt

gt(yt) + ν�h(yt) (18a)

s.to: Kz + Byt = Hξ t. (18b)

For future reference, let us also define λ∗
t (ν, z) as the optimal

Lagrange multiplier associated with (18b). If ν is partitioned
as ν� = [ν�, ν�] with ν corresponding to constraint Et[vt] ≥
vA1 and ν to Et[vt] ≤ vA1, then (18) simplifies to

y∗
t (ν, z) ∈ argmin Ct

(

pδ
0,t

)

+ CPV
(

pr
t

)

+
(

ν − ν
)�

vt

s.to: (9b) − (9f), (9h), (9j), (9k)

over
{

pt, qt, vt, pr
t , qr

t , p0,t, pδ
0,t

}

(19)

and can be solved as a convex quadratic program. If the relaxed
AC grid model of Section II-D is used, then (19) becomes
a second-order cone program (SOCP) which is also convex.
Given the optimal pair (ν∗, z∗), the optimal fast-timescale
variables yt can be thus found for any ξ t.

Back to finding the optimal primal and dual slow-timescale
variables, note that the dual problem associated with (17) is

ν∗ := arg max
ν≥0

Da(ν; z). (20)

Duality theory asserts that (20) is a convex problem. Moreover,
assuming a strictly feasible point exists for (15), strong duality
implies that Ga(z) = Da(ν

∗, z). Due to the latter, the original
problem in (14) can be transformed to:

min
z∈Z

f (z) + Ga(z) = min
z∈Z

{

f (z) + max
ν≥0

Da(ν; z)

}

(21a)

= min
z∈Z

max
ν≥0

f̃a(ν, z) (21b)

where the auxiliary function f̃a is defined as:

f̃a(ν, z) := f (z) + Da(ν; z). (22)

Being a dual function, Da(ν; z) is a concave function of ν. At
the same time, Da(ν; z) is a perturbation function with respect
to z; and hence, it is a convex function of z [39]. Recall that
f (z) is a convex function of z too. Therefore, the auxiliary
function f̃a(ν, z) is convex in z and concave in ν. Because of
the randomness of {ξ t}, function Da(ν; z) in (17) is stochastic.
Consequently, problem (21b) is a stochastic convex-concave
saddle point problem [30], [39].

To solve (21b), we rely on the stochastic saddle-point
approximation method of [30]. The method involves the sub-
gradient of f̃a with respect to z, and its supergradient with
respect to ν. Upon viewing Da(ν, z) in (17) as a perturbation
function of z, the subgradient of f̃a with respect to z is [39]

∂z f̃a = ∂z f (z) + K�
�t

[

λ∗
t (ν, z)

]

. (23)

By definition of the dual function, the supergradient of f̃a with
respect to ν is

∂ν f̃a = �t

[

h
(

y∗
t (ν, z)

)]

. (24)

The stochastic saddle point approximation method of [30]
involves primal-dual subgradient iterates with the expectations
in (23)–(24) being replaced by their instantaneous estimates
based on a single realization ξ k. Precisely, the method involves
the iterates over k:

νk+1 :=
[

νk + dg
(

µk

)

h
(

y∗
k

(

νk, zk
))]

+
(25a)

zk+1 :=
[

zk − dg(εk)

(

∂z f
(

zk
)

+ K�λ∗
k

(

νk, zk
))]

Z
(25b)

where the operator [·]Z projects its argument onto Z; and
vectors µk = µ0/

√
k and εk = ε0/

√
k collect respectively the

primal and dual step sizes for positive µ0 and ε0. At every
iteration k, the method draws a realization ξ k and solves (18)
for the tuple (ξk, ν

k, zk) to acquire (y∗
k(ν

k, zk),λ∗
k(ν

k, zk)) and
perform the primal-dual updates in (25). The method finally
outputs the sliding averages of the updates as:

z̃k :=
(

∑k
i=�k/2� zi/

√
i
)/(

∑k
i=�k/2� 1/

√
i
)

(26a)

ν̃k :=
(

∑k
i=�k/2� ν i/

√
i
)/(

∑k
i=�k/2� 1/

√
i
)

. (26b)

The proposed scheme converges to the value f̃a(ν
∗, z∗)

obtained at a saddle point (ν∗, z∗) asymptotically in the
number of iterations k [30, Sec. 3.1].
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Algorithm 1 Average Dispatch Algorithm (ADA)

1: Initialize (z0, ν0).
2: repeat for k = 0, 1, . . .

3: Draw sample ξ k.
4: Find (y∗

k(ν
k, zk),λ∗

k(ν
k, zk)) by solving (18).

5: Update (zk+1, νk+1) via (25).
6: Compute sliding averages (z̃k, ν̃k) through (26).
7: until convergence of (z̃k, ν̃k).
8: Output z∗ = z̃k and ν∗ = ν̃k.

Upon convergence of the iterates in (26), the slow-timescale
variables z∗ have been derived together with the optimal
Lagrange multiplier ν∗ related to constraint (15c). The grid
operator can implement z∗, and the fast-timescale decisions y∗

t

for a realization ξ t can be found by solving (19). The average
dispatch algorithm (ADA) is summarized as Algorithm 1.

V. PROBABILISTIC DISPATCH ALGORITHM

The probabilistic version of problem (14) is considered
next. Here, the ergodic constraint (14e) reads h(yt) = �{vt /∈
VA} − α. Despite the non-convexity of the probabilistic con-
straint, (15) can still be solved optimally. However, optimality
for (14) cannot be guaranteed. A heuristic solution is detailed
next by adapting the solution of Section IV.

To that end, dual decomposition is used here as well.
If ν is the scalar Lagrange multiplier associated with con-
straint (14e), the partial Lagrangian function for (15) is
now Lp({yt}, ν) := �t

[

gt(yt) + ν(�{vt /∈ VA} − α)
]

. The cor-
responding dual function, fast-timescale problem, and dual
problem are defined analogously to (17), (18), and (20). The
indicator function renders Lp({yt}, ν) non-convex. Surprisingly
enough though, under the practical assumption that {ξ t} fol-
lows a continuous pdf, problem (15) enjoys zero duality gap;
see [31, Th. 1].

The additional challenge here is the non-convexity of the
Lagrangian minimization:

y∗
t (ν, z) ∈ arg min

yt∈Yt

gt(yt) + ν�{vt /∈ VA}

s.to: Kz + Byt = Hξ t. (27)

Because the indicator function takes only the values {0, 1}
however, the solution to (27) can be found by solving a pair
of slightly different convex problems. The first problem is

y∗
t,A(z) ∈ arg min

yt∈Yt

gt(yt) (28a)

s.to: Kz + Byt = Hξ t (28b)

vt ∈ VA (28c)

whereas the second problem ignores constraint vt ∈ VA as

y∗
t,B(z) ∈ arg min

yt∈Yt

gt(yt) (29a)

s.to: Kz + Byt = Hξ t. (29b)

From the point of view of (27), if the voltages in y∗
t,B(z) do

not belong to VA, the solution to the second problem will
incur an additional cost quantified by ν. Observe that neither
problem (28) nor (29) depend on ν, while their complexity is

Algorithm 2 Probabilistic Dispatch Algorithm (PDA)

1: Initialize (z0, ν0).
2: repeat for k = 0, 1, . . .

3: Draw sample ξ k.
4: Find (y∗

k,B(νk, zk),λ∗
k,B(νk, zk)) by solving (29).

5: Set y∗
t (ν, z) := y∗

t,B(z) and λ∗
t (ν, z) := λ∗

t,B(z).
6: if v∗

k,B(z) /∈ VA, then find y∗
k,A(νk, zk) and λ∗

k,A(νk, zk)

by solving (28).
7: if gt(y

∗
t,A(z)) ≤ gt(y

∗
t,B(z))+ν, then set y∗

t (ν, z) :=
y∗

t,A(z) and λ∗
t (ν, z) := λ∗

t,A(z).
8: end if

9: end if

10: Update (zk+1, νk+1) via (30).
11: Compute sliding averages (z̃k, ν̃k) through (26).
12: until convergence of (z̃k, ν̃k).
13: Output z∗ = z̃k and ν∗ = ν̃k.

similar to the one problem (18). Suppose that (28) and (29)
have been solved and let λ∗

t,A(z) and λ∗
t,B(z) denote the optimal

multipliers associated with (28b) and (29b), respectively. Then,
problem (27) can be neatly tackled by identifying two cases:

(c1) If gt(y
∗
t,A(z)) > gt(y

∗
t,B(z)) + ν, then y∗

t,B(z) is a mini-
mizer of (27) as well and voltages are allowed to lie outside
VA. In this case, set y∗

t (ν, z) := y∗
t,B(z) and λ∗

t (ν, z) := λ∗
t,B(z).

This case includes instances where problem (28) is infeasible
for which gt(y

∗
t,A(z)) = ∞.

(c2) If gt(y
∗
t,A(z)) ≤ gt(y

∗
t,B(z)) + ν, then y∗

t,A(z) mini-
mizes (27) too and voltages lie within VA. In this case, set
y∗

t (ν, z) := y∗
t,A(z) and λ∗

t (ν, z) := λ∗
t,A(z).

Case (c2) covers also instances where v∗
t,B(z) happens to

lie in VA. In these particular instances, y∗
t,B(z) serves as a

minimizer of (28) too. Then, it follows that gt(y
∗
t,A(z)) =

gt(y
∗
t,B(z)) ≤ gt(y

∗
t,B(z)) + ν for ν ≥ 0. This implies that

one can solve (29) first and, if v∗
t,B(z) ∈ VA, there is no need

to solve problem (28).
To find the optimal slow-timescale variables under the

probabilistic dispatch, the stochastic primal-dual iterations of
Section IV are adapted here as

νk+1 :=
[

νk + µk

(

�

{

v∗
k

(

νk, zk
)

/∈ VA

}

− α

)]

+
(30a)

zk+1 :=
[

zk − dg(εk)

(

∂z f
(

zk
)

+ K�λ∗
k

(

νk, zk
)]

Z
. (30b)

The probabilistic dispatch algorithm (PDA) is tabulated as
Algorithm 2. At every fast-timescale iteration, PDA solves (29)
and possibly (28). Since the optimizations tasks (28)–(29) are
structurally similar to (18), PDA has at most twice the per-
iteration complexity of ADA. Because function Gp(z) is not
necessarily convex, the iterates in (30) are not guaranteed to
converge to a minimizer of (14). The practical performance of
PDA in finding z∗ is numerically validated in Section VI.

VI. NUMERICAL TESTS

The proposed grid dispatches were tested on a 56-bus
Southern California Edison (SCE) distribution feeder [11].
5-MW PVs were added on buses 44 and 50; both with
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Fig. 1. Convergence of primal variables for ADA: (top) diesel generation;
(bottom) substation voltage v0 (left y-axis) and energy exchange pa

0 (right
y-axis). Sliding averages of optimization variables are depicted too.

6-MVA inverters enabling power factors as low as 0.83 (lead-
ing or lagging) at full solar generation. The prices for the
energy exchange with the main grid were β = 37 $/MWh;
γb = 45 $/MWh, and γs = 19 $/MWh. Diesel generators
with capacity pd

n = 0.5 MW were sited on buses 10, 18, 21,
30, 36, 43, 51, and 55. The cost of diesel generation was
CD(pd) =

∑N
n=1(30pd

n + 15(pd
n)

2) $/h with pd expressed in
MW. Apparent power flows were limited to 7 MVA. The volt-
age operation limits were set to vA = 0.982, vA = 1.022,
vB = 0.972, and vB = 1.032, expressed in pu with respect
to a voltage base of 12 kV. (Re)active nodal loads were
Gaussian distributed with the nominal load of the SCE bench-
mark as mean value, and standard deviation of 0.2 times the
nominal load. The solar energy generated at each PV was
drawn uniformly between 0.5 and 1 times the actual power
PV rating.

The simulations presented next have been run using the LDF
model. The LDF model is computationally less complex than
the relaxed AC grid model of Section II-D, which is advanta-
geous when many instances of the fast-variation scale have to
be solved. Our tests show the LDF model is 33% faster, while
it incurs 10% higher cost compared to the SOCP relaxation.
Such numbers are consistent with those observed for other
problems [6], [28]. In any case, the findings presented next
are valid for both models and also for cases where the LDF
model is adopted only for finding the slow-timescale variables,
while the exact/relaxed AC grid model is employed during the
actual fast-timescale dispatch.

ADA was run with step sizes proportional to 1/
√

k with
initial values ε

v0
0 = 4 · 10−5, ε

p0
0 = 4 · 10−1, ε

pd

0 = 6 · 10−3,

Fig. 2. Convergence of dual variables for ADA: (top) dual variables asso-
ciated with average lower voltage limits for all buses; and (bottom) dual
variables associated with average upper voltage limits for all buses. Sliding
averages of optimization variables are depicted too.

and µ0 = 225, to account for different dynamic ranges. The
iterates for primal and dual variables as well as their corre-
sponding sliding averages are depicted in Figs. 1 and 2. Primal
and dual slow-timescale variables hover in a small range
whose width diminishes with time. Their sliding averages
converge asymptotically. The algorithm reaches a practically
meaningful solution within 5,000 iterations. Buses 44 and 50
are prone to overvoltages since they host PVs, and buses 2 and
15 are prone to under-voltages; thus yielding non-zero dual
variables for the average upper and lower voltage constraints,
respectively.

PDA was tested using the same simulation setup for α =
0.05 and µ0 = 1. Figure 3 shows the convergence of primal
and dual variables, and the probability of voltages deviating
from VA. Since we know that the per-iteration computation
of PDA is at most twice that of ADA and the simulations
show that the number of iterations required for PDA and ADA
is similar, it then follows that the total computation time for
PDA is at most twice that for ADA. Granted that the proba-
bilistic constraint in (10) applies collectively to all buses, the
under-/over-voltage probabilities on a per-bus basis is depicted
in Fig. 4. The occurrences of overvoltage seem to be shared
primarily among buses 40–56 which are neighboring to the
PV buses 40 and 55. On the contrary, buses 10–16 being
electrically far from both the substation and PVs, experience
under-voltage with a small probability.

The effect of the average versus the probabilistic con-
straint on voltage magnitudes was evaluated next. After slow-
timescale variables z had converged, fast-timescale variables
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Fig. 3. Convergence for PDA: (left) diesel generation; (middle) substation voltage (left y-axis) and energy exchange pa
0 (right y-axis); and (right) dual

variable related to probabilistic constraint (left y-axis) and under-/over-voltage probability (right y-axis). Sliding averages of optimization variables are
shown too.

Fig. 4. Per-bus probability of under-/over-voltages.

Fig. 5. Histograms of voltage magnitudes on buses 15 and 40 under ADA
(top) and PDA (bottom). Dashed lines show regulation limits VA and VB.

yt were calculated for 6,000 instances of ξ t using both ADA
and PDA. The histograms of the voltage magnitudes on two
representative buses are presented in Fig. 5. Under PDA, the
average voltage on bus 15 is slightly higher than the aver-
age voltage obtained by ADA. In exchange, the instantaneous
value of the voltage on bus 15 stays within VA with higher
probability. A similar behavior is observed for the overvoltage
instances on PV bus 40.

ADA and PDA were finally compared to three alterna-
tive schemes. The first two, henceforth called approximate

Fig. 6. Performance for ADA, PDA, approximate average, approximate
probabilistic, and deterministic scheme.

average and approximate probabilistic dispatches, obtained z

by setting loads and solar generation to their expected values,
while variables ν were calculated via dual stochastic subgra-
dient, and {yt}T

t=1 were found by solving either (18) or (27),
depending on whether the setting is average or probabilistic.
The third deterministic dispatch found z as the approximate
schemes do, and {yt}T

t=1 by enforcing vt ∈ VA at all times.
Note that the three proposed alternatives provide feasible

solutions satisfying voltage regulation constraints. The five
dispatches were tested under five scenarios: Scenario 1 is the
setup described earlier. Scenario 2 involved the tighter volt-
age limits vA = 0.992 and vA = 1.012. Scenarios 3, 4, and
5 were generated by scaling the mean value and the standard
deviation for loads of scenario 1 by 0.5, 1.5, and 2, respec-
tively. Figure 6 shows the expected operation costs for all five
scenarios. ADA (PDA) yielded the lowest cost under all sce-
narios in the average (probabilistic) setting as expected. In
all test cases, ADA yielded a slightly lower objective than
PDA for α = 0.05. The loss of optimality entailed by the
approximate average and probabilistic schemes is due to the
suboptimal choice of z. The deterministic scheme entailed
an additional loss of optimality by preventing the occasional
violation of VA.

To gain insights on the algorithm scalability, numerical tests
were also performed using the IEEE 123-bus feeder [40].
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Fig. 7. Convergence of primal variables for ADA on the IEEE 123-bus feeder:
(top) diesel generation; (bottom) voltage v0 (left y-axis) and energy exchange
pa

0 (right y-axis). Sliding averages of optimization variables are depicted too.

Fig. 8. Convergence of dual variables for ADA on the IEEE 123-bus bench-
mark: (top) dual variables related to average lower voltage limits for all buses;
and (bottom) dual variables related to average upper voltage limits for all
buses. Sliding averages of optimization variables are depicted too.

PV systems were added at buses 92, 103, 119 and 122; and
diesel generators at buses 3, 7, 32, 37, 39, 44, 51, 54, 56,
70, 74, 85, 92, 103, 119, and 122. Diesel generation costs

and limits, and PV generation pdfs remained similar to the
previous test. The nominal (re)active loads were perturbed by
zero-mean Gaussian random variables having a standard devi-
ation of 0.2 times the nominal value. The voltage operation
limits were set to vA = 0.992, vA = 1.012, vB = 0.982, and
vB = 1.022 (pu). ADA was run with step sizes proportional to
1/

√
k, ε

v0
0 = 10−4, ε

p0
0 = 2 ·10−2, ε

pd

0 = 10−3, and µ0 = 400.
Figs. 7 and 8 show the convergence of the primal and dual
variables. For this larger feeder, the algorithm reaches a prac-
tically meaningful solution after around 10,000 iterations and
the average per-iteration computation increases by 90%.

VII. CONCLUSION

By nature of renewable generation, electromechanical com-
ponent limits, and the manner markets operate, energy man-
agement of smart distribution grids involves decisions at
slower and faster timescales. Since slow-timescale controls
remain fixed over multiple PV operation slots, decisions are
coupled across time in a stochastic manner. To accommo-
date solar energy fluctuations, voltages have been allowed
to be sporadically overloaded; hence introducing coupling
of fast-timescale variables on the average or in probabil-
ity. Average voltage constraints have resulted in a stochastic
convex-concave problem, whereas non-convex probabilistic
constraints were tackled using dual decomposition and con-
vex optimization. Efficient algorithms for finding both slow
and fast controls using only random samples have been put
forth. Our two novel solvers converge in terms of the primal
and dual variables, and have attained lower operational costs
compared to deterministic alternatives. Although probabilistic
constraints have been applied grid-wise, voltages on indi-
vidual buses remained within limits. Enforcing probabilistic
constraints on a per-bus basis, developing decentralized imple-
mentations, and including voltage regulators are interesting
research directions.
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