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Abstract—The problem of reconstructing a sparse signal vector
from magnitude-only measurements (a.k.a., compressive phase
retrieval), emerges naturally in diverse applications, but it is
NP-hard in general. Building on recent advances in nonconvex
optimization, this paper puts forth a new algorithm that is termed
compressive reweighted amplitude flow and abbreviated as CRAF,
for compressive phase retrieval. Specifically, CRAF operates in
two stages. The first stage seeks a sparse initial guess via a new
spectral procedure. In the second stage, CRAF implements a
few hard thresholding based iterations using reweighted gradi-
ents. When there are sufficient measurements, CRAF provably
recovers the underlying signal vector exactly with high proba-
bility under suitable conditions. Moreover, its sample complexity
coincides with that of the state-of-the-art procedures. Finally,
substantial simulated tests showcase remarkable performance of
the new spectral initialization, as well as improved exact recovery
relative to competing alternatives.

Index terms— Nonconvex optimization, model-based hard

thresholding, iteratively reweighting, linear convergence to the

global optimum

I. INTRODUCTION

Phase retrieval (PR) refers to the task of reconstructing a

signal vector from its phaseless measured linearly transformed

entries. It emerges naturally in a wide range of engineering and

physics applications such as X-ray crystallography, astronomy,

and coherent diffraction imaging [1], [2]. In these setups, the

physical sensors can only record the density (the number of

photons) of the light waves, but not their phase. This missing

phase information renders general phase retrieval ill-posed.

In fact, it has been established that reconstructing a discrete,

finite-duration signal vector from its Fourier transform magni-

tudes is generally NP-complete [3]. To obtain useful solutions,

additional assumptions have to be made, which include (block)

sparsity of underlying signal vectors [4], [5], [6], [7], non-

negativity [4], [1], and random Gaussian measurements [8],

[9], [10], [11], [12], [13], [14].
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A number of phase retrieval approaches have been devel-

oped so far, a sample of which are reviewed next. Alter-

nating projection methods were advocated in [15], [16]. By

means of matrix-lifting and upon dropping the nonconvex

rank constraint, convex semidefinite programs (SDP) were

formulated [17], [18]. Minimizing the least-squares or least-

absolute-value loss, several iterative solvers were pursued,

namely those abbreviated as AltMinPhase [19], Wirtinger flow

(WF) [9], [10], [13], [20], [7], amplitude flow [11], [21],

[12], [22], and composite optimization [23]. Convex phase

retrieval approaches without matrix lifting can be found in

[24], [25]. We also recently developed a reweighted ampli-

tude flow (RAF) algorithm which benchmarks the numerical

performance of phase retrieval of signal vectors from Gaussian

random measurements [12].

The aforementioned phase retrieval approaches do not ex-

ploit possible structural information of the underlying signal

vector, and they require for exact recovery that the number

of measurements be on the order of the dimension of the

vector [9], [12]. This number in large-scale high-resolution

imaging applications is on the order of millions, rendering

such algorithms inefficient. The signal vectors or their feature

maps in many practical setups however, are naturally sparse

or admit an (approximately) sparse representation after certain

known and deterministic linear transformations have been

applied [1]. This prior information can be critical in reduc-

ing the number of measurements required by general phase

retrieval approaches, and has prompted the development of

various (block) sparse phase retrieval solvers. To obtain sparse

solutions, the `1-regularized PhaseLift was solved in [26].

Targeting nonconvex compressive phase retrieval formulations,

a greedy algorithm was devised [5], and the soft-thresholded

Wirtinger flow (TWF) [7] as well as the sparse truncated

amplitude flow (SPARTA) [6] was developed; see also [27]

for the (block) compressive phase retrieval with alternating

minimization (CoPRAM).

Building upon and going well beyond our precursors in

[12], [6], this paper puts forth a new algorithm termed com-

pressive reweighted amplitude flow (CRAF) for (block)-sparse

phase retrieval. Generalizing [6], while further accounting for

the structured sparsity pattern, the amplitude-based (block)-

sparse phase retrieval problem is formulated, and it is solved

in two stages, namely the initialization and the refinement

stages. To enhance the initialization performance, a new sparse

spectral initialization is developed, which judiciously assigns

a negative or positive weight to each sample. As such, the

mean of the resultant initialization matrix features a larger
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gap between the first and the second eigenvalues, hence

yielding improved performance as will be demonstrated in

the numerical tests. The second stage of CRAF successively

refines the initialization by means of (model-based) hard

thresholding iterations using reweighted gradients. From the

theoretical side, CRAF provably recovers the true signal vector

at a linear rate under suitable conditions. Finally, numerical

tests showcase the CRAF’s improved recovery, and robustness

to unknown sparsity relative to competing approaches.

The remainder of this paper is structured as follows. Sec-

tion II outlines the (block)-sparse phase retrieval problem.

Section III describes the algorithm, and establishes its con-

vergence. Simulated tests are presented in Section IV, and the

proofs of the main theorems are given in Section V. Section VI

concludes the paper.

Regarding notation, lower- (upper-) case boldface letters

stand for column vectors (matrices). Sets are represented

by calligraphic letters, e.g., S , with the exception of T
as superscript denoting matrix or vector transposition. The

cardinality of set S is given by |S|. Symbol ‖ · ‖2 is reserved

for the Euclidean norm, whereas ‖ · ‖0 for the `0 (pseudo)-

norm counting the number of nonzero entries in a vector.

Operator d·e returns the smallest integer greater than or

equal to the given scalar. The Gauss error function erf(x)
is defined as erf(x) := (1/

√
π)
∫ x

−x e
−x̃2

dx̃. For a positive

integer m, [m] denotes the index set {1, 2, . . . , m}. Finally,

the ordered eigenvalues of matrix X ∈ R
n×n are given as

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

II. COMPRESSIVE PHASE RETRIEVAL

The compressive phase retrieval aims at recovering a sparse

signal vector from a few magnitude-only measurements [5],

[6], [7]. Mathematically, it can be described as follows: Given

a small set of phaseless linear measurements

ψi = |〈ai,x〉|, 1 ≤ i ≤ m (1)

in which {ψi}mi=1 are the observed magnitudes, and {ai ∈
R
n}mi=1 the known sampling vectors, the goal is to recover

a (kB)-sparse solution x ∈ R
n, namely ‖x‖0 ≤ kB with

kB being the known sparsity level. To accommodate also the

block-sparse signal vectors, the following terminology is use-

ful. Suppose without loss of generality that x is split into NB
blocks {xb}NB

b=1, namely one can write x := [xT
1 · · · xT

NB
]T

[28]. For notational brevity, let NB := {1, . . . , NB} denote

the index set of all blocks, and Bb collect all indices of

the entries of x corresponding to the b-th block. Therefore,

Bb ⊆ [n] for all b ∈ Nb, where [n] := {1, . . . , n} consisting

of all indices of x.

Definition 1 (k-block-sparse vectors [29]). The k-block sparse

vectors refer to vectors x = [xT
1 · · · xT

NB
]T such that xb = 0

for all b /∈ SB , where SB is a subset of NB with cardinality

|SB | = k.

For simplicity, we consider that each block of the signal

vector has equal length, that is, |Bb| = B for all b ∈ Nb with

BNB = n. It is clear that when B = 1, the block-sparse

phase retrieval boils down to the ordinary or unstructured

sparse phase retrieval. Accordingly, we will henceforth focus

on developing recovery algorithms for a block-sparse signal

vector.

Adopting the least-squares criterion, the task of recovering

a k-block sparse vector from m magnitude-only measurements

can be cast as [11]

minimize
z∈Mk

B

`(z) :=
1

2m

m∑

i=1

(
ψi − |aT

i z|
)2

(2)

where Mk
B denotes the set of all k-block-sparse vectors of

dimension n. Because of the nonconvex objective and the

combinatorial constraint, the problem in (2) is in general NP-

hard, hence computationally intractable.

For analytical concreteness, we focus on the real Gaussian

model, which assumes x ∈ R
n, and independent and identi-

cally distributed (i.i.d.) sensing vectors follow ai ∼ N (0, In)
for all 1 ≤ i ≤ m. When there are enough measurements, it

is reasonable to assume existence of a unique (up to a global

sign) k-block-sparse solution {±x} to the quadratic system in

(2). The critical goal of this paper is to put forth simple and

scalable algorithms that can provably reconstruct x from as

few magnitude-only measurements as possible.

III. COMPRESSIVE REWEIGHTED AMPLITUDE FLOW

This section presents the two stages, namely the initializa-

tion and the gradient refinement stages of CRAF. To begin, the

distance from any estimate z ∈ R
n to the solution set {±x} ⊆

R
n is defined as dist(z,x) := min{‖z + x‖2, ‖z − x‖2}.

A. Sparse Spectral Initialization

A modified spectral initialization that utilizes the informa-

tion from all available data samples is delineated first. Relative

to existing phase retrieval initializations suggested in [9], [10],

[11], [12], enhanced numerical performance is achieved by

assigning judicious weights to all sampling vectors. Subse-

quently, the generalization of the new initialization procedure

to compressive phase retrieval settings is justified.

1) Spectral initialization: Finding a good initialization is

key in enabling strong convergence of iterative nonconvex

optimization algorithms. Consider first the general phase re-

trieval, namely without exploiting the sparse prior informa-

tion. Similar to past approaches, the new initialization entails

estimating the norm ‖x‖2 as well as the directional vector

d := x/‖x‖2. Regarding the former, it has been well docu-

mented that the term r̂ :=
√

(1/m)
∑m
i=1 ψ

2
m is an unbiased

and tightly concentrated estimate of the norm r := ‖x‖2 when

there are enough measurements [9]. The challenge remains to

estimate the direction d, namely seek a unit vector d̂ that is

maximally correlated with d.

Among different initialization strategies, the procedure pro-

posed in [11] proves successful in achieving excellent nu-

merical performance in estimating d; see also [23] for ro-

bustified alternatives. However, the truncation therein discards

the useful information carried over in a non-negligible portion
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of samples. To exploit all the data samples, the new spectral

initialization obtains the wanted approximation vector as

d̂ := arg max
‖z‖2=1

z
T
( λ−

|I−|
∑

i∈I−

aia
T
i +

λ+

|I+|
∑

i∈I+

aia
T
i

)

z

(3)

where λ− < 0 and λ+ > 0 are preselected coefficients, and

the index sets I− := {i ∈ [m] : ψ2
i ≤ r̂2/2}, and I+ := {i ∈

[m] : ψ2
i ≥ r̂2/2}. It is worth pointing out that the judiciously

devised index sets satisfy I = I−∪I+, suggesting full use of

the available data samples. With r̂ and d̂ at hand, the initial

estimate of x can be obtained conveniently as z0 := r̂d̂.

Intuitively, the initialization strategy in (3) can be justified as

follows. Leveraging the rotational invariance of a ∼ N (0, I),
we have for any thresholds τ1, τ2 ∈ [0, 1]:

E
[
aa

T |〈a,d〉2 ≤ τ1
]

= In − dd
T + E[〈a,d〉2|〈a,d〉2 ≤ τ1]dd

T (4)

E
[
aa

T |〈a,d〉2 ≥ τ2
]

= In − dd
T + E[〈a,d〉2|〈a,d〉2 ≥ τ2]dd

T . (5)

It has been proved in [23, Lemma 3.2] that

E
[
〈a,d〉2|〈a,d〉2 ≤ τ1

]
≤ τ1/3.

Therefore, the smallest eigenvalue of E[aaT |〈a,d〉2 ≤ τ1]
satisfies

λn
(
E[aaT |〈a,d〉2 ≤ τ1]

)
≤ τ1/3

whereas all other eigenvalues are

λi
(
E[aaT |〈a,d〉2 ≤ τ1]

)
= 1, 1 ≤ i ≤ n− 1.

Similarly, one can establish the following lower bound for

the second term E[〈a,d〉2|〈a,x〉2 ≥ τ2] in (5).

Lemma 1. Consider any nonzero signal vector d ∈ R
n with

‖d‖2 = 1. If a ∼ N (0, I), then for any τ ≥ 0, it holds that

E
[
〈a,d〉2

∣
∣〈a,d〉2 ≥ τ

]
≥ 6− τ erf(

√
τ)

6− 3 erf(
√
τ)
. (6)

Proof. With ã := 〈a,d〉, it holds that ã ∼ N (0, 1). Let ã′ be

a random variable with the same density as ã, and p(ã) and

p(ã′) denote the density of ã and ã′, respectively. It follows

that

E
[
〈a,d〉2|〈a,d〉2 ≥ τ

]
= E[ã2|ã2 ≥ τ ]

= E
[
ã2| |ã| ≥ √

τ
]
=

∫ ∞

√
τ

ã2p(ã)
∫∞√

τ
p(ã′)dã′

dã

=
1−

∫√
τ

−√
τ
ã2p(ã)dã

1−
∫√

τ

−√
τ
p(ã′)dã′

=
2− E[ã2|ã2 ≤ τ ] erf(

√
τ)

2− erf(
√
τ)

≥ 6− τ erf(
√
τ)

6− 3 erf(
√
τ)

where the last inequality relies on [23, Lemma 3.2].

To help understanding the assertion of Lemma 1, taking

τ = 0.5 as an example, we find E[〈a,d〉2|〈a,d〉2 ≥ 0.5] ≥
1.42 by substituting the inequality erf(

√
0.5) ≥ 0.68 into (6).

Hence, it holds that λ1(E[〈a,d〉2|〈a,d〉2 ≥ 0.5]) ≥ 1.42, and

λi
(
E[aaT |〈a,x〉2 ≥ 0.5]

)
= 1, 1 ≤ i ≤ n−1. Subsequently,

it can be deduced that for λ− < 0 and λ+ > 0, the largest

eigenvalue of λ−E[aaT |〈a,d〉2 ≤ 0.5]+λ+E[aaT |〈a,d〉2 ≥
0.5] is greater than or equal to 1.42λ++0.166λ−, and all other

eigenvalues equal λ++λ−. Therefore, once the sample mean

matrix λ−

|I−|
∑

i∈I− aia
T
i + λ+

|I+|
∑

i∈I+ aia
T
i is sufficiently

close to its mean, it would be possible to estimate d with

high accuracy based on the matrix perturbation lemma in [30,

Corollary 1], which is also included as Lemma 2 in the Ap-

pendix for completeness. The aforementioned arguments speak

for the effectiveness of the proposed initialization, whereas the

next theorem quantifies rigorously the initialization estimation

error dist(z0,x).

Theorem 1. Let z0 = r̂d̂ with d̂ obtained from (3). For any

given constant δ0 ∈ (0, 1), there exists numerical constants

c0 > 0 and C0 such that the following holds

dist(z0,x) ≤ δ0‖x‖2

with probability at least 1− 10 exp(−c0m) when m ≥ C0n.

For readability, the proof of Theorem 1 is deferred to

Section V-A. Although the suggested initialization assumes

a specific threshold r̂2/2 to split samples into I− and I+,

it is straightforward to incorporate two different thresholds

0 ≤ τ̃1 ≤ τ̃2 ≤ 1 such that I− := {i ∈ [m] : ψ2
i ≤ τ̃1r̂

2} and

I+ := {i ∈ [m] : ψ2
i ≥ τ̃2r̂

2}. By appropriately selecting τ̃1
and τ̃2, the initialization performance can be further boosted. It

is worthing pointing out that the weak recovery performance

of similar procedures has been studied in [31], which only

provides guarantee for the case of n→ ∞.

2) Support recovery: The initialization procedure in (3) is

developed for general signal vectors x, without leveraging the

structural information that is present in diverse applications.

When the vector is sparse, the required number of data samples

to yield an accurate initialization can be reduced [6]. Next,

we demonstrate how to obtain a sparse initialization based

on the procedure discussed in Section III-A. Similar to [6],

[27], obtaining a sparse initialization entails first estimating

the (block)-support of the underlying (block)-sparse signal

vectors.

Specifically, define random variables Zi,j := ψ2
i a

2
i,j , ∀j ∈

[n]. According to [6, Eq. (16)], the following holds

E

[ ∑

j∈Bb

Z2
i,j

]

= E

[ ∑

j∈Bb

(aT
i x)

4a4i,j

]

= 9B‖x‖42 + 24
∑

j∈Bb

x4j + 72‖xb‖2‖x‖22. (7)

If b ∈ SB , then xb 6= 0, yielding E
[∑

j∈Bb
Z2
i,j

]
> 9B‖x‖42+

72‖xb‖2‖x‖22 in (7). On the contrary, if b /∈ SB , one has

xb = 0, yielding E
[∑

j∈Bb
Z2
i,j

]
= 9B‖x‖42. It is evident that

there is a separation of at least 72‖xb‖2‖x‖22 in the expected

values of
∑

j∈Bb
Z2
i,j for b ∈ SB and b /∈ SB . As long as the

gap 72‖xb‖2‖x‖22 is large enough, the (block)-support set SB
can be recovered exactly in this way.
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To estimate the (block)-support SB in practice, compute first

the so-called block marginals

ζb :=
∑

j∈Bb

( 1

m

m∑

i=1

ψ2
i |ai,j |2

)2

, ∀b ∈ Nb

which serves as an empirical estimate of E
[∑

j∈Bb
Z2
i,j

]
. As

explained earlier, the larger ζb is, the more likely is for the

block to be nonzero, namely ‖xb‖2 > 0 [27]. Upon collecting

{ζb}NB

b=1, one can pick the indices associated with the k-largest

values in {ζb}NB

b=1, which form the estimated block-support set

ŜB . Subsequently, an estimate of the support of x denoted as

Ŝ can be determined as Ŝ := {i ∈ Bb | ∀b ∈ ŜB}.
The support estimation procedure is summarized in Steps

2-4 of Algorithm 1. Appealing to [27, Theorem 5.1] (also

included as Lemma 3 for completeness in the Appendix), Steps

2-4 recover the support of x exactly with probability at least

1− 6
m provided that m ≥ C ′

0k
2B log(mn) for some positive

constant C ′
0 and the minimum block

xBmin := min
b∈SB

‖xb‖22

is on the order of (1/k)‖x‖22, namely, xBmin = (C ′′
0 /k)‖x‖22

for some number C ′′
0 > 0.

If the support has been exactly recovered, that is, Ŝ = S ,

one can rewrite ψi = |aT
i x| = |aT

i,ŜxŜ | for all i ∈ [m], where

ai,Ŝ ∈ R
kB contains entries of ai whose indices belong to Ŝ;

and likewise for xŜ ∈ R
k. Then, the proposed initialization

in (3) can be applied to the dimensionality-reduced data

{(ai,Ŝ , ψi)}mi=1 to obtain

d̂Ŝ := max
z∈RkB

z
T
(

λ−

|I−|
∑

i∈I−

ai,Ŝa
T
i,Ŝ +

λ+

|I+|
∑

i∈I+

ai,Ŝa
T
i,Ŝ

)

z.

Subsequently, an estimate of the n-dimensional vector d can

be constructed by zero-padding entries of d̂Ŝ whose indices

do not belong to Ŝ .

B. Refinement via Reweighted Gradient Iterations

Upon obtaining an accurate initial point, successive refine-

ments based on reweighted gradient iterations are effected.

To account for the block-sparsity structure of the wanted

signal vector x, the model-based iterative hard thresholding

(M-IHT) [29] is invoked. To start, recall that the generalized

gradient of the objective function in (2) is [11]

∇`(z) := 1

m

∑

i∈[m]

(

a
T
i z − ψi

aT
i z

|aT
i z|

)

ai (8)

in which the convention aT
i z/|aT

i z| := 0 for |aT
i z| = 0 is

adopted.

With t ≥ 0 denoting the iteration count and z0 being the

initial point, the M-IHT algorithm proceeds with the following

k-block-sparse hard thresholding, namely

z
t+1 = HB

k

(

z
t − µ

m
∇`(zt)

)

(9)

Algorithm 1 Compressive Reweighted Amplitude Flow

(CRAF)

1: Input: Data {(ai;ψi)}mi=1, block length B, and block

sparsity level k; initialization parameters λ− = −3 and

λ+ = 1; step size µ = 1; and weighting parameters

{βi = 0.6}mi=1, τw = 0.1 .

2: For b = 1 to NB , compute

ζb :=
∑

j∈Bb

( 1

m

m∑

i=1

ψ2
i |ai,j |2

)2

.

3: Set ŜB to include indices corresponding to the k-largest

instances in {ζb}NB

b=1.

4: Set Ŝ to comprise indices of Bb for b ∈ ŜB .

5: Compute the principal eigenvector d̂Ŝ ∈ R
kB of

λ−

|I−|
∑

i∈I−

ai,Ŝa
T
i,Ŝ +

λ+

|I+|
∑

i∈I+

ai,Ŝa
T
i,Ŝ

where I− := {i ∈ [m] : ψ2
i ≤ r̂2/2} and I+ := {i ∈

[m] : ψ2
i ≥ r̂2/2} with r̂ :=

√∑m
i=1 ψ

2
i /m.

6: Initialize z0 as r̂d̃, where d̃ ∈ R
n is given by augmenting

d̂Ŝ in Step 5 with d̃i = 0 for i /∈ Ŝ .

7: Loop: For t = 0 to T − 1

z
t+1 = HB

k



z
t − µ

m

∑

i∈[m]

wti

(

a
T
i z

t − ψi
aT
i z

t

|aT
i z

t|

)

ai





where wti := max
{

τw,
|aT

i z
t|

|aT
i
zt|+ψiβi

}

.

8: Output: zT .

where µ > 0 is the preselected step size, and the block-sparse

hard thresholding operator HB
k (ū) : R

n → R
n converts an n-

dimensional vector ū := [ūT
1 . . . ūT

NB
]T into a k-block-sparse

one u := [uT
1 . . . uT

NB
]T such that

ub =

{

ūb, if b ∈ UB
0, if b /∈ UB

where UB comprises indices corresponding to the k-largest

entities in {‖ūb‖2}NB

b=1.

Unfortunately, the negative gradient −∇`(z) may not drag

the iterate sequence {zt} to the global optimum x because

the estimated sign aT
i z/|aT

i z| in ∇`(z) may not coincide

with the true one aT
i x/|aT

i x| [11]. As a consequence, the

update in (9) may not always reduce the distance of the iterate

to the global optimum. To alleviate the negative influence

of the erroneously estimated signs, SPARTA implements the

following truncated gradient ∇`tr(zt) [6]

∇`tr(zt) :=
1

m

∑

i∈It

(

a
T
i z

t − ψi
aT
i z

t

|aT
i z

t|
)

ai (10)

where

It :=
{

1 ≤ i ≤ m
∣
∣
∣
|aT
i z

t|
|aT
i x|

≥ τg

}

for some preselected truncation parameter. It is clear that

∇`tr(z) is based on data samples whose associated |aT
i
z| is of
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relatively large sizes. The reason for this gradient truncation

is that gradients (summands in (10)) of large |aT
i
z|/|aT

i
x|

provably point toward the global optimum x with high prob-

ability [11]. However, as pointed out in [12], the truncation

operation may reject meaningful samples, which hampers the

efficacy of ∇`tr especially when the sample size is limited.

An alternative to the truncation trimming procedure is to

introduce different weights for different gradients [12], which

helps fusing useful information from all gradient directions.

Specifically, the ensuing reweighted gradient used in [12]

proves successful in phase retrieval of general signal vectors

∇`rw(zt) :=
1

m

∑

i∈[m]

wti

(

a
T
i z

t − ψi
aT
i z

t

|aT
i z

t|
)

ai (11)

where the weights are given by

wti := max

{

τw,
|aT
i z

t|
|aT
i z

t|+ ψiβi

}

, ∀i ∈ [m] (12)

for certain preselected parameters τw > 0 and βi > 0 for all

i ∈ [m]. Evidently, it holds that τw ≤ wti ≤ 1 for all i ∈ [m],
and the larger the ratio |aT

i
z|/|aT

i
x|, the larger the weight wti .

In this sense, wti reflects the confidence in the i-th negative

gradient pointing toward the global optimum x.

In the context of phase retrieval of block-sparse vectors, it is

thus reasonable to implement the M-IHT based iteration using

reweighted gradients, namely

z
t+1 := HB

k

(
z
t − µ∇`rw(zt)

)
. (13)

The proposed block-sparse phase retrieval solver is summa-

rized in Algorithm 1, whose exact recovery is established in

the following theorem.

Theorem 2. Let x ∈ R
n be any k-block-sparse (kB � n)

vector with xBmin := (C ′′
0 /k)‖x‖22. Consider noiseless mea-

surements {ψi = |aT
i x|}mi=1 from the real Gaussian model.

If m ≥ C1k
2B log(mn), there exists a constant learning rate

µ > 0, such that the successive estimates zt in Algorithm 1

obey

‖zt − x‖2 ≤ δ0ρ
t‖x‖2, t = 0, 1, . . . (14)

with probability at least 1− c2 exp(−c1m)− 6/m. Here, 0 <
δ0 < 1, 0 < ρ < 1, µ, c1 > 0, c2 > 0, C ′′

0 , and C1 are

certain numerical constants.

The proof of Theorem 2 is provided in Section V-B.

Regarding its implication, a couple of observations come in

order. To start, as soon as m ≥ C1k
2B log(mn), CRAF

recovers exactly k-block-sparse vectors x of non-negligible

blocks. This sample complexity is consistent with the Block

CoPRAM method in [27]. Furthermore. CRAF converges

exponentially fast. Expressed differently, it takes CRAF at

most T := O(log(1/ε)) iterations to reach a solution of ε-
relative accuracy.

IV. NUMERICAL TESTS

This section demonstrates the efficacy of the proposed

initialization and the CRAF algorithm relative to the state-

of-the-art approaches for sparse phase retrieval, including

SPARTA [6] and CoPRAM [27]. In all experiments, the

support S of the true signal vectors x ∈ R
3,000 was ran-

domly chosen. The nonzero entries were generated using

xS ∼ N (0, I). The obtained x was subsequently normalized

such that ‖x‖2 = 1. The sampling vectors were generated

using ai ∼ N (0, I), 1 ≤ i ≤ m. For SPARTA, its suggested

parameters were used. The parameters of CRAF were set as

λ− = −3, λ+ = 1, {βi = 0.6}mi=1, τw = 0.1, and µ = 1. For

all simulated algorithms, the maximum iterations were fixed

to T = 1, 000, and all reported results are averaged over 100
Monte Carlo simulations.

The first experiment evaluates the performance of our ini-

tialization relative to that in SPARTA [6] and CoPRAM [27]

for block length B = 1. Figure 1 depicts the average relative

error of the three initialization schemes with the sparsity level

k varying from 25 to 35, and m/k fixed to 30. Clearly, the new

initialization outperforms the other two with large margins.

Sparsity level k

25 26 27 28 29 30 31 32 33 34 35

R
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ti
v
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1.2
SPARTA

CoPRAM
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Fig. 1: Average relative error for B = 1.

The second experiment examines the empirical success rates

of CRAF, SPARTA, and CoPRAM for solving the ordinary

compressive phase retrieval with B = 1. Each of the 100
Monte Carlo trials is declared a success if the relative error

dist(zT , x)/‖x‖2 is less than 10−5. The empirical success

rates of CRAF, SPARTA, and CoPRAM are presented in Fig. 2

with m increasing from 400 to 1, 800. Notably, the curves

showcase improved exact recovery performance of CRAF rela-

tive to its competing alternatives. Since in certain applications,

the sparsity level k may not be accurately known, it is desirable

to have the compressive phase retrieval algorithms remain

operational for unknown or inexact k values. Let k̂ be an

estimate of the sparsity level k. The recovery performance of

CRAF is tested with k̂ set as the upper limit of the theoretically

affordable sparsity level, namely
√
3, 000 ≈ 55. From Fig. 3,

it is clear that CRAF offers the best numerical performance

for unknown k. A careful comparison between Figs. 2 and 3

demonstrates that CRAF is more robust to unknown k values

than CoPRAM.

The next experiment tests the performance of CRAF relative

to that of Block CoPRAM and SPARTA for 20-block-sparse

phase retrieval with block length B = 2. The empirical success
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Fig. 2: Empirical success rate versus m for B = 1, k = 30.
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Fig. 3: Empirical success rate versus m for B = 1, k = 30,

and k̂ = 55.

rates for the three schemes from 100 independent trials with k
known and unknown are reported in Figs. 4 and 5, respectively.

In both cases, CRAF yields the best recovery performance.

The last experiment validates the robustness of CRAF with

respect to noisy measurements of the following form:

ψi = |aT
i x|+ ηi, 1 ≤ i ≤ m

where {ηi} are independently sampled from N (0, σ2). In this

experiment, k = 30, B = 1, and m = 1, 600 were simulated.

Figure 6 depicts the relative errors of the three approaches

versus varying σ2 from 0.1 to 0.6, from which it is clear that

CRAF offers the most accurate estimates for all noise levels.

In other words, CRAF achieves improved robustness relative

to SPARTA and CoPRAM.

V. PROOFS

The proofs of Theorem 1 and 2 are presented next. The

proof of Theorem 1 is mainly based on that of [23, Prop. 2],

whereas the proof of Theorem 2 builds upon [6, Thm. 1].
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Fig. 4: Empirical success rate versus m for B = 2, k = 20.
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Fig. 5: Empirical success rate versus m for B = 2, k = 20,

and k̂ = 28.

A. Proof of Theorem 1

For ease of presentation, some notation is established first.

To begin, let

M
− :=

1

|I−|
∑

i∈I−

aia
T
i , and M

+ :=
1

|I+|
∑

i∈I+

aid
T
i

denote the first and second parts of the matrix used in the new

initialization procedure (3). Upon defining

φ(τ−) := E[〈a,d〉2|〈a,d〉2 ≤ τ−]− 1

φ(τ+) := E[〈a,d〉2|〈a,d〉2 ≥ τ+]− 1

it can be verified that

E[M−] = In + φ(τ−)ddT, and E[M+] = In + φ(τ+)ddT .

Without loss of generality, one can then write

M
− = In + φ−(ε)ddT +∆

−

M
+ = In + φ+(ε)ddT +∆

+
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Fig. 6: Average relative error of signal recovery versus the

variance of noise σ2 for B = 1, k = 30, and m = 1600.

where ∆
− (∆+) describes the difference between M−

(M+) and their mean E[M−] = In+φ
−(ε)ddT (E[M+] =

In + φ+(ε)ddT ). Appealing to a standard eigenvector per-

turbation result [30, Corollary 1] (also included as Lemma 2

in the Appendix), to bound dist(d̂,d), it suffices to bound

‖λ−∆− + λ+∆+‖2.

It has been established in [23, Proposition 2] that for

arbitrarily small δ− ∈ (0, 1), and some absolute constants

c− > 0, C− < ∞ dependent on δ−, the following holds

with probability at least 1− 5 exp(−c−m)

‖∆−‖2 ≤ δ− (15)

whenever m ≥ C−n.

The task now remains to bound ‖∆+‖2. To account for the

estimation error in r̂, the following two index sets surrounding

I+ are introduced [23, Proposition 2]

I+
−ε :=

{

i ∈ [m] | 〈ai,d〉2 >
1− ε

2

}

I+
+ε :=

{

i ∈ [m] | 〈ai,d〉2 ≥ 1 + ε

2

}

for some numerical constant ε ∈ (0, 1). For convenience, one

can set κ := exp((ε− 1)/4)/
√

π(1− ε) which upper bounds

P
(
〈a,d〉2 ∈ [ 1−ε2 , 1+ε2 ]

)
/ε, and

p0(ε) := P

(

〈a,d〉2 ≥ 1 + ε

2

)

.

It can be readily checked that

p0(ε) = P

(

χ2
1 ≥ 1 + ε

2

)

= 1− P

(

χ2
1 ≤ 1 + ε

2

)

≥ 1−
√

1 + ε

2
exp

(
1− ε

2

)

leveraging the tail bound of the χ2
1 distribution.

Subsequently, five events denoted as {Ei}5i=1 occurring with

high probability are introduced in (16). The constants p ≥ 1
and q ≥ 1 in (16) satisfy 1/p+ 1/q = 1. On the event E1, it

can be verified that r̂2 ∈ [(1 − ε)r2, (1 + ε)r2], hence I+
+ε ⊂

I+ ⊂ I+
−ε. When all five events {Ei}5i=1 occur, ‖∆+‖2 can be

bounded. In detail, ∆+ can be rewritten as in (17), implying

that ∆+ = ∆
+
1 +∆

+
2 +∆

+
3 . The three terms ‖∆+

1 ‖2, ‖∆+
2 ‖2,

and ‖∆+
3 ‖2 are bounded next. Note that on the event E5, it

holds that ‖∆+
1 ‖2 ≤ ε. To bound ‖∆+

2 ‖2, observe that on the

event E3 and E4, the following are true

‖∆+
2 ‖2 =

m

|I+
+ε|
∥
∥
∥
1

m

∑

i∈I+\I+

+ε

aia
T
i

∥
∥
∥
2

≤ m

|I+
+ε|
∥
∥
∥
1

m

∑

i∈I+

−ε
\I+

+ε

aia
T
i

∥
∥
∥
2

≤ 2

p0(ε)
· 4q(κε)1/p

where the last inequality arises from the definitions of E3 and

E4. Regarding ‖∆+
3 ‖2, the next holds true

‖∆+
3 ‖2 = m

|I+| − |I+
+ε|

|I+
+ε||I+|

∥
∥
∥
1

m

∑

i∈I+

aia
T
i

∥
∥
∥
2

≤ m
|I+| − |I+

+ε|
|I+

+ε||I+|
∥
∥
∥
1

m

m∑

i=1

aia
T
i

∥
∥
∥
2

≤ 8ε(1 + ε)κ

p0(ε)2
.

To sum, the following is true

‖∆+‖2 = ‖∆+
1 ‖2 + ‖∆+

2 ‖2 + ‖∆+
3 ‖2 (18)

≤ ε+
2

p0(ε)
· 4q(κε)1/p + 8ε(1 + ε)κ

p0(ε)2
. (19)

Taking p = 1+ 1
log 1

κε

and q = 1+log 1
κε , one has ‖∆+‖2 ≤

δ+, with

δ+ := ε+
8e(1− log κε)κε

p0(ε)
+

8ε(1 + ε)κ

p0(ε)2
.

Since p0(ε) and κ are bounded away from 0 for sufficiently

small ε > 0, δ+ approaches 0 as ε approaches 0. Based on

the established bounds on ‖∆−‖2 in (15) and ‖∆+‖2 in (18),

one has

‖λ−∆− + λ+∆+‖2 ≤ λ+δ+ − λ−δ−.

From Lemma 2 in the Appendix, the next can be deduced

dist2(d̂,d) ≤ 2− 2|〈d̂,d〉| ≤
(

2(λ+δ+ − λ−δ−)

λ+φ(τ+) + λ−φ(τ−)

)2

implying

dist(d̂,d) ≤ 2(λ+δ+ − λ−δ−)

λ+φ(τ+) + λ−φ(τ−)
. (20)

Combining E1 and the bound in (20) gives rise to

dist(z0,x) ≤ r̂ dist(d̂,d) + |r − r̂|
≤
(√

1 + ε dist(d̂,d) +
√
1 + ε− 1

)

‖x‖2.

Letting δ0 := 2
√
1+ε(λ+δ+−λ−δ−)

λ+φ(τ+)+λ−φ(τ−) +
√
1 + ε − 1, we have

dist(z0,x) ≤ δ0‖x‖2. It is worth stressing that limε→0 δ0 =
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E1 :=

{
1

m

∥
∥A

T
A
∥
∥
2
∈ [1− ε, 1 + ε]

}

, E2 :=
{∣
∣I+

−ε
∣
∣ ≤ |I+

+ε|+ 2εκm
}

E3 :=

{

|I+
+ε| ≥

1

2
mp0(ε)

}

, E4 :=







∥
∥
∥
1

m

∑

i∈I+

−ε
\I+

+ε

aia
T
i

∥
∥
∥
2
≤ 4q(κε)

1
p







(16)

E5 :=







∥
∥
∥
∥
∥
∥
∥

1

|I+
+ε|

∑

i∈I+

+ε

[

aia
T
i −

(

In + φ+
(1 + ε

2

)

xx
T
)]

∥
∥
∥
∥
∥
∥
∥
2

≤ ε







∆
+ = M

+ −
(

In + φ+
(1 + ε

2

)

dd
T
)

=
1

|I+
+ε|

∑

i∈I+

+ε

[

aia
T
i −

(

In + φ+
(1 + ε

2

)

dd
T
)]

︸ ︷︷ ︸

:=∆
+

1

+
1

|I+
+ε|

∑

i∈I+\I+

+ε

aia
T
i

︸ ︷︷ ︸

:=∆
+

2

−
( 1

|I+
+ε|

− 1

|I+|
) ∑

i∈I+

aia
T
i

︸ ︷︷ ︸

:=∆
+

3

(17)

0, suggesting that δ0 can be brought arbitrarily close to 0 by

increasing m.

So far, it has been proved that dist(z0,x) ≤ δ0‖x‖2 on the

events {Ei}5i=1. The next step is to show the five events occur

simultaneously with high probability. Recall that it has been

shown in [23, Proposition 2] that each of the events E1, E2,

and E4 occurs with probability at least 1− exp(−c−m) when

m > C−n.

To complete the proof, we first show that

P (E3) ≥ 1− exp
(−mp0(ε)2

2

)

.

To that end, rewrite |I+
+ε| as

|I+
+ε| =

m∑

i=1

1{〈ai,d〉2≥(1+ε)/2}.

Since {1{〈ai,d〉2≥(1+ε)/2}}mi=1 are i.i.d. Bernoulli random vari-

ables with

P
(
〈ai,d〉2 ≥ (1 + ε)/2

)
≥ p0(ε), ∀i ∈ [m]

the following holds

P
(

|I+
+ε| ≤

1

2
mp0(ε)

)

≤ exp
(−mp0(ε)2

2

)

by Hoeffding’s inequality [32]. Therefore, P (E3) ≥ 1 −
exp

(
−mp0(ε)2

2

)

. Similar to [23, Lemma A.6], it can be shown

that for

m ≥ log2 p0(ε)n/c
+ε2p0(ε)

with some absolute constant c+ > 0,

P (E5|E3) ≥ 1− exp

(−c+ε2mp0(ε)
log2 p0(ε)

)

.

Thus, setting c0 = min
{ c+ε2p0(ε)

log2 p0(ε)
, p

0(ε)2

2 , c−
}

and

C0 = max{log2 p0(ε)/c+ε2p0(ε), C−}
confirms the assertion of Theorem 1.

B. Proof of Theorem 2

Some notation used only for this section is introduced first.

For all t ≥ 0, let

v
t+1 := z

t − µ

m

m∑

i=1

wti

(

a
T
i z

t − ψi
aT
i z

t

|aT
i z

t|
)

ai

represent the estimate prior to effecting the hard thresholding

operation in (9). The support of x and zt is denoted as S and

Ŝt, respectively. Hence, the support for the reconstruction error

ht := x− zt defined as Ωt is given by S ∪ Ŝt. Additionally,

let Ωt \ Ωt+1 be the difference between sets Ωt and Ωt+1.

Evidently, it holds that |S| = |Ŝt| = s for s := kB, which

implies |Ωt| ≤ 2s, |Ωt \ Ωt+1| ≤ 2s, and |Ωt ∪ Ωt+1| ≤ 3s,
∀t ≥ 0. Vectors with sets as subscript, e.g., vΩt , are formed

by zeroing all entries of the vector except for those in the set.

According to the triangle inequality of the vector 2-norm,

it holds that

∥
∥x− z

t+1
∥
∥
2
=
∥
∥x− v

t+1
Ωt+1 + v

t+1
Ωt+1 − z

t+1
∥
∥
2

≤
∥
∥x− v

t+1
Ωt+1

∥
∥
2
+
∥
∥z

t+1 − v
t+1
Ωt+1

∥
∥
2

≤ 2
∥
∥xΩt+1 − v

t+1
Ωt+1

∥
∥
2
. (21)

The last inequality in (21) comes from
∥
∥zt+1 − v

t+1
Ωt+1

∥
∥
2
≤

∥
∥xΩt+1 − v

t+1
Ωt+1

∥
∥
2

since zt+1 achieves the minimal distance

to v
t+1
Ωt+1 among all vectors belonging to Mk

B and supported

on Ωt+1. Substituting the definitions of ht and vt into (21),

one arrives at

1

2
‖ht+1‖2 ≤

∥
∥
∥h

t
Ωt+1 − µ

m

m∑

i=1

wtia
T
i h

t
ai,Ωt+1

− µ

m

m∑

i=1

wti

(
aT
i z

t

|aT
i z

t| −
aT
i x

|aT
i x|

)

|aT
i x|ai,Ωt+1

∥
∥
∥
2

≤
∥
∥
∥h

t
Ωt+1 − µ

m

m∑

i=1

wtiai,Ωt+1a
T
i,Ωt+1h

t
Ωt+1

∥
∥
∥
2
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+
∥
∥
∥
µ

m

m∑

i=1

wtiai,Ωt+1a
T
i,Ωt\Ωt+1h

t
Ωt\Ωt+1

∥
∥
∥
2

+
∥
∥
∥
µ

m

m∑

i=1

wti

(
aT
i z

t

|aT
i z

t| −
aT
i x

|aT
i x|

)

|aT
i x|ai,Ωt+1

∥
∥
∥
2
. (22)

Hence, bounding ‖ht+1‖2 suffices to bound the three terms

on the right hand side of (22).

Regarding the first term, the following holds

∥
∥
∥h

t
Ωt+1− µ

m

m∑

i=1

wtiai,Ωt+1a
T
i,Ωt+1h

t
Ωt+1

∥
∥
∥
2

≤
∥
∥
∥I − µ

m

m∑

i=1

wtiai,Ωt+1a
T
i,Ωt+1

∥
∥
∥
2

∥
∥h

t
Ωt+1

∥
∥
2

≤ max
{
1− µλ, µλ− 1

}∥
∥h

t
Ωt+1

∥
∥
2

(23)

in which λ and λ > 0 denote the largest and smallest eigen-

value of (1/m)
∑m
i=1 w

t
iai,Ωt+1aT

i,Ωt+1 , respectively. Since

τw ≤ wti ≤ 1 and ai,Ωt+1aT
i,Ωt+1 , ∀i ∈ [m] are positive

semidefinite, the next is true

τw

m∑

i=1

ai,Ωt+1a
T
i,Ωt+1 ≤

m∑

i=1

wtiai,Ωt+1a
T
i,Ωt+1

≤
m∑

i=1

ai,Ωt+1a
T
i,Ωt+1 . (24)

To estimate the eigenvalues of (1/m)
∑m
i=1 ai,Ωt+1aT

i,Ωt+1 ,

we resort to the restricted isometry property of Gaussian

matrices A ∈ R
m×n whose entries are i.i.d. standard Gaussian

variables [33]. Specifically, if K $ {1, . . . , n} with |K| ≤ 3s,
then for constant δ3s ≤ ε, the following holds for all u ∈ R

m

√

(1− δ3s)m‖u‖2 ≤ ‖AT
Ku‖2 ≤

√

(1 + δ3s)m‖u‖2
with probability at least 1 − e−c

′

1m, provided that m ≥
C ′

1ε
−2(3s) log(n/(3s)) for numerical constants c′1, C

′
1 >

0 [34, Proposition 3.1]. Hence,

λ1

( 1

m

m∑

i=1

ai,Ωt+1a
T
i,Ωt+1

)

≤ 1 + δ3s (25)

λn

( 1

m

m∑

i=1

ai,Ωt+1a
T
i,Ωt+1

)

≥ 1− δ3s (26)

due to |Ωt+1| ≤ 2s. Substituting (25) and (26) into (24) yields

λ ≤ 1 + δ3s, and λ ≥ τw(1− δ3s)

which together with (23) suggests that

∥
∥
∥h

t
Ωt+1− µ

m

m∑

i=1

wtiai,Ωt+1a
T
i,Ωt+1h

t
Ωt+1

∥
∥
∥
2

≤ max
{
1− µτw(1− δ3s), µ(1 + δ3s)− 1

}∥
∥h

t
Ωt+1

∥
∥
2
.
(27)

Consider now the second term in (22). For convenience,

define

A
T
Ωt+1 := [a1,Ωt+1 · · · am,Ωt+1 ]

A
T
Ωt+1 := [a1,Ωt+1 · · · am,Ωt+1 ]

A
T
Ωt∪Ωt+1 := [a1,Ωt∪Ωt+1 · · · am,Ωt∪Ωt+1 ]

and let W be a diagonal matrix with its i-th diagonal entry

being wti . Then, one has

∥
∥
∥
µ

m

m∑

i=1

wtiai,Ωt+1a
T
i,Ωt\Ωt+1h

t
Ωt\Ωt+1

∥
∥
∥
2

≤
∥
∥
∥
µ

m
A

T
Ωt+1WAΩt\Ωt+1

∥
∥
∥
2

∥
∥h

t
Ωt\Ωt+1

∥
∥
2

≤
∥
∥
∥
µ

m
A

T
Ωt∪Ωt+1WAΩt∪Ωt+1 − µ

τw + 1

2
I

∥
∥
∥
2

∥
∥h

t
Ωt\Ωt+1

∥
∥
2

≤ µ
1− τw + 2δ3s

2

∥
∥h

t
Ωt\Ωt+1

∥
∥
2

(28)

where the first inequality is due to the definition of the

matrix norm, the second inequality comes from the fact that

AT
Ωt+1WAΩt\Ωt+1 is a submatrix of AT

Ωt∪Ωt+1WAΩt∪Ωt+1 ,

and the last inequality stems from τw < 1.

Finally, for the last term in (22), let vt := [vt1 · · · vtm]T with

vti := wti(
a

T

i z
t

|aT
i
zt| −

a
T

i x

|aT
i
x| )|aT

i x|, ∀i ∈ [m]. By the definition

of the induced matrix 2-norm, it holds that

∥
∥
∥
1

m

m∑

i=1

wti

(
aT
i z

t

|aT
i z

t| −
aT
i x

|aT
i x|

)

|aT
i x|ai,Ωt+1

∥
∥
∥
2

=
1

m

∥
∥A

T
Ωt+1v

t
∥
∥
2
≤
∥
∥
∥

1√
m
A

T
Ωt+1

∥
∥
∥
2

∥
∥
∥

1√
m
v
t
∥
∥
∥
2

≤ (1 + δ3s)
∥
∥
∥

1√
m
v
t
∥
∥
∥
2
. (29)

Regarding the term ‖ 1√
m
vt‖2, the following holds

1

m

∥
∥v

t
∥
∥
2

2
=

1

m

m∑

i=1

wti

(
aT
i z

t

|aT
i z

t| −
aT
i x

|aT
i x|

)2

|aT
i x|2

≤ 2 · 1

m

m∑

i=1

|sgn(aT
i z)− sgn(aT

i x)||aT
i x||aT

i h|

≤ 4

√
1 + δ2s
1− ρ0

(

δ2s +

√

21

20
ρ0

)

‖h‖22 (30)

where the first inequality originates from that |aT
i x| ≤ |aT

i h
t|

when sgn(aT
i z) 6= sgn(aT

i x) and 0 < wti < 1; the

second inequality is obtained by appealing to Lemma 4 in the

Appendix, which is adapted from [20, Lemma 7.17]. Taking

the result in (30) into (29) gives rise to

∥
∥
∥
1

m

m∑

i=1

(
aT
i z

t

|aT
i z

t| −
aT
i x

|aT
i x|

)

|aT
i x|ai,Ωt+1

∥
∥
∥
2

≤ (1 + δ3s)γ
∥
∥h

t
∥
∥
2

(31)

where γ := 2

√√
1+δ2s
1−ρ0

(

δ2s +
√

21
20ρ0

)

.

Plugging the bounds in (27), (28), and (31) into (22)

confirms that
∥
∥h

t+1
∥
∥
2
≤2max

{
1− µτw(1− δ3s), µ(1 + δ3s)− 1

}∥
∥h

t
Ωt+1

∥
∥
2

+µ(1−τw + 2δ3s)
∥
∥h

t
Ωt\Ωt+1

∥
∥
2
+2µ(1 + δ3s)γ

∥
∥h

t
∥
∥
2

≤2
√
2max

{
max

{
1−µτw(1− δ3s), µ(1 + δ3s)−1

}
,

µ(1− τw + 2δ3s)/2
}
‖ht‖2 + 2µ(1 + δ3s)γ

∥
∥h

t
∥
∥
2

≤ 2
[√

2max
{
1− µτw(1− δ3s), µ(1 + δ3s)− 1

}
,

µ(1− τw + 2δ3s)/2
}
+ µ(1 + δ3s)γ

]∥
∥h

t
∥
∥
2
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:= ρ
∥
∥h

t
∥
∥
2

(32)

where the second inequality is due to
∥
∥h

t
Ωt+1

∥
∥
2
+
∥
∥h

t
Ωt\Ωt+1

∥
∥
2
≤

√
2
∥
∥h

t
∥
∥
2

for disjoint sets Ωt+1 and Ωt \ Ωt+1. From (32), it is clear

that for proper τw and sufficiently small ρ0, δ2s, and δ3s,
one can select a constant step size µ > 0 such that ρ < 1.

Theorem V-B can be then directly deduced by combining

Theorem 1, Lemma 3, and equation (32).

VI. CONCLUDING REMARKS

This contribution developed a compressive reweighted am-

plitude flow (CRAF) algorithm for phase retrieval of (block)-

sparse signal vectors. CRAF first estimates the support of the

underlying signal vector, which is followed by a new spectral

procedure to obtain an effective initialization. To strengthen

this initial guess, CRAF proceeds with (model-based) hard

thresholding iterations relying on reweighted gradients of the

amplitude-based least-squares loss function. CRAF provably

recovers the true signal vectors exponentially fast when a suf-

ficient number of measurements become available. Judicious

numerical tests corroborate the merits of CRAF relative to

state-of-the-art solvers of the same kind.

APPENDIX: SUPPORTING LEMMAS

The following lemma which bounds the distance between

the principle eigenvectors of two symmetric matrices is

adapted from [30, Corollary 1].

Lemma 2. [30, Corollary 1] Let Z := X +∆ with X and

∆ being symmetric matrices, unit vectors v1 and u1 be the

principal eigenvectors of Z and X , and θ := cos−1〈u1,v1〉
represent the angles between u1 and v1. It then holds that

√

1− 〈u1,v1〉2 = | sin θ| ≤ 2‖∆‖2
λ1(X)− λ2(X)

. (33)

The next lemma adopted from [27] certifies that Steps 2-

4 in Algorithm 1 recover the true support of x with high

probability.

Lemma 3 (Support estimate [27]). Consider any k-block-

sparse signal vector x ∈ R
n with support S and

xBmin := minb∈SB
‖xb‖22 on the order of (1/k)‖x‖22.

Assume {ai}mi=1 are i.i.d standard Gaussian, that is, ai ∼
N (0, In). There exists an event of probability exceeding

1 − 6/m such that, Steps 2-4 in Algorithm 1 recover S if

m ≥ C ′
0k

2B log(mn) for some positive constant C ′
0.

The last lemma that is useful in establishing the convergence

of CRAF is proved in [20, Lemma 7.17].

Lemma 4. [20, Lemma 7.17] Consider m noise-free measure-

ments {ψi = |aT
i x|}mi=1 in which x ∈ R

n is s-sparse with sup-

port S , and {ai ∼ N (0, In)}mi=1 are i.i.d. sensing vectors. Let

z ∈ R
n be an s-sparse vector satisfying ‖z−x‖2 ≤ ρ0‖x‖2. If

h ∈ R
n is (2s)-sparse and m > C3(2s) log(n/(2s)) for some

numerical constants C3, then the following holds for δ2s > 0

1

m

m∑

i=1

∣
∣sgn(aT

i z)− sgn(aT
i x)

∣
∣ |aT

i x||aT
i h|

≤ 2

√
1 + δ2s
1− ρ0

(

δ2s +

√

21

20
ρ0

)

‖h‖22 (34)

with probability exceeding 1 − 3e−c3m for a fixed numerical

constant c3 > 0.
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