
Paramotopy: Parameter homotopies in parallel

Dan Bates1, Danielle Brake2, and Matt Niemerg3

1 Colorado State University, USA
bates@math.colostate.edu,

www.math.colostate.edu/~bates
2 University of Wisconsin - Eau Claire, USA

brakeda@uwec.edu,
danibrake.org

3 research@matthewniemerg.com,
www.matthewniemerg.com

Abstract. Numerical algebraic geometry provides tools for approximat-
ing solutions of polynomial systems. One such tool is the parameter
homotopy, which can be an extremely efficient method to solve numer-
ous polynomial systems that differ only in coefficients, not monomials.
This technique is frequently used for solving a parameterized family of
polynomial systems at multiple parameter values. This article describes
Paramotopy, a parallel, optimized implementation of this technique, mak-
ing use of the Bertini software package. The novel features of this imple-
mentation include allowing for the simultaneous solutions of arbitrary
polynomial systems in a parameterized family on an automatically gen-
erated or manually provided mesh in the parameter space of coefficients,
front ends and back ends that are easily specialized to particular classes
of problems, and adaptive techniques for solving polynomial systems near
singular points in the parameter space.

1 Introduction

The methods of numerical algebraic geometry provide a means for approximating
the solutions of a system of polynomials F : CN → C

n, i.e., those points z ∈ C
N

such that F (z) = 0. There are many variations on these methods, but the key
point is that polynomial systems of moderate size can be solved efficiently via
homotopy continuation-based methods. In the case of a parameterized family of
polynomial systems F : CN ×P → C

N , where the coefficients are polynomial in
the parameters p ∈ P ⊂ C

M , a particularly efficient technique comes into play:
the parameter homotopy [1]4.

The process of using a standard homotopy to solve a system F begins with the
construction of a polynomial system G that is easily solved. Once the system
G is solved, the solutions of G are tracked numerically by predictor-corrector
methods as the polynomials of G are transformed into those of F . Thanks to

4 In fact, this technique applies when the coefficients are holomorphic functions of the
parameters [1], but we restrict to the case of polynomials for simplicity.

2 Bates-Brake-Niemerg

the underlying geometry, discussed for example in [2] or [3], we are guaranteed

to find a superset V̂ of the set V of isolated solutions of F . The set V̂ is easily
trimmed down to V in a post-processing step [4].

Parameter homotopies are particularly powerful as the number of solutions
to be followed is exactly equal to the number of isolated solutions of F (z, p) for
almost all values of p ∈ P (under the common assumption that P has positive
volume in its ambient Euclidean space). Furthermore, the solution of a single G

will work for almost all values of p ∈ P, so only one round of precomputation is
needed regardless of the number of polynomial systems to be solved.

Parameter homotopies are not new and have been used in several areas of
application [5–8] and implemented in at least two software packages for solving
polynomial systems: Bertini [9] and PHCpack [10]. These implementations allow
the user to run a single parameter homotopy from one parameter value p0 with
known solutions to the desired parameter value, p1, with the solutions at p0
provided by the user. The software package that is the focus of this article
differs from these other two implementations in the following ways:

1. Paramotopy accepts as input the general form of the parameterized family
F (z, p) (p given as indeterminates), chooses a random p0 ∈ P, and solves
F (z, p0) via a Bertini run5;

2. Paramotopy builds a mesh in the parameter space given simple instructions
from the user (or uses a user-provided set of parameter values) and performs
parameter homotopy runs from p0 to each other p in the mesh;

3. Paramotopy carries out all of these runs in parallel, as available6;
4. Paramotopy includes adaptive schemes to automatically attempt to find the

solutions of F (z, p) from starting points other than p0 if ill-conditioning
causes path failure in the initial attempt; and

5. Paramotopy is designed to simplify the creation of front ends and back ends
specialized for particular applications.

The full version of this article [11] includes more background and examples.

2 Homotopies

2.1 Homotopy continuation

Given a polynomial system F : CN → C
N to be solved, standard homotopy

continuation consists of three basic steps:

1. Choose a start system G : CN → C
N similar in some way to F (z) that is

“easy” to solve;
2. Find the solutions of G(z) and form the new homotopy function H : CN ×

C → C
N given by H(z, t) = F (z) · (1 − t) + G(z) · t · γ, where γ ∈ C is

randomly chosen; and

5 Bertini provides this functionality as well.
6 Bertini and PHCpack both have parallel versions, but not for multiple parameter
homotopy runs.

4 Bates-Brake-Niemerg

somewhat different language in [2]. The proposition guarantees that we can
find the isolated, finite, complex solutions of F (z, p′) simply by following paths
through the parameter space, P ⊂ C

M , from the solutions of F (z, p0).

Proposition 1. The number of finite, isolated solutions of F (z, p) is the same

for all p ∈ P except for a measure zero, algebraic subset B of P.

This proposition gives us a probability one guarantee that a randomly chosen
path through parameter space will avoid B. Assuming further that P is convex, a
straight line segment through parameter space from a randomly chosen p0 ∈ P to
a prespecified target p1 ∈ P will, with probability one, not pass through the set
B. This immediately implies a (known) technique for solving many polynomial
systems from the same parameterized family with parameter space P. First,
find all finite, isolated, complex solutions for some randomly chosen p0 ∈ P.
We refer to this as Step 1. Second, for each parameter value of interest, pi ∈ P,
simply follow the finite, isolated, complex solutions through the simple homotopy
H(z, t) = F (z, p0) · t+F (z, pi) ·(1− t). We refer to this as Step 2. Notice that the
randomly chosen γ from standard homotopies can be neglected in this homotopy
since p0 is chosen randomly. We describe in §3.2 how we monitor these Step 2
runs in case paths fail and also how we handle such failures.

For the cost of a single Step 1 solve at some random point p0 in the param-
eter space, we may rapidly solve many other polynomial systems in the same
parameterized family. Indeed, there are a minimal number of paths to follow in
each Step 2 run and there is no pre-computation cost beyond the initial solve.

3 Implementation

Paramotopy is a C++ implementation of parameter homotopies, relying heavily
on Bertini [9]. In this section, we provide many details about this software.

3.1 Main algorithm

We first present the main parameter homotopy algorithm that is implemented in
Paramotopy. Note in particular the input value K and the while loop at the end,
both included to help manage path failures during the Step 2 runs. Also, note
that this algorithm assumes that P = C

M , for some M . The use of Paramotopy
for other parameter spaces is described in §3.3.

Remark 1. To find all solutions for all p ∈ L, we must have that all solutions of
F (z, p0) are nonsingular as we can only follow paths starting from nonsingular
solutions during the parameter homotopies after the first run. Deflation [17, 18]
could be used to regularize singularities in Step 1 before beginning Step 2, but
this is not currently implemented.

Paramotopy 5

Input : F (z; p), a set of polynomial equations, variables z ∈ C
N , and

parameters p ∈ L ⊂ P = C
M ; ` = | L | parameter values at which the

solutions of F (z; p) are desired; bound K on the number of times to
try to find solutions for any given p ∈ L, in the case of path failures.

Output: List of solutions of F (z; p) = 0 for each p ∈ L.

1 Choose random p0 ∈ P;
2 Solve F (z; p0) = 0 with any standard homotopy. (Step 1);
3 Store all nonsingular finite solutions in set S;
4 Set F := ∅. (Beginning of Step 2.);
5 for i=1 to ` do

6 Construct parameter homotopy from F (z; p0) to F (z; pi);
7 Track all |S| paths starting from points in S;
8 Set F := F ∪ {i} if any path fails;

9 Set k := 0. (Beginning of path failure mitigation.);
10 while |F| > 0 and k < K do

11 Set F ′ = ∅;
12 Choose random p′ ∈ P;
13 Solve F (z; p′) = 0 with a parameter homotopy from p0;
14 for m=1 to |F| do
15 Solve F (z; pF[m]) = 0 with a parameter homotopy from p′ to pF[m];
16 Set F ′ := F ′ ∪ {m} if any path fails;

17 Set F := F ′ and increment k;

Algorithm 1: Paramotopy.

3.2 Handling path failures during Step 2

If a path fails during a Step 2 run for some parameter value p ∈ L, Paramotopy
will automatically attempt to find the solutions at p by tracking from a different
randomly chosen parameter value p′ 6= p0 ∈ P. It will repeat this process K

times, with K specified by the user. This is the content of the while loop at the
end of the Main Algorithm.

The idea behind this is that paths often fail for one of two reasons, either the
path seems to be diverging or the Jacobian matrix becomes so ill-conditioned
that either the steplength drops below the minimum allowed or the precision
needed rises above the maximum allowed. For parameter homotopies, a path
failure of the first type is possible for either of two reasons: either the path
really is diverging or the norm of the solution is above a particular threshold.
In the former case, it can happen that the nature of the solution set at target
value p differs from that at a generic point in the parameter space, e.g., there
could be fewer finite solutions at p. Such path failures are captured and reported
by Paramotopy, but there is simply no hope for “fixing” them as this result is
a natural consequence of the geometry of the solution set, i.e., p is inherently
different from other points in parameter space, so Paramotopy takes the correct
action in reporting it. In the latter case, it can happen that the scaling of the
problem results in solutions that are large in some norm, e.g., |z|∞ > 105 as is

6 Bates-Brake-Niemerg

the default in the current version of Bertini. If this is suspected, the user could
rescale the system or adjust the threshold MaxNorm and run the problem again.

For the second type of path failure, the ill-conditioning is caused by the
presence of a singularity b ∈ B near or on the path between p0 and p. By
choosing new starting point p′ “adequately far” from p0, it should be feasible to
avoid the ill-conditioned zone around b unless b is near the target value p. In this
last case, it is unlikely that choosing different starting points p′ will have any
value, which is why we have capped the number of new starting points allowed
at K.

For now, the new point p′ is chosen randomly in the unit hypercube. Future
work will detect where in parameter space the failures have occurred and bound
p′ away from this region. Since it cannot easily be determined which paths from p′

to p correspond to the failed paths from p0 to p, there is no choice but to follow
all paths from p′ to p. To find all solutions at p′, we simply use a parameter
homotopy to move the solutions at p0 to those at p′. Of course, if there are path
failures, we must choose yet another p′ and try again.

3.3 Handling parameter spaces other than C
M

As described near the end of §2.2, Paramotopy may be used to handle parameter
spaces other than the simplest parameter space, CM for some M . However, some
changes are needed in the algorithm.

If P ⊂ C
M is a proper, convex subset of CM , Algorithm 1 needs only one

change: p0 must be somehow chosen within P. To accommodate this, Paramo-
topy allows the user to specify p0.

If P is a proper, non-convex set, more work is required. The Step 1 run would
be the responsibility of the user, as in the previous paragraph, and it would be
up to the user to string together subsequent Paramotopy runs to stay within P.

3.4 Parallelization and data management

One of the features of Paramotopy that sets it apart from Bertini is the use of
parallel computing for multiple parameter homotopies. Bertini includes parallel
capabilities for a single homotopy run, but not for a sequence of runs. Paralleliza-
tion was achieved using the head-worker paradigm, implemented with MPI. A
single process controls the distribution of parameter points to the workers, which
constitute the remainder of the processes. Workers are responsible for writing
the necessary files for Bertini and for writing their own data to disk.

Bertini creates structures in memory by parsing an input file. As input

is interpreted, several other files are created. These contain the straight line
program, coefficient values, variable names, etc. Since the monomial structure
of the polynomials in each Step 2 run is the same, almost all of these files are
identical from one run to the next, so almost all this parsing is unnecessary. The
only file that needs to be changed between runs is the file containing parameter
values.

Paramotopy 7

To prevent proliferation in the number of files needed to contain the data
from the Paramotopy run, the Bertini output data is read back into memory,
and dumped into a collective data file. The collective data files have a maximum
buffer size, and once the buffer size is reached, the data in the buffer is written
to the file, and the process repeats by storing the Bertini output data in memory
until the buffer is full once more.

Repeated writing and reading is taxing on hard drives and clogs a LAN if
the workers are using network drives. To free workers from having to physically
write temporary files to electronic media storage, an option is provided to the
user to exploit a shared memory location (or ramdisk), should it be available.

3.5 Front ends and back ends

Real-world problems may involve many parameters. This could be problematic
when one wants to discretize a parameter space into a uniform sample as the
number of parameter points of interest can easily reach into the astronomical.
Hence, Paramotopy contains support for both linear uniform meshes of param-
eters as well as user-defined sets of parameter values stored in a text file. A
generic Matlab interface for gathering, saving, and plotting data from an ar-
bitrary Paramotopy run is provided on the Paramotopy website. See [11] for
further details.

4 Conclusions

Paramotopy can be used to solve parameterized polynomial systems efficiently
for large numbers of parameter values. This extends the reach of numerical al-
gebraic geometry in a new direction, particularly one that might be useful for
mathematicians, scientists, and engineers who would like to rapidly test a hy-
pothesis or would like to find regions of a parameter space over which the poly-
nomial system has the same number of solutions. While Bertini and PHCpack
have some parameter homotopy capabilities, Paramotopy has been optimized
for the scenario of using many-processor computers to solve at many parameter
values of interest.

Acknowledgements

The authors appreciate the useful comments from several anonymous referees
and Andrew Sommese as these have greatly contributed to the quality of this
paper. The first author would also like to recognize the hospitality of Institut
Mittag-Leffler and the Mathematical Biosciences Institute, as well as partial
support from the NSF via award DMS-1719658.

8 Bates-Brake-Niemerg

References

1. Sommese, A., Morgan, A.: Coefficient-parameter polynomial continuation. Appl.
Math and Comp. 29 (1989) 123–160

2. Sommese, A.J., Wampler, C.W.: The Numerical solution of systems of polynomials
arising in engineering and science. World Scientific Publishing (2005)

3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerical solution
of polynomial systems using the software package Bertini. SIAM, Philadelphia, PA
(2013)

4. Bates, D., Hauenstein, J., Peterson, C., Sommese, A.: A numerical local dimension
test for points on the solution set of a system of polynomial equations. SIAM J.
Numer. Anal. 47(5) (2009) 3608–3623

5. Brake, D.A., Bates, D.J., Putkaradze, V., Maciejewski, A.A.: Illustration of nu-
merical algebraic methods for workspace estimation of cooperating robots after
joint failure. In: 15th IASTED Int. Conf. on Rob. and Appl. (2010) 461–468

6. He, Y.H., Mehta, D., Niemerg, M., Rummel, M., Valeanu, A.: Exploring the po-
tential energy landscape over a large parameter-space. Journal of High Energy
Physics 2013(7) (2013) 1–29

7. Newell, A.J.: Transition to superparamagnetism in chains of magnetosome crystals.
Geochem. Geophys. Geosy. 10(11) (2009) Q11Z08

8. Rostalski, P., Fotiou, I.A., Bates, D.J., Beccuti, A.G., Morari, M.: Numerical
algebraic geometry for optimal control applications. SIAM J Optimiz. 21(2) (2011)
417–437

9. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.: Bertini: Software for
numerical algebraic geometry (2006)

10. Verschelde, J.: Algorithm 795: Phcpack: A general-purpose solver for polynomial
systems by homotopy continuation. ACM Transactions on Mathematical Software
(TOMS) 25(2) (1999) 251–276

11. Bates, D., Brake, D., Niemerg, M.: Paramotopy: Parameter homotopies in parallel.
(2018) arXiv.org/abs/1804.04183.

12. Bates, D., Hauenstein, J., Sommese, A., Wampler, C.: Adaptive multiprecision
path tracking. SIAM J. Numer. Anal. 46(2) (2008) 722–746

13. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Stepsize control
for path tracking. Contemp. Math. 496 (2009) 21–31

14. Bates, D.J., Hauenstein, J.D., Sommese, A.J.: Efficient path tracking methods.
Numer. Algorithms 58(4) (2011) 451–459

15. Wampler, C.W.: Bezout number calculations for multi-homogeneous polynomial
systems. Appl. math. and comput. 51(2) (1992) 143–157

16. Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation
methods. Handb. Numer. Anal. 11 (2003) 209–304

17. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated
singularities of polynomial systems. Theoretical Computer Science 359 (2006)
111–122

18. Hauenstein, J., Wampler, C.: Isosingular sets and deflation. Foundations of Com-
putational Mathematics 13 (2013) 371–403

