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Abstract. Given a polynomial system f , this article provides a general
construction for homotopies that yield at least one point of each con-
nected component on the set of solutions of f = 0. This algorithmic
approach is then used to compute a superset of the isolated points in the
image of an algebraic set which arises in many applications, such as com-
puting critical sets used in the decomposition of real algebraic sets. An
example is presented which demonstrates the efficiency of this approach.
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Introduction

For a polynomial system f with complex coefficients, the fundamental problem
of algebraic geometry is to understand the set of solutions of the system f =
0, denoted V(f). Numerical algebraic geometry (see, e.g., [5,25] for a general
overview) is based on using homotopy continuation methods for computing V(f).
Geometrically, one can decompose V(f) into its irreducible components, which
corresponds numerically to computing a numerical irreducible decomposition
with each irreducible component represented by a witness set. The first step of
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computing a numerical irreducible decomposition is to compute witness point
supersets with the algorithms [13,22,24] relying upon a sequence of homotopies.
At each dimension where a solution component could exist, a generic linear space
of complementary dimension is used to slice the solution set; the witness points
are then the isolated points in the intersection of the solution component and
the linear slice. Accordingly, a crucial property of the algorithms employed is
that they must generate a finite set of points, say S, in the slice that includes
all isolated points of the slice.

In this article, we change the focus from irreducible components to connected
components. We present an approach that computes a finite set of points in
V(f) containing at least one point on each connected component of V(f) using a
single homotopy, built on a similar theoretical viewpoint as the nonconstructive
approach presented in [19, Thm. 7]. This work is complementary to methods for
computing a finite set of points in the set of real points in V(f), denoted VR(f),
containing at least one point on each connected component of VR(f) [1,11,21,30].

Our approach is particularly relevant to numerical elimination theory [5,
Chap. 16], which seeks to treat projections of algebraic sets in a similar fashion
as general algebraic sets but without having on hand polynomials that vanish on
the projection (and without computing such polynomials). This is a numerical
alternative to symbolic elimination methods [29]. In particular, suppose that
f(x, y) is a polynomial system that is defined on a product of two projective
spaces, and let X = π(V(f)) where π(x, y) = x. We do not have a polynomial
system that defines X, so we do all computations via points in its pre-image,
π−1(X)∩V(f). In particular, if we wish to compute a finite set of points S ⊂ V(f)
such that π(S) includes all isolated points ofX, it suffices if S contains a point on
each connected component of V(f). Our new algorithm enables one to compute
such a set S using a single homotopy; one does not need to separately consider
each possible dimension of the fibers over the isolated points of X.

The viewpoint of computing based on connected components also has many
other applications, particularly related to so-called critical point conditions. For
example, the methods mentioned above in relation to real solutions, namely
[1,11,21,30], compute critical points of V(f) with respect to the distance func-
tion (see also [9]). In [6,7], critical points of V(f) with respect to a linear projec-
tion are used to numerically decompose real algebraic sets. (We discuss this in
more detail in § 3.) Other applications include computing witness point sets for
irreducible components of rank-deficiency sets [2], isosingular sets [14], and de-
flation ideals [17].

To highlight the key point of this paper, consider computing rank-deficiency
sets as in [2]. With this setup, one adds new variables related to the null space
of the matrix. To make sure that all components of the rank-deficiency sets are
computed, traditional approaches need to consider all possible dimensions of the
null space. The point of this paper is to provide an algorithmic approach by
which one only needs to consider the smallest possible null space dimension,
thereby simplifying the computation.



The rest of the article is organized as follows. Section 1 derives an algorithmic
approach that computes at least one point on every connected component of V(f)
using one homotopy. This is discussed in relation to elimination theory in § 2,
while § 3 focuses on computing critical sets of projections of real algebraic sets.
An example illustrating this approach and its efficiency is presented in § 4.

1 Construction of homotopies

The starting point for constructing one homotopy that computes at least one
point on each connected component of a solution set of polynomial equations is
[19, Thm. 7]. Since this theorem is nonconstructive, we derive an algorithmic ap-
proach for performing this computation in Prop. 1 and sketch a proof. We refer
to [25] for details regarding algebraic and analytic sets with [19, Appendix] pro-
viding a quick introduction to basic results regarding such sets.

Suppose that E is a complex algebraic vector bundle on an n-dimensional
irreducible and reduced complex projective set X. Denote the bundle projection
from E to X by πE . A section s of E is a complex algebraic map s : X → E such
that πE ◦ s is the identity; i.e., for all x ∈ X, (πE ◦ s)(x) = πE(s(x)) = x.

There is a nonempty Zariski open set U ⊂ X over which E has a trivialization.
Using such a trivialization, an algebraic section of E becomes a system of rank(E)
algebraic functions. In fact, all polynomial systems arise in this way and results
about special homotopies which track different numbers of paths, e.g., [16,20,26],
are based on this interpretation (see also [25, Appendix A]).

Let us specialize this to a concrete situation.

Example 1. Suppose thatX ⊂ ∏r

j=1
P
nj is an irreducible and reduced n-dimensional

algebraic subset of a product of projective spaces. For example, X could be an
irreducible component of a system of multihomogeneous polynomials in the vari-
ables

z1,0, . . . , z1,n1
, . . . , zr,0, . . . , zr,nr

,

where [zj,0, . . . , zj,nj
] are the homogeneous coordinates on the jth projective

space, Pnj . Each homogeneous coordinate zj,k has a natural interpretation as a
section of the hyperplane section bundle, denoted LP

nj (1). The dth power of the
hyperplane section bundle is denoted by LP

nj (d). A multihomogeneous polyno-
mial defined on

∏r

j=1
P
nj with multidegree (d1, . . . , dr) is naturally interpreted

as a section of the line bundle

L∏
r
j=1

P
nj (d1, . . . , dr) := ⊗r

j=1π
∗
jLP

nj (dj),

where πk :
∏r

j=1
P
nj → P

nk is the product projection onto the kth factor. A sys-
tem of n multihomogeneous polynomials

f :=







f1
...
fn






(1)



where fi has multidegree (di,1, . . . , di,ni
) is interpreted as a section of

E :=

n
⊕

i=1

L∏
r
j=1

P
nj (di,1, . . . , di,r).

The solution set of f = 0 is simply the set of zeroes of the section f .

The nth Chern class of E [8,10], which lies in the 2nth integer cohomology
group H2n(X,Z), is denoted by cn(E). Let d := cn(E)[X] ∈ Z, i.e., d denotes the
evaluation of cn(E) on X.

Example 2. Continuing from Example 1, let c :=
∑r

j=1
nj−n be the codimension

of X. Using multi-index notation for α = (α1, . . . , αr) where each αi ≥ 0 and
|α| = ∑r

i=1
αi, we can represent X in homology by

∑

|α|=c

eαHα

where Hi := π−1

i (Hi) with hyperplane Hi ⊂ P
ni and Hα = Hα1

1
· · ·Hαr

r . More-
over, d := cn(E)[X] is simply the multihomogeneous Bézout number of the sys-
tem of multihomogeneous polynomials restricted to X, i.e., the coefficient of
∏r

j=1
z
nj

j in the expression





∑

|α|=c

eαz
α



 ·
n
∏

i=1





r
∑

j=1

di,jzj



 .

In particular, d is simply the number of zeroes of a general section of E re-
stricted to X.

A vector space V of global sections of E is said to span E if, given any point
e ∈ E , there is a section σ ∈ V of E with σ(πE(e)) = e. We assume that the rank
of E is n = dimX. If V spans E , then Bertini’s Theorem asserts that there is
a Zariski dense open set U ⊂ V with the property that, for all σ ∈ U , σ has d
nonsingular isolated zeroes contained in the smooth points of X, i.e., the graph
of σ meets the graph of the identically zero section of E transversely in d points
in the set of smooth points of X.

Let |V | := (V \{0})/C∗ be the space of lines through the origin of V . Given a
complex analytic vector bundle E spanned by a vector space of complex analytic
sections V , the total space Z ⊂ X × |V | of solution sets of s ∈ V is

Z := {(x, s) ∈ X × |V | : s(x) = 0} . (2)

For simplicity, let p : Z → X and q : Z → |V | denote the maps induced by the
product projections X × |V | → X and X × |V | → |V |, respectively.

Since V spans E , the evaluation map

X × V → E





immediately yields a constructive algorithm for computing a finite set of points
containing at least one point on each connected component of σ−1(0).

Proposition 1. Let E denote a rank n algebraic vector bundle over an irre-

ducible and reduced n-dimensional projective algebraic set X. Let V be a vector

space of sections of E that spans E. Assume that d := cn(E)[X] > 0 and τ ∈ V
which has d nonsingular zeroes all contained in the smooth points of X. Let

σ ∈ V be a nonzero section of E, which is not a multiple of τ . Let ` = 〈σ, τ〉
and H as in (3). Then, there is a nonempty Zariski open set Q ⊂ ` such that

1. the map qZQ
of ZQ :=

{

H−1(0) ∩ (X ×Q)
}

to ` is d-to-one; and

2. the finite set ZQ ∩ σ−1(0) contains at least one point of every connected

subset of σ−1(0).

Proof. Let Z as in (2). The projection map q : Z → |V | may be Stein factorized
[25, Thm. A.4.8] as q = s◦r where r : Z → Y is an algebraic map with connected
fibers onto an algebraic set Y and s : Y → |V | is an algebraic map with finite
fibers. The surjectivity of q implies that s is surjective and dimY = dim |V |.
Since Z is irreducible, Y is irreducible.

It suffices to show that given any y ∈ Y , there is a complex open neighbor-
hood U of y with s(U) an open neighborhood of s(y). A line ` ⊂ |V | is defined
by dim |V | − 1 linear equations. Thus, s−1(`) has all components of dimension
at least 1. The result follows from [25, Thm. A.4.17].

Remark 1. If X is a codimension c irreducible component of multiplicity one
of the solution set of a polynomial system f1, . . . , fc in the total space, we can
choose our homotopy so that the paths over (0, 1] are in the set where df1∧· · ·∧dfc
is non-zero.

2 Isolated points of images

With the theoretical foundation presented in § 1, this section focuses on com-
puting a finite set of points containing at least one point on each connected
component in the image of an algebraic set which, in particular, provides a fi-
nite superset of the isolated points in the image. Without loss of generality, it
suffices to consider projections of algebraic sets which corresponds algebraically
with computing solutions of an elimination ideal.

Lemma 1. Let V be a closed algebraic subset of a complex quasiprojective al-

gebraic set X. Let π : X → Y denote a proper algebraic map from X to a

complex quasiprojective algebraic set Y . If S is a finite set of points in V that

contains a point on each connected component of V , then π(S) is a finite set of

points in π(V ) which contains a point on each connected component of π(V ). In
particular, π(S) is a finite superset of the zero-dimensional components of π(V ).

Proof. The image of a connected set under a proper algebraic map is connected.



Consider the concrete case where f is a polynomial system defined on C
N ×

P
M . Let V(f) ⊂ C

N × P
M and Z(f) ⊂ P

N × P
M be the closure of V(f) under

the natural embedding of CN into P
N . The approach of Prop. 1 provides one

homotopy which can be used to compute a point on each connected component
of Z(f). However, it may happen that a point computed on each connected
component of V(f) is at “infinity.” One special case is the following for isolated
points in the projection of V(f) onto C

N .

Corollary 1. Let f be a polynomial system defined on C
N × P

M and π denote

the projection C
N × P

M → C
N . By considering the natural inclusion of C

N

into P
N , let Z(f) be the closure of V(f) in P

N × P
M . Let S be a finite set of

points in Z(f) which contains a point on each connected component of Z(f) and
SC = S ∩ (CN × P

M ). Then, π(SC) is a finite set of points in π(V(f)) which

contains the isolated points in π(V(f)).
Proof. Suppose that x ∈ π(V(f)) ⊂ C

N is isolated. Let y ∈ P
M such that

(x, y) ∈ V(f). By abuse of notation, we have (x, y) ∈ Z(f) so that there is a
connected component, say C, of Z(f) which contains (x, y). Since x is isolated
in π(V(f)), we must have C ⊂ {x} × P

M . The statement follows from the fact
that C is thus naturally contained in C

N × P
M .

Example 3. To illustrate, consider the polynomial system

F (x) =

[

F1(x)
F2(x)

]

=

[

x2
1 + x2

2 + x2
3 + x2

4

x3
1 + x3

2 + x3
3 + x2

4

]

defined on C
4. The set V(F ) ⊂ C

4 is an irreducible surface of degree six con-
taining one real point, namely the origin, which is an isolated singularity. Since
the total derivatives dF1 and dF2 are linearly dependent at a singular point, we
can consider the following system defined on C

4 × P
1:

G(x, v) =

[

F (x)
v0 · dF1(x) + v1 · dF2(x)

]

.

Since G consists of 6 polynomials defined on a 5 dimensional space, we reduce
to a square system via randomization4 which, for example, yields:

f(x, v) :=













x2
1 + x2

2 + x2
3 + x2

4

x3
1 + x3

2 + x3
3 + x2

4

v0(x1 + x4) + v1(3x
2
1 + x4)

v0(x2 + x4) + v1(3x
2
2 + x4)

v0(x3 + x4) + v1(3x
2
3 + x4)













.

4 In usual practice, “randomization” means replacing a set of polynomials with some
number of random linear combinations of the polynomials. When the appropriate
number of combinations is used, then in a Zariski-open subset of the Cartesian space
of coefficients of the linear combinations, the solution set of interest is preserved. See,
for example, [25, §13.5]. Here, for simplicity of illustration, we take very simple linear
combinations involving small integers. These happen to suffice, but in general one
would use a random number generator and possibly hundreds of digits to better
approximate the probability-one chance of success that is implied in a continuum
model of the coefficient space.



Consider the linear product [26] system:

g(x, v) :=













x2
1 + x2

2 + x2
3 + x4

4

x3
1 + x3

2 + x3
3 + x2

4

(v0 + v1)(x1 − 4x4 − 1)(x1 − 2)
(v0 − v1)(x2 + 2x4 − 1)(x2 − 3)
(v0 + 2v1)(x3 − 3x4 − 1)(x3 − 4)













together with the homotopy

H((x, v), [λ, µ]) = λf(x, v) + µg(x, v).

The symbols λ and µ are spanning sections from (3); in this context, they are
scalar values interpolating between f and g, and the homotopy “path” variables.
With this setup, g−1(0) has exactly d = 72 nonsingular isolated solutions which
can be computed easily. Further, 72 is the coefficient of a4b in the polynomial
(2a)(3a)(2a+ b)3, one way to compute the 2-homogeneous root count [20].

We used Bertini [4] to track the 72 paths along a real arc contained in
the line 〈σ, τ〉 in which 30 paths diverge to infinity and 42 paths end at finite
points. Of the latter, 20 endpoints are nonsingular isolated solutions which are
extraneous in that they arose from the randomization and not actually in V(G).
The other 22 paths converged to points in {0}×P

1: 18 of which ended with v =
[0, 1] ∈ P

1 while the other 4 break into 2 groups of 2 with v of the form [1, α] and
[1, conj(α)] where α ≈ −0.351 + 0.504 ·

√
−1. In particular, even though {0}×P

1

is a positive-dimensional solution component of V(f) and also of V(G), we always
obtain at least one point on this component showing that the origin is the only
point in V(F ) which is singular with respect to F .

3 Computing critical points of projections

An application of Corollary 1 is to compute the critical points of an irreducible
curve X ⊂ C

N with respect to a nonconstant linear projection π : X → C.
In particular, assume that f = {f1, . . . , fN−1} is a polynomial system on C

N

such that X is an irreducible component of V(f) which has multiplicity one with
respect to f . A critical point of π with respect to X is a point x ∈ X such that
either

– x is a smooth point and dπ is zero on the tangent space of X at x; or
– x is a singular point of X.

In terms of rank-deficiency sets, the set of critical points is the set of points on
X such that

rank











dπ
df1
...

dfN−1











≤ N − 1. (4)



With this setup, there are finitely many critical points. In [7], which includes
an implementation of the curve decomposition algorithm of [18], a finite superset
of the critical points are needed to compute a cellular decomposition of the real
points of X. In fact, the points that are not critical points simply make the
cellular decomposition finer which can be merged away in a post-processing step.
Hence, one needs to compute at least one point in each connected component in
X × P

N−1 intersected with the solution set in C
N × P

N−1 of

























f1
...

fN−1










dπ
df1
...

dfN−1











· ξ

























= 0.

The advantage here is that we obtain a finite superset of the critical points using
one homotopy regardless of the possibly different dimensions of the correspond-
ing null spaces, i.e., there is no need to cascade down the possible null space
dimensions.

The setup above naturally extends to computing witness point supersets for
the critical set of dimension k − 1 of an irreducible component of dimension k,
e.g., critical curves of a surface.

4 Example

Consider the 12-bar spherical linkage from [27,28]. This device can be viewed
as 20 rigid rods meeting in spherical joints at 9 points, or since a loop of three
such rods forms a rigid triangle, as 12 rigid links meeting in rotational hinges
with the axes of rotation all intersecting at a central point. The arrangement is
most clearly seen in Figure 2(c). The irreducible decomposition of the variety
in C

18 for the polynomial system F defined below for this linkage was first
computed in [11] and summarized in Table 1. Here, we consider computing a
superset of the critical points of the the curve C which is the union of the eight
one-dimensional irreducible components having degree 36 with respect to the
projection π defined below in (5). We will compare approaches computed using
Bertini [4].

The ground link for the linkage is specified by fixing three points, namely
P0 = (0, 0, 0), P7 = (−1, 1,−1), and P8 = (−1,−1,−1). The three coordinates
of the other six points, P1, . . . , P6, are the 18 variables of polynomial system



Table 1. Decomposition of 12-bar spherical linkage system.

dimension degree # components

3 8 2

2

4 2
8 14
12 12
16 1
20 4
24 1

1
4 6
6 2

F : C18 → C
17. The 17 polynomials in F are the following quadratics:

Gij = ‖Pi − Pj‖2 − 4,

(i, j) ∈ {(1, 2), (3, 4), (5, 6), (1, 5), (2, 6), (3, 7), (4, 8), (1, 3), (2, 4), (5, 7), (6, 8)};

Hk = ‖Pk‖2 − 3,

k ∈ {1, 2, 3, 4, 5, 6}.

Denoting the coordinates of Pi as Pi1, Pi2, Pi3, we choose5 a projection map
π : C18 → C defined by

π(P ) = 3

5
P11 +

13

17
P12 −

5

16
P13 +

26

27
P21 −

1

10
P22 +

1

6
P23 +

3

5
P31 +

7

17
P32 +

3

10
P33 +

1

4
P41 −

4

5
P42 +

1

3
P43 +

18

25
P51 +

14

29
P52 −

12

13
P53 −

17

30
P61 −

5

17
P62 +

13

20
P63 (5)

and consider the following system defined on C × P
17 ⊂ C

18 × P
17:

f(P, ξ) =





F (P )
[

dπ
dF (P )

]

· ξ



 .

Since each irreducible component in C has multiplicity one with respect to F ,
the irreducible components of V(f)∩ (C × P

17) must be of the form {x}×L for
some point x ∈ C and linear space L ⊂ P

17. We aim to compute all such points
x.

With traditional methods, one would need to consider various dimensions of
the corresponding null spaces L. The advantage is that one obtains additional
information, namely witness point supersets for the irreducible components. The
first approach is to consider each possible dimension of P17 independently. Since
the zero-dimensional case is equivalent in terms of the setup and number of paths
to the new approach discussed below, we will just quickly summarize what would
be needed to perform this full computation. In particular, for each 0 ≤ i ≤ 16,
starting with a witness set for C × P

17, the corresponding start system, after

5 As before, we choose simple rational coefficients for simplicity of presentation.



possible randomization, would require tracking 36 · (17− i), totaling 5508, paths
related to moving linear slices and the same number of paths to compute witness
point supersets.

Rather than treat each dimension independently, another option is to cascade
down through the dimensions, e.g., using the regenerative extension [15]. The
implementation in Bertini, starting with a witness set for C × P

17, requires
tracking 6276 paths for solving as well as tracking 3216 paths related to moving
linear slices. Using 64, 2.3 GHz processors, this computation took 618 seconds.

Instead of using a method designed for computing witness point supersets,
our new approach uses one homotopy to compute a point on each connected
component. This is all that is needed for the current application via Corollary 1.
Since dπ is constant and dF is a matrix with linear entries, we take our start
system to be

g(P, ξ) =















F (P )
ξ0

`1(P ) · ξ1
...

`17(P ) · ξ17















restricted to C×P
17 where each `i is a random linear polynomial. In particular,

V(g)∩(C×P
17) consists of d = 36·

(

17

1

)

= 612 points, each of which is nonsingular
with respect to g. The 612 solutions can be computed from a witness set for
C by tracking 612 paths related to moving linear slices. Then, a point on each
connected component of V(f)∩(C×P

17) is computed via Corollary 1 by tracking
612 paths. This computation in total, using the same parallel setup as above,
took 20 seconds.

Of the 612 paths, 492 diverge to infinity while 120 have finite endpoints. Of
the 120 finite endpoints of the form (P, ξ), 78 are real (i.e., have P ∈ R

18) with
22 distinct real points P since some points appear with multiplicity while others
have a null space with dimension greater than one so that the same P can appear
with several different null directions ξ. In detail, the breakdown of the 22 real
points is as follows:

– 14 real points are the endpoint of one path each. These points are smooth
points of C with rank dF = 17. Each lie on one of the degree 4 irreducible
components of C and is an equilateral spherical four-bar linkage of the type
illustrated in Figure 2(a).

– 6 real points are the endpoint of 10 paths each. Each of these points has

rank dF = 12 with rank

[

dπ
dF

]

= 13 and arise where an irreducible compo-

nent of degree 4 in C intersects another irreducible component of V(F ). The
corresponding 12-bar linkage appears as in Figure 2(b).

– 2 real points are the endpoint of 2 paths each. Each of these points P has

rank dF = 16 and rank

[

dπ
dF

]

= 17 so that the corresponding null vector

ξ ∈ P
17 is unique. Hence, the points (P, ξ) have multiplicity 2 with respect
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