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We study instability of a Newtonian Couette flow past a gel-like film in the limit of
vanishing Reynolds number. Three models are explored including one hyperelastic (neo-
Hookean) solid, and two viscoelastic (Kelvin-Voigt and Zener) solids. Instead of using the
conventional Lagrangian description in the solid phase for solving the displacement field,
we construct equivalent “differential” models in a Eulerian reference frame, and solve for
the velocity, pressure and stress in both fluid and solid phases simultaneously. We find the
interfacial instability is driven by the first-normal stress difference in the base-state solution
in both hyperelasic and viscoelastic models. For the neo-Hookean solid, when subjected to
a shear flow, the interface exhibits a short-wave (finite-wavelength) instability when the film
is thin (thick). In the Kelvin-Voigt and Zener solids where viscous effects are incorporated,
instability growth is enhanced at small wavenumber but suppressed at large wavenumber,
leading to a dominant finite-wavelength instability. In addition, adding surface tension
effectively stabilizes the interface to sustain fluid shear.

I. INTRODUCTION

The interaction of viscous fluid and soft objects is of considerable importance in a wide range of
problems, such as rheology of complex fluids, coating, biological locomotion, and soft lubrication
[6, 20, 21, 23]. When a soft material interacts with fluid flows, the coupling between the fluid
force and material elasticity can generate waves propagating at the fluid/solid interface. Under-
standing this behavior is critical to the study of biological swimmers and their artificial analogs
as it can greatly effect the viability and efficiency of a potential swimming mode. Kumaran et al.

[10] first studied the stability of an incompressible viscoelastic gel film in a Newtonian Couette
flow by ignoring inertia, where a linear model is adopted to describe deformation. They found
the fluid/solid interface becomes unstable when the imposed shear goes beyond a certain critical
number, and the critical value of the imposed fluid shear strength varies inversely with the film
thickness for sufficiently thick solids, which is verified by the following experiments by Kumaran &
Muralikrishnan [11, 17]. For sufficiently thin solids, however, the linear elastic model overpredicts
the critical values of the fluid shear that drives the interfacial instability. Gkanis & Kumar [7]
studied the similar problem by employing a neo-Hookean solid model which admits finite/large
deformation. While observing similar behaviors for thick gels, their model predicts a much small-
er critical shear for thin gels, which suggests that incorporating solid nonlinearity can effectively
destabilize the system. It has been identified that such interfacial instability under shear is mainly
due to the first normal-stress difference appearing at the base state solutions, which is known as
the Poynting effect in nonlinear solids [15, 18], and is also similar to the situation of two coupled
viscoelastic liquids [3, 19]. When surface tension is incorporated into the model, it changes the
short-wave instability in thin films to be finite-wavelength. Later Gkanis & Kumar [8] investigated
how the flow field and combined pressure gradient impact stability of a neo-Hookean solid.

Although such elastohydrodynamic instability has been studied for simple neo-Hookean solids, in
practice soft materials often exhibit more complicated constitutive behaviors than hyperelasticity.
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FIG. 1: Schematic for a Couette flow past a gel film. Nonlinear solid models: (a) neo-Hookean, (b) Kelvin-
Voigt, (c) Zener.

Especially for gel-like (e.g., hydrogel) materials that are typically composed of a large amount of
solvent such as water and long chain polymers which can form a complex network by chemical
crosslinkers such as covalent bond, or physical crosslinkers such as ionic bond or van der waals
interaction. The combined effects of elasticity, viscosity, and surface tension may generate new
dynamic behaviors of the material [12], as well as some intriguing interfacial instability phenomena
[2, 16, 22].

In this paper we study stability of an incompressible, impermeable gel film when subjected to
a Newtonian Couette flow; see schematic in figure 1. We employ an Eulerian representation in
both fluid and solid phases, and solve for the velocity, pressure and stress fields simultaneously.
Compared to the previous works [7, 8, 10], we examine the contributions from both the viscous
effect and the nonlinear elasticity to the fluid/solid interface instability, especially for the thin
films where material nonlinearity is manifested. The paper is organized as follows. In Section II,
we derive the evolution equations for the solid stress when using the neo-Hookean, Kelvin-Voigt,
and Zener models. Next, we introduce the problem setup and non-dimensionalization, followed
by details of a linear stability analysis. In Section IV, we discuss the results, and analyze the
instability mechanism. Finally, conclusions and discussions are made in Section V.

II. MATHEMATICAL MODEL

A. Constitutive equations

We first derive equivalent “differential” models for the evolution equations of solid stress in
an Eulerian frame. In this way, the governing equations in two phases are consistently defined in
terms of velocity, pressure and stress [4–6]. In characterizing material constitutive relations, virtual
models of springs and dashpots are often employed to describe the contributions from the elastic
and viscous effects, respectively. Different combinations of springs and dashpots can effectively
represent complex viscoelastic behaviors as highlighted by the schematics for the three models
(a-c) as shown in figure 1. The constitutive relation for the simplest nonlinear hyperelastic solid,
i.e., neo-Hookean solid, can be characterized by a linear stress-strain relation τnh = S(B − I) in a
spring, where τnh is the elastic stress tensor, S is the shear modulus, and B = F ·F T is the Finger
tensor where F (or index form Fij = ∂xi/∂Xj) is the deformation gradient tensor serving as a
mapping from the initial (X) to the current (x) reference frame. It is straightforward to show that
the rate of change of the Finger tensor satisfies Ḃ−L ·B−B ·LT = 0, where L = Ḟ ·F−1 = (∇v)T
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(here Li,j = ∂vj/∂xi ) and dot represents the material time derivative Ḃij = ∂Bij/∂t+ vkBij,k [9].
Then the differential form of the neo-Hookean model can be written as [5]:

neo−Hookean :
∇
τnh = τ̇nh −L · τnh − τnh ·L

T = S(∇v + (∇v)T ), (1)

where
∇
τnh = τ̇nh −L · τnh − τnh ·L

T is the so called upper-convected time derivative.
To proceed, the simplest viscoelastic solid, a Kelvin-Voigt solid, can be characterized by con-

necting a spring with a dashpot in parallel. When deformed, each element exerts stress (τ ) and
undergoes deformation rate (v) accordingly. The total stress of the element is hence defined by
τtot = τ1+τ2, where τ1 and τ2 are the stresses in the respective branches. By defining τ1 = τnh from
(1) and the viscous stress as τ2 = η(∇v+ (∇v)T ) (η is a solid viscosity), we derive a two-equation
model for a Kelvin-Voigt material:

Kelvin−Voigt : τtot = τ1 + η(∇v + (∇v)T ),
∇
τ1 = S(∇v + (∇v)T ). (2)

However, this model is known to produce reasonable values of creep but incorrectly predicts the
behavior of stress relaxation [14], which can be improved by adding a second neo-Hookean spring
element (with modulus S2) in series with the dashpot to provide a Zener model. Note that on
the right branch, we need to consider individual velocities associated with the spring v

′ and the
dashpot v

′′, which are related to the total velocity v through v = v
′ + v

′′. Therefore, the neo-

Hookean stress in the right branch (spring 2) now satisfies
∇
τ2 = S2(∇v

′ +∇v
′T ); the viscous stress

becomes τ2 = η(∇v
′′ +∇v

′′T ). Again, by making use of the fact that τtot = τ1 + τ2, after some
algebra we derived the governing equations for the total stress (τtot) and the neo-Hookean (τ1)
stress on the left branch (spring 1) in the Zener model:

Zener : τtot + λ1

∇
τtot = τ1 + λ2(∇v +∇v

T ),
∇
τ1 = S1

(

∇v +∇v
T
)

, (3)

where λ1 =
η
S2

and λ2 =
η
S2
(S1 + S2).

B. Universal Eulerian description

Consider an incompressible Newtonian fluid past a gel film as shown in figure 1 with material
constitutive relations constructed in Section IIA. The fluid layer with thickness R is bounded by
the solid at the bottom and a rigid wall on the top moving with a constant velocity Uw. The
solid gel with thickness HR is fixed on a rigid plate. Following Kumaran et al. [10] and Gkanis
& Kumar [7], we use R as the length scale, neo-Hookean modulus S1 as the pressure/stress scale,
µf/S1 as the time scale, and RS1/µf as the velocity scale. The Reynolds number is then defined
by Re = ρfS1R

2/µ2
f . We ignore the inertia effect (Re � 1), and assume the fluid flow is governed

by the Stokes equation. The dimensionless governing equations can be written as:

∇ · vf = 0, −∇pf +∇2
vf = 0, (4)

where pf and vf are the pressure and the velocity field in the fluid, respectively. The solid is
assumed to be incompressible. The conservation of mass and momentum equations are written in
the Eulerian frame as:

∇ · vs = 0, −∇ps +∇ · τs = 0, (5)

where vs and ps are the dimensionless solid velocity and pressure, respectively. And τs is a total
stress tensor. The constitutive equations for the Zener model become

τs + λ̂1

∇
τs = τnh + λ̂2(∇vs +∇v

T
s ),

∇
τnh = ∇vs +∇v

T
s , (6)
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where λ̂1 = S1

S2

ηs
µf

and λ̂2 =
(

S1+S2

S2

)

ηs
µf

respectively represent the relaxation and viscous effects,

and τnh represents the dimensionless neo-Hookean stress. Note that λ̂1 and λ̂2 are related to each
other by λ̂2 = λ̂1 + ηs/µf , and hence λ̂1 < λ̂2. Furthermore, in the limit λ̂1 → λ̂2 = λ, it is easy

to show that the above equations reduce to λ(τs − τnh)
∇ + (τs − τnh) = 0, or in the Lagrangian

frame, λ d
dt

[

F
−1 · (τs − τnh) · F

−T
]

+
[

F
−1 · (τs − τnh) · F

−T
]

= 0. When there is no pre-stress
applied on the gel, it is trivial to show that τs = τnh, i.e., reduction from the full Zener model to
the neo-Hookean model. Therefore, the neo-Hookean model (λ̂1 = λ̂2 = 0) and the Kelvin-Voigt
model (λ̂1 = 0, λ̂2 6= 0) appear to be the two asymptotic limits of the Zener model.

To supplement the governing equations with boundary conditions, we assume periodicity in
x1−direction, and apply no-slip conditions on the top (moving) and bottom (stationary) rigid
walls. The dimensionless wall velocity is vf = Gê1 at x2 = 1, where G = µfUw/RS1 characterises
the strength of the applied shear flow field on the solid. At the fluid/solid interface, the velocity
and traction are continuous:

vf = vs, σf · n+ Tκn = σs · n, (7)

where n is the normal vector to the interface, T is the dimensionless surface tension scaled by
S1R and κ is the curvature of the interface scaled by R−1. The Eulerian models derived above are
equivalent to the conventional Lagrangian models which typically solve for the displacement field,
and simplify the mathematical treatment of the fluid-solid coupling at the interface to permit a
more straightforward implementation of the velocity and traction continuity conditions [4].

III. LINEAR STABILITY ANALYSIS

A. Base state

To perform a linear stability analysis, we need to derive the base-state solutions when the
interface is flat. The steady-state velocity solution in the fluid is simply a planar Couette flow

vf = (v1, v2) = (Gx2, 0), and the fluid stress is given by σf = −pfI + τf =

(

−pf G
G − pf

)

.

In the solid, the base-state solutions can be derived by solving the initial transient dynamics
during which a fully developed shear flow start exerting on the gel. For the neo-Hookean model
(τs = τnh), the (symmetric) total stress tensor in the solid is defined as σs = −psI + τnh =
(

−ps + τnh11 τnh12

τnh12 − ps + τnh22

)

. It is also reasonable to assume that during the initial transient, the

induced velocity field is unidirectional, i.e., ∂/∂x1 = 0 and vs = (v1(x2), 0). Then the constitutive
equations in (6) reduce to

∂τnh11

∂t
= 2τnh12

∂v1
∂x2

,
∂τnh12

∂t
=

∂v1
∂x2

,
∂τnh22

∂t
= 0. (8)

When there is no pre-stress in the solid, i.e. τnhij = 0 at t = 0, it is apparent that τnh22 = 0. Next,
integrating both sides of the remaining two stress equations leads to

τnh12 =

∫ t

0

∂v1
∂x2

dt =
∂u1
∂x2

= G, τnh11 = 2

∫ t

0

τnh12

∂v1
∂x2

dt =

∫ t

0

∂
(

τnh12

)2

∂t
dt =G2. (9)

where u1 =
∫ t

0
v1dt is the displacement. Thus the total stress tensor at equilibrium reads

τnh =

(

τnh11 τnh12

τnh12 τnh22

)

=

(

G2 G
G 0

)

. (10)
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In the Kelvin-Voigt model and the Zener model, since vs = 0 at equilibrium, equation (10) also
serves as the base-state solution for the three solid models. Therefore, the base-state total stress
can be written as

σs = −psI + τs =

(

−ps +G2 G
G − ps

)

. (11)

Note that a first normal stress difference appears, i.e., τ s11 − τ s22 = G2. At the flat interface (i.e.,
n = (0, 1)), equations (7) reduce to σf · n = σs · n and pf = ps.

B. Normal modes and interfacial conditions

A standard linear stability analysis is employed to study the growth of disturbances [1]. All
physical disturbance variables f ′ can be expanded with respect to normal modes f ′(x1, x2, t) =
f̃(x2) exp(ikx1 + αt), where f̃ is the complex-valued amplitude functions, k is the wavenumber,
and α is the complex-valued growth rate. The governing equations in (4)-(6) are linearized, and
then transformed into the Fourier space for the disturbances of (ṽf , p̃f ) in fluid and (ṽs, p̃s, τ̃s, τ̃nh)
in solid. After some algebra, we are able to derive two fourth-order ordinary differential equations
for the vertical velocity components ṽf

2
and ṽs2 which admit the following general solutions:

ṽf
2
= A1 exp(kx2) +A2 exp(−kx2) +A3x2 exp(kx2) +A4x2 exp(−kx2), (12)

ṽs2 = B1 exp(kx2) +B2 exp(−kx2) +B3 exp(ξ1x2) +B4 exp(ξ2x2), (13)

where ξ1,2 =
−iGk(1+αλ̂1)±k

√

−G2α(1+αλ̂1)(λ̂1−λ̂2)+(1+αλ̂2)
2

1+αλ̂2

, Ai and Bi (i=1,2,3,4) are eight unknown

coefficients, four of which can be eliminated by boundary conditions at the two walls. For the neo-
Hookean solid, we obtain ξ1,2 = (−iG± 1) k independent of α, and again, recover the solutions
obtained by Gkanis & Kumar [7].

The two solutions above are coupled through the kinematic condition

∂δ

∂t
+ v1

∂δ

∂x1
= v2, (14)

imposed at the perturbed interface x2 = δ(x1) where |δ| � 1. It can be further linearized as
∂δ
∂t

= v′2 around the flat plane at x2 = 0, and v′2 is the fluid (or solid) velocity disturbance. The
velocity and traction continuity conditions lead to

v′1
f
+Gδ = v′1

s
, (15)

v′2
f
= v′2

s
, (16)

∂v′1
f

∂x2
+

∂v′2
f

∂x1
+G2 ∂δ

∂x1
= τ ′12, (17)

−p′f + 2
∂v′2

f

∂x2
+ T

∂2δ

∂x2
1

= −p′s + τ ′22. (18)

The first normal stress difference from the base state (G2) now appears at the left-hand-side of
(17). The above equations are transformed using the normal modes to the Fourier space where we
solve the growth rate α numerically for given values of H, k, T , G, λ̂1, and λ̂2.
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FIG. 2: The growth rate Re(α) as a function of k for the neo-Hookean solid: (a) H = 0.4, T = 0; (b)
H = 4.0, T = 0; (c) H = 0.4, T = 10; (d) H = 4.0, T = 10. The open circles are the results obtained by
Gkanis & Kumar [7].

IV. RESULTS

Growth Rate. In figure 2, we show the real part of the growth rate of disturbance, Re(α), by
varying thickness ratio (H), surface tension (T ), and applied shear strength (G). When there is
no surface tension at the interface (T = 0), for a thin solid (H = 0.4, panel(a)), Re(α) reaches a
plateau at high wavenumber asymptotically, indicating a short wave instability. For a relatively
thick film (H = 4.0, panel(b)), the maximum growth rate occurs at a finite k, hence indicating a
finite-wavelength instability. Panels(c) and (d) show Re(α) as a function of k when surface tension
is included, and chosen as T = 10. In both cases, the surface tension can effectively eliminate
instability growth at high wavenumber. The obtained growth rates of the neo-Hookean model are
identical to those obtained by Gkanis & Kumar [7].

Although the instabilities in panels(b)-(d) all appear to be finite-wavelength, their profiles are
very different, leading to distinctive features shown later in the corresponding marginal-stability
curves. In panel(b) where T = 0, while instability is induced at finite k and then more and more
enhanced as the applied fluid shear G increases, the short-wave feature still remains as Re(α)
saturates at large k. In panels(c) and (d) when T 6= 0, there are typically two separated regimes
of peaks visible: One occurs at small k, and the other occurs at relatively large k. It is seen that
with surface tension, the disturbance grows much faster at finite/large k regimes as G increases.
Conversely, for thick films, instabilities appear to be more strengthened at small k.

Next, we consider the two viscoelastic models and make comparisons with the neo-Hookean
model. The five cases presented in figure 3 follow a progression from the basic neo-Hookean model
(black) to the Kelvin-Voigt model (red), and then to a full Zener model (blue). In the Kelvin-
Voigt model where λ̂1 = 0 and λ̂2 6= 0, again, we find that increasing the effective solid viscosity
(i.e., increasing λ̂2) suppresses instability at large k in both thin and thick gels, which makes the
finite-wavelength instabilities dominate. On the other hand, in panels(a,c) we also observe that
the instabilities are enhanced at finite wavenumbers to form local maximum for thin gels.

To examine the relaxation effect in the Zener model, we fix λ̂2 = 0.1 and vary the dimensionless
relaxation time λ̂1. We observe that increasing λ̂1 shifts Re(α) upwards. As λ̂1 approaches λ̂2, this
effect becomes increasingly pronounced and the curve gradually returns to that of the neo-Hookean
model, consistent with the analytical predictions as λ̂1 → λ̂2 in Section II B.

Mechanism. As noted by Gkanis & Kumar [7, 8], the interfacial instability in the neo-Hookean
solid is due to the coupling of the first normal stress difference and the surface fluctuation δ
appearing in the interfacial condition. Here we adopt their explanation by considering a sinusoidal
surface perturbation δ = ε sin

(

2π
k
x1

)

as shown in the schematic in figure 4(a). The traction
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when examining the surface tension effect. Following the same procedure we rewrite equation (18)
as

σ̃elast
22 − σ̃f

22
= T δ̃x1x1

− σ̃vis
22 =

(

T + 2αλ̂2

D

k2

)

δ̃x1x1
. (20)

The second derivative on δ results in a 180o phase shift so there is a normal force acting to restore the

perturbed interface. Note that the right-hand-side of (20) can be written as
(

−k2T − 2αλ̂2D
)

δ̃,

suggesting that the contribution from the surface tension is scaled by k2, and hence the inclusion
of surface tension causes a significant damping effect to suppress disturbance growth, especially at
large k [7, 10].

Marginal Instability. We show the marginal stability curves for the critical shear stress Gc

(figure 4(b)) and the corresponding critical wavenumber kc (figure 4(c)) as functions of the film
thickness ratio H. One obvious observation is that as H becomes large, all the models produce
almost the same results as the linear elastic model [10] due to smaller deformation. We also observe
that the marginal stability curves of the Zener model again vary between those of the neo-Hookean
model and the Kelvin-Voigt model.

In panel(b) when surface tension is lacking, the three models in fact predict very similar values
of Gc, suggesting that adding viscous effects to the solid does not necessarily stabilize the interface.
In contrast, the finite-wavelength instabilities observed in figure 3(a) and (b) for the Kelvin-Voigt
model may even cause a slight reduction in Gc, making the interface even more unstable under
shear. The critical stresses for thin films are found to be around 2.93 while vary inversely with H
for thick films, with transitions occurring for films with finite thickness (H ≈ 1).

Adding surface tension effectively stabilizes the interface for all values of H, and yields finite-
wavelength instabilities. Compared to the neo-Hookean model, the solid viscous effects significantly
change the critical values for thin films, leading to yet more complex behaviors. When H is
sufficiently small, we first identify a narrow regime where the system is stable to the fluid shear,
i.e., Gc → ∞ (marked by black dotted lines). At relatively large H, finite-wavelength instabilities
appear, and predict lower critical values than the neo-Hookean case. As H further increases
close to the transition regime, Gc rises again in both the Kelvin-Voigt and Zener models, up to
maximum values around H = 0.7. Such non-monotonic behaviors are due to the amplification
(suppression) of instability in the viscoelastic films at small (large) k as discussed in figure 3(c),
which correspondingly picks relatively low (high) critical values of Gc for thin (thick) films.

While the Gc−H curves are very similar, the marginal curves of kc in panel(c) exhibit distinctive
features between the three models at T = 0. At small thickness, the finite-wavelength instabilities
in the two viscoelastic models are visible by the critical values of kc beyond the stable regime; while
kc → ∞ for the neo-Hookean solid due to its short-wave nature. Interestingly, we observe that in
both the Kelvin-Voigt and Zener models, discontinuities of kc occur near the transition regimes
when H ≈ 0.7, in accordance with the peaks in panel(b). As illustrated by the growth-rate curves
in the inset of panel(c), in the transition regimes, increasing film thickness H drives a secondary
finite-wavelength instability arising at small wavenumber. As the growth-rate maximum shifts
from large towards small k, short-wave instabilities may recur, and hence kc saturates at infinity,
resembling those observed in the thin neo-Hookean films in figure 2. Moreover, inclusion of surface
tension effectively reduces kc as shown in the lower branch of marginal curves in panel(c). Also a
stable regime at small H is identified for viscoelastic gels in accordance with panel(b) where Gc

tends to infinity, and then finite-wavelength instabilities dominate as H increases.
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V. CONCLUSION AND DISCUSSION

In this paper, we investigate the interfacial stability of a soft gel film when subjected to a
Newtonian Couette flow at zero Reynolds number. We have constructed three differential models
for the solid stress including the neo-Hookean, Kelvin-Voigt, and Zener models, and solve for the
velocity, pressure and stress fields in both fluid and solid phases simultaneously in the Eulerian
frame. We have performed linear stability analysis to study the interfacial instability by exploring
the parameter spaces, and compared the critical behaviors of the three solid models. We focus
our attention in the thin-film regime where the material nonlinearity is pronounced; while for
sufficiently thick films, all the models produce very similar results as those predicted by linear
models due to small deformation. We find the interfacial instability is driven by the first-normal
stress difference in the base-state solution in the solid phase. Compared with the neo-Hookean
model, inclusion of solid viscous effects leads to finite-wavelength instabilities in both thin and
thick films, although we still observe short-wave instabilities recur in a narrow transition regime
at finite film thickness. When surface tension is included, the fluid/solid interface becomes more
stable, and finite-wavelength instabilities are found to dominate in all models. In addition, for
viscoelastic gels we have observed stable regimes for sufficiently thin films, as well as intriguing
non-monotonic features on the marginal stability curves near the transition regimes where the film
thickness is finite.

It is interesting to observe that when surface tension is negligible, the critical values of the
applied shear strength (Gc ≈ 2.93) seem to be well-characterized by the neo-Hookean model, i.e.,
material’s hyperelasticity. Further analysis reveals that the results obtained above can be directly
extended to more general hyperelastic Mooney-Rivlin model which is used for constitutive relations
in a wide range of materials. Recall the constitutive equation for a Mooney-Rivlin solid is given
as τs = g1B + g2B

−1, where g1 and g2 are scalar functions of the invariants of B [13]. Thus the
neo-Hookean model is a special case of the Mooney-Rivlin model by choosing g1 = 1 and g2 = 0.

It is easy to show that B−1 satisfies a lower-convected derivative: Ḃ
−1

+L
T
B

−1 +B
−1

L = 0 [9].
Following the same procedure in Section III, we find that a lower-convected model for the elastic

stress τs ∝ I − B
−1 yields the base-state solutions σs =

(

−ps G
G − ps −G2

)

and pf = ps + G2,

which lead to identical stability analysis results as the neo-Hookean model where τs ∝ B−I. Hence
the Mooney-Rivlin model will generate the same results as the neo-Hookean model as well. With
this study, it is straightforward to construct more elaborated solid models (e.g., poroelasticity),
and apply similar methodologies to investigate their stabilities when coupled with fluid flows. It is
also desired to perform direct simulations to resolve new physics and phenomena associated with
nonlinear deformations in fluid/elastic-structure interactions.
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[6] T. Gao, H.H. Hu, and P.P. Castañeda. Shape dynamics and rheology of soft elastic particles in shear
flow. Phys. Rev. Lett., 108:058302, 2012.

[7] V. Gkanis and S. Kumar. Instability of creeping couette flow past a neo-hookean solid. Phys. Fluids,
15:2864–2471, 2003.

[8] V. Gkanis and S. Kumar. Stability of pressure-driven creeping flows in channels lined with a nonlinear
elastic solid. J. Fluid Mech., 524:357–375, 2005.

[9] D. D. Joseph. Fluid Dynamics of Viscoelastic Liquids. Applied mathematical sciences, Vol. 84, Springer
Verlag, New York, 1990.

[10] V. Kumaran, G. H. Fredrickson, and P. Pincus. Flow-induced instability at the interface between a
fluid and a gel at low reynolds number. J. Phys. II France, 4:893–911, 1994.

[11] V. Kumaran and R. Muralikrishnan. Spontaneous growth of fluctuations in the viscous flow of a fluid
past a soft interface. Phys. Rev. Lett., 84:3310–3313, 2000.

[12] C. Lai, Z. Zheng, E. Dressaire, G. Ramon, H. Huppert, and H. Stone. Elastic relaxation of fluid-driven
cracks and the resulting backflow. Phys. Rev. Lett., 117:268001, 2016.

[13] C.W. Macosko. Rheology: Principles, Measurements and Applicatfons. VCH Publishers, New York,
1994.

[14] N. G. McCrum, C. P. Buckley, and C. B. Bucknall. Principles of Polymer Engineering. Oxford
University Press, 1997.

[15] L.A. Mihai and A. Goriely. Positive or negative poynting effect? the role of adscititious inequalities in
hyperelastic materials. In Proc. R. Soc. Lond. A, volume 467, pages 3633–3646, 2011.

[16] S. Mora, T. Phou, J.M. Fromental, L.M. Pismen, and Y. Pomeau. Capillarity driven instability of a
soft solid. Phys. Rev. Lett., 105(21):214301, 2010.

[17] R. Muralikrishnan and V. Kumaran. Experimental study of the instability of the viscous flow past a
flexible surface. Phys. Fluids, 14:775–780, 2002.

[18] J.H. Poynting. On pressure perpendicular to the shear planes in finite pure shears, and on the length-
ening of loaded wires when twisted. Proc. R. Soc. Lond. A, 82(557):546–559, 1909.

[19] Y. Renardy. Stability of the interface in two-layer couette flow of upper convected maxwell liquids. J.
Non-Newtonian Fluid Mech., 28:99–115, 1988.

[20] B. Saintyves, T. Jules, T. Salez, and L. Mahadevan. Self-sustained lift and low friction via soft lubri-
cation. Proc. Natl. Acad. Sci., 113(21):5847–5849, 2016.

[21] J.M. Skotheim and L. Mahadevan. Soft lubrication. Phys. Rev. Lett., 92(24):245509, 2004.
[22] C. Xuan and J. Biggins. Finite-wavelength surface-tension-driven instabilities in soft solids, including

instability in a cylindrical channel through an elastic solid. Phys. Rev. E, 94(2):023107, 2016.
[23] J. Zhang, S. Childress, A. Libchaber, and M. Shelley. Flexible filaments in a flowing soap film as a

model for one-dimensional flags in a two-dimensional wind. Nature, 408:835–838, 2000.


