
ORIGINAL RESEARCH PAPER

A real-time, power-efficient architecture for mean-shift image
segmentation

Stefan Craciun • Robert Kirchgessner •

Alan D. George • Herman Lam • Jose C. Principe

Received: 30 April 2014 / Accepted: 29 September 2014 / Published online: 16 October 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract Image segmentation is essential to image pro-

cessing because it provides a solution to the task of sepa-

rating the objects in an image from the background and

from each other, which is an important step in object rec-

ognition, tracking, and other high-level image-processing

applications. By partitioning the input image into smaller

regions, segmentation performs the balancing act of

extracting the main areas of interest (objects and important

features) that further help to interpret the image, while

remaining immune to irrelevant noise and less important

background scenes. Image-segmentation applications

branch off into a plethora of domains, from decision-

making applications in computer vision to medical imaging

and quality control to name just a few. The mean-shift

algorithm provides a unique unsupervised clustering solu-

tion to image segmentation, and it has an established record

of good performance for a wide variety of input images.

However, mean-shift segmentation exhibits an unfavorable

computational complexity of OðkN2Þ, where N represents

the number of pixels and k the number of iterations. As a

result of this complexity, unsupervised image segmentation

has had limited impact in autonomous applications, where

a low-power, real-time solution is required. We propose a

novel hardware architecture that exploits the customizable

computing power of FPGAs and reduces the execution time

by clustering pixels in parallel while meeting the low-

power demands of embedded applications. The architecture

performance is compared with existing CPU and GPU

implementations to demonstrate its advantages in terms of

both execution time and energy.

Keywords FPGA � Reconfigurable computing �
Hardware acceleration � Mean-shift � Unsupervised
clustering � Image segmentation � Gradient density
estimation

1 Introduction

The mean-shift algorithm was proposed by Fukunaga and

Hostetler [1] as a non-parametric clustering technique

based on the concepts of kernel density estimation previ-

ously developed by Parzen [2]. The motivating factor

behind this algorithm was the lack of information available

about the true probability-density function. Fukunaga used

the existing Parzen approach to obtain a differentiable

density estimate and then computed the gradient of the

density. The mean-shift method uses the gradient estimate

of the probability-density function (PDF) as a clustering

force that moves the data points in a given dataset towards

the closest density peak (mode). Every point moves by an

amount equal to the density gradient estimated at that

location over multiple iterations until all data points con-

verge to their closest mode. The mean-shift algorithm has

been intuitively called a hill-climbing process, where the

hills are formed by the surface of the PDF, the peaks are

the modes of the dataset, and all points move in the

direction of the estimated gradient (uphill).

S. Craciun (&) � R. Kirchgessner � A. D. George � H. Lam
Department of Electrical and Computer Engineering, NSF

Center for High-Performance Reconfigurable Computing

(CHREC), University of Florida, Gainesville, FL 32611-6200,

USA

e-mail: craciun@hcs.ufl.edu

J. C. Principe

Computational Neuro-Engineering Laboratory (CNEL),

Department of Electrical and Computer Engineering, University

of Florida, Gainesville, FL 32611-6200, USA

123

J Real-Time Image Proc (2018) 14:379–394

https://doi.org/10.1007/s11554-014-0459-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-014-0459-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-014-0459-1&domain=pdf
https://doi.org/10.1007/s11554-014-0459-1

1.1 Background

The mean-shift algorithm has made a considerable impact

in the clustering domain because it provides a non-para-

metric solution and does not require any prior knowledge

about the distribution of the input data. The mean-shift

algorithm has been labeled unsupervised and as a result can

be used for autonomous applications, where the user is not

required to provide any input parameters. In 1995, Cheng

[3] established a rigorous mathematical background and

gave the gradient estimation method its recognized mean-

shift name. Fukunaga and Hosteler originally applied their

algorithm to kernel smoothing and signal de-noising. It was

not until the early 2000s that the mean-shift algorithm was

applied to image processing. The work of Comaniciu and

Meer [4–6] demonstrated the performance advantages of

the mean-shift algorithm by efficiently applying it to seg-

ment images, track objects, and find contours/edges. The

mean-shift algorithm has since been primarily applied to

the image-processing domain because it provides an

unsupervised solution to image segmentation. Mean-shift

segmentation has been successfully used in medical

imaging for volume calculation, malign tissue localization

[7], and detection of functional connectivity in the brain

[8]. In computer vision, image segmentation has been used

as the initial step for object recognition such as face rec-

ognition [9] and tracking [10, 11]. In quality control, image

segmentation using the mean-shift algorithm has been

proven to be efficient at locating wafer defects [12].

The goal of image segmentation is to cluster all pixels to

discrete locations, and thus quantize the input image into

pixel subsets that share common visual characteristics such

as a distinct structure, color, or texture. Using the mean-

shift algorithm, the forefront objects are separated by

contrast from a uniform background. This method helps in

analyzing and interpreting the image, transforming it from

a random collection of pixels to a unique arrangement of

recognizable objects. However, the main challenge that

impedes the impact of the mean-shift algorithm for

embedded applications is its computational complexity.

The creators of the algorithm, Fukunaga and Hostetler,

recognized from the very beginning that their algorithm

‘‘may be costly in terms of computer time and storage.’’

Their assessment holds true even for current computational

platforms as a result of the ever-increasing resolution of

images, a well-known and documented trend for the past

decade [13].

In this paper, we design a scalable, power-efficient, and

pipelined hardware architecture that addresses the prohib-

itive execution time challenge of the mean-shift algorithm.

Our architecture exploits the intrinsic deep and wide par-

allelism of the algorithm. We leverage the inherent coarse

granularity of the mean-shift algorithm by dedicating

independent hardware pipelines to cluster multiple pixels

in parallel (wide parallelism). The hardware architecture

transforms the mean-shift algorithm into a streaming

application, allowing pairwise interactions between pixels

to accumulate every clock cycle (deep parallelism) and, as

a result, accelerate the estimation of the PDF gradient. The

platform used is ideal for the algorithm’s fine granularity,

consisting of a gate-array fabric on which the pipelines can

be replicated, so that each one can process individual pixel

movement over multiple iterations. Our approach is to first

replicate the pipelines to effectively utilize all the resources

on one FPGA, and then further scale-up to a board-level

architecture (four coupled FPGAs). We compare the exe-

cution time and power consumption of our fixed-point

architecture with the most up-to-date GPU implementa-

tions of image segmentation [14–19] and also a CPU

software baseline. The ideal combination of superior exe-

cution times coupled with considerably lower power makes

our design well suited for embedded autonomous

applications.

The organization of the paper proceeds by first exploring

the related research (Sect. 1.1), and then providing the

mathematical background and a brief overview of the

baseline algorithm (Sect. 2). In Sect. 3, the proposed par-

allel architecture is presented in detail. Sect. 4 features

numerical and visual results, and in Sect. 5 we draw con-

clusions and key insight from this work.

1.2 Related research

From an information-theoretic perspective, the mean-shift

algorithm has been proven to minimize Renyi’s cross

entropy [20]. The cross information forces exerted by the

original dataset on each sample help cluster the points around

the modes. Renyi’s cross entropy [21] reaches its minimum

value when all points have converged to their respective

modes. Furthermore, the mean-shift algorithm has an

important advantage over other algorithms based on gradi-

ent-ascent or decent cost functions. The step size, which is a

free parameter associated with gradient-based algorithms,

does not exist. The step-size parameter is embedded in the

mean-shift method, and thus ensures that points move faster

during the initial iterations and slow down as they approach

their modes. The well-known problem of step-size selection

is thus avoided. Multidimensional clustering has been a

major topic of study in statistical data analysis [22, 23] with

numerous research papers proposing theoretical methods of

accelerating the clustering process. These methods include

techniques to reduce data-dimensionality, improvements to

distance functions, and techniques for stopping before the

final convergence. Other authors have transitioned from

mainstream computing platforms to many-node CPUs [24]

and GPUs [14–19] in an effort to map the clustering

380 J Real-Time Image Proc (2018) 14:379–394

123

algorithms to hardware more efficiently and leverage the

intrinsic parallelism. Recently, efforts to accelerate the

mean-shift algorithm have focused on FPGA technology and

have achieved the most promising results to date for

embedded applications [25]. However, FPGA implementa-

tions of the mean-shift algorithm have exclusively targeted

tracking applications rather than image segmentation. In

contrast to segmentation applications, which cluster the

entire image pixel set, tracking applications require only a

small subset of pixels in the input image to be clustered. The

subset corresponds to the pixels inside a rectangular frame

centered over the object that is being tracked. FPGA archi-

tectures have been successfully used to track objects in real

time as part of embedded system applications [26–28].

However, despite these efforts, the trend of increasing image

resolutions makes the mean-shift algorithm impractical for

embedded real-time image-segmentation applications when

image sizes exceedVGA resolution (640 by 480). Themean-

shift algorithm scales poorly with both the number of pixels

N 2 and number of iterations (k) as OðkN2Þ. Although per-

formance is reliable for awide range of input images yielding

good segmentation results, the execution time continues to

prohibit this algorithm from approaching the real-time bar-

rier for images above VGA resolution. Furthermore, the

power required to segment images on conventional CPU or

GPU platforms has impeded the algorithms impact in the

embedded arena where it is most needed [29]. Our proposed

solution leverages the fine granularity of the algorithm by

evaluating the PDF gradient at multiple data points in par-

allel, and thus clusters multiple pixels in parallel. The FPGA

fabric provides the ideal low-power computational platform

on which pixels can be processed in parallel, resulting in a

decrease in computational complexity and real-time seg-

mentation of images above VGA resolution.

2 Mathematical background

In 1995, Cheng et al. [3] coined the gradient estimation of a

density function proposed by Fukunaga and Hostetler [1] as

the ‘‘mean-shift’’ algorithm. This term is now exclusively

used when referring to clustering methods based on the

gradient estimation. The term ‘‘mean-shift’’ has endured

the test of time because it describes the algorithm in a very

simple and intuitive form. The data points, which in our

case refer to pixel values, move in an iterative process or

‘‘shift’’ towards the closest local density peak or local

‘‘mean.’’ In the research literature, some authors have

described the mean-shift algorithm as a mode-seeking

algorithm [3] because the data points cluster around the

nearest density maxima. Other authors have intuitively

called the mean-shift a hill-climbing technique [30]. The

hills refer to the density surface of the data that exhibits

peaks at locations where points have a high density, and is

flat in regions where data points are sparse. On this prob-

ability surface, each data point travels in the direction of

the estimated gradient, up the probability hill, until it

reaches the closest peak and becomes stable.

2.1 Mathematical framework

We start by describing the Parzen window technique,

which is the most popular method to evaluate the density

function of a random variable. The multivariate kernel

density estimator for a 3D space consisting of n samples

and kernel size h is shown in Eq. (1):

f̂ ð x!Þ ¼ 1

nh3

Xn

i¼1

K
x!� xi

!
h

� �
ð1Þ

For radially symmetric kernels, KðxÞ ¼ ck;3kðkxk2Þ, where
ck;3 is the 3D normalization constant ensuring that KðxÞ
integrates to 1. The kernel density can be rewritten as

shown in Eq. (2):

f̂c;kð x!Þ ¼ ck;3

nh3

Xn

i¼1

k
x!� xi

!
h

� �����

����
2

 !
ð2Þ

The next step is to find the peaks (modes) of the density

function by equating the gradient to zero:

rf̂ ð x!Þ ¼ 0 ð3Þ

rf̂ ð x!Þ ¼ 2ck;3

nh3

Xn

i¼1

ð x!� xi
!Þk0 x!� xi

!
h

� �����

����
2

 !
¼ 0

ð4Þ

By substituting in the above equation gðsÞ ¼ �k0ðsÞ the

gradient can be written as shown in Eqs. (5) and (6):

rf̂ ð x!Þ ¼ 2ck;d

nh3

Xn

i¼1

ðxi!� x!Þg x!� xi
!

h

� �����

����
2

 !
¼ ð5Þ

¼ 2ck;d

nh3

Xn

i¼1

g
x!� xi

!
h

����

����

����

����
2

 !" # Pn

i¼1

xi
!g x!�xi

!
h

����

����

����

����
2

 !

Pn

i¼1

g x!�xi
!

h

����

����

����

����
2

 ! � x

2

66664

3

77775

ð6Þ

In Eq. (6), the first term represents the density estimation at

point x, while the second term is the mean shift. The most

widely used kernel when estimating the PDF is the

Gaussian kernel:

J Real-Time Image Proc (2018) 14:379–394 381

123

Kð x!Þ ¼ 1ffiffiffiffiffiffi
2p

p
r
e

� x!2

2r2

� �
ð7Þ

The kernel size previously labeled h is now substituted by

the symbol r. The resulting mean-shift formula using a

Gaussian kernel is shown in Equation (8):

mð x!Þ ¼

Pn

i¼1

xi
!e�

ð x!�xi
!

Þ2

2r2

Pn

i¼1

e
�ð x!�xi

!
Þ2

2r2

ð8Þ

For image-segmentation applications, the input data set is

represented by grayscale images. The pixels of the input

image are clustered in a three-dimensional space, where

each pixel has a row and column location (x, y coordinate)

and a grayscale value (z coordinate).

pixel
		! ¼ ½x; y; z� ð9Þ

Each data point shifts by an amount equal to the gradient of

the PDF estimated at its current location. The amount of

pixel movement in each of the three dimensions is

expressed in Eqs. (10–12). It is important to note that the

pixel movement in each of the three dimensions is

independent.

xj
new ¼

Pn

i¼1

xiexp
�

pixeli
			!

�pixelj
			!���

���
���

���
2

2r2

Pn

i¼1

exp
�

pixeli
			!

�pixelj
			!���

���
���

���
2

2r2

ð10Þ

yj
new ¼

Pn

i¼1

yiexp
�

pixeli
			!

�pixelj
			!���

���
���

���
2

2r2

Pn

i¼1

exp�
pixeli
			!

�pixelj
			!���

���
���

���
2

2r2

ð11Þ

zj
new ¼

Pn

i¼1

ziexp
�

pixeli
			!

�pixelj
			!���

���
���

���
2

2r2

Pn

i¼1

exp
�

pixeli
			!

�pixelj
			!���

���
���

���
2

2r2

ð12Þ

3 Hardware architecture

The deep parallelism of the mean-shift algorithm along

with its intrinsic fine granularity makes it well suited for

hardware acceleration. The algorithm evaluates the PDF

gradient at every data point and moves that point in the

direction of the gradient. The PDF gradient estimation is

computationally independent at each data point, providing

a parallelization advantage that can be leveraged through

our hardware architecture. Using dedicated hardware

pipelines to compute the PDF gradient at multiple data

points in parallel allows us to shift pixels simultaneously

towards their closest mode. Theoretically, all data points

could be clustered in parallel given unlimited hardware

resources; however, for existing reconfigurable platforms,

this task becomes impossible for higher-definition images

where the pixel count surpasses two million. An efficient

approach is to divide the input image into smaller sections

where all pixels can be clustered in parallel. The size of

each section depends on the amount of hardware resources

available on the FPGA.

3.1 Approach

The concept diagram in Fig. 1 explains the hardware

mapping approach. The input image stored in external

memory is partitioned into sections that are transferred to

Block RAM (BRAM) in consecutive order. The size of the

sections depends on the amount of BRAM available on the

FPGA. A batch of pixels from BRAM are serviced by an

equal number of pipelines. These are the pixels clustered in

parallel. Each pipeline shifts its dedicated pixel over mul-

tiple iterations from the original position in the input

image, represented by its x, y coordinates and grayscale

Fig. 1 Hardware mapping of the mean-shift algorithm using dedi-

cated pipelines to cluster pixels in parallel

382 J Real-Time Image Proc (2018) 14:379–394

123

value, to the closest mode. When all pixels in the batch

have converged to their respective modes, the final loca-

tions of the clustered pixels are stored back to an external

memory, and the next batch is serviced. In our experi-

mental results section, the mean-shift algorithm is indi-

vidually mapped to two different FPGAs, first a Stratix-III

and then a Stratix-IV from Altera. We show that the larger

FPGA can parallelize the clustering task over a larger area

of the image. The architecture is then further scaled to

include multiple FPGAs using a divide and conquer

approach. Our results prove that there is a linear relation-

ship between the number of pipelines used to cluster the

pixels in the image and the overall acceleration of the

algorithm’s execution time. The only requirement for

scaling our architecture over multiple FPGAs is that each

FPGA must have a copy of the original image.

Another important step of the mean-shift algorithm that

tailors the algorithm to hardware acceleration is the

Gaussian kernel accumulation defined in Eqs. (10–12).

Given a local neighborhood of pixels, the PDF gradient is

an accumulation of pairwise kernel computations between

the point at which the PDF gradient is calculated (pixelj)

and all of the pixels in the local neighborhood (pixeli) as

shown in Equations (10–12). In these equations, the local

neighborhood is composed of pixels 1 to n. Since the kernel

function can be mapped to a pipelined architecture, as is

the case for our design, the PDF gradient computation is

transformed into a streaming application. All data points

that belong to the local neighborhood are streamed from

memory, allowing the accumulation of a new pairwise

kernel computation at every clock cycle. Furthermore,

since the batch of consecutive pixels that are simulta-

neously clustered share the local neighborhood, the same

input data is streamed from memory to each pipeline. All

pipelines require the same input stream of data, and, as a

result, the memory-bandwidth requirements remain con-

stant as the architecture is scaled to parallelize the move-

ment of more pixels. In summary, the proposed hardware

architecture not only clusters pixels in parallel by com-

puting the PDF gradient at different locations simulta-

neously (wide parallelism), but also transforms the PDF

gradient estimation into a streaming application (deep

parallelism) that requires a constant memory bandwidth

independent of the scaling factor. The fixed-point approach

gives us control over the way that we tailor the precision of

the pipeline architecture. Without incurring errors, we can

use the least number of bits necessary at every stage of the

pipeline and maximize the number of pipelines replicated

on the FPGA fabric. We propose a novel pipelined archi-

tecture, with feedback, capable of running multiple itera-

tions of the Gaussian mean-shift algorithm to accelerate

image-segmentation applications.

3.2 Pipeline architecture

In this section, we explain the design choices made at every

stage of the architecture and describe the main building

blocks that are used to construct the pipeline. We start by

describing the core of the kernel density function and

progress towards the final accumulators and the outputs of

the pipeline, which are eventually fed back to the input for

iterative clustering.

The first pipeline block is the Euclidean distance cal-

culation. For a three-dimensional space, as is the case with

grayscale images, each pixel is described by a 3D vector

composed of x, y Cartesian coordinates, and an 8-bit

z (grayscale) value. The Euclidean distance is chosen as

our distance metric because we use the Gaussian kernel for

density estimation. The Gaussian kernel, which computes

the PDF based on pairwise Euclidean distances, is the most

widely employed kernel for density estimation. Other

kernel functions that are more easily mapped to hardware,

such as the Epanechnikov [1] or the Quartic kernel [1], can

also be used. The Euclidean distance block allows us to

efficiently compute the pairwise distances between pixels

without stalling the pipeline. A diagram of the Euclidean

distance is shown in Fig. 2.

The stream of Euclidean distances scaled by the kernel

size or bandwidth parameter r is then fed into a fixed-point

exponential look-up table (LUT). The exponential function

is quantized to discrete values as shown in Fig. 3, allowing

us to efficiently estimate the Gaussian kernel without

having to integrate a resource-intensive, floating-point

function into the pipeline. The kernel size parameter r is

hard-coded into the LUT values. We will later analyze the

errors incurred using a fixed-point precision LUT rather

than the exponential floating-point hardware core.

The Euclidean distance along with the Gaussian kernel

LUT are integrated into the overall pipeline architecture

shown in Fig. 4. The output of the exponential LUT is the

Gaussian kernel estimation as shown in Eq. (7). The

exponential LUT output is further multiplied with the x, y,

and z coordinates of all the neighboring pixels before

accumulating the products in each of the three dimensions.

Equations (14–16) show the products accumulated in each

Fig. 2 Pipelined architecture for Euclidean distance calculation

J Real-Time Image Proc (2018) 14:379–394 383

123

dimension. Each dimension has a dedicated accumulator

inside the pipeline. Our architecture takes advantage of this

parallelization opportunity, allowing the gradient compo-

nent in each dimension to be accumulated in parallel. In

addition to the three gradient accumulators, the pipeline

features a fourth accumulator as shown in Eq. (13), and

used for the Gaussian kernel summation. The accumulated

value of all Gaussian kernels will be used as a normali-

zation factor for all three dimensions. Equations (13–16)

represent the outputs of the pipeline at the end of each

iteration. The new x, y and z coordinates of the shifted pixel

are obtained by dividing the accumulated outputs of Eqs.

(14–16) by the accumulated value of Eq. (13).

A ¼
Xn

i¼1

exp�
pixeli�pixeljj jj j2

2r2 ð13Þ

B ¼
Xn

i¼1

xiexp
�

pixeli�pixeljj jj j2
2r2 ð14Þ

C ¼
Xn

i¼1

yiexp
�

pixeli�pixeljj jj j2
2r2 ð15Þ

D ¼
Xn

i¼1

ziexp
�

pixeli�pixeljj jj j2
2r2 ð16Þ

An embarrassingly parallel approach is employed to

scale the architecture. The pipeline design in Fig. 4 is

replicated on the FPGA fabric to efficiently use all avail-

able resources. The complexity of the algorithm is reduced

by assigning independent pipelines to cluster multiple

pixels simultaneously.

The final normalization stage requires a division.

However, the hardware resources required by a fixed-point

divider core are relatively large. Dedicating a division

hardware core to the output of each pipeline would impose

harsh restrictions on the number of pipelines that can fit on

the FPGA fabric. The extensive resources required by a

division in hardware lead to an important design choice. To

maximize the number of pipelines, and thus maximize the

number of pixels clustered in parallel, a preferred design

choice is to stagger the outputs of the pipelines by

employing two multiplexers, and share only one final

divider for all the pipelines. The use of the two multi-

plexers adds a relatively small latency equal to the number

of pipelines, but helps to save important resources that are

allocated to reducing the algorithms computational com-

plexity. A high-level diagram for the entire pipeline

architecture is shown in Fig. 5.

For each pipeline, the two inputs are the streaming pixel

values from the local neighborhood (BRAM) and the pixel

being clustered. The outputs are the new coordinates of that

pixel shifted in the direction of the PDF gradient. The pixels

move toward their closest density maxima over multiple

iterations, and therefore, the output values at iteration n (new

pixel 3D locations) constitute the input values at iteration

n ? 1. A 2-to-1 multiplexer is used at the input of each

pipeline to select between the initial starting location of a

pixel on the first iteration, and the new output location which

is fed back from the pipeline output (Fig. 6).

The mean-shift clustering task is executed over multiple

iterations, requiring the input dataset to be streamed through

the pipelines multiple times until all pixels have converged to

their respective mode. Therefore, it is more efficient to store

the section of the image that is reused (local neighborhood

used to evaluate the PDF gradient) to BRAM. Reading from

BRAM as opposed to external memory banks decreases

access latency and increases throughput. The pixels that are

moving toward their respective modes need to be accessed

every clock cycle; therefore, these values are stored on

internal FPGA registers. The following steps summarize the

data flow required by the algorithm:

1. Transfer image from host to FPGA external memory

bank A.

2. Store portion of image used for PDF gradient estima-

tion to internal memory (BRAM).

3. Store pixels being clustered to internal FPGA

registers.

4. Stream BRAM data over multiple iterations and

feedback output results to pipeline inputs.

5. Write final pixel location to external memory bank B.

When the entire image has been processed, the final clus-

tering results are read by the host from memory bank B and

used to segment the input image.

4 Results and analysis

All experimental results were conducted on Novo-G, a

reconfigurable supercomputer developed and hosted by the

Fig. 3 Quantized exponential function values for Gaussian kernel

LUT

384 J Real-Time Image Proc (2018) 14:379–394

123

NSF Center for High-Performance Reconfigurable Com-

puting (CHREC) at the University of Florida. The FPGAs

targeted for implementing the scalable mean-shift

architecture were Altera’s Stratix-III E260s and Stratix-IV

E530s integrated in the GiDEL PROCStar III and PROC-

Star IV quad-FPGA boards, shown in Fig. 7.

Each Stratix-III E260 (65 nm) features 768 18�18

multipliers and 256 k logic elements, with 4.25 GB of

dedicated memory in three parallel banks on the GiDEL

PROCStar III board. Each Stratix-IV E530 (40 nm) fea-

tures 1024 18�18 multipliers and 813 k logic elements,

with 8.5 GB of dedicated memory in three parallel banks

on the GiDEL PROCStar IV board. Both the overall run-

times and clustering results obtained from our hardware

architecture were compared to the most recently published

mean-shift clustering results executed on GPU platforms,

and also a C software baseline running on one core of an

Intel Xeon E5520 processor.

4.1 Middleware

To enable portability across heterogeneous FPGAs (Strat-

ix-III and Stratix-IV), and to improve productivity, an RC

Middleware (RCMW) [31] was used to help develop our

application. Using RCMW, we were able to select the ideal

resource interfaces for our mean-shift algorithm pipelines,

and describe our application in the RCMW XML metadata

format. The RCMW toolset enabled us to generate the top-

level application stub without worrying about low-level

platform specifics. As a result, we were able to execute our

application seamlessly across the GiDEL PROCStar III and

PROCStar IV boards.

The RC Middleware provides a set of standardized

hardware and software resources to enable productivity and

to simplify FPGA application development. On the hard-

ware side, RCMW provides a set of standardized memory–

resource interfaces which automatically handle data pack-

ing and unpacking, alignment, and flow control. On the

software side, RCMW handles the platform initialization,

thread management, and provides an object-oriented

application representation specific to our application. These

hardware and software abstractions reduced the overhead

in developing our hardware accelerator and platform dri-

ver, improving our productivity.

4.2 Experimental results

We performed multiple clustering experiments over a set of

images with different resolutions to test the performance of

our hardware architecture. The execution times of our

hardware architecture were compared to a software C-code

baseline, compiled using GCC with O3 optimization and

executed on an Intel Xeon E5520 (2.26 GHz) processor

with 4 GB of DDR400 RAM. For this comparison, we used

images of lower resolution (up to 150 k pixels) and esti-

mated the PDF gradient using the entire data set (every

Fig. 4 Overview of entire pipeline architecture

Fig. 5 Pipelines replicated to cluster individual pixels

Fig. 6 Closing the feedback loop for running multiple iterations

J Real-Time Image Proc (2018) 14:379–394 385

123

pixel in the image). We also compared the performance of

our hardware architecture to the best execution times

obtained from the most recently published GPU image-

segmentation implementations [14–19]. Higher-resolution

images were used for this comparison (up to 300 k pixels),

and the PDF gradient was estimated by only using the

pixels within a local neighborhood. Clustering over a local

neighborhood is predominantly used for larger images,

where pixels that are farther than a given threshold will

have a negligible or zero influence on the gradient esti-

mation. The size of the local neighborhood was always

chosen as a function of the kernel size, and guaranteed that

the estimated gradient would always point toward the

closest mode. As expected, the amount of parallelism

extracted from the mean-shift algorithm is directly related

to the number of hardware resources available on the

FPGA. Section 4.2.1 proves that a Stratix-IV FPGA, which

has approximately double the amount of hardware resour-

ces available on a Stratix-III, will segment images twice as

fast. Our experiments proved that a linear relationship

exists between the number of hardware resources used to

map the mean-shift algorithm on the FPGA fabric and the

amount of acceleration achieved. As a result of the scala-

bility of our architecture, the mean-shift algorithm can be

accelerated over multiple FPGAs as demonstrated in Sect.

4.2.1. Our experiments predict that a HD image

(1920 � 1080) can be segmented in real time using eight

Stratix-IV FPGAs, or the equivalent of two GiDEL

PROCStar IV boards.

4.2.1 Speedup

The intrinsic wide parallelism of the mean-shift algorithm

allowed us to parallelize the clustering task by moving

multiple pixels in parallel. We observed that a linear

relationship exists between the number of pixels clustered

in parallel using dedicated hardware pipelines and the

resulting speedup performance. The graph in Fig. 8 shows

the linear relationship between the number of dedicated

pipelines replicated on the FPGA fabric to cluster inde-

pendent pixels, and the speedup obtained with respect to

the CPU software baseline.

We continued the embarrassingly parallel approach by

scaling our architecture beyond one FPGA. The linear

increase in acceleration characterizing the single FPGA

implementation exhibited a slight decrease in slope when

the architecture was scaled to multiple FPGAs. The sub-

linear slope was a consequence of the overhead associated

with the multi-FPGA case. For the multi-FPGA scenario,

the communication-to-computation ratio increased and

prevented the same linear acceleration observed for the

single FPGA case. Data transfers from the host (CPU) to

the FPGAs interfered with the optimal FPGA execution

starting times. Prior to the processing stage, a copy of the

input image had to be transferred to each FPGA’s external

memory bank. As a result, not all FPGAs could start the

clustering task at the same time and entered a queuing

process until the data transfers were completed. Figure 9

shows the increase in speedup for a multi-FPGA imple-

mentation on the GiDEL PROCStar III platform, for up to

four Stratix-III E260 FPGAs.

4.2.2 Resource utilization

Figures 10 and 11 show the percentage resource utilization

for a single FPGA implementation as the architecture was

scaled to incorporate an increasing number of pipelines on

a Stratix-III and -IV, respectively. We can conclude from

the resource utilization results that the limiting resources

when the architecture was scaled were the DSP block

18-bit elements. The DSP resources were fully utilized

after replicating the pipelines 64 times on the Stratix-III

FPGA and 128 times on the Stratix-IV FPGA. Using these

results, we concluded that an FPGA containing more DSP

resources would be a better fit for our scalable architecture.

The Stratix-IV FPGA has approximately double the hard-

ware resources of the Stratix-III, allowing further acceler-

ation of the mean-shift algorithm by a factor of 2.

In Fig. 12, our speedup measurements show that one

Stratix-IV FPGA achieved approximately the same

speedup as two Stratix-IIIs.

4.2.3 Power consumption

For embedded applications that focus on image-processing

algorithms, real-time processing is not the only constraint

for a viable solution. Power consumption is another strict

requirement that must be met. Our FPGA architecture not

only accelerated the mean-shift clustering for real-time

segmentation of images surpassing VGA resolution, but

also benefited from a minimal increase in power con-

sumption as the architecture was scaled to feature more

pipelines. Our experiments are performed on a quad-FPGA

board, therefore, we subtract the idle power consumed by

the three FPGAs that are not used from the total power

Fig. 7 GiDEL PROCStar III quad-FPGA board

386 J Real-Time Image Proc (2018) 14:379–394

123

consumed by the GiDEL Procstar IV board. We measured

the increase in power consumption while scaling our

architecture. Figure 13 shows the increase in power as

more pipelines were replicated on the Stratix-IV E530

FPGA fabric. The increase in power consumption was

minimal (� 4 Watts) when compared to the amount of

pipelines replicated on the FPGA (� 250 pipelines). The

slope in Fig. 14 provides key insight into the efficiency of

our hardware architecture. For every Watt consumed by

scaling our architecture to incorporate more pipelines, we

accelerated the mean-shift algorithm by 288 times. As a

result of the achieved speedup-per-Watt ratio, we conclude

that our novel architecture is efficiently scaled (from a

power perspective) to parallelize the mean-shift algorithm.

4.2.4 Comparison to GPU platforms

We performed the mean-shift clustering task by evaluating

the PDF gradient over a local neighborhood so that we

could segment images of higher resolution, and compare

our execution time against recently published GPU

implementations. GPU platforms have had considerable

success in parallelizing fine-grained algorithms [32] that

exhibit inherent parallelism. It is not surprising that image

segmentation has generated much interest in the GPU

community, with many authors efficiently mapping the

algorithm to GPU platforms [14–19]. When compared to

existing CPU software baselines, the mean-shift algorithm

has benefitted from a substantial amount of acceleration on

GPU platforms [33, 17]. GPUs have successfully driven

execution times for images up to VGA resolution

(640 � 480) under the real-time threshold (30 fps). How-

ever, higher-resolution images have not been segmented in

real time. GPUs also consume a relatively high amount of

power in comparison to FPGAs and, therefore, FPGAs

offer a unique and attractive solution to embedded appli-

cations that require low-power consumption. Our archi-

tecture can leverage the parallelization opportunities

offered by the fine-grained, mean-shift clustering algo-

rithm, while also lowering power consumption.

We compared the execution speed of four recently

published image-segmentation GPU implementations

including a GeForce 9800 GT (65 nm) [16], GTX 295

(55 nm) [15] and GTX 580 (40 nm) [18] from Nvidia, as

well a Radeon HD 5850 (40 nm) [19] from AMD, with the

performance of our hardware architecture for different

image sizes (Fig. 15).

The execution times for the mean-shift algorithm are

relatively similar to both our proposed FPGA architecture,

using a single Stratix-IV FPGA (40 nm), and the latest

GPU implementations. However, the average power con-

sumption is the distinguishing factor between the two

platforms. Our proposed architecture has a relatively low

average power consumption even when all resources are

completely utilized (34.6 W), while the reported GPU

power is on the order of 300 Watts. Given that execution

times are similar, normalizing the amount of power con-

sumed to complete the clustering task by the number of

pixels will result in the graph shown in Fig. 16. The FPGA

architecture outperforms the GPU solutions when power is

taken into account. The power advantage of our novel

Fig. 8 Linear increase in speedup (Stratix-III E260 vs. single-core

Xeon E5520) vs. number of replicated pipelines

Fig. 9 Increase in speedup (vs. single-core Xeon E5520) for a multi-

FPGA (Stratix-III E260) implementation

Fig. 10 Resource utilization as more pipelines are replicated on

Stratix-III E260

J Real-Time Image Proc (2018) 14:379–394 387

123

scalable architecture over GPU implementations demon-

strates that our design is a better candidate for embedded

applications where power is an essential limiting factor.

Furthermore, as shown in Fig. 9, our architecture is scal-

able beyond a single FPGA, with a close-to-linear speedup

increase. According to the trend exhibited in Fig. 9, a HD

image (1920 by 1080) can be segmented in real time (30

fps) using eight Stratix-IV FPGAs on two GiDEL PROC-

Star IV boards.

4.2.5 Future device trends

The apparent trend in newly emerging GPU and FPGA

devices is geared towards combining processing technol-

ogies of higher density, higher performance and lower

power. For example, the newest Stratix 10 FPGAs (2013)

from Altera are built on the Intel 14 nm Tri-Gate process,

and offer significantly increased performance with respect

to previous generation devices, while lowering power

consumption [34]. By contrast, the state of the art GPU

technology, such as the Tegra K1 from NVIDIA [35], is

currently targeting mobile platforms by maintaining high

performance while lowering power consumption. We pre-

dict that technological advances in FPGA fabrication could

have a considerable impact on our mean-shift architecture.

The additional DSP multiplier blocks coupled with the

increase in maximum operating frequency could facilitate

the extraction of a higher degree of parallelism from the

fine-grained, mean-shift algorithm. Our scalable wide

parallelism approach, where pipelines are replicated on the

FPGA fabric to accelerate execution time, would further

benefit from the increase in available resources. However,

GPU implementations of the mean-shift algorithm, which

Fig. 11 Resource utilization as more pipelines are replicated on

Stratix-IV E530

Fig. 12 Speedup across two FPGA platforms (vs. single-core Xeon

E5520)

Fig. 13 Increase in power consumption on Stratix-IV E530 as more

pixels are clustered in parallel

Fig. 14 Resulting speedup as average power consumption is

increased on Stratix-IV E530

388 J Real-Time Image Proc (2018) 14:379–394

123

have had limited impact on embedded applications, could

now provide an attractive alternate solution to FPGA

mean-shift architectures. New lower-power, hybrid GPUs,

such as the Tegra K1 from NVIDIA, could be a potential

competitor for embedded systems that target real-time

segmentation of HD images.

4.3 Visual results

Four different grayscale images labeled cameraman, coins,

rice, and flowers were used to quantify the clustering

accuracy of our hardware architecture. The four images are

very different, ensuring that a variety of clustering tasks

can be solved using the mean-shift algorithm mapped to

our hardware architecture. The clustering tasks range from

segmenting small scattered objects over a uniform back-

ground to objects that occupy a large surface of the input

image in front of a non-uniform background. Each figure

below will show the input grayscale image along with the

segmentation results for four different kernel sizes (Figs.

17, 19, 21, 23). 3D snapshots of pixel movements over

multiple iterations are shown in Figs. 18, 20, 22 and 24.

Each 3D representation tracks the pixels’ movement as

they progressively converge to the modes of the dataset.

The clusters that form in the 3D space represent distinct

segments in the original image. The final segmented image

is constructed by coloring the pixels in each cluster with

their average grayscale color. The kernel size (free

parameter) controls the number of modes that are formed.

A smaller kernel size will produce a relatively large

number of modes, resulting in the image being segmented

into many smaller sections, while a larger kernel size

ensures that the number of segments remains relatively

low.

We also conducted an error analysis to quantify the

accuracy of the clustering results. A single-precision,

floating-point mean-shift software baseline was used to

detect the errors incurred by our fixed-point architecture.

Our hardware architecture uses fixed-point cores for all

mathematical operations along with a LUT that approxi-

mates the exponential function for the Gaussian kernel

computation. The mean-squared error (MSE) is used to

quantify the extent of the errors resulting from our fixed-

point approximations. The MSE measures the difference

between the final positions of the clustered pixels resulting

from our hardware architecture, and the floating-point

mean-shift software baseline. Table 1 records the MSE for

Fig. 15 Image-segmentation execution times as a function of image

resolution

Fig. 16 Average power consumed for clustering the entire image

normalized by the number of pixels in the image

Fig. 17 Cameraman (large-size object over a uniform background);

FPGA segmentation results for different kernel sizes

J Real-Time Image Proc (2018) 14:379–394 389

123

each of the four grayscale images. The radius of the

smallest cluster for each test image is also measured and

reported in Table 1. Since the MSE of each segmented

image is always less than the radius of the smallest cluster,

we conclude that the majority of pixels converge toward

the same clusters in hardware and in software. Also, the

number of clusters formed and their locations are identical

in hardware and software. The differences in final pixel

locations that occur between software and hardware result

from the quantized distance that pixels travel over each

iteration in our fixed-point architecture. Pixels move in the

correct direction towards their closest mode, however, the

distance traveled is different in software than in our fixed-

point architecture. Therefore, even though pixels converge

to the correct mode, the final location inside the cluster will

Fig. 18 Cameraman; pixels clustering in 3D over multiple iterations

Fig. 19 Coins (medium-size objects over a uniform background);

FPGA segmentation results for different kernel sizes

Fig. 20 Coins; pixels clustering in 3D over multiple iterations

Table 1 MSE measured

between fixed-point architecture

and floating-point software

baseline

Image MSE Smallest

cluster

radius

Cameraman 4.2 213

Coins 3.8 156

Rice 3.3 57

Flower 4.6 202

390 J Real-Time Image Proc (2018) 14:379–394

123

be different in hardware and software. For each test image,

if the calculated MSE would be greater than the radius of

the smallest cluster, we would conclude that some pixels

are converging to the wrong cluster, and that our precision

has a negative impact on the performance of the mean-shift

algorithm. However, for all our test images, the MSE is

consistently far less than the radius of the smallest cluster

as shown in Table 1, and therefore, the floating-point

approximations do not affect the segmentation results.

Another advantage of our design is the possibility of

tailoring the dynamic range of each dimension, which is

comparable to assigning different clustering weights in the

x, y, or z dimensions. By discriminating between the three

dimensions, we can force pixels to shift more in one of the

three dimensions and better control the shape of each

segment. If objects resemble a spherical shape, moving

pixels by the same distance in each direction (3D) is sug-

gested. However, if objects deviate from a spherical shape,

the user should control the discriminative clustering, and

allow more movement along the x, y or z directions. For

example, with the cameraman grayscale image, we show

that by assigning a larger dynamic range in the x dimension

we can better segment the cameraman from the background

(Fig. 25).

Fig. 21 Rice (small-size objects scattered over a uniform back-

ground); FPGA segmentation results for different kernel sizes

Fig. 22 Rice; pixels clustering in 3D over multiple iterations

Fig. 23 Flower (large-size object in front of a non-uniform

background); FPGA segmentation results for different kernel sizes

J Real-Time Image Proc (2018) 14:379–394 391

123

5 Conclusions

The mean-shift algorithm provides a non-parametric

and unsupervised clustering solution to image seg-

mentation that is used in a multitude of applications

such as object recognition, tracking, and quality control

to name just a few. Furthermore, the mean shift is a

gradient-ascent algorithm that exhibits an adaptive step

size, helping users avoid the step-size selection prob-

lem. Although the mean-shift approach yields good

results for image segmentation, its computational

challenges have prohibited its impact in the image-

processing domain, with runtimes that have precluded

real-time applications for images beyond VGA resolu-

tion (640 � 480).

This paper proposes a scalable architecture that accel-

erates the Gaussian mean-shift algorithm by allocating

dedicated hardware pipelines to cluster multiple pixels in

parallel. Due to the fine granularity of the mean-shift

algorithm, we can evaluate the PDF gradient at different

locations in parallel and shift pixels toward their closest

mean simultaneously. Our scalable architecture consists of

fixed-point pipelines that are replicated to effectively use

all hardware resources of the FPGA fabric. The architec-

ture is tested on both PROCStar III and PROCStar IV

boards using Stratix-III E260 and Stratix-IV E530 FPGAs,

respectively. The small overhead penalty associated with

scaling the architecture to incorporate multiple FPGAs

demonstrates that our design can be further scaled to span

multiple boards and can potentially segment high-defini-

tion images (1920 by 1080) on two GiDEL PROCStar IV

boards. Another important achievement of our design is

low-power consumption. Our architecture running on one

Statix-IV FPGA, as part of the GiDEL ProcStar IV board,

consumes less than 35 Watts of average power. The

achieved speedup together with the low-power consump-

tion demonstrates that our architecture is an excellent

platform for embedded applications. When compared to the

most current GPU implementations, our design achieved

comparable speedup while lowering power consumption.

The segmentation results were compared to a floating-point

C code baseline to ensure no errors resulted from our fixed-

point approximations.

Acknowledgments This work was supported in part by the I/UCRC

Program of the National Science Foundation under Grant Nos. EEC-

0642422 and IIP-1161022.

References

1. Fukunaga, K.L.D.H.: The estimation of the gradient of a density

function, with application in pattern recognition. In: IEEE Trans.

Information Theory (IT), vol. 21, 32–40 (1987)

Fig. 24 Flower; pixels clustering in 3D over multiple iterations

Fig. 25 Discriminative clustering along the x direction

392 J Real-Time Image Proc (2018) 14:379–394

123

2. Parzen, E.: On estimation of a probability density function and

mode. Ann. Math Stat. 21(1), 1065–1076 (1962)

3. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE

Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

4. Comaniciu, D.P.M.: Mean shift analysis and applications. Proc

Seventh International Conference on Computer Vision. 1(1),
1197–1203 (1999)

5. Comaniciu, D.P.M.: Mean shift: A robust approach toward feature

space analysis, ieee trans. pattern analysis and machine intelligence.

IEEE Trans. Pattern Anal. Mach .Intell. 24(5):603–619 (2002)

6. Comaniciu, D.P.M., Ramesh, V.: Real-time tracking of non-rigid

objects using mean shift. Proc 2000 IEEE Conference on Com-

puter Vision and Pattern Recognition. 2(1):142–149 (2000)

7. Bai, P., Fu, M.C.Y.H.C.: Improved mean shift segmentation

scheme for medical ultrasound images. Fourth Intern. Conf. Bioinf.

Biomed. Eng. (iCBBE). 1(1), 1–4 (2010)

8. Bottger, J., Schafer, G.L.A.V.D.S.M.A.: Three-dimensional

mean-shift edge bundling for the visualization of functional

connectivity in the brain. IEEE Trans Vis. Comp. Gr. 20(3),
471–480 (2014)

9. Yamashita, A., Ito, T.K.H.A.Y.: Human tracking with multiple

cameras based on face detection and mean shift. IEEE Intern.

Conf. Robot Biom. 1(1), 1664–1671 (2011)

10. Shotton, J., Blake, R.C.A.: Multiscale categorical object recog-

nition using contour fragments. IEEE Trans. Pattern Anal. Mach.

Intell. 30(7), 1270–1281 (2008)

11. Deilamani, M.J.R.N.A.: Moving object tracking based on mean

shift algorithm and features fusion. Artificial Intelligence and

Signal Processing (AISP), 2011 International Symposium on.

(1):48–53 (2011)

12. Du-Ming, Tsai, J.Y.L., Yuan-Ze.: Mean shift-based defect

detection in multicrystalline solar wafer surfaces. IEEE Trans.

Indus. Inf. 7(1), 125–135 (2011)

13. Ranchin, T.M.M., Wald, L.: The arsis method: a general solution

for improving spatial resolution of images by the mmean of

sensor fusion. Fusion of Earth Data: Merging Point Measure-

ments, Raster Maps and Remotely Sensed Images (EARSeL)

1(1):53–58 (1996)

14. Faro, A.S.P., Giordano, D.: Integrating unsipervised and super-

vised clustering methods on a gpu platform for fast image seg-

mentation. 3rd International Conference on Image Processing

Theory, Tools and Applications (IPTA) 85–90 (2012)

15. Alexey, A., FWBD Tomas Kulvicius: Facing the Multicore-

Challenge, Real-Time Image Segmentation on a GPU. Lecture

Notes in Computer Science, vol. 6310, 1st edn. Springer, Berlin

Heidelberg (2010)

16. Fulkerson, B., SS: Really quick shift: Image segmentation on a

gpu. In: Kutulakos, K.N. (ed.) Trends and Topics in Computer

Vision. Lecture Notes in Computer Science, vol 6554, 350–358.

Springer, Berlin Heidelberg (2012)

17. Jun Zhang, X.L., Luo, S.: Weighted mean shift object tracking

implemented on gpu for embedded sustems. Intern. Conf. Control

Eng. Commun. Technol. 1(1), 982–985 (2012)

18. F Galluzzo, H.H.N.S., Barbosa D.: Segmentation framework for

3d echocardiography. IEEE International Ultrasonics Symposium

(IUS) 2639–2642 (2012)

19. Feng W.Y.Z, Xiang, H.: An improved graph-based image seg-

mentation algorithm and its gpu acceleration. 2011 Workshop on

Digital Media and Digital Content Management (DMDCM)

237–241 (2011)

20. Rao, S., de Martins, A.M., Principe, J.C.: Mean shift: An infor-

mation theoretic perspective. Trans. Pattern Anal. Mach. Intell.

30(3), 222–230 (2009)

21. Renyi, A.: On measure of entropy and information. Proc Fourth

Berkeley Symp Math Stat and Prob. 1(1), 547–561 (1961)

22. Carreira-Perpinan, M.A.: Acceleration strategies for gaussian

mean-shift image segmentation. IEEE Comp. Soc. Conf. Comp.

Vision Pattern Recognit. 1(1), 1160–1167 (2006)

23. Saegusa, T.T.M.: An fpga implementation of k-means clustering

for color images based on kd-tree. Intern. Conf. Field Program

Logic Appl (FPL) 1(1), 1–6 (2006)

24. Wang, H., HLJW JZhao.: Parallel clustering algorithms for image

processing on multi-core cpus. Intern. Conf. Comp. Sci. Softw

Eng. 2(1), 450–453 (2008)

25. Ali, U., Malik, K.M.M.B.: Fpga/soft-processor based real-time

object tracking system. Fifth South. Conf. Program. Logic (SPL)

1(1), 33–37 (2009)

26. Pandey, M.S.J.U.K.S.R., Borgohain, D.: Real-time histogram

computation in kernel-based tracking system. International Con-

ference on Advanced Electronic Systems (ICAES) 171–174

(2013)

27. Trieu, D.B.K.T.M.: An implementation of the mean-shift filter on

fpga. Intern. Conf. Field Program. Logic Appl. (FLP) 219–224

(2011)

28. Lu, X.S.Y., Ren, D.: Fpga-based real-time object tracking for

mobile robot. Intern. Conf. Audio Lang. Imag. Process. (ICALIP)

1657–1662 (2010)

29. Stolkin, R., Florescu, M.B.C.H.I.: Efficient visual servoing with

the abcshift tracking algorithm. IEEE Intern. Conf. Robot.

Automation (ICRA). 1(1), 3219–3224 (2008)

30. Carreira-Perpinan, M.A.: Gaussian mean-shift is an em algo-

rithm. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 767–776
(2007)

31. Kirchgessner, R.A.G., Lam, H.: Reconfigurable computing mid-

dleware for application portability and productivity. Intern. Conf.

Appl-Spec. Syst., Arch Process. (ASAP). 1(1):211–218 (2013)

32. Kalgin, K.: Implementation of fine-grained algorithms on

graphical processing units. 10th International Conference on

Prallel Computing Technologies 207–215 (2009)

33. Sirotkivic, J., Dujmic, V.P.H.: Accelerating mean-shift image

segmsegmentation ifgt on massively parallel gpu. 36th Inter-

national Conference on Information & Communications Tech-

nology Electronics and Microelectronics (MIPRO) 279–285

(2013)

34. Altera, C.: Altera announces breakthrough advantages with

generation 10; http://newsroom.altera.com/press-releases/nr-

altera-generation-10.htm. Tech. rep., Altera (2013)

35. Coombes, D.: Tegra k1 whitepaper. Tech. rep, NVIDIA (2014)

Stefan Craciun is a Ph.D. can-

didate and research assistant at

NSF Center for High-Perfor-

mance Reconfigurable Comput-

ing (CHREC) at the University

of Florida, ECE department. He

completed his M.S. degree in

Electrical and Computer Engi-

neering at the University of

Florida in 2009. Currently, he is

pursuing his Ph.D. degree under

the supervision of Prof. Alan D.

George, the founder of the NSF

CHREC center at the University

of Florida, and the co-supervi-

sion of Dr. Jose C. Principe, the founder of the CNEL center at the

University of Florida. His research topic specializes in FPGA-based

architectures that enable efficient mapping of image-processing

algorithms for real-time execution. His applications focus on low-

power embedded systems for onboard information extraction such as

J Real-Time Image Proc (2018) 14:379–394 393

123

http://newsroom.altera.com/press-releases/nr-altera-generation-10.htm.
http://newsroom.altera.com/press-releases/nr-altera-generation-10.htm.

edge detection and feature extraction as well as high-level decision

making such as object recognition and tracking applications.

Robert Kirchgessner is a Ph.D. candidate and research assistant at

NSF Center for High-Performance Reconfigurable Computing

(CHREC) at the University of Florida, ECE department. He received

his B.S. degrees in Electrical and Computer Engineering, and the

M.S. degrees in Electrical Engineering from the University of Florida.

He is currently pursuing his Ph.D. degree under the supervision of

Prof. Alan D. George. His research interests include high-perfor-

mance reconfigurable architectures, FPGA-based application porta-

bility and productivity tools, and FPGA-based graph-processing

architectures and applications.

Alan D. George is Professor of

ECE at the University of Flor-

ida, where he founded and

directs the NSF Center for

High-Performance Reconfigura-

ble Computing (CHREC). He

received the B.S. degree in CS

and the M.S. in ECE from the

University of Central Florida,

and the Ph.D. in CS from the

Florida State University. His

research interests focus upon

high-performance architectures,

networks, systems, services, and

applications for reconfigurable,

parallel, distributed, and fault-tolerant computing. Dr. George is a

Fellow of the IEEE.

Herman Lam is an Associate

Professor of Electrical and

Computer Engineering at the

University of Florida and the

Associate Director of CHREC,

the NSF Center for High-Per-

formance Reconfigurable Com-

puting. He has over 25 years of

research and development

experience in the areas of dis-

tributed computing, service-ori-

ented computing, database

management, and most recently

high-performance and reconfig-

urable computing. He is the co-

developer of the Novo-G reconfigurable supercomputer, the most

powerful reconfigurable computer in the academic world. Novo-G,

containing over 400 top-of-the-line FPGAs, serves as a testbed for the

study of methods and tools for the acceleration and deployment of

scientifically impactful big-data applications on a scalable heteroge-

neous system.

Jose C. Principe is Distin-

guished Professor of Electrical

and Biomedical Engineering at

the University of Florida since

2002. He is BellSouth Professor

and Founding Director of the

University of Florida Computa-

tional Neuro-Engineering Lab-

oratory (CNEL). He joined the

University of Florida in 1987,

after an eight-year appointment

as Professor at the University of

Aveiro, in Portugal. Dr. Principe

holds degrees in electrical

engineering from the University

of Porto, Portugal, University of Florida, USA (Master and Ph.D.),

and Honoris Causa degrees from the Universita Mediterranea in

Reggio Calabria, Italy, Universidade do Maranhao, Brazil and Aalto

University, Finland.

394 J Real-Time Image Proc (2018) 14:379–394

123

	A real-time, power-efficient architecture for mean-shift image segmentation
	Abstract
	Introduction
	Background
	Related research

	Mathematical background
	Mathematical framework

	Hardware architecture
	Approach
	Pipeline architecture

	Results and analysis
	Middleware
	Experimental results
	Speedup
	Resource utilization
	Power consumption
	Comparison to GPU platforms
	Future device trends

	Visual results

	Conclusions
	Acknowledgments
	References

