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ABSTRACT

Channel gain cartography relies on sensor measurements to

construct maps providing the attenuation profile between ar-

bitrary transmitter-receiver locations. Existing approaches

capitalize on tomographic models, where shadowing is the

weighted integral of a spatial loss field (SLF) depending on

the propagation environment. Currently, the SLF is learned

via regularization methods tailored to the propagation envi-

ronment. However, the effectiveness of existing approaches

remains unclear especially when the propagation environ-

ment involves heterogeneous characteristics. To cope with

this, the present work considers a piecewise homogeneous

SLF with a hidden Markov random field (MRF) model un-

der the Bayesian framework. Efficient field estimators are

obtained by using samples from Markov chain Monte Carlo

(MCMC). Furthermore, an uncertainty sampling algorithm

is developed to adaptively collect measurements. Real data

tests demonstrate the capabilities of the novel approach.

Index Terms— channel gain cartography, radio tomogra-

phy, Markov chain Monte Carlo, active learning

1. INTRODUCTION

Based on the measurements collected by a network of spa-

tially distributed sensors, channel gain cartography constructs

maps providing channel-state information for links between

locations where no sensors are present [1]. Such maps can

be employed in cognitive radio setups to control the interfer-

ence that the secondary network inflicts to primary users that

do not transmit – setup encountered with television broadcast

systems [2, 3, 4, 5]. The non-collaborative nature of these

primary users precludes any direct form of channel estima-

tion between secondary transmitters and primary receivers.

Existing methods for channel gain cartography build upon

the intuitive principle that spatially close radio links exhibit

similar shadowing [6]. Most of these methods adopt a tomo-

graphic approach [7], where shadowing attenuation is mod-

eled as the weighted integral of an unknown spatial loss field

(SLF) capturing the absorption induced by objects located

in the propagation medium [7, 8, 9, 10, 11]. The weights
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in the integral are determined by a function depending on

the transmitter-receiver locations that is either selected based

on heuristic criteria [7, 12], or blindly learned via the non-

parametric kernel regression method [13]. A channel map

can thus be obtained once the SLF has been estimated.

Conventionally, the SLF is learned via regularized least-

squares (LS) methods tailored to the propagation environ-

ment [11, 12, 14]. However, those approaches are less ef-

fective when the propagation environment exhibits heteroge-

neous characteristics. Different from past works, the present

one leverages the Bayesian framework to learn the piecewise

homogeneous SLF through a hidden Markov random field

(MRF) model [15], which captures spatial correlations of

neighboring regions exhibiting related statistical behavior.

Efficient field estimators will be derived by using Markov

chain Monte Carlo (MCMC) sampling [16], which is a pow-

erful tool for Bayesian inference when the analytical solutions

of the minimum mean-square error (MMSE) or the maximum

a posteriori (MAP) estimators are not available. Furthermore,

an adaptive data acquisition method will be developed, with

the goal of reducing uncertainty of the SLF.

Notation: In is the n × n identity matrix. Superscript >

represents transposition. | · | stands for a cardinality of the set.

2. MODEL AND PROBLEM STATEMENT

Consider a set of sensors deployed over a two-dimensional

geographical area indexed by a set A ⊂ R
2. After averaging

out small-scale fading effects, the channel gain measurement

over a link between a transmitter located at x ∈ A and a

receiver located at x′ ∈ A can be represented (in dB) as

g(x,x′) = g0 − γ10 log10 d(x,x
′)− s(x,x′) (1)

where g0 is the path gain at unit distance; d(x,x′) := ‖x −
x
′‖2 is the distance between the transceivers at x and x

′; γ is

the pathloss exponent; and s(x,x′) is the attenuation due to

shadow fading. In CG cartography, a tomographic model for

the shadow fading is adopted [7, 12, 11], namely

s(x,x′) '

Ng
∑

i=1

w(x,x′, x̃i)f(x̃i). (2)

where {x̃i}
Ng

i=1 is a grid of points over A, f : A → R denotes

the spatial loss field (SLF) capturing the attenuation at each

location, and w(x,x′, x̃) is the weight function modeling the
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influence of the SLF at x̃ to the shadowing experienced by

link x–x′. Examples of the weight function include the nor-

malized ellipse model taking the form [14]

w(x,x′, x̃) :=











1/
√

d(x,x′), if d(x, x̃) + d(x′, x̃)

< d(x,x′) + λ

0, otherwise

(3)

where λ > 0 is a tunable parameter. The value of λ is com-

monly set to half the wavelength to assign non-zero weights

only within the first Fresnel zone. Overall, the model in (2)

shows how the nature and spatial distribution of obstructions

in the propagation medium influence the attenuation between

a pair of locations.

To estimate the channel gain map, N sensors located at

{x1, . . . ,xN} ∈ A collaboratively obtain channel gain mea-

surements. At time slot t, the radios indexed by n(t) and n′(t)
measure the channel gain gt := g(xn(t),xn′(t)) by exchang-

ing pilot sequences, where n(t), n′(t) ∈ {1, . . . , N}. It is

supposed that g0 and γ have been estimated during a calibra-

tion phase. After subtracting these from gt, the shadowing

estimate št := š(xn(t),xn′(t)) := s(xn(t),xn′(t)) + νt is

obtained, where νt denotes measurement noise. Given those

measurement št := [š1, . . . , št]
> ∈ R

t along with the known

set of links {(xn(τ),xn′(τ))}
t
τ=1 and the weight function w,

the problem is to estimate g(x,x′) between any pair of lo-

cations (x,x′) ∈ A. To this end, it suffices to estimate f ,

or equivalently f := [f(x̃1), . . . , f(x̃Ng
)]> ∈ R

Ng . After-

wards, the arbitrary channel gain g(x,x′) can be obtained by

substituting (2) into (1) and replacing f with its estimate.

3. ADAPTIVE BAYESIAN CG CARTOGRAPHY

In this section, we propose a two-layer Bayesian model for

the SLF, as well as, an MCMC-based approach for inference.

Furthermore, an adaptive data acquisition strategy to select

informative measurements is introduced.

3.1. Field estimation via Markov chain Monte Carlo

Let A consist of two disjoint homogeneous regions A0 :=
{x|E[f(x)] = µf0

,Var[f(x)] = σ2
f0
,x ∈ A} and A1 :=

{x|E[f(x)] = µf1
,Var[f(x)] = σ2

f1
,x ∈ A}, giving rise to

a hidden label field z := [z(x̃1), . . . , z(x̃Ng
)]> ∈ {0, 1}Ng

of binary labels with z(x̃i) = k if x̃i ∈ Ak ∀i, and k = 0, 1.

We then model the conditional distribution of f(x̃i) as

f(x̃i)|z(x̃i) = k ∼ N (µfk
, σ2

fk
), (4)

while the Ising prior [17], which is a binary version of the

discrete MRF Potts prior [15], is assigned to z to capture

the dependency among spatially correlated labels. By the

Hammersley-Clifford theorem [18], the Ising prior of z fol-

lows a Gibbs distribution

p(z|β) =
1

C(β)
exp



β

Ng
∑

i=1

∑

j∈N (x̃i)

δ(z(x̃j) = z(x̃i))



 (5)

where N (x̃i) is a set of indicies associated with 1-hop

neighbors of x̃i on the rectangular grid, β is the gran-

ularity coefficient to control the degree of homogeneity

in z, δ(·) is the Kronecker delta function, and C(β) :=
∑

z∈Z exp
[

β
∑Ng

i=1

∑

j∈N (x̃i)
δ(z(x̃j) = z(x̃i))

]

is the par-

tition function with Z := {0, 1}Ng . By assuming conditional

independence of {f(x̃i)}
Ng

i=1 given z, the resulting model is

referred to as the Gauss-Potts model [19] with two labels.

Let νt be independent and identically distributed (i.i.d)

Gaussian with zero mean and variance σ2
ν , and θ denote

the known parameter vector including σ2
ν , β, and θf :=

[µf0
, µf1

, σ2
f0
, σ2

f1
]>. The weight matrix Wt ∈ R

Ng×t is

constructed with columns equal to wτ :=[w(xn(τ),xn′(τ), x̃1),

. . . , w(xn(τ),xn′(τ), x̃Ng
)]> ∈ R

Ng of the link xn(τ)–xn′(τ)

for τ = 1, . . . , t. Then, one can cast Bayesian CG cartogra-

phy by writing the joint posterior as

p(f , z,θ|št) ∝ p(št|f , σ
2
ν)p(f |z,θf )p(z|β)p(θ), (6)

where p(št|f , σ
2
ν) ∼ N (W>

t f , σ
2
νIT ) is the likelihood, and

p(f |z,θf ), p(z|β), and p(θ) are the priors of {f , z,θ}, re-

spectively. By utilizing the posterior in (6), the MMSE esti-

mator of f is found as f̂MMSE := E[f |z = ẑMAP, št], where

z is fixed to the marginal MAP estimate of z, i.e., ẑMAP =
argmaxz p(z|št).

Although the suggested estimators have been advo-

cated [20, 21], analytical solutions are not available due

to the complex form of the posterior in (6) for marginaliza-

tion or maximization. To bypass this challenge, one can use

samples generated from the posterior in (6) as its proxy and

then numerically obtain the desired estimators from those

samples. MCMC is a class of algorithms to generate samples

from a complex distribution [16]. Among MCMC methods,

Gibbs sampling is particularly suitable for this work. It draws

samples following the target distribution (e.g., the posterior

in (6)) by sweeping through each variable to sample from

its conditional distribution while fixing the others to their

up-to-date values. Although the samples at early iterations of

Gibbs sampling with random initialization are not represen-

tative of the desired distribution (such duration is called the

burn-in period NBurn), the theory of MCMC guarantees that

the stationary distribution of those samples is matched with

the target distribution [16].

Gibbs sampling requires only the proportionality of the

conditional distribution, as described in Alg. 1. Particularly

for the posterior conditional of f , it is easy to show

p(f |št, z,θ) ∝ p(št|f , σ
2
ν)p(f |z,θf ) ∼ N (µ̌f |z,Σf |z),

(7)

where

Σf |z :=
(

(σ2
ν)

−1
WtW

>
t +∆

−1
f |z

)−1

(8)

µ̌f |z := Σf |z

(

(σ2
ν)

−1
Wtšt +∆

−1
f |zµf |z

)

(9)

since p(f |z,θf ) follows N (µf |z,∆f |z) by (4), with µf |z :=

E[f |z] and ∆f |z := diag({Var[fi|zi]}
Ng

i=1) with fi :=
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Algorithm 1 Generic Gibbs sampler for f and z

Input: z(0), θ, št, NBurn, and NIter.

1: for l = 1 to NIter do

2: Generate f (l) ∼ p(f |št, z
(l−1),θ) in (7)

3: Generate z(l) ∼ p(z|št,f
(l),θ) via Alg. 2

4: end for

5: return S :=
{

f (l), z(l)
}NIter

l=NBurn+1

f(x̃i) and zi := z(x̃i). Hence, f can be easily simulated

by a standard sampling method. On the other hand, an-

other Gibbs sampler is required to simulate p(z|št,f ,θ) ∝
p(f |z,θf )p(z|β) to avoid the intractable computation of

C(β) in (5). Let z−i and zN (x̃i) represent replicas of z

without its i-th entry, and only with the entries of N (x̃i),
respectively. By the Markovianity of z and conditional inde-

pendence between fi and fj ∀i 6= j given z, the conditional

distribution of zi is given by

p(zi|z−i, št,f ,θ) ∝ exp



`(zi) + β
∑

j∈N (x̃i)

δ(zj = zi)



 (10)

where `(zi) := ln p(fi|zi,θf ). After evaluating (10) for zi =
0, 1 and normalizing, one can obtain p(zi = 1|z−i, št,f ,θ) =
(1 + hi)

−1, where

hi := exp

[

`(zi = 0)−`(zi = 1)+
∑

j∈N (x̃i)

β(1−2zj)

]

(11)

with δ(zj = 0) − δ(zj = 1) = 1 − 2zj . Then, the sam-

ple of z can be obtained via the single-site Gibbs sampler by

using (11), as summarized in Alg. 2.

Building on [20], the elementwise MAP estimator of z

and its sample-based approximation are

ẑi,MAP = arg max
zi∈{0,1}

p(zi|št)

' arg max
zi∈{0,1}

1

|S|

NIter
∑

l=NBurn+1

δ(z
(l)
i = zi) (12)

for i = 1, . . . , Ng . After obtaining ẑMAP, the sample-based

elementwise MMSE estimator of f similarly follows as

f̂i,MMSE '
1

|Si|

NIter
∑

l=NBurn+1

f
(l)
i δ(z

(l)
i = ẑi,MAP), ∀i, (13)

where Si ⊂ S is a subset of samples such that z
(l)
i = ẑi,MAP

for l = NBurn + 1, . . . , NIter.

3.2. Adaptive data acquisition via uncertainty sampling

The proposed Bayesian CG cartography accounts for the un-

certainty of f , through the variance in (8). Therefore, one can

adaptively collect a measurement (or a mini-batch of mea-

surements) when a set of available sensing radio pairs are re-

vealed, with the goal of reducing the uncertainty of f . Note

that the resulting sampling algorithm has been studied under

the name of active learning [22] in the machine learning com-

munity. To this end, the conditional entropy [23] is considered

as an uncertainty measure of f at time slot t, namely,

Algorithm 2 Single-site Gibbs sampler for z

Input: f (l) and z(l−1)

1: Initialize ζ(l) = z(l−1)

2: for i = 1 to Ng do

3: Obtain hi in (11) with z = ζ(l) and f = f (l)

4: if u ∼ U(0,1) < (1 + hi)
−1 then

5: Set ζ
(l)
i = 1

6: else

7: Set ζ
(l)
i = 0

8: end if

9: end for

10: return z(l) = ζ(l)

Algorithm 3 Adaptive Bayesian CG cartography

Input: z(0), š0, θ, NBurn, NIter, g0 and γ.

1: for τ = 0, 1, . . . do

2: Obtain S(τ) via Alg. 1 (z(0),θ, šτ , NBurn, NIter)

3: Obtain ẑ
(τ)
MAP from (12) by using S(τ)

4: Obtain f̂
(τ)
MMSE from (13) by using ẑ

(τ)
MAP and S(τ)

5: Calculate ū(w) in (16) for w ∈ Wτ+1 by using S(τ)

6: Collect šτ+1 from sensors associated with max ū(w)

7: Set šτ+1 = [š>τ , šτ+1]
> and z(0) = ẑ

(τ)
MAP

8: end for

9: Consider arbitrary locations {x,x′} ∈ A

10: Estimate ŝ(x,x′) via (2) by using f̂MMSE

11: Estimate ĝ(x,x′) via (1) by using g0, γ, and ŝ(x,x′)

Ht := H(f |št, z,θ) =
∑

z′∈Z

∫

š
′

t,θ
′

p(š′t, z
′,θ′)

×H(f |št = š
′
t, z = z′,θ = θ′)dθ′dš′t (14)

where H(f |št = š
′
t, z = z′,θ = θ′) := −

∫

p(f |š′t, z
′,θ′)

× ln p(f |š′t, z
′,θ′)df =

(

ln
∣

∣Σf |z′

∣

∣ + Ng(1 + ln 2π)
)

/2
and | · | denotes matrix determinant. To obtain št+1, one

can choose a pair of sensors, or equivalently find wt+1,

minimizing H(f |št+1, z,θ). Once expressing Ht+1 =
Ht −

∑

z′∈Z

∫

š
′

t+1
,θ′

p(š′t+1, z
′,θ′)q(z′,θ′,wt+1)dθ

′dš′t+1

with q(z,θ,w) := ln
(

1 + (σ2
ν)

−1
w

>
Σf |zw

)

/2 by use

of the matrix determinant identity lemma [24, Chapter 18],

given št = š
′
t, it yields wt+1 as the solution of

(P1) max
w∈Wt+1

Ez,θ|št=š
′

t
[q(z,θ,w)]

=
∑

z′∈Z

∫

θ′

p(z′,θ′|št = š
′
t)q(z

′,θ′,w)dθ′ (15)

where Wt+1 is a set of weight vectors found from locations

of available sensing radio pairs at time slot t+ 1.

Although (P1) can be solved in a greedy fashion when θ

is fixed as in this work, evaluating Ez,θ|št=š
′

t
[q(z,θ,w)] is

still intractable for large Ng since |Z| = 2Ng . Fortunately,

the samples from Alg. 1 help to approximate
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