J Real-Time Image Proc (2018) 14:379-394
https://doi.org/10.1007/s11554-014-0459-1

CrossMark

@

ORIGINAL RESEARCH PAPER

A real-time, power-efficient architecture for mean-shift image

segmentation

Stefan Craciun - Robert Kirchgessner *
Alan D. George - Herman Lam - Jose C. Principe

Received: 30 April 2014/ Accepted: 29 September 2014 /Published online: 16 October 2014

© Springer-Verlag Berlin Heidelberg 2014

Abstract Image segmentation is essential to image pro-
cessing because it provides a solution to the task of sepa-
rating the objects in an image from the background and
from each other, which is an important step in object rec-
ognition, tracking, and other high-level image-processing
applications. By partitioning the input image into smaller
regions, segmentation performs the balancing act of
extracting the main areas of interest (objects and important
features) that further help to interpret the image, while
remaining immune to irrelevant noise and less important
background Image-segmentation applications
branch off into a plethora of domains, from decision-
making applications in computer vision to medical imaging
and quality control to name just a few. The mean-shift
algorithm provides a unique unsupervised clustering solu-
tion to image segmentation, and it has an established record
of good performance for a wide variety of input images.
However, mean-shift segmentation exhibits an unfavorable
computational complexity of O(kN?), where N represents
the number of pixels and k the number of iterations. As a
result of this complexity, unsupervised image segmentation
has had limited impact in autonomous applications, where
a low-power, real-time solution is required. We propose a
novel hardware architecture that exploits the customizable

scenes.

S. Craciun (X)) - R. Kirchgessner - A. D. George - H. Lam
Department of Electrical and Computer Engineering, NSF
Center for High-Performance Reconfigurable Computing
(CHREC), University of Florida, Gainesville, FL 32611-6200,
USA

e-mail: craciun@hcs.ufl.edu

J. C. Principe

Computational Neuro-Engineering Laboratory (CNEL),
Department of Electrical and Computer Engineering, University
of Florida, Gainesville, FL 32611-6200, USA

computing power of FPGAs and reduces the execution time
by clustering pixels in parallel while meeting the low-
power demands of embedded applications. The architecture
performance is compared with existing CPU and GPU
implementations to demonstrate its advantages in terms of
both execution time and energy.

Keywords FPGA - Reconfigurable computing -
Hardware acceleration - Mean-shift - Unsupervised
clustering - Image segmentation - Gradient density
estimation

1 Introduction

The mean-shift algorithm was proposed by Fukunaga and
Hostetler [1] as a non-parametric clustering technique
based on the concepts of kernel density estimation previ-
ously developed by Parzen [2]. The motivating factor
behind this algorithm was the lack of information available
about the true probability-density function. Fukunaga used
the existing Parzen approach to obtain a differentiable
density estimate and then computed the gradient of the
density. The mean-shift method uses the gradient estimate
of the probability-density function (PDF) as a clustering
force that moves the data points in a given dataset towards
the closest density peak (mode). Every point moves by an
amount equal to the density gradient estimated at that
location over multiple iterations until all data points con-
verge to their closest mode. The mean-shift algorithm has
been intuitively called a hill-climbing process, where the
hills are formed by the surface of the PDF, the peaks are
the modes of the dataset, and all points move in the
direction of the estimated gradient (uphill).

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-014-0459-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-014-0459-1&domain=pdf
https://doi.org/10.1007/s11554-014-0459-1

380

J Real-Time Image Proc (2018) 14:379-394

1.1 Background

The mean-shift algorithm has made a considerable impact
in the clustering domain because it provides a non-para-
metric solution and does not require any prior knowledge
about the distribution of the input data. The mean-shift
algorithm has been labeled unsupervised and as a result can
be used for autonomous applications, where the user is not
required to provide any input parameters. In 1995, Cheng
[3] established a rigorous mathematical background and
gave the gradient estimation method its recognized mean-
shift name. Fukunaga and Hosteler originally applied their
algorithm to kernel smoothing and signal de-noising. It was
not until the early 2000s that the mean-shift algorithm was
applied to image processing. The work of Comaniciu and
Meer [4-6] demonstrated the performance advantages of
the mean-shift algorithm by efficiently applying it to seg-
ment images, track objects, and find contours/edges. The
mean-shift algorithm has since been primarily applied to
the image-processing domain because it provides an
unsupervised solution to image segmentation. Mean-shift
segmentation has been successfully used in medical
imaging for volume calculation, malign tissue localization
[7], and detection of functional connectivity in the brain
[8]. In computer vision, image segmentation has been used
as the initial step for object recognition such as face rec-
ognition [9] and tracking [10, 11]. In quality control, image
segmentation using the mean-shift algorithm has been
proven to be efficient at locating wafer defects [12].

The goal of image segmentation is to cluster all pixels to
discrete locations, and thus quantize the input image into
pixel subsets that share common visual characteristics such
as a distinct structure, color, or texture. Using the mean-
shift algorithm, the forefront objects are separated by
contrast from a uniform background. This method helps in
analyzing and interpreting the image, transforming it from
a random collection of pixels to a unique arrangement of
recognizable objects. However, the main challenge that
impedes the impact of the mean-shift algorithm for
embedded applications is its computational complexity.
The creators of the algorithm, Fukunaga and Hostetler,
recognized from the very beginning that their algorithm
“may be costly in terms of computer time and storage.”
Their assessment holds true even for current computational
platforms as a result of the ever-increasing resolution of
images, a well-known and documented trend for the past
decade [13].

In this paper, we design a scalable, power-efficient, and
pipelined hardware architecture that addresses the prohib-
itive execution time challenge of the mean-shift algorithm.
Our architecture exploits the intrinsic deep and wide par-
allelism of the algorithm. We leverage the inherent coarse
granularity of the mean-shift algorithm by dedicating

@ Springer

independent hardware pipelines to cluster multiple pixels
in parallel (wide parallelism). The hardware architecture
transforms the mean-shift algorithm into a streaming
application, allowing pairwise interactions between pixels
to accumulate every clock cycle (deep parallelism) and, as
a result, accelerate the estimation of the PDF gradient. The
platform used is ideal for the algorithm’s fine granularity,
consisting of a gate-array fabric on which the pipelines can
be replicated, so that each one can process individual pixel
movement over multiple iterations. Our approach is to first
replicate the pipelines to effectively utilize all the resources
on one FPGA, and then further scale-up to a board-level
architecture (four coupled FPGAs). We compare the exe-
cution time and power consumption of our fixed-point
architecture with the most up-to-date GPU implementa-
tions of image segmentation [14-19] and also a CPU
software baseline. The ideal combination of superior exe-
cution times coupled with considerably lower power makes
our design well suited for embedded autonomous
applications.

The organization of the paper proceeds by first exploring
the related research (Sect. 1.1), and then providing the
mathematical background and a brief overview of the
baseline algorithm (Sect. 2). In Sect. 3, the proposed par-
allel architecture is presented in detail. Sect. 4 features
numerical and visual results, and in Sect. 5 we draw con-
clusions and key insight from this work.

1.2 Related research

From an information-theoretic perspective, the mean-shift
algorithm has been proven to minimize Renyi’s cross
entropy [20]. The cross information forces exerted by the
original dataset on each sample help cluster the points around
the modes. Renyi’s cross entropy [21] reaches its minimum
value when all points have converged to their respective
modes. Furthermore, the mean-shift algorithm has an
important advantage over other algorithms based on gradi-
ent-ascent or decent cost functions. The step size, which is a
free parameter associated with gradient-based algorithms,
does not exist. The step-size parameter is embedded in the
mean-shift method, and thus ensures that points move faster
during the initial iterations and slow down as they approach
their modes. The well-known problem of step-size selection
is thus avoided. Multidimensional clustering has been a
major topic of study in statistical data analysis [22, 23] with
numerous research papers proposing theoretical methods of
accelerating the clustering process. These methods include
techniques to reduce data-dimensionality, improvements to
distance functions, and techniques for stopping before the
final convergence. Other authors have transitioned from
mainstream computing platforms to many-node CPUs [24]
and GPUs [14-19] in an effort to map the clustering

J Real-Time Image Proc (2018) 14:379-394

381

algorithms to hardware more efficiently and leverage the
intrinsic parallelism. Recently, efforts to accelerate the
mean-shift algorithm have focused on FPGA technology and
have achieved the most promising results to date for
embedded applications [25]. However, FPGA implementa-
tions of the mean-shift algorithm have exclusively targeted
tracking applications rather than image segmentation. In
contrast to segmentation applications, which cluster the
entire image pixel set, tracking applications require only a
small subset of pixels in the input image to be clustered. The
subset corresponds to the pixels inside a rectangular frame
centered over the object that is being tracked. FPGA archi-
tectures have been successfully used to track objects in real
time as part of embedded system applications [26-28].
However, despite these efforts, the trend of increasing image
resolutions makes the mean-shift algorithm impractical for
embedded real-time image-segmentation applications when
image sizes exceed VGA resolution (640 by 480). The mean-
shift algorithm scales poorly with both the number of pixels
N 2 and number of iterations (k) as O(kN?). Although per-
formance is reliable for a wide range of input images yielding
good segmentation results, the execution time continues to
prohibit this algorithm from approaching the real-time bar-
rier for images above VGA resolution. Furthermore, the
power required to segment images on conventional CPU or
GPU platforms has impeded the algorithms impact in the
embedded arena where it is most needed [29]. Our proposed
solution leverages the fine granularity of the algorithm by
evaluating the PDF gradient at multiple data points in par-
allel, and thus clusters multiple pixels in parallel. The FPGA
fabric provides the ideal low-power computational platform
on which pixels can be processed in parallel, resulting in a
decrease in computational complexity and real-time seg-
mentation of images above VGA resolution.

2 Mathematical background

In 1995, Cheng et al. [3] coined the gradient estimation of a
density function proposed by Fukunaga and Hostetler [1] as
the “mean-shift” algorithm. This term is now exclusively
used when referring to clustering methods based on the
gradient estimation. The term “mean-shift” has endured
the test of time because it describes the algorithm in a very
simple and intuitive form. The data points, which in our
case refer to pixel values, move in an iterative process or
“shift” towards the closest local density peak or local
“mean.” In the research literature, some authors have
described the mean-shift algorithm as a mode-seeking
algorithm [3] because the data points cluster around the
nearest density maxima. Other authors have intuitively

called the mean-shift a hill-climbing technique [30]. The
hills refer to the density surface of the data that exhibits
peaks at locations where points have a high density, and is
flat in regions where data points are sparse. On this prob-
ability surface, each data point travels in the direction of
the estimated gradient, up the probability hill, until it
reaches the closest peak and becomes stable.

2.1 Mathematical framework

We start by describing the Parzen window technique,
which is the most popular method to evaluate the density
function of a random variable. The multivariate kernel
density estimator for a 3D space consisting of n samples
and kernel size & is shown in Eq. (1):

. 1 & —>_—i>
70 =k () 0

For radially symmetric kernels, K (x) = c;3k(||x||*), where
c3 1s the 3D normalization constant ensuring that K(x)
integrates to 1. The kernel density can be rewritten as

shown in Eq. (2):
2
) (2)

ful®) = Sy [(F
ek o’ & h

The next step is to find the peaks (modes) of the density
function by equating the gradient to zero:

VF(X)=0 (3)
VA(T) = 2% ,-nl (¥ - m(H (=) 2) ~0

(4)

By substituting in the above equation g(s) = —k’(s) the
gradient can be written as shown in Eqs. (5) and (6):

n — — 2
pr—> 2cka - = X — X
VI =" (x"_x)g<‘(i))Z o
i=1
— —|?
— X —X;
2 n — -2 2x5g< h)
Ckd Z X — X i=1 B
nh’ Lng< h)] 3~ (??
g 1

In Eq. (6), the first term represents the density estimation at
point x, while the second term is the mean shift. The most
widely used kernel when estimating the PDF is the
Gaussian kernel:

@ Springer

382

J Real-Time Image Proc (2018) 14:379-394

1 (Z
K(X)=——e\ 7 (7)
The kernel size previously labeled 4 is now substituted by
the symbol ¢. The resulting mean-shift formula using a
Gaussian kernel is shown in Equation (8):

— —
n (XX
xie 252
=1
nooo(X-Xi)?
e 262

For image-segmentation applications, the input data set is
represented by grayscale images. The pixels of the input
image are clustered in a three-dimensional space, where
each pixel has a row and column location (x, y coordinate)
and a grayscale value (z coordinate).

pixel = [x,y,7])

Each data point shifts by an amount equal to the gradient of
the PDF estimated at its current location. The amount of
pixel movement in each of the three dimensions is
expressed in Eqs. (10-12). It is important to note that the
pixel movement in each of the three dimensions is
independent.

1 a1
‘plxeli -pixel;

5 xiexp
new i=1
Xj = 3 (10)
R ‘ pixelifpixelj’
> exp 27
i=1
— —||?
; ‘ pixel;-pixel;
D yiexp 22
W i=1
yjne = 2 (1 1)
; ‘ pixelifpixelj‘
> exp)
i=1
— —||*
; ‘plxelifplxelj
> ziexp 252
W i=1
7"V = 5 (12)
; ‘ pixelifpixelj‘
> exp 207
i=1

3 Hardware architecture

The deep parallelism of the mean-shift algorithm along
with its intrinsic fine granularity makes it well suited for
hardware acceleration. The algorithm evaluates the PDF
gradient at every data point and moves that point in the
direction of the gradient. The PDF gradient estimation is

@ Springer

computationally independent at each data point, providing
a parallelization advantage that can be leveraged through
our hardware architecture. Using dedicated hardware
pipelines to compute the PDF gradient at multiple data
points in parallel allows us to shift pixels simultaneously
towards their closest mode. Theoretically, all data points
could be clustered in parallel given unlimited hardware
resources; however, for existing reconfigurable platforms,
this task becomes impossible for higher-definition images
where the pixel count surpasses two million. An efficient
approach is to divide the input image into smaller sections
where all pixels can be clustered in parallel. The size of
each section depends on the amount of hardware resources
available on the FPGA.

3.1 Approach

The concept diagram in Fig. 1 explains the hardware
mapping approach. The input image stored in external
memory is partitioned into sections that are transferred to
Block RAM (BRAM) in consecutive order. The size of the
sections depends on the amount of BRAM available on the
FPGA. A batch of pixels from BRAM are serviced by an
equal number of pipelines. These are the pixels clustered in
parallel. Each pipeline shifts its dedicated pixel over mul-
tiple iterations from the original position in the input
image, represented by its x, y coordinates and grayscale

Input image on
external memory

“Slice of image on BRA| S~o

Local neighborhood |

Batch of pixels [pix, pix , ... pix,]| Next batch [pix, pix ; ... pix,]
clustered in parallel clustered in parallel

T L] pix

[=3 1
—>| pix, —>! Pipeline 2 —>

=== pix

To external mem

/N
Input registers
.
L L]
.

13351884 IndINQ

o o
3
o o

i]
| pix, —>iPipelineni——>| " -
_ [_

y

Segmented image
on external memory

Fig. 1 Hardware mapping of the mean-shift algorithm using dedi-
cated pipelines to cluster pixels in parallel

J Real-Time Image Proc (2018) 14:379-394

383

value, to the closest mode. When all pixels in the batch
have converged to their respective modes, the final loca-
tions of the clustered pixels are stored back to an external
memory, and the next batch is serviced. In our experi-
mental results section, the mean-shift algorithm is indi-
vidually mapped to two different FPGAs, first a Stratix-III
and then a Stratix-IV from Altera. We show that the larger
FPGA can parallelize the clustering task over a larger area
of the image. The architecture is then further scaled to
include multiple FPGAs using a divide and conquer
approach. Our results prove that there is a linear relation-
ship between the number of pipelines used to cluster the
pixels in the image and the overall acceleration of the
algorithm’s execution time. The only requirement for
scaling our architecture over multiple FPGAs is that each
FPGA must have a copy of the original image.

Another important step of the mean-shift algorithm that
tailors the algorithm to hardware acceleration is the
Gaussian kernel accumulation defined in Egs. (10-12).
Given a local neighborhood of pixels, the PDF gradient is
an accumulation of pairwise kernel computations between
the point at which the PDF gradient is calculated (pixel;)
and all of the pixels in the local neighborhood (pixel;) as
shown in Equations (10-12). In these equations, the local
neighborhood is composed of pixels 1 to n. Since the kernel
function can be mapped to a pipelined architecture, as is
the case for our design, the PDF gradient computation is
transformed into a streaming application. All data points
that belong to the local neighborhood are streamed from
memory, allowing the accumulation of a new pairwise
kernel computation at every clock cycle. Furthermore,
since the batch of consecutive pixels that are simulta-
neously clustered share the local neighborhood, the same
input data is streamed from memory to each pipeline. All
pipelines require the same input stream of data, and, as a
result, the memory-bandwidth requirements remain con-
stant as the architecture is scaled to parallelize the move-
ment of more pixels. In summary, the proposed hardware
architecture not only clusters pixels in parallel by com-
puting the PDF gradient at different locations simulta-
neously (wide parallelism), but also transforms the PDF
gradient estimation into a streaming application (deep
parallelism) that requires a constant memory bandwidth
independent of the scaling factor. The fixed-point approach
gives us control over the way that we tailor the precision of
the pipeline architecture. Without incurring errors, we can
use the least number of bits necessary at every stage of the
pipeline and maximize the number of pipelines replicated
on the FPGA fabric. We propose a novel pipelined archi-
tecture, with feedback, capable of running multiple itera-
tions of the Gaussian mean-shift algorithm to accelerate
image-segmentation applications.

3.2 Pipeline architecture

In this section, we explain the design choices made at every
stage of the architecture and describe the main building
blocks that are used to construct the pipeline. We start by
describing the core of the kernel density function and
progress towards the final accumulators and the outputs of
the pipeline, which are eventually fed back to the input for
iterative clustering.

The first pipeline block is the Euclidean distance cal-
culation. For a three-dimensional space, as is the case with
grayscale images, each pixel is described by a 3D vector
composed of x, y Cartesian coordinates, and an 8-bit
Z (grayscale) value. The Euclidean distance is chosen as
our distance metric because we use the Gaussian kernel for
density estimation. The Gaussian kernel, which computes
the PDF based on pairwise Euclidean distances, is the most
widely employed kernel for density estimation. Other
kernel functions that are more easily mapped to hardware,
such as the Epanechnikov [1] or the Quartic kernel [1], can
also be used. The Euclidean distance block allows us to
efficiently compute the pairwise distances between pixels
without stalling the pipeline. A diagram of the Euclidean
distance is shown in Fig. 2.

The stream of Euclidean distances scaled by the kernel
size or bandwidth parameter ¢ is then fed into a fixed-point
exponential look-up table (LUT). The exponential function
is quantized to discrete values as shown in Fig. 3, allowing
us to efficiently estimate the Gaussian kernel without
having to integrate a resource-intensive, floating-point
function into the pipeline. The kernel size parameter o is
hard-coded into the LUT values. We will later analyze the
errors incurred using a fixed-point precision LUT rather
than the exponential floating-point hardware core.

The Euclidean distance along with the Gaussian kernel
LUT are integrated into the overall pipeline architecture
shown in Fig. 4. The output of the exponential LUT is the
Gaussian kernel estimation as shown in Eq. (7). The
exponential LUT output is further multiplied with the x, y,
and z coordinates of all the neighboring pixels before
accumulating the products in each of the three dimensions.
Equations (14-16) show the products accumulated in each

Euclidean distance

| pix; x-value
! pix; X- sub mult

: pix; x-value 1 »
! pix; y-value a 1)

| pix; y- sub mult add —>
: pix; y-value - J]”

! pix; z-value register

| o sub mult
| pix; z-value

Fig. 2 Pipelined architecture for Euclidean distance calculation

@ Springer

384

J Real-Time Image Proc (2018) 14:379-394

Gaussian kernel LUT

1
| 1 ® !
: 0.9 1 @ quantized exponential values in LUT :
! 0.8 ++
| 0.7 44— |- exponential function !

i]
I~ 0.6 !
QI LRt |
1 Q04 ;

. [}

' T 03 !
| 0.2 ‘~.. :
I -,
X 0.(1) o :
! 4+ .o o0 06 06—
l 0 5 10 |

]
I]

Fig. 3 Quantized exponential function values for Gaussian kernel
LUT

dimension. Each dimension has a dedicated accumulator
inside the pipeline. Our architecture takes advantage of this
parallelization opportunity, allowing the gradient compo-
nent in each dimension to be accumulated in parallel. In
addition to the three gradient accumulators, the pipeline
features a fourth accumulator as shown in Eq. (13), and
used for the Gaussian kernel summation. The accumulated
value of all Gaussian kernels will be used as a normali-
zation factor for all three dimensions. Equations (13-16)
represent the outputs of the pipeline at the end of each
iteration. The new x, y and z coordinates of the shifted pixel
are obtained by dividing the accumulated outputs of Eqgs.
(14-16) by the accumulated value of Eq. (13).

|plxe] plxe]_]| ‘

A= Zexp 27 (13)

2
pixel; plxcl |

B = Zx,exp 202 (14)

pixel; —pixel;

C = Zyiexp_ 252 (]5)
i=1

pixel; —pixel;

D= Zziexp_ e (16)
i=1

An embarrassingly parallel approach is employed to
scale the architecture. The pipeline design in Fig. 4 is
replicated on the FPGA fabric to efficiently use all avail-
able resources. The complexity of the algorithm is reduced
by assigning independent pipelines to cluster multiple
pixels simultaneously.

The final normalization stage requires a division.
However, the hardware resources required by a fixed-point
divider core are relatively large. Dedicating a division
hardware core to the output of each pipeline would impose
harsh restrictions on the number of pipelines that can fit on
the FPGA fabric. The extensive resources required by a

@ Springer

division in hardware lead to an important design choice. To
maximize the number of pipelines, and thus maximize the
number of pixels clustered in parallel, a preferred design
choice is to stagger the outputs of the pipelines by
employing two multiplexers, and share only one final
divider for all the pipelines. The use of the two multi-
plexers adds a relatively small latency equal to the number
of pipelines, but helps to save important resources that are
allocated to reducing the algorithms computational com-
plexity. A high-level diagram for the entire pipeline
architecture is shown in Fig. 5.

For each pipeline, the two inputs are the streaming pixel
values from the local neighborhood (BRAM) and the pixel
being clustered. The outputs are the new coordinates of that
pixel shifted in the direction of the PDF gradient. The pixels
move toward their closest density maxima over multiple
iterations, and therefore, the output values at iteration n (new
pixel 3D locations) constitute the input values at iteration
n + 1. A 2-to-1 multiplexer is used at the input of each
pipeline to select between the initial starting location of a
pixel on the first iteration, and the new output location which
is fed back from the pipeline output (Fig. 6).

The mean-shift clustering task is executed over multiple
iterations, requiring the input dataset to be streamed through
the pipelines multiple times until all pixels have converged to
their respective mode. Therefore, it is more efficient to store
the section of the image that is reused (local neighborhood
used to evaluate the PDF gradient) to BRAM. Reading from
BRAM as opposed to external memory banks decreases
access latency and increases throughput. The pixels that are
moving toward their respective modes need to be accessed
every clock cycle; therefore, these values are stored on
internal FPGA registers. The following steps summarize the
data flow required by the algorithm:

1. Transfer image from host to FPGA external memory
bank A.

2. Store portion of image used for PDF gradient estima-
tion to internal memory (BRAM).

3. Store pixels being clustered to
registers.

4. Stream BRAM data over multiple iterations and
feedback output results to pipeline inputs.

5. Write final pixel location to external memory bank B.

internal FPGA

When the entire image has been processed, the final clus-
tering results are read by the host from memory bank B and
used to segment the input image.

4 Results and analysis

All experimental results were conducted on Novo-G, a
reconfigurable supercomputer developed and hosted by the

J Real-Time Image Proc (2018) 14:379-394

385

single pixel
g moving
ol fowards | Pipeline . '
| closest | _______ R~ H
mode [T Euclidean Ly Gaussian 1 N]
= ! distance 1 ikernel LUT!| | accumulate A
streaming || ~tTTTTTTTTTTt tTTTTTTTT E !
<§(pixels : 7 !
% fr'o;r;7 IocI:7aI q i=) delay multiply B]
neighbornood | | —> accumulate !
? :
1
5> delay multiply & |
] —> accumulate i
[i
|z '
: —> delay multiply D i
i — accumulate '
|

pixel1 | Mean-shift wide parallelism ____
moving | ; -
toward > T T 7777 | . i
closest || | !
mode i 1Pipeline 11 5 1
I 1 1
L 1
1
pixel 2 s i
moving e !
toward > ; i
closest |, 1 . L !
mode i 1Pipeline 2! i
| 1 1
R o —> Mux 1
T 7 Il mIA 1
| 3nto1 | [N @ :
= | streaming pixels ! =8 i
é from local : . X5 :
m |_neighborhood ! . q§> é !
1 < O I
pixel n ! . :
Toving Ve . Egs. |
fowar > —_— wre
r —>| pipeline |8-70
cosest |1 SR | sell) ’Ziiri/ider >
mode : 1 Pipeline n | :
1

S - 1
H 1
P T E 1
1 i ; E 1
! —> 83 :
1 Mux | I® & |
1 g% 1
' nto1 N i
1 S 1
| ——> /(= 1
! sel2 1

L> Mux :'- _______ i_’
2to [——>!Pipeline 1 [—
initial pix; 1]
location
®linitial pix,
» "
O location Mux new pixy
h— et [N 8 location
& initial pixs nto =% » "
@] location X5 ©|New pix;
e 39 o location
-— 28 = -
> OJnew pix,
g- pipeline || L location
- divider | 4=
I 5 .
i@ PXy v 5 i
location E 5 > .
58 ©
gs -
£ new pix,
< location

Fig. 6 Closing the feedback loop for running multiple iterations

NSF Center for High-Performance Reconfigurable Com-
puting (CHREC) at the University of Florida. The FPGAs
targeted for implementing the scalable mean-shift

architecture were Altera’s Stratix-III E260s and Stratix-IV
E530s integrated in the GiDEL PROCStar III and PROC-
Star IV quad-FPGA boards, shown in Fig. 7.

Each Stratix-III E260 (65 nm) features 768 18x18
multipliers and 256 k logic elements, with 4.25 GB of
dedicated memory in three parallel banks on the GiDEL
PROCStar III board. Each Stratix-IV E530 (40 nm) fea-
tures 1024 18x 18 multipliers and 813 k logic elements,
with 8.5 GB of dedicated memory in three parallel banks
on the GiDEL PROCStar IV board. Both the overall run-
times and clustering results obtained from our hardware
architecture were compared to the most recently published
mean-shift clustering results executed on GPU platforms,
and also a C software baseline running on one core of an
Intel Xeon E5520 processor.

4.1 Middleware

To enable portability across heterogeneous FPGAs (Strat-
ix-IIT and Stratix-IV), and to improve productivity, an RC
Middleware (RCMW) [31] was used to help develop our
application. Using RCMW, we were able to select the ideal
resource interfaces for our mean-shift algorithm pipelines,
and describe our application in the RCMW XML metadata
format. The RCMW toolset enabled us to generate the top-
level application stub without worrying about low-level
platform specifics. As a result, we were able to execute our
application seamlessly across the GiDEL PROCStar III and
PROCStar IV boards.

The RC Middleware provides a set of standardized
hardware and software resources to enable productivity and
to simplify FPGA application development. On the hard-
ware side, RCMW provides a set of standardized memory—
resource interfaces which automatically handle data pack-
ing and unpacking, alignment, and flow control. On the
software side, RCMW handles the platform initialization,
thread management, and provides an object-oriented
application representation specific to our application. These
hardware and software abstractions reduced the overhead
in developing our hardware accelerator and platform dri-
ver, improving our productivity.

4.2 Experimental results

We performed multiple clustering experiments over a set of
images with different resolutions to test the performance of
our hardware architecture. The execution times of our
hardware architecture were compared to a software C-code
baseline, compiled using GCC with O3 optimization and
executed on an Intel Xeon E5520 (2.26 GHz) processor
with 4 GB of DDR400 RAM. For this comparison, we used
images of lower resolution (up to 150 k pixels) and esti-
mated the PDF gradient using the entire data set (every

@ Springer

386

J Real-Time Image Proc (2018) 14:379-394

Fig. 7 GiDEL PROCStar III quad-FPGA board

pixel in the image). We also compared the performance of
our hardware architecture to the best execution times
obtained from the most recently published GPU image-
segmentation implementations [14—19]. Higher-resolution
images were used for this comparison (up to 300 k pixels),
and the PDF gradient was estimated by only using the
pixels within a local neighborhood. Clustering over a local
neighborhood is predominantly used for larger images,
where pixels that are farther than a given threshold will
have a negligible or zero influence on the gradient esti-
mation. The size of the local neighborhood was always
chosen as a function of the kernel size, and guaranteed that
the estimated gradient would always point toward the
closest mode. As expected, the amount of parallelism
extracted from the mean-shift algorithm is directly related
to the number of hardware resources available on the
FPGA. Section 4.2.1 proves that a Stratix-IV FPGA, which
has approximately double the amount of hardware resour-
ces available on a Stratix-1II, will segment images twice as
fast. Our experiments proved that a linear relationship
exists between the number of hardware resources used to
map the mean-shift algorithm on the FPGA fabric and the
amount of acceleration achieved. As a result of the scala-
bility of our architecture, the mean-shift algorithm can be
accelerated over multiple FPGAs as demonstrated in Sect.
4.2.1. Our experiments predict that a HD image
(1920 x 1080) can be segmented in real time using eight
Stratix-IV. FPGAs, or the equivalent of two GiDEL
PROCStar IV boards.

4.2.1 Speedup

The intrinsic wide parallelism of the mean-shift algorithm
allowed us to parallelize the clustering task by moving
multiple pixels in parallel. We observed that a linear
relationship exists between the number of pixels clustered
in parallel using dedicated hardware pipelines and the
resulting speedup performance. The graph in Fig. 8 shows
the linear relationship between the number of dedicated
pipelines replicated on the FPGA fabric to cluster inde-
pendent pixels, and the speedup obtained with respect to
the CPU software baseline.

@ Springer

We continued the embarrassingly parallel approach by
scaling our architecture beyond one FPGA. The linear
increase in acceleration characterizing the single FPGA
implementation exhibited a slight decrease in slope when
the architecture was scaled to multiple FPGAs. The sub-
linear slope was a consequence of the overhead associated
with the multi-FPGA case. For the multi-FPGA scenario,
the communication-to-computation ratio increased and
prevented the same linear acceleration observed for the
single FPGA case. Data transfers from the host (CPU) to
the FPGAs interfered with the optimal FPGA execution
starting times. Prior to the processing stage, a copy of the
input image had to be transferred to each FPGA’s external
memory bank. As a result, not all FPGAs could start the
clustering task at the same time and entered a queuing
process until the data transfers were completed. Figure 9
shows the increase in speedup for a multi-FPGA imple-
mentation on the GiDEL PROCStar III platform, for up to
four Stratix-III E260 FPGAs.

4.2.2 Resource utilization

Figures 10 and 11 show the percentage resource utilization
for a single FPGA implementation as the architecture was
scaled to incorporate an increasing number of pipelines on
a Stratix-IIT and -IV, respectively. We can conclude from
the resource utilization results that the limiting resources
when the architecture was scaled were the DSP block
18-bit elements. The DSP resources were fully utilized
after replicating the pipelines 64 times on the Stratix-III
FPGA and 128 times on the Stratix-IV FPGA. Using these
results, we concluded that an FPGA containing more DSP
resources would be a better fit for our scalable architecture.
The Stratix-IV FPGA has approximately double the hard-
ware resources of the Stratix-III, allowing further acceler-
ation of the mean-shift algorithm by a factor of 2.

In Fig. 12, our speedup measurements show that one
Stratix-IV. FPGA achieved approximately the same
speedup as two Stratix-IIIs.

4.2.3 Power consumption

For embedded applications that focus on image-processing
algorithms, real-time processing is not the only constraint
for a viable solution. Power consumption is another strict
requirement that must be met. Our FPGA architecture not
only accelerated the mean-shift clustering for real-time
segmentation of images surpassing VGA resolution, but
also benefited from a minimal increase in power con-
sumption as the architecture was scaled to feature more
pipelines. Our experiments are performed on a quad-FPGA
board, therefore, we subtract the idle power consumed by
the three FPGAs that are not used from the total power

J Real-Time Image Proc (2018) 14:379-394

387

450
400 _e”
350 =
300 -
250 -
200 e~
150 =
100 _-
50 — 6
0

]

Speedup
\

0 20 40 60 80 100 120 140
Number of Pipelines

Fig. 8 Linear increase in speedup (Stratix-III E260 vs. single-core
Xeon E5520) vs. number of replicated pipelines

1200

1000

1 Stratix-Ill E260 el
a 8001116 pipeli -~
S pipelines .o 4 Stratix-1ll E260s
B 600 Speedup: 453 //’ 464 pipelines
L Speedup: 1104
Y 400 il
2 2 Stratix-lll E260s
200 o 232 pipelines
o Speedup: 727
0
0 100 200 300 400 500

Number of Pipelines

Fig. 9 Increase in speedup (vs. single-core Xeon E5520) for a multi-
FPGA (Stratix-IIT E260) implementation

consumed by the GiDEL Procstar IV board. We measured
the increase in power consumption while scaling our
architecture. Figure 13 shows the increase in power as
more pipelines were replicated on the Stratix-IV E530
FPGA fabric. The increase in power consumption was
minimal (= 4 Watts) when compared to the amount of
pipelines replicated on the FPGA (= 250 pipelines). The
slope in Fig. 14 provides key insight into the efficiency of
our hardware architecture. For every Watt consumed by
scaling our architecture to incorporate more pipelines, we
accelerated the mean-shift algorithm by 288 times. As a
result of the achieved speedup-per-Watt ratio, we conclude
that our novel architecture is efficiently scaled (from a
power perspective) to parallelize the mean-shift algorithm.

4.2.4 Comparison to GPU platforms

We performed the mean-shift clustering task by evaluating
the PDF gradient over a local neighborhood so that we
could segment images of higher resolution, and compare
our execution time against recently published GPU
implementations. GPU platforms have had considerable
success in parallelizing fine-grained algorithms [32] that
exhibit inherent parallelism. It is not surprising that image

- - DSP block 18-bit elements
¢ ~logic resources
100% -0 - 0--00-0--0- -0
] <&
90% ’ &
80% ‘. o
70% ’ oL
60% 7
50% o
40% ’ »
30% ’ <&
@
20% | s, @
10% 9°°
@
0%
0 30 60 90 120 150 180

Number of Pipelines

Resource Utilization

Fig. 10 Resource utilization as more pipelines are replicated on
Stratix-I1II E260

segmentation has generated much interest in the GPU
community, with many authors efficiently mapping the
algorithm to GPU platforms [14-19]. When compared to
existing CPU software baselines, the mean-shift algorithm
has benefitted from a substantial amount of acceleration on
GPU platforms [33, 17]. GPUs have successfully driven
execution times for images up to VGA resolution
(640 x 480) under the real-time threshold (30 fps). How-
ever, higher-resolution images have not been segmented in
real time. GPUs also consume a relatively high amount of
power in comparison to FPGAs and, therefore, FPGAs
offer a unique and attractive solution to embedded appli-
cations that require low-power consumption. Our archi-
tecture can leverage the parallelization opportunities
offered by the fine-grained, mean-shift clustering algo-
rithm, while also lowering power consumption.

We compared the execution speed of four recently
published image-segmentation GPU implementations
including a GeForce 9800 GT (65 nm) [16], GTX 295
(55 nm) [15] and GTX 580 (40 nm) [18] from Nvidia, as
well a Radeon HD 5850 (40 nm) [19] from AMD, with the
performance of our hardware architecture for different
image sizes (Fig. 15).

The execution times for the mean-shift algorithm are
relatively similar to both our proposed FPGA architecture,
using a single Stratix-IV FPGA (40 nm), and the latest
GPU implementations. However, the average power con-
sumption is the distinguishing factor between the two
platforms. Our proposed architecture has a relatively low
average power consumption even when all resources are
completely utilized (34.6 W), while the reported GPU
power is on the order of 300 Watts. Given that execution
times are similar, normalizing the amount of power con-
sumed to complete the clustering task by the number of
pixels will result in the graph shown in Fig. 16. The FPGA
architecture outperforms the GPU solutions when power is
taken into account. The power advantage of our novel

@ Springer

388 J Real-Time Image Proc (2018) 14:379-394
--@--DSP block 18-bit elements 355
¢ -logic resources % 35

= 100% T B e R T
.2 90% " 2 3 34.5

= e c ‘

© 80% . o by

= 70% s g 3 .

= o e Pl

5 60% , € 335 -

o 50% o R 2

/ 2 P

= gg:f / S 33

o o .l 3 s

g 20% 7 @ & 325

£ 10% 9o o 2

0% g 32 2
0 30 60 90 120 150 180 210 240 270 8 o .
L 80 31.
Number of Pipelines] o
g 315

Fig. 11 Resource utilization as more pipelines are replicated on < 30.5

Stratix-IV E530

1200
o Stratix-1IV E530 .®
1000 _o_.stratix-1ll E260
800 P
o) 47 =1 Stratix-V FPGA
T 600
=3 2 Stratix-Ill FPGAs
“ 400 e
200 &
.2
0®
0 100 200 300 400 500

Number of Pipelines

Fig. 12 Speedup across two FPGA platforms (vs. single-core Xeon
E5520)

scalable architecture over GPU implementations demon-
strates that our design is a better candidate for embedded
applications where power is an essential limiting factor.
Furthermore, as shown in Fig. 9, our architecture is scal-
able beyond a single FPGA, with a close-to-linear speedup
increase. According to the trend exhibited in Fig. 9, a HD
image (1920 by 1080) can be segmented in real time (30
fps) using eight Stratix-IV FPGAs on two GiDEL PROC-
Star IV boards.

4.2.5 Future device trends

The apparent trend in newly emerging GPU and FPGA
devices is geared towards combining processing technol-
ogies of higher density, higher performance and lower
power. For example, the newest Stratix 10 FPGAs (2013)
from Altera are built on the Intel 14 nm Tri-Gate process,
and offer significantly increased performance with respect
to previous generation devices, while lowering power
consumption [34]. By contrast, the state of the art GPU

@ Springer

0 50 100 150 200 250 300

Number of Pipelines

Fig. 13 Increase in power consumption on Stratix-IV E530 as more
pixels are clustered in parallel

1000
900
800 °
700
600
500
400 °
300

Speedup

200 ®

100
®

0
30 31 32 33 34 35 36 37

Average Power Consumption {Watts)

Fig. 14 Resulting speedup as average power consumption is
increased on Stratix-IV E530

technology, such as the Tegra K1 from NVIDIA [35], is
currently targeting mobile platforms by maintaining high
performance while lowering power consumption. We pre-
dict that technological advances in FPGA fabrication could
have a considerable impact on our mean-shift architecture.
The additional DSP multiplier blocks coupled with the
increase in maximum operating frequency could facilitate
the extraction of a higher degree of parallelism from the
fine-grained, mean-shift algorithm. Our scalable wide
parallelism approach, where pipelines are replicated on the
FPGA fabric to accelerate execution time, would further
benefit from the increase in available resources. However,
GPU implementations of the mean-shift algorithm, which

J Real-Time Image Proc (2018) 14:379-394

389

6.5 °
6 k\
AMD
55 HD5850
5 GTX
4.5 580 A
4 /!
3.5 - GeForce 4 ’
3 - 9800GT M L
2.5 % ¥
2 K v e

e =]
15 Al & OF

Execution time (s)

05 _: @ 9. ¢ Stratix-IvV
. - ‘6-
. gﬁ 2 E530 FPGA
0 1000000 2000000 3000000

Image Resolution (number of pixels)

Fig. 15 Image-segmentation execution times as a function of image
resolution

1.2
17 Lo®
A

\ ° GTX580 GPU
0.9]

0.8 \
0.7 %
0.6 ®
05 ¢ R
0.4 >

¢ Stratix-IV E530 FPGA

Power (mWatts)/Pixel

0.2 T

0.1
emsenssasnsnsanmsnanssishiacisins *

0 1000001 2000000
Total number of pixels

3000000

Fig. 16 Average power consumed for clustering the entire image
normalized by the number of pixels in the image

have had limited impact on embedded applications, could
now provide an attractive alternate solution to FPGA
mean-shift architectures. New lower-power, hybrid GPUs,
such as the Tegra K1 from NVIDIA, could be a potential
competitor for embedded systems that target real-time
segmentation of HD images.

4.3 Visual results

Four different grayscale images labeled cameraman, coins,
rice, and flowers were used to quantify the clustering
accuracy of our hardware architecture. The four images are
very different, ensuring that a variety of clustering tasks
can be solved using the mean-shift algorithm mapped to
our hardware architecture. The clustering tasks range from
segmenting small scattered objects over a uniform back-
ground to objects that occupy a large surface of the input
image in front of a non-uniform background. Each figure
below will show the input grayscale image along with the

Original grayscale image
e

Segmented images using
fixed-point architecture

kernel size =512 kernel size =1024

Fig. 17 Cameraman (large-size object over a uniform background);
FPGA segmentation results for different kernel sizes

segmentation results for four different kernel sizes (Figs.
17, 19, 21, 23). 3D snapshots of pixel movements over
multiple iterations are shown in Figs. 18, 20, 22 and 24.
Each 3D representation tracks the pixels’ movement as
they progressively converge to the modes of the dataset.
The clusters that form in the 3D space represent distinct
segments in the original image. The final segmented image
is constructed by coloring the pixels in each cluster with
their average grayscale color. The kernel size (free
parameter) controls the number of modes that are formed.
A smaller kernel size will produce a relatively large
number of modes, resulting in the image being segmented
into many smaller sections, while a larger kernel size
ensures that the number of segments remains relatively
low.

We also conducted an error analysis to quantify the
accuracy of the clustering results. A single-precision,
floating-point mean-shift software baseline was used to
detect the errors incurred by our fixed-point architecture.
Our hardware architecture uses fixed-point cores for all
mathematical operations along with a LUT that approxi-
mates the exponential function for the Gaussian kernel
computation. The mean-squared error (MSE) is used to
quantify the extent of the errors resulting from our fixed-
point approximations. The MSE measures the difference
between the final positions of the clustered pixels resulting
from our hardware architecture, and the floating-point
mean-shift software baseline. Table 1 records the MSE for

@ Springer

390

J Real-Time Image Proc (2018) 14:379-394

Fig. 18 Cameraman; pixels clustering in 3D over multiple iterations

Table 1 MSE measured

"] Image MSE Smallest
between fixed-point architecture cluster
and floating-point software radius

baseline

Cameraman 4.2 213

Coins 3.8 156
Rice 33 57
Flower 4.6 202

each of the four grayscale images. The radius of the
smallest cluster for each test image is also measured and
reported in Table 1. Since the MSE of each segmented
image is always less than the radius of the smallest cluster,
we conclude that the majority of pixels converge toward
the same clusters in hardware and in software. Also, the
number of clusters formed and their locations are identical
in hardware and software. The differences in final pixel
locations that occur between software and hardware result
from the quantized distance that pixels travel over each
iteration in our fixed-point architecture. Pixels move in the
correct direction towards their closest mode, however, the
distance traveled is different in software than in our fixed-
point architecture. Therefore, even though pixels converge
to the correct mode, the final location inside the cluster will

@ Springer

Original grayscale image

Segmented images using
fixed-point architecture

kernel size =1024

kernel size =512

Fig. 19 Coins (medium-size objects over a uniform background);
FPGA segmentation results for different kernel sizes

Fig. 20 Coins; pixels clustering in 3D over multiple iterations

J Real-Time Image Proc (2018) 14:379-394

391

Original grayscale image

Segmented images using
fixed-point architecture

AS
kernel size =512 kernel size =1024

Fig. 21 Rice (small-size objects scattered over a uniform back-
ground); FPGA segmentation results for different kernel sizes

be different in hardware and software. For each test image,
if the calculated MSE would be greater than the radius of
the smallest cluster, we would conclude that some pixels
are converging to the wrong cluster, and that our precision
has a negative impact on the performance of the mean-shift
algorithm. However, for all our test images, the MSE is
consistently far less than the radius of the smallest cluster
as shown in Table 1, and therefore, the floating-point
approximations do not affect the segmentation results.

Another advantage of our design is the possibility of
tailoring the dynamic range of each dimension, which is
comparable to assigning different clustering weights in the
x, y, or z dimensions. By discriminating between the three
dimensions, we can force pixels to shift more in one of the
three dimensions and better control the shape of each
segment. If objects resemble a spherical shape, moving
pixels by the same distance in each direction (3D) is sug-
gested. However, if objects deviate from a spherical shape,
the user should control the discriminative clustering, and
allow more movement along the x, y or z directions. For
example, with the cameraman grayscale image, we show
that by assigning a larger dynamic range in the x dimension
we can better segment the cameraman from the background
(Fig. 25).

Fig. 22 Rice; pixels clustering in 3D over multiple iterations

Original grayscale image

)

Segmented images using
fixed-point architecture

had k2

kernel size =256 kernel size =512

had £

kernel size =1024 kernel size =2048

Fig. 23 Flower (large-size object in front of a non-uniform
background); FPGA segmentation results for different kernel sizes

@ Springer

392

Fig. 24 Flower; pixels clustering in 3D over multiple iterations

5 Conclusions

The mean-shift algorithm provides a non-parametric
and unsupervised clustering solution to image seg-
mentation that is used in a multitude of applications
such as object recognition, tracking, and quality control
to name just a few. Furthermore, the mean shift is a
gradient-ascent algorithm that exhibits an adaptive step
size, helping users avoid the step-size selection prob-
lem. Although the mean-shift approach yields good
results for image segmentation, its computational
challenges have prohibited its impact in the image-
processing domain, with runtimes that have precluded
real-time applications for images beyond VGA resolu-
tion (640 x 480).

@ Springer

J Real-Time Image Proc (2018) 14:379-394
'-.

S
v

i

Fig. 25 Discriminative clustering along the x direction

This paper proposes a scalable architecture that accel-
erates the Gaussian mean-shift algorithm by allocating
dedicated hardware pipelines to cluster multiple pixels in
parallel. Due to the fine granularity of the mean-shift
algorithm, we can evaluate the PDF gradient at different
locations in parallel and shift pixels toward their closest
mean simultaneously. Our scalable architecture consists of
fixed-point pipelines that are replicated to effectively use
all hardware resources of the FPGA fabric. The architec-
ture is tested on both PROCStar III and PROCStar IV
boards using Stratix-III E260 and Stratix-IV E530 FPGAs,
respectively. The small overhead penalty associated with
scaling the architecture to incorporate multiple FPGAs
demonstrates that our design can be further scaled to span
multiple boards and can potentially segment high-defini-
tion images (1920 by 1080) on two GiDEL PROCStar IV
boards. Another important achievement of our design is
low-power consumption. Our architecture running on one
Statix-IV FPGA, as part of the GiDEL ProcStar IV board,
consumes less than 35 Watts of average power. The
achieved speedup together with the low-power consump-
tion demonstrates that our architecture is an excellent
platform for embedded applications. When compared to the
most current GPU implementations, our design achieved
comparable speedup while lowering power consumption.
The segmentation results were compared to a floating-point
C code baseline to ensure no errors resulted from our fixed-
point approximations.

Acknowledgments This work was supported in part by the /UCRC
Program of the National Science Foundation under Grant Nos. EEC-
0642422 and 1IP-1161022.

References

1. Fukunaga, K.L.D.H.: The estimation of the gradient of a density
function, with application in pattern recognition. In: IEEE Trans.
Information Theory (IT), vol. 21, 32-40 (1987)

J Real-Time Image Proc (2018) 14:379-394

393

10.

11.

12.

13.

14.

15.

18.

20.

21.

. Bottger, J.,

. Parzen, E.: On estimation of a probability density function and

mode. Ann. Math Stat. 21(1), 1065-1076 (1962)

. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE

Trans. Pattern Anal. Mach. Intell. 17(8), 790-799 (1995)

. Comaniciu, D.P.M.: Mean shift analysis and applications. Proc

Seventh International Conference on Computer Vision. 1(1),
1197-1203 (1999)

. Comaniciu, D.P.M.: Mean shift: A robust approach toward feature

space analysis, ieee trans. pattern analysis and machine intelligence.
IEEE Trans. Pattern Anal. Mach .Intell. 24(5):603-619 (2002)

. Comaniciu, D.P.M., Ramesh, V.: Real-time tracking of non-rigid

objects using mean shift. Proc 2000 IEEE Conference on Com-
puter Vision and Pattern Recognition. 2(1):142—149 (2000)

. Bai, P, Fu, M.C.Y.H.C.: Improved mean shift segmentation

scheme for medical ultrasound images. Fourth Intern. Conf. Bioinf.
Biomed. Eng. iCBBE). 1(1), 14 (2010)

Schafer, G.L.A.V.D.S.M.A.: Three-dimensional
mean-shift edge bundling for the visualization of functional
connectivity in the brain. IEEE Trans Vis. Comp. Gr. 20(3),
471-480 (2014)

. Yamashita, A., Ito, T.K.H.A.Y.: Human tracking with multiple

cameras based on face detection and mean shift. IEEE Intern.
Conf. Robot Biom. 1(1), 1664-1671 (2011)

Shotton, J., Blake, R.C.A.: Multiscale categorical object recog-
nition using contour fragments. IEEE Trans. Pattern Anal. Mach.
Intell. 30(7), 1270-1281 (2008)

Deilamani, M.J.R.N.A.: Moving object tracking based on mean
shift algorithm and features fusion. Artificial Intelligence and
Signal Processing (AISP), 2011 International Symposium on.
(1):48-53 (2011)

Du-Ming, Tsai, J.Y.L., Yuan-Ze.: Mean shift-based defect
detection in multicrystalline solar wafer surfaces. IEEE Trans.
Indus. Inf. 7(1), 125-135 (2011)

Ranchin, T.M.M., Wald, L.: The arsis method: a general solution
for improving spatial resolution of images by the mmean of
sensor fusion. Fusion of Earth Data: Merging Point Measure-
ments, Raster Maps and Remotely Sensed Images (EARSeL)
1(1):53-58 (1996)

Faro, A.S.P., Giordano, D.: Integrating unsipervised and super-
vised clustering methods on a gpu platform for fast image seg-
mentation. 3rd International Conference on Image Processing
Theory, Tools and Applications (IPTA) 85-90 (2012)

Alexey, A., FWBD Tomas Kulvicius: Facing the Multicore-
Challenge, Real-Time Image Segmentation on a GPU. Lecture
Notes in Computer Science, vol. 6310, 1st edn. Springer, Berlin
Heidelberg (2010)

. Fulkerson, B., SS: Really quick shift: Image segmentation on a

gpu. In: Kutulakos, K.N. (ed.) Trends and Topics in Computer
Vision. Lecture Notes in Computer Science, vol 6554, 350-358.
Springer, Berlin Heidelberg (2012)

. Jun Zhang, X.L., Luo, S.: Weighted mean shift object tracking

implemented on gpu for embedded sustems. Intern. Conf. Control
Eng. Commun. Technol. 1(1), 982-985 (2012)

F Galluzzo, H.H.N.S., Barbosa D.: Segmentation framework for
3d echocardiography. IEEE International Ultrasonics Symposium
(IUS) 2639-2642 (2012)

. Feng W.Y.Z, Xiang, H.: An improved graph-based image seg-

mentation algorithm and its gpu acceleration. 2011 Workshop on
Digital Media and Digital Content Management (DMDCM)
237-241 (2011)

Rao, S., de Martins, A.M., Principe, J.C.: Mean shift: An infor-
mation theoretic perspective. Trans. Pattern Anal. Mach. Intell.
30(3), 222-230 (2009)

Renyi, A.: On measure of entropy and information. Proc Fourth
Berkeley Symp Math Stat and Prob. 1(1), 547-561 (1961)

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Carreira-Perpinan, M.A.: Acceleration strategies for gaussian
mean-shift image segmentation. IEEE Comp. Soc. Conf. Comp.
Vision Pattern Recognit. 1(1), 1160-1167 (2006)

Saegusa, T.T.M.: An fpga implementation of k-means clustering
for color images based on kd-tree. Intern. Conf. Field Program
Logic Appl (FPL) 1(1), 1-6 (2006)

Wang, H., HLIW JZhao.: Parallel clustering algorithms for image
processing on multi-core cpus. Intern. Conf. Comp. Sci. Softw
Eng. 2(1), 450-453 (2008)

Ali, U., Malik, KM.M.B.: Fpga/soft-processor based real-time
object tracking system. Fifth South. Conf. Program. Logic (SPL)
1(1), 33-37 (2009)

Pandey, M.S.J.U.K.S.R., Borgohain, D.: Real-time histogram
computation in kernel-based tracking system. International Con-
ference on Advanced Electronic Systems (ICAES) 171-174
(2013)

Trieu, D.B.K.T.M.: An implementation of the mean-shift filter on
fpga. Intern. Conf. Field Program. Logic Appl. (FLP) 219-224
(2011)

Lu, X.S.Y., Ren, D.: Fpga-based real-time object tracking for
mobile robot. Intern. Conf. Audio Lang. Imag. Process. (ICALIP)
1657-1662 (2010)

Stolkin, R., Florescu, M.B.C.H.L.: Efficient visual servoing with
the abcshift tracking algorithm. IEEE Intern. Conf. Robot.
Automation (ICRA). 1(1), 3219-3224 (2008)

Carreira-Perpinan, M.A.: Gaussian mean-shift is an em algo-
rithm. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 767-776
(2007)

Kirchgessner, R.A.G., Lam, H.: Reconfigurable computing mid-
dleware for application portability and productivity. Intern. Conf.
Appl-Spec. Syst., Arch Process. (ASAP). 1(1):211-218 (2013)
Kalgin, K.: Implementation of fine-grained algorithms on
graphical processing units. 10th International Conference on
Prallel Computing Technologies 207-215 (2009)

Sirotkivic, J., Dujmic, V.P.H.: Accelerating mean-shift image
segmsegmentation ifgt on massively parallel gpu. 36th Inter-
national Conference on Information & Communications Tech-
nology Electronics and Microelectronics (MIPRO) 279-285
(2013)

Altera, C.: Altera announces breakthrough advantages with
generation 10; http://newsroom.altera.com/press-releases/nr-
altera-generation-10.htm. Tech. rep., Altera (2013)

Coombes, D.: Tegra k1 whitepaper. Tech. rep, NVIDIA (2014)

Stefan Craciun is a Ph.D. can-
didate and research assistant at
NSF Center for High-Perfor-
mance Reconfigurable Comput-
ing (CHREC) at the University
of Florida, ECE department. He
completed his M.S. degree in
Electrical and Computer Engi-
neering at the University of
Florida in 2009. Currently, he is
pursuing his Ph.D. degree under
the supervision of Prof. Alan D.
George, the founder of the NSF
CHREC center at the University
of Florida, and the co-supervi-

sion of Dr. Jose C. Principe, the founder of the CNEL center at the
University of Florida. His research topic specializes in FPGA-based
architectures that enable efficient mapping of image-processing
algorithms for real-time execution. His applications focus on low-
power embedded systems for onboard information extraction such as

@ Springer

http://newsroom.altera.com/press-releases/nr-altera-generation-10.htm.
http://newsroom.altera.com/press-releases/nr-altera-generation-10.htm.

394

J Real-Time Image Proc (2018) 14:379-394

edge detection and feature extraction as well as high-level decision
making such as object recognition and tracking applications.

Robert Kirchgessner is a Ph.D. candidate and research assistant at
NSF Center for High-Performance Reconfigurable Computing
(CHREC) at the University of Florida, ECE department. He received
his B.S. degrees in Electrical and Computer Engineering, and the
M.S. degrees in Electrical Engineering from the University of Florida.
He is currently pursuing his Ph.D. degree under the supervision of
Prof. Alan D. George. His research interests include high-perfor-
mance reconfigurable architectures, FPGA-based application porta-
bility and productivity tools, and FPGA-based graph-processing
architectures and applications.

Alan D. George is Professor of
ECE at the University of Flor-
ida, where he founded and
directs the NSF Center for
High-Performance Reconfigura-
ble Computing (CHREC). He
received the B.S. degree in CS
and the M.S. in ECE from the
University of Central Florida,
and the Ph.D. in CS from the
Florida State University. His
research interests focus upon
high-performance architectures,
networks, systems, services, and
applications for reconfigurable,
parallel, distributed, and fault-tolerant computing. Dr. George is a
Fellow of the IEEE.

Herman Lam is an Associate
Professor of Electrical and
Computer Engineering at the
University of Florida and the
Associate Director of CHREC,
the NSF Center for High-Per-
formance Reconfigurable Com-
puting. He has over 25 years of
research and development
experience in the areas of dis-
tributed computing, service-ori-
ented computing, database
management, and most recently
high-performance and reconfig-
urable computing. He is the co-
developer of the Novo-G reconfigurable supercomputer, the most

@ Springer

powerful reconfigurable computer in the academic world. Novo-G,
containing over 400 top-of-the-line FPGAs, serves as a testbed for the
study of methods and tools for the acceleration and deployment of
scientifically impactful big-data applications on a scalable heteroge-
neous system.

Jose C. Principe is Distin-
guished Professor of Electrical
and Biomedical Engineering at
the University of Florida since
2002. He is BellSouth Professor
and Founding Director of the
University of Florida Computa-
tional Neuro-Engineering Lab-
oratory (CNEL). He joined the
University of Florida in 1987,
after an eight-year appointment
as Professor at the University of
Aveiro, in Portugal. Dr. Principe
holds degrees in electrical
engineering from the University
of Porto, Portugal, University of Florida, USA (Master and Ph.D.),
and Honoris Causa degrees from the Universita Mediterranea in
Reggio Calabria, Italy, Universidade do Maranhao, Brazil and Aalto
University, Finland.

	A real-time, power-efficient architecture for mean-shift image segmentation
	Abstract
	Introduction
	Background
	Related research

	Mathematical background
	Mathematical framework

	Hardware architecture
	Approach
	Pipeline architecture

	Results and analysis
	Middleware
	Experimental results
	Speedup
	Resource utilization
	Power consumption
	Comparison to GPU platforms
	Future device trends

	Visual results

	Conclusions
	Acknowledgments
	References

